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Chapter 1

Some elements of convex
analysis

1.1 Fenchel-Legendre Transform
Let us fix a Banach space X together with its dual X ′, and denote by 〈ξ ,x〉 the duality
between an element ξ ∈ X ′ and x ∈ X . More generally, we could fix a pair of normed
vector spaces on which we fix a bilinear form which plays the role of the duality be-
tween them.

Definition 1.1. We say that a function valued in R∪{+∞} is proper if it is not identi-
cally equal to +∞. The set { f <+∞} is called the domain of f .

Definition 1.2. Given a vector space X and its dual X ′, and a proper function f : X →
R∪{+∞} we define its Fenchel-Legendre transform f ∗ : X ′→ R∪{+∞} via

f ∗(ξ ) := sup
x
〈ξ ,x〉− f (x).

Remark 1.3. We observe that we trivially have f ∗(0) =− infX f .

We note that f ∗, as a sup of affine continuous (in the sequel we will just say affine
and mean affine and continuous, i.e. of the form `(x) = 〈ξ ,x〉+c for ξ ∈ X ′ and c∈R)
functions, is both convex and l.s.c., as these two notions are stable by sup.

By abuse of notations, when considering functions defined on X ′ we will see their
Fenchel-Legendre transform as a function defined on X (and not on X ′′: this is possible
since X ⊂ X ′′ and we can restrict it to X , and by the way in most cases we will use only
reflexive spaces).

We prove the following results.

Proposition 1.4. 1. If f : X → R∪{+∞} is proper, convex and l.s.c. then there
exists a continuous affine function ` such that f ≥ `.

2. If f : X → R∪{+∞} is proper, convex and l.s.c. then it is a sup of continuous
affine functions.

1
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3. If f : X → R∪ {+∞} is proper, convex and l.s.c. then there exists g : X ′ →
R∪{+∞} such that f = g∗.

4. If f : X → R∪{+∞} is proper, convex and l.s.c. then f ∗∗ = f .

Proof. We consider the epigraph Epi( f ) := {(x, t) ∈ X ×R : t ≥ f (x)} of f which
is a convex and closed set in X ×R. We take a point x0 such that f (x0) < +∞ and
consider the singleton {(x0, f (x0)− 1)} which is a convex and compact set in X ×R.
The Hahn-Banach separation theorem provides the existence of a pair (ξ ,a) ∈ X ′×R
and a cosntant c such that 〈ξ ,x0〉+ a( f (x0)− 1) < c and 〈ξ ,x〉+ at > c for every
(x, t) ∈ Epi( f ). Note that this last condition implies a ≥ 0 since we can take t → ∞.
Moreover, we should also have a > 0 otherwise taking any point (x, t) ∈ Epi( f ) with
x = x0 we have a contradiction. If we then take t = f (x) for all x such that f (x)<+∞

we obtain a f (x) ≥ −〈ξ ,x〉+ 〈ξ ,x0〉+a( f (x0)−1) and, dividing by a > 0, we obtain
the first claim.

We now take an arbitrary x0 ∈ X and t0 < f (x0) and separate again the singleton
{(x0, t0)} from Epi( f ), thus getting a pair (ξ ,a) ∈ X ′×R and a constant c such that
〈ξ ,x0〉+ at0 < c and 〈ξ ,x〉+ at > c for every (x, t) ∈ Epi( f ). Again, we have a ≥ 0.
If f (x0)<+∞ we obtain as before a > 0 and the inequality f (x)>− ξ

a · (x− x0)+ t0.
We then have an affine function ` with f ≥ ` and `(x0) = x0. This shows that the sup
of all affine functions smaller than f is, at the point x0, at least t0. Hence this sup
equals f on { f < +∞}. The same argument works for f (x0) = +∞ if for t0 arbitrary
large the corresponding coefficient a is strictly positive. If not, we have 〈ξ ,x0〉 < 0
and 〈ξ ,x〉 ≥ 0 for every x such that (x, t) ∈ Epi( f ) for at least one t ∈ R, i.e. for
x ∈ { f <+∞}. Consider now `n = `−nξ where ` is the affine function smaller than f
previously found. We have f ≥ ` ≥ `−nξ since ξ is non-negative on { f < +∞} and
moreover limn `n(x0) = +∞. This shows that in such a point x0 the sup of the affine
functions smaller than f equals +∞, and hence f (x0).

Once that we know that f is a sup of affine functions we can write

f (x) = sup
α

〈ξα ,x〉+ cα

for a family of indexes α . We then set c(ξ ) := sup{cα : ξα = ξ}. The set in the sup
can be empty, which means c(ξ ) = −∞. Anyway, the sup is always finite: fix a point
x0 with f (x0)<+∞ and use since cα ≤ f (x0)−〈ξ ,x0〉. We then define g =−c and we
see f = g∗.

finally, before proving f = f ∗∗ we prove that for any function f we have f ≥ f ∗∗

even if f is not convex or lsc. Indeed, we have f ∗(ξ )+ f (x) ≥ 〈ξ ,x〉 which allows
to write f (x) ≥ 〈ξ ,x〉− f ∗(ξ ), an inequality true for every ξ . Taking the sup over ξ

we obtain f ≥ f ∗∗. We want now to prove that this inequality is an equality if f is
convex and lsc. We write f = g∗ and transform this into f ∗ = g∗∗. We then have f ∗ ≤ g
and, transforming this inequality (which changes its sign), f ∗∗ ≥ g∗ = f , which proves
f ∗∗ = f .

Corollary 1.5. Given an arbitrary proper function f : X → R∪{+∞} we have f ∗∗ =
sup{g : g≤ f , g is convex and lsc}.
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Proof. Let us call h the function obtained as a sup on the right hand side. Since f ∗∗ is
convex and lsc and smaller than f , we have f ∗∗ ≤ h. Note that h, as a sup of convex
and lsc functions, is also convex and lsc, and it is of course smaller than f . We write
f ≥ h and double transform this inequality, which preserves the sign. We then have
f ∗∗ ≥ h∗∗ = h, and the claim is proven.

We finally discuss the relations between the behavior at ∞ of a fonction f and its
Legendre transform. We give two definitions.

Definition 1.6. A function f : X → R∪{+∞} defined on a normed vector space X is
said to be coercive if lim||x||→∞ f (x)=+∞ ; it is said to be superlinear if lim||x||→∞

f (x)
||x|| =

+∞.

We note that the definition of coercive does not include any speed of convergence
to ∞, but that for onvex functions this should be at least linear:

Proposition 1.7. A proper, convex, and l.s.c. function f : X →R∪{+∞} is coercive if
and only there exist two constants c0,c1 such that f (x)≥ c0||x||− c1.

Proof. We just need to prove that c0,c1 exist if f is coercive, the converse being trivial.
Take a point x0 such that f (x0)<+∞. Using lim||x||→∞ f (x) = +∞ we know that there
exists a radius R such that f (x) ≥ f (x0)+ 1 as soon as ||x− x0|| ≥ R. By convexity,
we have, for each x with ||x− x0||> R, the inequality f (x)≥ f (x0)+ ||x− x0||/R (it is
enough to use the definition of convexity on the three points x0,x and xt = (1− t)x0 +
tx ∈ ∂B(x0,R)). Since f is bounded from below by an affine function, it is bounded
from below by a constant on B(x0,R), so that we can write f (x)≥ c2 + ||x− x0||/R for
some c2 ∈ R and all x ∈ X . We then use the triangle inequality and obtain the claim
with c0 = 1/R and c1 = c2−||x0||/R.

Proposition 1.8. A proper and convex function f : X → R∪{+∞} is coercive if and
only if f ∗ is bounded in a neighboorhood of 0; it is superlinear if and only if f ∗ is
bounded on each bounded ball of X ′.

Proof. We know that f is coercive if and only if there exist two constants c0,c1 such
that f ≥ gc0,c1 where gc0,c1(x) := c0||x||− c1. Since both f and gc0,c1 are convex l.s.c.,
this inequality is equivalent to the opposite inequality for their transforms, i.e. f ∗ ≤
g∗c0,c1

. We can compute the transform and obtain

g∗c0,c1
(ξ ) =

{
c1 if ||ξ || ≤ c−1

0 ,

+∞ if not.

This shows that f is coercive if and only if there exist two constants R,C (with R = c−1
0 ,

C = c1) such that f ∗ ≤C on the ball of radius R of X ′, which is the claim.
We follow a similar procedure for the case of superlinear functions. We first note

that a convex l.s.c. function f is superlinear if and only if for every c0 there exists c1
such that f ≥ gc0,c1 . Indeed, it is clear that, should this condition be satisfied, we would
have liminf||x||→∞ f (x)/||x|| ≥ c0, and hence liminf||x||→∞ f (x)/||x|| = +∞ because c0
is arbitrary, so that f would be superlinear. On the other, if f is superlinear, for every
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c0 we have f (x) ≥ c0||x|| for large ||x||, say outside of B(0,R) . If we then choose
−c1 := min{infB(0,R) f −c0R,0} (a value which is finite since f is bounded from below
by an affine function), the inequality f (x)≥ c0||x||− c1 is true everywhere.

We then deduce that f is superlinear if and only if for every R = c−1
0 there is a

constant c1 such that f ∗ ≤ c1 on the ball of radius R of X ′, which is, again, the claim.

1.2 Subdifferentials
The above-the-tangent property of convex functions ispired the definition of an exten-
sion of the notion of differential, called sub-differential, as a set-valued map:

Definition 1.9. Given a function f : X → R∪{+∞} we define its subdifferential at x
as the set

∂ f (x) = {ξ ∈ X ′ : f (y)≥ f (x)+ 〈ξ ,y− x〉 ∀y ∈ X}.

We observe that ∂ f (x) is always a closed and convex set, whatever is f . Moreover,
if f is l.s.c. we easily see that the graph of the subdifferential multi-valued map is
closed:

Proposition 1.10. Suppose that f is l.s.c. and take a sequence xn→ x. Suppose ξn ⇀ ξ

and ξn ∈ ∂ f (xn). Then ξ ∈ ∂ f (x).

Proof. for every y we have f (y)≥ f (xn)+ 〈ξ ,y−xn〉. We can then use the strong con-
vergence of xn and the weak convergence of ξn, together with the lower semicontinuity
of f , to pass to the limit and deduce f (y)≥ f (x)+ 〈ξ ,y− x〉, i.e. ξ ∈ ∂ f (x).

Note that in the above proposition we could have exchanged strong convergence
for xn and weak for ξn for weak convergence for xn (but f needed in this case to be
weakly l.s.c.) and strong for ξn.

When dealing with arbitrary functions f , the subdifferential is in most cases empty,
as there is no reason that the inequality defining ξ ∈ ∂ f (x) is satisfied for y very far
from x. The situation is completely different when dealing with convex functions,
which is the standard case here subdifferentials are defined. In this case we can prove
that ∂ f (x) is never empty if x lies in the interior of the set { f <+∞} (note that outside
{ f <+∞} the subdifferential of a proper function is clearly empty).

We first provide an insight about the finite-dimensional case. In this case we simply
write ξ · x for the duality product, which coincides with the Euclidean scalar product
on RN .

We start from the following property.

Proposition 1.11. Given f :RN→R∪{+∞} suppose that f is differentiable at a point
x0. Then ∂ f (x0)⊂ {∇ f (x0)}. If moreover f is convex, then ∂ f (x0) = {∇ f (x0)}.

Proof. from the definition of sub-differential we see that ξ ∈ ∂ f (x0) means that y 7→
f (y)−ξ ·y is minimal at y = x0. Since we are supposing that f is differentiable at such
a point, we obtain ∇ f (x0)−ξ = 0, i.e. ξ = {∇ f (x0). This shows ∂ f (x0)⊂ {∇ f (x0)}.
The inclusion becomes an equality if f is convex since the above-the-tanent property
of convex functions exactly provides f (y)≥ f (x0)+∇ f (x0) · (y− x0) for every y.
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Proposition 1.12. Suppose that f : RN → R∪{+∞} is convex and take a point x0 in
the interior of { f <+∞}. Then ∂ f (x0) 6= /0.

Proof. It is well-known that convex functions in finite dimension are locally Lipschitz
in the interior of their domain, and Lipschitz functions are differentiable Lebesgue-
a.e. because of the Rademacher’s theorem. We can then take a sequence of points
xn → x0 such that f is differentiable at xn. We then have ∇ f (xn) ∈ ∂ f (xn) and the
Lipschitz behavior of f around x0 implies |∇ f (xn)| ≤C. It is then possible to extract a
subsequence such that ∇ f (xn)→ v. Proposition 1.10 implies v ∈ ∂ f (x0).

We can easily see, even from the 1D case, that different situations can occurr at the
boundary of { f <+∞}. If we take for instance the proper function f defined via

f (x) =

{
x2 if x≥ 0,
+∞ if x < 0,

we see that we have ∂ f (0) = [−∞,0] so that the subdifferential can be “fat” on these
boundary points. If we take, instead, the proper function f defined via

f (x) =

{
−
√

x if x≥ 0,
+∞ if x < 0,

we see that we have ∂ f (0) = /0, a fact related to the infinite slope of f at 0, an inifnite
slope that can of course only appaer on boundary points.

The proof of the fact that the sub-differential is non-empty1 in the interior of the
domain is more involved in the general (infinite-dimensional) case, and also based on
the use of the Hahn-Banach theorem. It will require the function to be convex and
l.s.c., this second assumption being useless in the finitdimensional case, since convex
functions are locally Lipschitz in the interior of their domain. It also requires to dis-
cuss whether the function is indeed locally bounded around some points. We state the
following clarifying proposition.

Proposition 1.13. If f : X → R∪ {+∞} is a proper convex and l.s.c. function, the
following facts are equivalent

1. f is locally Lipschitz continuous on the interior of its domain (i.e. for every point
in the interior of the domain there exists a ball centered at such a point where f
is Lipschitz continuous);

2. there exists a non-empty ball where f is finite-valued and Lipschitz continuous;

3. there exists a point where f is continuous and finite-valued;

4. there exists a point which has a neighborhood where f is bounded from above
by a finite constant.

1Note that, instead, we do not discuss the relations between subdifferential and gradients as we decided
not to discuss the differentiability in the inifnite-dimensional case.
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Moreover, all the above facts hold if X is a Banach space.

Proof. It is clear that 1. implies 2., which implies 3., which implies 4. Let us note that,
if f is bounded from above on a ball B(x0,R), then necessarily f is Lipschitz continuous
on B(x0,R/2). Indeed, we know (point 1 in Proposition 1.4) that f is also bounded from
beow by an affine function, and hence by a constant on B(0,R). Then, if there are two
points x1,x2 ∈ B(x0,R/2) with an incremental ratio equal to L and f (x1)> f (x2), then,
following the half-line going from x2 to x1 we find two points x3 ∈ ∂B(x0,R/2) and
x4 ∈ ∂B(x0,3R/4) with |x3−x4| ≥ R/4 and an incremental ration which is also at least
L. This implies f (x4)> f (x3)+LR/4 but the upper and lower bounds on f on the ball
B(0,R) imply that L cannot be too large, so f is Lipschitz continuous on B(x0,R/2).

Hence, in order to prove that 4. implies 1. we just need to prove that every point
in the interior of the domain admits a ball centered at such a point where f is bounded
from above. We start from the existence of a ball B(x0,R) where f is bounded from
above and we take another point x1 in the interior of the domain of f . for small ε > 0,
the point x2 := x1− ε(x0− x1) also belongs to the domain of f and every point of the
ball B(x1,r) with r = εR

1+ε
can be written as a convex combination of x2 and a point in

B(x0,R): indeed we have

x1 + v =
1

1+ ε
x2 +

ε

1+ ε
(x0 +

1+ ε

ε
v)

so that |v|< r implies x0+
1+ε

ε
v∈ B(x0,R). Then, f is bounded from above on B(x1,r)

by max{ f (x2),supB(x0,R) f} which shows the local bound around x1.
finally, we want to prove that f is necessarily locally bounded around every point

of the interior of its domain if X is complete. Consdier a closed ball B contained in
{ f < +∞} and write B =

⋃
n{ f ≤ n}∩B. Since f is l.s.c., each set { f ≤ n}∩B is

closed. Since their countable union has non-empty interior Baire’s theorem (which is
valid in complete metric spaces) implies that at least one of these sets also has non-
empty interior, so there exists a ball contained in a set { f ≤ n}, hence a point where
f is locally bounded from above. Then we satisfy condition 4., and consequently also
condition 1., 2. and 3.

We can now prove the following theorem.

Theorem 1.14. Suppose that f : X →R∪{+∞} is a proper convex and l.s.c. function
and take a point x0 in the interior of { f <+∞}. Also suppose that there exists at least
a point x1 (possibly different from x0) where f is continuous. Then ∂ f (x0) 6= /0.

Proof. Let us consider the set A given by the interior of Epi( f ) in X ×R and B =
{(x0, f (x0))}. They are two disjoint convex sets, and a is open. Hence, there exists a
pair (ξ ,a) ∈ X ′×R and a constant such that 〈ξ ,x0〉+ a f (x0) ≤ c and 〈ξ ,x〉+ at > c
for every (x, t) ∈ A.

The assumption on the exisntence of a point x1 where f is continuous implies that f
is bounded (say by a constant M) on a ball around x1 (say B(x1,R) and hence the set A
is non-empty since it includes B(x1,R)× (M,∞). Then, the convex set Epi( f ) has non-
empty interior and it is thus the closure of its interior (to see this it is enough to connect
every point of a closed convex set to the center of a ball contained in the set, and see
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that there is a cone composed of small balls contained in the convex set approximating
such a point). In particular, since (x0, f (x0)) belongs to Epi( f ), it is in the closure of
A, so necessarily we have 〈ξ ,x0〉+a f (x0)≥ c and hence 〈ξ ,x0〉+a f (x0) = c.

As we did iin Proposition 1.4, we must have a > 0. Indeed, we use Proposition 1.13
to see that f is also locally bounded around x0 so that points of the form (x, t) = (x0, t)
for t large enough should belong to A and should satisfy a(t− f (x0))> 0, which implies
a > 0.

Then, we can write 〈ξ ,x〉+ at > c = 〈ξ ,x0〉+ a f (x0), dividing by a and using
ξ̃ := ξ/a as

〈ξ̃ ,x〉+ t > 〈ξ̃ ,x0〉+ f (x0) for every (x, t) ∈ A.

The inequality becomes large on the clouse of A but implies, when applied to (x, t) =
(x, f (x)) ∈ Epi( f ) = A,

〈ξ̃ ,x〉+ f (x)≥ 〈ξ̃ ,x0〉+ f (x0),

which exactly means −ξ̃ ∈ ∂ f (x0).

Of course, thanks to the last claim in Proposition 1.13, when x is a Banach space
we obtain ∂ f (x0) 6= /0 for every x0 in the interior of { f <+∞}.

We list some other properties of subdifferentials.

Proposition 1.15. 1. A point x0 solves min{ f (x) : x∈ X} if and only if 0∈ ∂ f (x0).

2. The subdifferential satisfies the monotonicity property

ξi ∈ ∂ f (xi) for i = 1,2 ⇒ 〈ξ1−ξ2,x1− x2〉 ≥ 0.

3. If f is convex and l.s.c., the subdifferentials of f and f ∗ are related through

ξ ∈ ∂ f (x)⇔ x ∈ ∂ f ∗(ξ )⇔ f (x)+ f ∗(ξ ) = 〈ξ ,x〉.

Proof. 1. is a straightforward consequence of the definition of subdifferential, since
0 ∈ ∂ f (x0) means that for every y we have f (y)≥ f (x0).

2. is also straightforward if we sum up the inequalities

f (x2)≥ f (x1)+ 〈ξ ,x2− x1〉; f (x1)≥ f (x2)+ 〈ξ ,x1− x2〉.

for part 3., once we know that for convex and l.s.c. functions we have f ∗∗ = f , it
is enough to prove ξ ∈ ∂ f (x)⇔ f (x)+ f ∗(ξ ) = 〈ξ ,x〉 since then, by symmetry, we
can also obtain x ∈ ∂ f ∗(ξ )⇔ f (x)+ f ∗(ξ ) = 〈ξ ,x〉. We now look at the definition of
subdifferential, and we have

ξ ∈ ∂ f (x) ⇔ for every y ∈ X we have f (y)≥ f (x)+ 〈ξ ,y− x〉
⇔ for every y ∈ X we have 〈ξ ,x〉− f (x)≥ 〈ξ ,y〉− f (y)

⇔ 〈ξ ,x〉− f (x)≥ sup
y
〈ξ ,y〉− f (y)

⇔ 〈ξ ,x〉− f (x)≥ f ∗(ξ ).

This shows that ξ ∈ ∂ f (x) is equivalent to 〈ξ ,x〉 ≥ f (x) + f ∗(ξ ), which is in turn
equivalent to to 〈ξ ,x〉 = f (x)+ f ∗(ξ ), since the opposite inequality is always true by
definition of f ∗.
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We also state another property, but we prefer to stick to the finite-dimensional case
for simplicity.

Proposition 1.16. A function f : RN → R∪ {+∞} is strictly convex if and only if
∂ f (x0)∩∂ f (x1) = /0 for all x0 6= x1.

Proof. If we have ∂ f (x0)∩∂ f (x1) 6= /0 for two points x0 6= x1, take ξ ∈ ∂ f (x0)∩∂ f (x1)
and define f̃ (x) := f (x)−〈ξ ,x〉. Then both x0 and x1 minimize f̃ and this implies that
f is not strictly convex. If, instead, we suppose that f is not strictly convex, we need
to find two points with a same vector in the subdifferential. Consider two points x0
and x1 on which the strict convexity fails, i.e. f is affine on [x0,x1]. We then have a
segment S = {(x, f (x)) : x ∈ [x0,x1]} in the graph of f and we can separate it from the
interior A of Epi( f ) exactly as we did in Theorem 1.14. Up to restricting the space
where f is defined to the minimal affine space containing its domain, we can always
suppose that the domain has non-empty interior and hence the epigraph as well. This
is not restrictive, since if we want then to define subdifferentials in the original space
it is enough to add arbitrary components orthogonal to the affine space containing the
domain.

Following the same arguments as in Theorem 1.14, we obtain the existence of a
pair (ξ ,a)i ∈ X ′×R such that

〈ξ ,x〉+a f (x)< 〈ξ ,x′〉+at for every (x′, t) ∈ A and every x ∈ [x0,x1].

We then prove a > 0, divide by a, pass to a large inequality on the closure of A, and
deduce −ξ/a ∈ ∂ f (x) for every x ∈ [x0,x1].

Limiting once more to the finite-dimensional case (also because we do not want to
discuss differentiability in other settings) we can deduce from the previous proposition
and from part 3. of Proposition 1.15 the following fact.

Proposition 1.17. Take two proper, convex and l.s.c. conjugate functions f and f ∗

(with f = f ∗∗); then f is a real-valued C1 function on RN if and only if f ∗ is strictly
convex and superlinear.

Proof. We first prove that a convex function is C1 if and only if ∂ f (x) is a single-
ton for every x. If it is C1, and then differentiable, we already saw that this implies
∂ f (x) = {∇ f (x)}. The converse implication can be proven as follows: first we ob-
serve that, if we have a map v : RN → RN with ∂ f (x) = {v(x)}, then v is necessarily
locally bounded and continuous. Indeed, the function f is necessaril finite everywhere
(since the subdifferential is non-empty at every point) and hence locally Lipschitz; lo-
cal boundedess of v comes from v(x) · e ≤ f (x+ e)− f (x) ≤ C|e| (where we use the
Local Lipschitz behavior of f ): using e oriented as v(x) we obtain a bound on |v(x)|.
Continuity comes from local boundedness and from Proposition 1.10: when xn → x
then v(xn) admits a converging subsequence, but the limit can only belong to ∂ f (x),
i.e. it must equal v(x). Then we prove v(x) = ∇ f (x), and for this we use the definition
of ∂ f (x) and ∂ f (y) so as to get

v(y) · (y− x)≥ f (y)− f (x)≥ v(x) · (y− x).
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We then write v(y) · (y− x) = v(x) · (y− x)+ o(|y− x|) and we obtain the first-order
development f (y)− f (x) = v(x) ·(y−x)+o(|y−x|) which characterizes v(x) = ∇ f (x).

This shows that f is C1 as soon as subdifferentials are singletons. On the other
hand, point 3. in 1.15 shows that this is equivalent to having, for each x ∈ RN , exacty
one point ξ with x ∈ ∂ f ∗(ξ ). The fact that no more than one point ξ has the same
vector in the subdifferential is equivalent (Proposition 1.16) to being strictly convex.
The fact that each point is taken at least once as a subdifferential is, instead, equivalent
to being superlinear (see Lemma 1.18 below)

Lemma 1.18. A convex and l.s.c. function f : RN → R∪{+∞} is superlinear if and
only if ∂ f is surjective.

Proof. Let us suppose that f is convex, l.s.c, and superlinear. Then ofr every ξ the
function f̃ given by f̃ (x) := f (x)− ξ · x is also l.s.c, and superlinear, and it admitds a
minizer x0. Such a point satisfies ξ ∈ ∂ f (x0), which proves that ξ is in the image of
∂ f , which is then surjective.

Let us suppose now that ∂ f is surjective. Let us fix a number L > 0 and take the
2N vectors ξ

±
i := ±Lei, where the vectors ei are the canonical basis of RN . Since

each of these vectors belong to the image of the subdifferential, there exist points
x±i such that ξ

±
i ∈ ∂ f (x±i ). This implies that f satisfies 2N inequalities of the form

f (x) ≥ ξ
±
i · x−C±i for some constants C±i . We then obtain f (x) ≥ L||x||∞−C, where

||x||∞ = max{|xi|} = maxi x · (±ei) is the norm on RN given by the maximal modulus
of the components, and C = maxC±i . from the equivalence of the norms in finite di-
mension we get f (x) ≥C(N)L||x||−C, which shows liminf||x||→∞

f (x)
||x|| ≥C(N)L. The

arbitrariness of L concludes the proof.

Remark 1.19. Note that this very last lemma would be more delicate in infinite di-
mension, even if it still holds in Banach spaces (the proof is proposed as an Exercise
(see Exercise 6.7) and combines several ingredients in this Section. Exercise 6.8 also
discusses some subtle points about why some counter-examples fail.

1.3 Formal duality for constrained and penalized opti-
mization problems

In this section we introduce the notion of dual problem of a convex optimization prob-
lem through an inf-sup exchange procedure. This often requires to write possible con-
straints as a sup penalization, and we will then see how to adapt to more general prob-
lems. No proof of duality results will be given, and we will analyze in details in the next
section the most relevant examples in the calculus of variations. The proofs presented
in Section 4.3 will then inspire Section 4.5 for a more general theory.

We start from the following problem:

min{ f (x) : x ∈ X , Ax = b} ,

where A : X → Y is a linear map between two normed vector spaces, b ∈ Y is a fixed
vector and f : X → R∪{+∞} is a given convex and l.s.c. function. We will denote
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by At the transpose operator of A, a linear mapping defined on Y ′, the dual of Y , and
valued into X ′, dual of X , and characterized by

〈At
ξ ,x〉 := 〈ξ ,Ax〉 for all ξ ∈ Y ′ and x ∈ X .

We can see that the above problem is equivalent to

min

{
f (x)+ sup

ξ∈Y ′
〈ξ ,Ax−b〉 : x ∈ X

}
,

since we can compute the value of the expression supξ∈Y ′〈ξ ,Ax−b〉 by distinguishing
two cases: either Ax = b, in which case 〈ξ ,Ax−b〉= 0 for every ξ and the sup equals
0, or Ax 6= b, in which case there exists an element ξ ∈ Y ′ such that 〈ξ ,Ax− b〉 6= 0
and, by multiplying ξ times arbitrarily large constants, positive or negative depending
on the sign of 〈ξ ,Ax−b〉, we can see that the sup is +∞. Hence, adding this sup means
adding 0 if the constraint is satisfied or adding +∞ if not; since in a minimization
problem the value +∞ is the same as a constraint, we can see the equivalence between
the problem with the constraint Ax = b and the problem with the sup over ξ .

We get now to a problem of the form

inf
x

sup
ξ

L(x,ξ ), where L(x,ξ ) = f (x)+ 〈ξ ,Ax−b〉.

This is an inf-sup problem, and we can associate with it a second optimization
problem, obtained by switching the order of the inf and the sup. We can consider

sup
ξ

inf
x

L(x,ξ ),

which means maximizing over ξ the function obtained as the value of the inf over
x. Remember that we have forgotten the constraint Ax = b, since it took part in the
definition of L, and we now minimize over all x. We can then give a better expression
to this new problem, that we will call dual problem. Indeed we have

sup
ξ

inf
x

L(x,ξ ) = sup
ξ

−〈ξ ,b〉+ inf
x

f (x)+ 〈ξ ,Ax〉.

We then rewrite 〈ξ ,Ax〉 as 〈Atξ ,x〉 and change the ign in the inf so as to write it as a
sup. We do obtain

sup
ξ

inf
x

L(x,ξ ) = sup
ξ

−〈ξ ,b〉− sup
x
− f (x)+ 〈−At

ξ ,x〉.

We now recognize in the sup over x the form of a Legendre transform and we finally
obtain

sup
ξ

inf
x

L(x,ξ ) = sup
ξ

−〈ξ ,b〉− f ∗(−At
ξ ).

This is a convex optimization problem in the variable ξ (the maximization of the sum
of a linear functional and the opposite of a convex function, f ∗, applied to a linear
function of ξ , involving the Legendre transform of the original objective function f .
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We would like the two above optimization problems (“inf sup” and “sup inf”) to be
related to each other, and for instance their values to be the same. Given an arbitrary
function L the values of inf sup and of sup inf are in genrel different, as w can see
from this very simple example: take L : A×B→ R with A = B = {±1} and L(a,b) =
sign(ab). In this case we have infsup = 1 > supinf =−1. Indeed, we always have an
inequality, that we prove here.

Proposition 1.20. Given an arbitrary function L = A×B→ R we have

inf
a

sup
b

L(a,b)≥ sup
b

inf
a

L(a,b).

Proof. Take (a0,b0) ∈ A×B and write L(a0,b0)≥ infa L(a,b0). We then take the sup
over b0 on both sides, thus obtaining supb0

L(a0,b0)≥ supb0
infa L(a,b0). We have now

a number on the right-hand side, and a function of a0 on the left-hand side. We then
take the inf over a0 and get

inf
a0

sup
b0

L(a0,b0)≥ sup
b0

inf
a

L(a,b0),

which is exactly the same as the claim up to renaming the variables.

If in general it is not possible to connect the two problems obtained as inf-sup and
sup-inf of a same function, it can be the case when some conditions are met. The main
tool to do it is a theorem by Rockafellar (see [29], Section 37) requiring concavity in
the variable on which we maximize, convexity in the other one, and some compactness
assumption. In our precise case concavity and convexity are met, since L is convex
in x and linear in ξ , and hence concave. Yet, Rockafellar’s statement concerns finite-
dimensional spaces, and moreover we should still deal with the compactness properties
we would need. Hence, we will not provide any proof here that min{ f (x) : Ax = b}
and max{−〈ξ ,b〉− f ∗(−Atξ ) : ξ ∈Y ′} are equal, and we will wait till the next section
for a proof in a very particular case.

We only discuss here some consequences and some variants of this duality ap-
proach.

A first consequence concerns sufficient optimality conditions. Suppose to consider
two optimization problems issued by an inf-sup/sup-inf procedure, i.e. min{ f (a) : a ∈
A} and max{g(b) : b ∈ B} with f (a) := supb L(a,b) and g(b) := infa L(a,b). Then, if
a0 ∈ A and b0 ∈ B are such that f (a0) = g(b0), automatically a0 minimizes f and b0
maximizes g, just because Proposition 1.20 guarantees f (a0) ≥ inf f ≥ supg ≥ g(b0)
and all inequalities must be equalities here. In our precise case the functional f should
be replaced with f plus the constraint Ax = b, and g is given by g(ξ ) := −〈ξ ,b〉−
f ∗(−Atξ )

A second consequence concers instead necessary optimality conditions. We need
now to believe in inf f = supg, and we suppose that we have a pair (a0,b0) where a0
minimizes f and b0 maximizes g. Then we deduce f (a0) = g(b0), but this equality is
a very strong piece of information in many cases. for instance, in our case this means
that, if x0 and ξ0 are optimal, then we have

f (x0) =−〈ξ0,b〉− f ∗(−At
ξ0) and Ax0 = b.
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This can be re-written as

f (x0)+ f ∗(−At
ξ0) =−〈ξ0,b〉=−〈ξ0,Ax0〉=−〈At

ξ0,x0〉,

i.e. we have equality in the inequality f (x)+ f ∗(y)≥ 〈x,y〉. This is equivalent to

x0 ∈ ∂ f ∗(−At
ξ0) and −At

ξ0 ∈ ∂ f (x0).

We can note the similarity with Lagrange multipliers, where optimizing a function f
under a linear constraint of the form Ax = b can be translated into the fact that ∇ f
should belong to a subspace, orthogonal to the affine space of the constraints, which is
indeed the image of At .

Before moving on to variants of the previous pair of dual problems we want to
insist that writing an equality constraint as a sup over test elements of a dual space is
exactly what is always done in the weak formulation of PDEs. In the next section we
will see as an example what happens when the constraint is of the form ∇ ·v= f , which
can be written as

´
∇φ · v+φ f = 0 for every test function φ , and it is very natural to

replace the constraint with a sup over φ . In this case, the dual problem turns out to
be a maximization over scalar functions φ . Moreover, the transpose of the divergence
operator ∇· is the opposite of the gradient, since

´
φ∇ · v = −

´
∇φ · v by integration

by parts, as soon as boundary conditions are taken care of. In this way, the functional
f ∗(−Atφ) will be a very classical functional in calculus of variations.

Among variants, we first want to discuss the case of inequality constraints instead
of equalities. A constraint of the form Ax≤ b only has a meaning if we give a notion of
inequality among vectors, which is general is not canonically defined. In finite dimen-
sion a general convention, mainly used by computer scientists in optimization problem,
is that we can consider the inequality component-wise. In calculus of variations, we
can expect both Ax and b to be functions in a certain functional space, and we can
require the inequality to be satisfied pointwise (or a.e.). What is important is that we
should characterize the inequality in terms of test functions. for instance, the inequality
f ≤ g a.e. is equivalent to

´
φ( f − g) ≤ 0 for every φ ≥ 0 and a similar equivalence

can be stated in the finite-dimensional componentwise case. We then write

min{ f (x) : x ∈ X , Ax≤ b}= min

{
f (x)+ sup

ξ∈Y ′,ξ≥0
〈ξ ,Ax−b〉 : x ∈ X

}
,

since

sup
ξ∈Y ′,ξ≥0

〈ξ ,y〉=

{
0 if y≤ 0,
+∞ if not.

We can then go on with the very same procedures and obtain the dual problem

max{−〈ξ ,b〉− f ∗(−At
ξ ) : ξ ∈ Y,ξ ≥ 0}.

Finally, once that we know how to build dual problems out of constrained optimization
problems, we could consider a more general case, such as

min{ f (x)+g(Ax)} ,
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where g = 1{b} corresponds to the previous example. In this case we do not have
constraints to write as a sup, but we can decide to write one of the two functions f or g
as a sup thanks to the double Legendre transform. We then set

L(x,ξ ) := f (x)+ 〈ξ ,Ax〉−g∗(ξ )

and we easily see that we have

min{ f (x)+g(Ax)}= inf
x

sup
ξ

L(x,ξ ).

We then interchange inf and sup thus obtaining the dual problem

sup
ξ

inf
x

L(x,ξ ) = sup
ξ

−g∗(ξ )+ inf
x

f (x)+ 〈ξ ,Ax〉

= sup
ξ

−g∗(ξ )− sup
x
− f (x)+ 〈−At

ξ ,x〉= sup
ξ

−g∗(ξ )− f ∗(−At
ξ ).

As we said, the equality constraint Ax = b corresponds to g = 1{b}, so that we have
g∗(ξ ) = 〈ξ ,b〉.

The duality between

min{ f (x)+g(Ax)} and sup
ξ

−g∗(ξ )− f ∗(−At
ξ ),

is a classical object in convex analysis and a theorem guaranteeing, under some condi-
tions, that the the values are actually equal is known as Fenchel-Rockafellar’s theorem.
We will see in Section 4.5 a proof, in a simplified setting, of this theorem, inspired by
the precise proof of a concrete duality result presented in Section 4.3.
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Chapter 2

An example of convex duality:
minimal flows and optimal
compliance

We start this section from two classical examples of convex optimization probems, in
strong connection with PDEs, one from traffic congesion modelling and one from the
mechanics of deformation.

2.1 Formal duality

The first problem consists in finding a flow transporting some mass from an original
configuration f+ (to be intended as a distribution of mass on given domain Ω, so,
for instance, one could take f+ ∈P(Ω), the set of probability measures on Ω) to a
target configuration f−. The flow will be a vector field v which described, in Eulerian
variables, the motion: v(x) stands for the intensity and the direction of the movement
of the mass at the point x; the motion is supposed to be stationary (i.e. the mass follows
a permanent movement, and new mass is always injected in the points belonging to
the support of f+, and distributed according to f−, and withdrawn according to f−)
so that there is no explicit time dependence. The condition to move mass from f+ to
f− can be written in terms od ∇ · v, thanks to the following heuristic consideration:
for ecery small subdomain A⊂Ω, the conservation of the mass imposes that the mass
exiting A, which equals

´
∂A v ·n since mass can only leave A through the boundary, and

tangential movement on the boundary does not contribute to this, should be equal to the
mass which has been inserted minus that which has been removed, i.e. to

´
A f+− f−;

writing
´

∂A v · n =
´

A ∇ · v thanks to the divergence theorem and assuming that this
equality holds for any A means ∇ ·v = f+− f−. Note that, if Ω itself has a boundary
and no mass is injected/removed at points of the boundary, one shuld also impose
v ·n = 0 on ∂Ω so that no mass leaves Ω. A convenient way to express all this set of

15
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constraints is the weak formulation
ˆ

∇φ ·v+φ f = 0 for all φ ∈C∞(Ω),

where f = f+− f−. This includes the possibility that f± are singular measures with a
part on the boundary, which should compensate v ·n.

Among all the possibile flows v satisfying these constraints, we minimize a cost
which penalizes the total movement which is realized, i.e. an integral cost which is
increasing in |v|. We will discuss in Section 4.6 the connection of this problem with
optimal transport; here we just say that a natural choice would be to minimize

´
|v|dx

or
´

k(x)|v|dx, where k > 0 is a weight (exactly as we did in Section 1.4.3 for weighted
geodesics); on the other hand, when we want to model traffic congestion, we can sup-
pose that the weight k is not given a priori but depends on the traffic itself and, in a
very simplified setting, on |v|. The simplest choice is to choose k = |v| and hence solve
(putting for simplicity of computations a factor 1

2 in front of the integral)

min
{ˆ

Ω

1
2
|v|2 dx : ∇ ·v = f

}
. (2.1)

As we said, the second problem comes from mechanics, and is much more standard
in its modelling. suppose that a membrane is originally at rest in horizontal position,
that we model through the constant function u = 0 on Ω: the domain Ω stands for the
projection on the horizontal plan of the membrane, and the value of u(x) ∈ R stands
for its vertical displacement. If no force acts on the membrane, the configuration u = 0
is stable and is what can be observed in reality. Suppose now that in some points the
membrane is pushed down, in others it is pushed up, thus applying a force f = f+− f−

with positive and negative parts. If the two parts equilibrate (i.e.
´

f+ =
´

f−) we
can imagine that the barycenter of the membrane does not move, but the shape of the
membrane deformates. The configuration which is realized by the membrane is the
one which minimizes a sum of a potential energy given by the work of the force f
(i.e.
´

u f ) and an elastic energy related to the deformation. The simplest choice is to
choose the Dirichlet energy

´ 1
2 |∇u|2 as an elastic energy. One of the reason for this

choice is that it is equivalent to the Taylor expansion (up to the first non-zero term) of
the energy

´ √
1+ |∇u|2, which represents the surface area of the deformed membrane

(and hence approximates well such an area if u is small in C1 norm). Alternatively,
one can also describe the equiliobrium shape of the membrane in PDE terms through
∆u = f . We will discuss later how to insert Dirichlet data on u (i.e. regions where
the displacement u is prescribed, for instance u = 0), and in particular we will see in
Chapter 6 that an interesting question is how to optimize the Dirichlet regions, which
can be considered as reinforcements for the membrane, under possible constraints or
penalizations on their size. So far, we stick to the case where no value is prescribed for
u, which corresponds to Neumann boundary conditions for the PDE ∆u = f if Ω has a
boundary. The variational problem reads

min
{ˆ

Ω

1
2
|∇u|2 dx+

ˆ
u f : u ∈ H1(Ω)

}
. (2.2)
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In the case where f is a function instead of a more general distribution in the dual
of H1 (in which case one should replace

´
u f with 〈 f ,u〉), this is a particular case

of the problems presented in Section 2.1. The minimal value is necessarily negative
(since u = 0 is a competitor) and one can see that, using the optimality condition given
by the Euler-Lagrange equation ∆u = f , it equals −

´ 1
2 |∇u|2. Hence, if we consider

that this minimal values depends on the domain Ω and on the force f we see that
how much it differs from 0 is a measure of how stiff is the configuration, since it
measures the effective total deformation (in terms of elastic energy). The opposition of
this minimal value is called compliance (and, as we said, it can be optimized in order
to find the stiffest configuration, usually among domains Ω for given f , and usually
adding Dirichlet boundary data).

The main goal of this section is to show that Problems of the form (2.1) and (2.2)
are actually dual to each other, and that the same holds for a large class of variantss of
the same problems, replacing the quadratic costs with other convex functions.

To be mo precise we will consider a function H : Ω×Rd → R which is convex in
the second variable

(Hyp1) for every x v 7→ H(x,v) is convex

and satisfying the following uniform bounds:

(Hyp2)
c0

q
|v|q−h0(x)≤ H(x,v)≤ c1

q
|v|q +h1(x),

where h0,h1 are L1 functions on Ω, c0,c1 > 0 are given finite constants, and p∈ (1,+∞)
is a given exponent. For functions of this form, when we write H∗(x,w) we mean the
Legendre transform in the second variable, i.e. H∗(x,w) = supv w · v−H(x,v).

We consider the problem

min
{ˆ

Ω

H(x,v(x))dx : ∇ ·v = f
}
.

Before giving rigorous results, we will formally build its dual problem, with the same
informal derivation as we didi in Section 4.2.3. This can be done in the following way:
the constraint ∇ ·v = f can be written, in weak form, as −

´
v ·∇u =

´
f u for every u

in a suitable space of test functions This means that we can rewrite the above problem
in the min-max form

min
{ˆ

H(x,v)+ sup
u
−
ˆ

f u−
ˆ

v ·∇u
}
,

since the last sup is 0 is the constraint is satisfied and +∞ if not. Now, we have a min-
max problem and the dual problem can be obtained just by inverting inf and sup. In
this case we get

sup
{
−
ˆ

f u+ inf
v

ˆ
H(x,v)−

ˆ
v ·∇u

}
.

Since infv
´

H(x,v)−
´

v ·∇u =−supv
´

∇u ·v−
´

H(x,v) =
´

H∗(x,∇u), the problem
becomes

sup
{
−
ˆ

f u−
ˆ

H∗(x,∇u)
}
.
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In the following, we will see precise statements about the duality between the two
problems. The duality proof, based on the above conve analysis tools, is essentially
inspired by the method used in [7] . Other proofs are obviously possible.

2.2 Rigourous duality with no-flux boundary conditions

We define the space W 1,p
� (Ω) as the vector subspace of W 1,p(Ω) composed by functions

with zero mean and the space (W 1,p)′�(Ω) as the subspace of the dual of W 1,p composed
by those f such that 〈 f ,1〉= 0 (i.e. those f with zero mean as well).

Note that for every v ∈ Lp′(Ω;Rd), the distribution ∇ ·v, defined through

〈∇ ·v,φ〉 :=−
ˆ

Ω

v ·∇φ

belongs naturally to (W 1,p)′�(Ω). This will be by the way the definition we will use of
the divergence operator (in weak form), and it includes a natural Neumann (no-flux)
boundary condition on ∂Ω. However, consider that we will often use Ω to be the torus,
which gets rid of many boundary issues.

We will prove the following duality result.

Theorem 2.1. Suppose that Ω is smooth enough and that H satisfies Hyp1 and Hyp2.
Then, for any f ∈ (W 1,p)′�(Ω), we have

min
{ˆ

Ω

H(x,v(x))dx : v ∈ Lp′(Ω;Rd),∇ ·v = f
}

= max
{
−
ˆ

Ω

H∗(x,∇u(x))dx−〈 f ,u〉 : u ∈W 1,p(Ω)

}

Proof. We will define a function F : (W 1,p)′→ R in the following way

F (p) := min
{ˆ

Ω

H(x,v(x))dx : v ∈ Lp′(Ω;Rd),∇ ·v = f + p
}
.

Note that if p /∈ (W 1,p)′� ⊂ (W 1,p)′, then F (p) =+∞, as there is no v∈ Lp′ with ∇ ·v=
f + p. On the other hand, if p ∈ (W 1,p)′�, then F (p) is well-defined and real-valued
since

´
Ω

H(x,v(x))dx is comparable to the Lp′ norm, and we use the following fact: for
every f ∈ (W 1,p)′� there exists v ∈ Lp′ such that f = ∇ ·v and ||v||Lp′ ≤ || f ||(W 1,p)′�

(see
next lemma).
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We now compute F ∗ : W 1,p→ R:

F ∗(u) = sup
p
〈p,u〉−F (p)

= sup
p,v :∇·v= f+p

〈p,u〉−
ˆ

Ω

H(x,v(x))dx

= sup
p,v :∇·v= f+p

〈p+ f ,u〉−〈 f ,u〉−
ˆ

Ω

H(x,v(x))dx

= sup
v
−〈 f ,u〉−

ˆ
Ω

H(x,v(x))dx−
ˆ

(v ·∇u)dx

= −〈 f ,u〉+
ˆ

Ω

H∗(x,−∇u(x))dx.

Now we want to use the fact that F ∗∗(0) = sup−F ∗. Note that sup−F ∗ = +∞

if f /∈ (W 1,p)′�, as it is possible to add an arbitrary constant to u, without changing
the gradient term, and letting the term −〈 f ,u〉 tend to −∞. On the other hand, if
f ∈ (W 1,p)′�, then in the above optimization u can be taken in W 1,p or in W 1,p

� and the
result does not change, as adding a constant does not change neither the integral term
(which only depends on ∇u) nor the duality term (as 〈 f ,1〉= 0).

By taking the sup on −u instead of u we also have

F ∗∗(0) = sup
u
−〈 f ,u〉−

ˆ
Ω

H∗(x,∇u(x))dx =− inf
u
〈 f ,u〉+

ˆ
Ω

H∗(x,∇u(x))dx.

Finally, if we prove that F is convex and l.s.c., then we also have F ∗∗(0) =F (0),
which proves the claim.

The convexity of F is easy. We just need to take p0, p1 ∈ (W 1,p)′�(Ω) and define
pt := (1− t)p0 + t p1. Let v0,v1 be optimal in the definition of F (p0) and F (p1), i.e.´

H(x,vi(x))dx = F (pi) and ∇ · vi = f + pi. Let vt := (1− t)v0 + tv1. Of course we
have ∇ ·vt = f + pt and, by convexity of H(x, ·) we have

F (pt)≤
ˆ

H(x,vt(x))dx≤ (1− t)
ˆ

H(x,v0(x))dx+ t
ˆ

H(x,v1(x))dx

≤ (1− t)F (p0)+ tF (p1),

and the convexity is proven.
For the semicontinuity, we take a sequence pn → p in (W 1,p)′. We can suppose

that F (pn) < +∞ otherwise there is nothing to prove, hence pn ∈ (W 1,p)′�(Ω). Take
the corresponding optimal vector fields vn ∈ Lp′ , i.e.

´
H(x,vn(x))dx = F (pn). We

can extract a subsequence such that limk F (pnk) = liminfn F (pn). Moreover, from
the bound on H we can see that the Lp′ norm of vn is bounded in terms of the values
of F (pn), which are (use Lemma 2.2) bounded by the (W 1,p)′� norms of pn. Since pn
converges, then we get a bound on ||vn||Lp′ . Hence, up to an extra subsequence extrac-
tion, we can assume vnk ⇀ v. Obviously we have ∇ ·v = f + p and, by semicontinuity
of the integral functional v 7→

´
H(x,v)dx, we get

F (p)≤
ˆ

H(x,v(x))dx≤ liminf
k

ˆ
H(x,vnk(x))dx = lim

k
F (pnk) = liminf

n
F (pn),
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which gives the desired result.

The duality result that we proved can be written in the following form

min{A(v)}+min{B(u)}= 0, (2.3)

where A is defined on Lp′(Ω;Rd) and B on W 1,p(Ω) via

A(v) :=

{´
Ω

H(x,v(x))dx if ∇ ·v = f ,
+∞ otherwise,

and
B(u) =

ˆ
Ω

H∗(x,∇u(x))dx+ 〈 f ,u〉.

Lemma 2.2. Given f ∈ (W 1,p)′�(Ω) there exists v ∈ Lp′(Ω;Rd) such that f = ∇ ·v and
||v||Lp′ ≤C|| f ||(W 1,p)′ .

Proof. Consider the minimization problem

min
{

1
p

ˆ
Ω

|∇φ |p dx+ 〈 f ,φ〉 : φ ∈W 1,p(Ω)

}
.

It is easy to prove that this problem admits a solution, as the minimization can be
restricted to the set W 1,p

� . This solution φ satisfies1 (see Section 2.4)

−
ˆ

Ω

(∇φ)p−1 ·∇ψ = 〈 f ,ψ〉

for all ψ ∈W 1,p(Ω). This exactly means ∇ ·v = f for v = (∇φ)p−1. Moreover, testing
against φ , we get

||v||p
′

Lp′ =

ˆ
Ω

|v|p′ =
ˆ

Ω

|∇φ |p = 〈 f ,φ〉 ≤ || f ||(W 1,p)′ ||φ ||W 1,p

≤C|| f ||(W 1,p)′ ||∇φ ||Lp =C|| f ||(W 1,p)′ ||v||
p′−1
Lp′ ,

which gives the desired bound on ||v||Lp′ .

1pay attention to the notation: for every vector v and α > 0 we denote by wα the vector with modulus
equal to |w|α , and same direction as w, i.e. wα := |w|α−1w.



Chapter 3

Regularity via duality

In this section we will use the relation (2.3) to produce Sobolev regularity results for
solutions of the minimization problems minA or minB.

We will start by describing the general strategy. We consider a function H not
explicitly depending on x, and we suppose that an inequality of the following form is
true

(Hyp3) H(v)+H∗(w)≥ v ·w+ c| j(v)− j∗(w)|2

for some given functions j, j∗ : Rd → Rd . This is an improvement of the Young in-
equality H(v)+H∗(w) ≥ v ·w (which is just a consequence of the definition of H∗).
Of course this is always true taking j = j∗ = 0, but the interesting cases are the ones
where j and j∗ are non-trivial.

To simplify the computations, we will suppose that Ω is the flat d-dimensional
torus Td (and we will omit the indication of the domain). We start from the following
observations, tha we collect in a lemma. For the sake of the notations, we call v̄ and
ū the minimizers (or some minimizers, in case there is no uniqueness) of A and B,
respectively, and we denote by uh the function uh(x) := ū(x+h). We define a function
g : Rd → R given by

g(h) :=
ˆ

f (x)ū(x+h)dx−
ˆ

f (x)ū(x)dx.

Lemma 3.1. Suppose H satisfies Hyp1,2,3 and let v̄ and ū be optimal. Then

1. j(v̄) = j∗(∇ū).

2. c
´
| j∗(∇uh)− j∗(∇ū)|2 dx≤ g(h).

3. If g(h) = O(|h|2), then j∗(∇ū) ∈ H1.

4. If g is C1,1, then g(h) = O(|h|2) and j∗(∇ū) ∈ H1.

5. If f ∈W 1,p
� (Ω), then g ∈C1,1 and hence j∗(∇ū) ∈ H1

21
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Proof. First, we compute for arbitrary v and u admissible in the primal and dual prob-
lems (i.e. we need ∇ ·v = f ), the sum A(v)+B(u):

A(v)+B(u)=
ˆ
(H(v)+H∗(∇u)+ f u)dx=

ˆ
(H(v)+H∗(∇u)−v·∇u)dx≥ c

ˆ
| j(v)− j∗(∇u)|2 dx.

If we take v = v̄ and u = ū, then A(v) = minA, B(u) = minB and A(v)+B(u) = 0.
Hence, we deduce j(v̄) = j∗(∇ū), i.e. the Part (1) in the statement.

Now, let us fix v = v̄ but u = uh. We obtain

c
ˆ
| j∗(∇ū)− j∗(∇uh)|2 dx = c

ˆ
| j(v̄)− j∗(∇uh)|2 dx≤ A(v̄)+B(uh) = B(uh)−B(ū).

In computing B(uh)−B(ū), we see that the terms
´

H∗(∇uh) and
´

H∗(∇ū) are equal,
as one can see from an easy change-of-variable x 7→ x+h. Hence,

B(uh)−B(ū) =
ˆ

f uh−
ˆ

f ū = g(h),

which gives part (2).
Part (3) of the statement is an easy consequence of classical characterization of

Sobolev spaces. Part (4) comes from the optimality of ū, which means that g(0) = 0
and g(h)≥ 0 for all h. This implies, as soon as g∈C1,1, ∇g(0) = 0 and g(h) = O(|h|2).

For Part (5), we first differentiate g(h), thus getting

∇g(h) =
ˆ

f (x)∇ū(x+h)dx.

If we want to differentiate once more, we use the regularity assumption on f : we writeˆ
f (x)∇ū(x+h)dx =

ˆ
f (x−h)∇ū(x)dx

and then
D2g(h) =

ˆ
∇ f (x−h)⊗∇ū(x)dx,

which also gives |D2g| ≤ ||∇ f ||Lq ||∇ū||Lp . Note that ū naturally belongs to W 1,p, hence
the integral is finite and bounded, and g ∈C1,1.

Unfortunately, the last assumption ( f ∈W 1,p′ ) is quite restrictive, but we want to
provide a case where it is reasonable to use it. Before, we find interesting cases of
functions H and H∗ for which we can provide non-trivial functions j and j∗.

3.1 Pointwise vector inequalities
The first interesting case is the quadratic case. Take H(v) = 1

2 |v|
2 with H∗(w) = 1

2 |w|
2.

In this case we have easily

H(v)+H∗(w) =
1
2
|v|2 + 1

2
|w|2 = v ·w+

1
2
|v−w|2,
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hnece one can take j(v) = v and j∗(w) = w.
Then, we pass to another interesting case, the case of the powers. Take H(v) =

1
q |v|

q with H∗(w) = 1
p |w|

p. We claim that in this case we can take j(v) = vq/2 and

j∗(w) = wp/2 (remember the notation for powers of vectors).

Lemma 3.2. For any v,w ∈ Rd we have

1
p
|v|p + 1

q
|w|q ≥ v ·w+

1
2max{p,q}

|vp/2−wq/2|2.

Proof. First we write a = vp/2 and b = wq/2 and we express the inequality in terms
of a,b. Hence we try to prove 1

p |a|
2 + 1

q |b|
2 ≥ a2/p · b2/q + 1

2max{p,q} |a− b|2. In this
way the inequality is more homogeneous, as it is of order 2 in all its terms (remember
1/p+1/q= 1). Then we notice that we can also write the expression in terms of |a|, |b|
and cosθ , where θ is the angle between a and b (which is the same as the one between
v = a2/p and w = b2/q. Hence, we want to prove

1
p
|a|2 + 1

q
|b|2 ≥ cosθ

(
|a|2/p|b|2/q− 1

max{p,q}
|a||b|

)
+

1
2max{p,q}

(|a|2 + |b|2).

since this depends linearly in cosθ , it is enough to prove the inequality in the two limit
cases cosθ =±1.

For simplicity, ue to the simmetry in p and q of the claim, we suppose p ≤ 2 ≤ q.
We start from the case cosθ = 1, i.e. b = ta, with t ≥ 0 (the case a = 0 is trivial). In
this case the l.h.s. of the inequality becomes

|a|2( 1
p
+

1
q

t2)= |a|2( 1
p
+

1
q
(1+(t−1))2)= |a|2(1+ 2

q
(t−1)+

1
q
(t−1)2)≥ |a|2(t2/q+

1
q
(t−1)2),

where we used the concavity of t 7→ t2/q, which provides 1+ 2
q (t − 1) ≥ t2/q. This

inequality is even stronger than the one we wanted to prove, as we get a factor 1/q
instead of 1/(2q) in the r.h.s..

The factor 1/(2q) appears in the case cosθ = −1, i.e. b = −ta, t ≥ 0 (we do not
claim that this coefficient is optimal, anyway). In this case we start from the r.h.s.

|a|2( 1
2q

(1+ t)2− t2/q)≤ |a|2 1
2q

(1+ t)2 ≤ |a|2 2
2q

(1+ t2)≤ |a|2( 1
p
+

1
q

t2),

which gives the claim.

As a more involved variant of the power cost functions, we also consider these other
convex functions which will be natural in the study of very degenerate elliptic PDEs
and in congestion models.

Consider the case H(v) = |v|+ 1
q |v|

q. In this case, we can use j(v) = vq/2 and

j∗(w) = (w− 1)p/2
+ (again, we use this weird notation: the vector (w− 1)p/2

+ is the
vectorn with norm equal to (|w|− 1)p/2

+ and same direction as w, i.e. j∗(w) = (|w|−
1)p/2

+ w/|w|).
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Indeed, we have

H∗(w) = sup
v

v ·w−|v|− 1
q
|v|q = 1

p
(|w|−1)p

+

and

H(v)+H∗(w) = |v|+ 1
q
|v|q + 1

p
(|w|−1)p

+ ≥ |v|+v · (w−1)++c|vq/2− (w−1)p/2
+ |2.

We only need to prove |v|+ v · (w−1)+ ≥ v ·w. This can be done by writing

|v|+ v · (w−1)+ = |v|(1+(|w|−1)+ cosθ).

If |w| ≥ 1 then we go on with

|v|(1+(|w|−1)+ cosθ)≥ |v|cosθ(1+(|w|−1)+) = |v|cosθ |w|= v ·w.

If |w| ≤ 1 then we simply use

|v|(1+(|w|−1)+ cosθ) = |v| ≥ v ·w.

3.2 Applications to (degenerate) elliptic PDEs
If we look at the case H(v) = 1

q |v|
q, we have H∗(w) = 1

p |w|
p and the solutions of

∆pu= f (where ∆pu :=∇ ·((∇u)p−1)) are the minimizers of
´ 1

p |∇u|p+ f u. We already
mentioned in Section 2.4 some regularity issues about p-harmonic functions, and the
same classical references [6, 18] also provide many results about solutions of ∆pu =
f . In this section we first underline the simplest result that we can obtain from the
consideration of the previous sections and these duality methods. It is indeed easy to
obtain the following.

Proposition 3.3. Suppose that Ω is the flat torus and ∆pū = f ∈ W 1,p′(Ω). Then
(∇ū)p/2 ∈ H1.

Proof. This statement can be proven by combining Lemma 3.1 and Lemma 3.2.

Remark 3.4. The above result is very classical (see for instance [22]), even if usually
obtained through a slightly different technique. In particular, the pointwise inequality
of Lemma 3.2 replaces, in this duality-based approach, the usual vector inequality that
PDE methods require to handle equations involving ∆p, i.e.

(wp−1
0 −wp−1

1 ) · (w0−w1)≥ c|wp/2
0 −wp/2

1 |
2,

which is an improved version of the monotonicity of the gradient of w 7→ 1
p |w|

p.

Instead, if we consider H(v) = |v|+ 1
q |v|

q, we get the following result.
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Proposition 3.5. Let H be given by H(v) = |v|+ 1
q |v|

q and H∗(w) = 1
p (|w| − 1)p

+.

Suppose that Ω is the flat torus and f ∈W 1,p′(Ω). Let v̄ is a solution of minA and ū
a solution of minB (equivalently, suppose that ū solves ∇ · ((∇ū− 1)p−1

+ ) = f ). Then
v̄q/2 = (∇ū−1)+)p/2 ∈ H1.

This result is the same proven in [8], where it was proven with PDE methods, and
does not seem easy to improve. The equation ∇ · ((∇u− 1)p−1

+ ) = f , which can be
written,

∇ · ((|∇u|−1)p−1
+

∇u
|∇u|

) = f ,

is very degenerate in the sense that the coefficient (|∇u|−1)p−1
+ /|∇u| vanishes on the

whole set where |∇u| ≤ 1.
This equation and the corresponding minimization problems arise in traffic conges-

tion (see [3, 13, 8] and Section 4.6) and the choice of the function H is very natural:
we need a superlinear function of the form H(v) = |v|h(|v|), with h ≥ 1). This auto-
matically implies the degeneracy.

We now move to the Poisson equation ∆u = f , corresponding to the minimization
of
´ 1

2 |∇u|2 + f u, and hence to H(v) = 1
2 |v|

2 and H∗(w) = 1
2 |w|

2. It is possible to
treat this case by the same techniques as in the degenerate case above, but the result is
disappointing. Indeed, from these techniques we just obtain f ∈H1⇒∇u ∈H1, while
it is well-known that f ∈ L2 should be enough for the same result. Yet, with some more
attention it is also possible to treat the L2 case.

Proposition 3.6. Suppose that Ω is the flat torus and ∆ū = f ∈ L2(Ω). Then ∇ū ∈H1.

Proof. We use the variational framework we presented before, with H(v) = 1
2 |v|

2. We
have

1
2
||∇uh−∇ū||2L2 ≤ g(h). (3.1)

Now, set ωt := sup{||∇uh−∇u||L2 : |h| ≤ t}. From (3.1) we have

ω
2
t ≤ sup

h:|h|≤t
2g(h)≤ 2t sup

h:|h|≤t
|∇g(h)|.

From ∇g(h)∇g(h)−∇g(0)=
´

f (∇uh−∇ū) we deduce |∇g(h)| ≤ || f ||L2 ||∇uh−∇ū||L2 ≤
|| f ||L2ωt , hence ω2

t ≤ 2t|| f ||L2ωt , which implies ωt ≤ 2t|| f ||L2 and hence ∇ū∈H1.

As we already pointed out, the result stating that solutions u of ∆pū = f ∈W 1,p′(Ω)

satisfy (∇ū)p/2 ∈ H1 is very classical but not very satisfactory in the limit case p = 2.
This is why we also look at the following other classical result. We recall before stating
it some useful definitions of fractional Sobolev spaces (see, for instance, [?]).

Box 3.1. – Memo – Fractional Sobolev spaces
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When Ω is bounded and its diameter is R, if 1 < p < +∞ and 0 < s < 1, the space
W s,p(Ω) is defined as

W s,p(Ω) =

{
u ∈ Lp(Ω) : [u]ps,p :=

ˆ
B(0,R)

||uδ −u||pLp

δ d+sp dδ <+∞

}

and its norm is given by ||u||Lp +[u]s,p. The space Hs is defined as W s,2.
Note that an inequality of the form ||uδ − u||Lp ≤ C|δ |s implies u ∈W s′,p for every

s′ < s. Also note that the Hilbert case p = 2 also enjoys an alternative definition in terms of
the Fourier transform. indeed, we have u ∈ Hs if and only if ξ 7→ |ξ |sû(ξ ) ∈ L2 and [u]s,2
is equivalent to the L2 norm of ξ 7→ |ξ |sû(ξ ).

Proposition 3.7. Suppose that Ω is the flat torus and ∆pū = f ∈ Lq(Ω), with p >

2.Then ||(∇uh)
p/2− (∇ū)p/2||L2 ≤ C|h|q/2, which implies in particular (∇ū)p/2 ∈ Hs

for s < q/2 < 1.

Proof. We use the same strategy as in Proposition 3.6. For simplicity, we set G :=
(∇u)p/2. As in Proposition 3.6, we set ωt := suph:|h|≤t ||Gh−G||L2 . We have ||Gh−
G||2L2 ≤Cg(h), which implies

ω
2
t ≤Ct sup

h:|h|≤t
|∇g(h)−∇g(0)| ≤Ct|| f ||Lq sup

h:|h|≤t
||∇uh−∇ū||Lp .

From the α-Hölder behaviour of the vector map w 7→wα in Rd (see Lemma 3.8 below),
with α = 2/p < 1, we deduce, using ∇u = Gα ,

||∇uh−∇ū||pLp =

ˆ
|∇uh−∇ū|p dx≤

ˆ
|Gh−G|2 dx = ||Gh−G||2L2 .

Hence, we have
ω

2
t ≤Ct|| f ||Lqω

2/p
t ,

which implies
ω

2/q
t ≤Ct|| f ||Lq ,

i.e. the claim

Lemma 3.8. For 0 < α < 1, the map w 7→ wα is α-Hölder continuous in Rd .

Proof. Let a,b ∈ Rd . We write

|aα −bα |=
∣∣∣∣|a|α a

|a|
− |a|α b

|b|
+ |a|α b

|b|
− |b|α b

|b|

∣∣∣∣≤ |a|α ∣∣∣∣ a
|a|
− b
|b|

∣∣∣∣+ ||a|α −|b|α | .
For the second term in the r.h.s., we use the α-Hölder behaviour of t 7→ tα in R+ and
get

||a|α −|b|α | ≤ ||a|− |b||α ≤ |a−b|α .
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For the first term in the r.h.s., we use the inequality∣∣∣∣ a
|a|
− b
|b|

∣∣∣∣= ∣∣∣∣ a
|a|
− b
|a|

+
b
|a|
− b
|b|

∣∣∣∣≤ |a−b|
|a|

+ |b| ||b|− |a||
|a||b|

≤ 2
|a−b|
|a|

and get

|a|α
∣∣∣∣ a
|a|
− b
|b|

∣∣∣∣≤ 2|a|α−1|a−b|.

If we choose a to be such |a| ≥ |b| (which is possible w.l.o.g.), we have 2|a| ≥ |a−b|
and hence 2α−1|a|α−1 ≤ |a−b|α−1, i.e. 2|a|α−1|a−b| ≤ 22−α |a−b|α .

Summing up, we have (without pretending that this constant is optimal)

|aα −bα | ≤ (22−α +1)|a−b|α .

Remark 3.9. Note that the result of Proposition 3.7 is also classical, and quite sharp.
Indeed, one can informally consider the following example. Take u(x) ≈ |x|r as x ≈ 0
(and then multiply times a cut-off function out of 0). In this case we have

∇u(x)≈ |x|r−1, (∇u(x))p−1 ≈ |x|(r−1)(p−1), f (x) := ∆pu(x)≈ |x|(r−1)(p−1)−1.

Hence, f ∈ Lq if and only if ((r− 1)(p− 1)− 1)q > −d, i.e. (r− 1)p− q > −d. On
the other hand, the fractional Sobolev regularity can be observed by considering that
“differentiating s times” means subtracting s from the exponent, hence

(∇u(x))p/2 ≈ |x|p(r−1)/2⇒ (∇u)p/2 ∈ Hs⇔ |x|p(r−1)/2−s ∈ L2⇔ p(r−1)−2s >−d.

If we want this last condition to be true for arbitrary s < q/2, then it amounts to p(r−
1)−q >−d, which is the same condition as above.

3.3 Variants – Local regularity and dependence on x

In the previous section we only provided global Sobolev regularity results on the torus.
This guaranteed that we could do translations without boundary problems, and that
by change-of-variable, the term

´
H(∇uh)dx did not actually depend on h. We now

provide a result concerning local regularity. As the result is local, boundary conditions
should not be very important. Yet, as the method stays anyway global, we need to fix
them and be precise on the variational problems that we use. We will consider, as usual,
variational problems without any boundary constraint, which correspond to PDEs with
no-flux boundary conditions. Since, as we said, boundary conditins should play no
role, with some work it is also possible to modify them, but we will not develop these
considerations here.

We will only provide the following result, in the easiest case p = 2.

Theorem 3.10. Let H,H∗, j and j∗ satisfy Hyp1,2,3 with p = 2. Suppose f ∈ H1.
Suppose also H∗ ∈C1,1 and j∗ ∈C0,1. Suppose ∇ · (∇H∗(∇ū)) = f in Ω with no-flux
boundary conditions on ∂Ω. Then, j∗(∇ū) ∈ H1

loc.
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Proof. The condition ∇ ·∇H∗(∇ū) = f is equivalent to the fact that ū is solution of

min
{ˆ

Ω

H∗(∇u)dx+
ˆ

f u dx : u ∈W 1,p(Ω)

}
.

We will follow the usual duality strategy as in the rest of the section. Yet, in order not
to have boundary problems, we need to use a cut-off function η ∈C∞

c (Ω) and define

uh(x) = ū(x+hη(x))

(note that for small h we have x+hη(x) ∈Ω for all x ∈Ω). In this case it is no longer
true that g̃(h) :=

´
H∗(∇uh)dx =

´
H∗(∇ū)dx. If this term is not constant in h, then

we need to prove that it is a C1,1 function of h. To do this, and to avoid differentiating
∇ū, we use a change-of-variable. Set y = x+hη(x). We have ∇(uh)(x) = (∇ū)(y)(I+
h⊗∇η(x)), hence

g̃(h) =
ˆ

H∗(∇uh)dx =
ˆ

H∗(∇ū(y)+(∇ū(y) ·h)∇η(x))
1

1+h ·∇η(x)
dy,

where x = X(h,y) is a function of h and y obtained by inverting x 7→ x+ hη(x) and
we used det(I + h⊗∇η(x)) = 1+ h ·∇η(x). The function X is C∞ by the implicit
function theorem, and all the other ingredient of the above integral are at least C1,1

in h. This proves that g̃ is C1,1. The regularity of the term g(h) =
´

f uh should also
be considered. Differentiating once we get ∇g(h) =

´
f (x)∇ū(x+ hη(x))η(x)dx. To

differentiate once more, we use the same change-of-variable, thus getting

∇g(h) =
ˆ

f (X(h,y))∇ū(y)η(X(h,y))
1

1+h ·∇η(x)
dy.

From y = X(h,y)+ hη(X(h,y)) we get a formula for DhX(h,y), i.e. 0 = DhX(h,y)+
η(X(h,y))I +h⊗∇η(η(X(h,y))DhX(h,y). This allows to differentiate once more the
function g and proves g ∈C1,1.

Finally, we come back to the duality estimate. What we can easily get is

c|| j∗(∇(uh))− j∗(∇ū)||2L2 ≤ g(h)+ g̃(h) = O(|h|2).

The problem is that j∗(∇(uh)) is not the translation of j∗(∇ū)! Yet, it is almost as if it
was a translation. Indeed, if we put the subscript h every time that we compose with
x+hη(x), we have

∇(uh) = (∇ū)h +h · (∇ū)hη .

Since j∗ is supposed to be Lipschitz continuous, then

| j∗(∇(uh))− j∗((∇ū)h)| ≤C|h||∇ū|hη .

Hence, we have

|| j∗((∇ū)h)− j∗(∇ū)||L2 ≤ || j∗(∇(uh))− j∗(∇ū)||L2 +C|h|||∇u||L2 ,

which is enough to show that this increment si of order |h|, since ū ∈ H1 (this depends
on the fact that H∗ is quadratic). Hence, as in Lemma 3.1 (4), we get j∗(∇ū)∈H1.
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The duality theory has been presented in the case where H and H∗ could also de-
pend on x, while for the moment regularity results have only be prensented under the
assumption that they not. We now consider a small variant and look at how to handle
the following particular case, corresponding to the minimization problem

min
{

1
p

ˆ
Ω

a(x)|∇u(x)|p dx+
ˆ

f (x)u(x)dx : u ∈W 1,p(Ω)

}
. (3.2)

We will use Ω = Td to avoid cumulating difficulties (boundary issues and dependence
on x). Note that the PDE corresponding to the above minimization problem is ∇ ·
(a(∇u)p−1) = f .

First, we need to compute the transform of w 7→H∗(w) := a
p |w|

p. Set b = a1/(p−1).
It is easy to obtain H(v) = 1

bq |v|
q. Also, we can check (just by scaling the inequality of

Lemma 3.2, that we have

1
bq
|v|q + bp−1

p
|w|p ≥ v ·w+bp−1

∣∣∣∣∣wp/2− vq/2

bp/2

∣∣∣∣∣
2

.

In particular, if we suppose that a(x) is bounded from below by a positive constant, and
we set H∗(x,w) = a(x)

p |w|
p then we get

H(x,v)+H∗(x,w)≥ v ·w+ c| j(x,v)− j∗(w)|2

where j∗(w) = wp/2.
We can now prove the following theorem.

Theorem 3.11. Suppose f ∈W 1,p′ and a ∈ Lip,a ≥ a0, and let ū be the minimizer of
(3.2). Then G := ∇ūp/2 ∈ H1.

Proof. Our usual computations show that

c||Gh−G||2L2 ≤ g(h)+ g̃(h),

where g(h) =
´

f uh−
´

f ū and g̃(h) =
´ a(x)

p |∇uh|p−
´ a(x)

p |∇ū|p. With our assump-
tions, g ∈C1,1. As for g̃(h), we write

ˆ
a(x)

p
|∇uh|p =

ˆ
a(x−h)

p
|∇ū|p

and hence

∇g̃(h) =
ˆ

∇a(x−h)
p

|∇ū|p =
ˆ

∇a(x)
p
|∇uh|p.

Hence,

|∇g̃(h)−∇g̃(0)| ≤
ˆ
|∇a(x)|

p
||∇uh|p−|∇ū|p| ≤C

ˆ
||Gh|2−| j∗|2| ≤C||Gh−G||L2 ||Gh+G||L2 .
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Here we used the L∞ bound on |∇a|. Then, from the lower bound on a, we also know
G ∈ L2, hence we get |∇g̃(h)−∇g̃(0)| ≤C||Gh−G||L2 .

Now, we define as usual ωt := suph=|h|≤t ||Gh−G||L2 and we get

ω
2
t ≤C sup

h=|h|≤t
g(h)+ g̃(h)≤Ct sup

h=|h|≤t
|∇g(h)+∇g̃(h)|

=Ct sup
h=|h|≤t

|∇g(h)−∇g(0)+∇g̃(h)−∇g̃(0)| ≤Ct2 +Ctωt ,

which allows to deduce ωt ≤Ct and hence G ∈ H1.

We also provide the following theorem, which is also interesting for p = 2.

Theorem 3.12. Suppose p≥ 2, f ∈ Lq and a ∈ Lip,a≥ a0, and let ū be the minimizer
of (3.2). Then jG = ∇ūp/2 satisfies ||Gh−G||L2 ≤C|h|q/2. In particular, G ∈ H1 for
p = 2 and G ∈ Hs for all s < q/2 for p > 2.

Proof. The only difference with the previous case is that we cannot say that g is C1,1

but we should stick to the computation of ∇g. We use as usual

|∇g(h)−∇g(0)| ≤ || f ||Lq ||∇uh−∇ū||Lp .

As we are forced to let the norm ||∇uh−∇ū||Lp appear, we will use it also in g̃. Indeed,
we can observe that we can estimate

|∇g̃(h)−∇g̃(0)| ≤
ˆ
|∇a(x)|

p
||∇uh|p−|∇ū|p| ≤C

ˆ
(|∇uh|p−1+|∇ū|p−1)|∇uh−∇ū|

≤C||∇ūp−1||Lq ||∇uh−∇ū||Lp .

We then use ||∇ūp−1||Lq = ||∇ū||p−1
Lp and conclude

|∇g̃(h)−∇g̃(0)| ≤C||∇uh−∇ū||Lp .

This gives, defining ωt as usual,

ωt ≤Ct sup
h=|h|≤t

|∇g(h)−∇g(0)+∇g̃(h)−∇g̃(0)| ≤Ct sup
h=|h|≤t

||∇uh−∇ū||Lp

and hence
ω

2
t ≤Ctω2/p

t

as in Proposition 3.7.



Chapter 4

A proof of
Fenchel-Rockafellar’s duality

In this section we want to take advantage of the technique developed in Section 4.3 for
the precisa case of minimal flow problems in order to prove a general abstract version
of the Fenchel-Rockafellar duality theorem. For simplicity, we will stick to the case
where all spaces are reflexive, so that the role of the function in the primal and in the
dual problems are completely symmetric. We will start from the following statement.

Theorem 4.1. Suppose that X and Y are separable reflexive normed vector spaes, that
f : X →R∪{+∞} and g : Y →R∪{+∞} are convex and lower-semicontinuous func-
tions, and that A : X → Y is a continuous linear mapping. Suppose that g is bounded
from below and f coercive. Then we have

min{ f (x)+g(Ax) : x ∈ X}= sup
{
−g∗(ξ )− f ∗(−At

ξ ) : ξ ∈ Y ′
}
,

where the existence of the minimum on the right-hand side is part of the claim.

Proof. We will define a function F : Y → R∪{+∞} via

F (p) := min{ f (x)+g(Ax+ p) : x ∈ X} .

The existence of the minimum is a consequence of the following fact: for any sequence
(xn, pn) with f (xn)+g(Axn + pn) ≤C the sequence xn is bounded. This boundedness
comes from the lower bound on g and from the coercive behavior of f . Once we know
this, we can use pn = p, take a minimizing sequence xn for fixed p, and extract a
weakly converging subsequence xn ⇀ x using the Banach-Alaoglu Theorem. We also
have Axn + p ⇀ Ax+ p and the semicontinuity of f and g provide the minimality of x
(since, being convex, f and g are both l.s.c. for the strong and the weak convergence,
in X and Y , respectively).

31
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We now compute F ∗ : Y ′→ R∪{+∞}:

F ∗(ξ ) = sup
p
〈ξ , p〉−F (p)

= sup
p,x
〈ξ , p〉− f (x)−g(Ax+ p)

= sup
y,x
〈ξ ,y−Ax〉− f (x)−g(y)

= sup
y
〈ξ ,y〉−g(y)+ sup

x
〈−At

ξ ,x〉− f (x)

= g∗(ξ )+ f ∗(−At
ξ ).

Now we use, as we did in Section 4.3, F ∗∗(0) = sup−F ∗, which proves the claim,
as soon as we prove that F is convex and l.s.c.

The convexity of F is easy. We just need to take p0, p1 ∈ Y , and define pt := (1−
t)p0 + t p1. Let x0,x1 be optimal in the definition of F (p0) and F (p1), i.e.

´
f (xi)+

g(Axi + pi) = F (pi), and set xt := (1− t)x0 + tx1. We have

F (pt) ≤ f (xt) + g(Axt + pt) ≤ (1 − t)F (p0) + tF (p1),

and the convexity is proven.
For the semicontinuity, we take a sequence pn→ p in Y . We can suppose F (pn)≤

C otherwise there is nothing to prove. Take the corresponding optimal points xn and,
applying the very first observation of this proof, we obtain ||xn|| ≤C. We can extract a
subsequence such that limk F (pnk) = liminfn F (pn) and xnk ⇀ x. The semicontinuity
of f and g provides

F (p)≤ f (x)+g(Ax+ p)≤ liminf
k

f (xnk)+g(Axnk + pnk)= lim
k

F (pnk)= liminf
n

F (pn),

which gives the desired result.

We now note that, if g is not bounded from below, it is always possible to remove a
suitable linear function from it so as to make it bounded from below, since all convex
and l.s.c. functions are bounded from below by an affine function. We can then define
g̃ via g̃(y) = g−〈ξ0,y〉 for a suitable ξ0, and guarantee inf g̃ > −∞. In order not to
change the value of the primal problem we also need to modify f into f̃ defined via
f̃ (x) := f + 〈Atξ0,x〉, so that

f̃ (x)+ g̃(Ax) = f (x)+ 〈At
ξ0,x〉+g(Ax)−〈ξ0,Ax〉= f (x)+g(Ax).

Moreover, we can compute what changes in the dual problem. Is it true that we have
supξ −g∗(ξ )− f ∗(−Atξ ) = supξ −g̃∗(ξ )− f̃ ∗(−Atξ ) ?

In order to do this, we need to compute the Legendre transform of f̃ and g̃. A
general, and easy, fact, that is proposed as an exercise (see Exercise 6.5) states that
subtracting a linear function translates into a translation on the Legendre transform.
We then have

g̃∗(ξ ) = g∗(ξ +ξ0); f̃ ∗(ζ ) = f ∗(ζ −At
ξ0)
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and then
g̃∗(ξ )+ f̃ ∗(−At

ξ ) = g∗(ξ +ξ0)+ f ∗(−At(ξ +ξ0))

and a simple change of variable ξ 7→ ξ +ξ0 shows that the sup has not changed. This
shows that the duality result is not affected by this reformulation in terms of f̃ and
g̃. It is then enough, for the duality to hold, that the assumptions of Theorem 4.1 are
satisfied by ( f̃ , g̃) instead of ( f ,g). Since we chose ξ0 on purpose in order to have g̃
lower bounded, we only need now to require that f̃ is coercive. Not that this would
be the case if f was superlinear, as it would stay superlinear after adding any linear
function, but it is not automatic when speaking of a generic coercive function.

The condition on ξ0 such that, at the same time g̃ is bounded from below and f̃
superlinear can be more easily translated in terms of f ∗ and g∗. We can indeed state
the following propositon.

Proposition 4.2. Suppose that X and Y are separable reflexive normed vector spaes,
that f : X → R∪{+∞} and g : Y → R∪{+∞} are convex and lower-semicontinuous
functions, and that A : X→Y is a continuous linear mapping. Suppose that there exists
ξ0 ∈ Y ′ such that g∗(ξ0) < +∞ and that f ∗ is continuous and finite at Atξ0. Then we
have

min{ f (x)+g(Ax) : x ∈ X}= sup
{
−g∗(ξ )− f ∗(−At

ξ ) : ξ ∈ Y ′
}
,

where the existence of the minimum on the right-hand side is part of the claim.

Proof. The condition g∗(ξ0)<+∞ means g̃∗(0)<+∞, which means that g̃ is bounded
from below.

The condition on f ∗ at Atξ0 translates into the same condition for f̃ ∗ at 0, and we
know that a function is coercive if and only if its Legendre transform is bounded on a
neighborhood of 0. This means that f̃ is coercive.

We then conclude that we can apply Theorem 4.1 to ( f̃ , g̃) instead of ( f ,g), which
provides the desired result.

We can also deduce the following statement, which is probably the most standard
formulation of the Fenchel-Rockafellar duality theorem, even if we only state it for
reflexive spaces.

Theorem 4.3. Suppose that X and Y are separable reflexive normed vector spaes,
that f : X → R∪{+∞} and g : Y → R∪{+∞} are convex and lower-semicontinuous
functions, and that A : X→Y is a continuous linear mapping. Suppose that there exists
x0 ∈ X such that f (x0)<+∞ and that g is continuous and finite at Ax0. Then we have

inf{ f (x)+g(Ax) : x ∈ X}= max
{
−g∗(ξ )− f ∗(−At

ξ ) : ξ ∈ Y ′
}
,

where the existence of the minimum on the right-hand side is part of the claim.

Proof. The proof is straightforward once we realize that we can interchange f with g∗,
g with f ∗, and A with At in the statement of Proposition 4.2.
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Chapter 5

Discussion – From Optimal
Transport to congested traffic
and Mean field Games

In this section we want to underline the connections of some of the problems studied
in this chapter with problems form optimal transport theory, and with their variants
involving traffic congestions. We will also see that related problems can be dealt with
in similar ways.

We start from a very brief presentation of the optimal transport problem, for which
we refer for instance to the books [32] and [30].

The starting point for the whole theory is the following problem proposed by the
French mathemacian Gaspard Monge in 1781 ([26]), that we present here in modern
language. Given two metric spaces X and Y , two probability measures µ ∈P(X),ν ∈
P(Y ), and a cost function c : X ×Y → R, we look for a map T : X → Y pushing the
first one onto the other, i.e. T#µ = ν , and minimizing, among such maps, the integral

M(T ) :=
ˆ

X
c(x,T (x))dµ(x).

Box 5.1. – Memo – Image measures.

An important notion in measure theory is that of image measure. Given a measure
µ ∈M (X) on a space X and a measurable function T : X→Y , we define the image measure
or push-forwardof µ through T as a measure T#µ on Y characterized by

(T#µ)(A) := µ(T−1(A))

for every measurable set A ⊂ Y . Equivalently, the definition can be given in terms of test
functions, and in this case we require

ˆ
Y

φ d(T#µ) :=
ˆ

X
φ ◦T dµ

35
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for every bounded measurable function φ : Y → R or, equialently (by approximation) for
every φ ∈Cb(Y ). The case of sets can be recovered using φ = 1A.

An important observation si that image measures pass to the limit through a.e. con-
vergence (if Tn → T µ-a.e. then (Tn)#µ

∗
⇀ T#µ) but not through weak convergence (for

instance consider X = [0,2π], µ = L 1, Tn(x) = sin(nx) and T (x) = 0).
In probabilistic language, the image measure is the law of a random variable (X plays

the role of the probability space and Y is the space where the random value takes its values).

In the problem considered by Monge X and Y were subsets of the Euclidean space,
µ and ν were absolutely continuous, and c(x,y) = |x− y| was the Euclidean distance.
Roughly speaking, this means that we have a collection of particles, we know how they
are distributed (this is the measure µ), and they have to be moved so that they arrange
according to a new prescribed distribution ν . The movement has to be chosen so as to
minimize the average displacement, and the map T describes the movement.

Monge proved many properties of the optimal transport map T in the case he was
interested in, but never cared to prove that such a map existed. In this sense, the prob-
lem stayed with no solution till the reformulation that Leonid Kantorovich gave in
1942, [17]. His formulation consists in the problem

(K) min
{ˆ

X×Y
c dγ : γ ∈Π(µ,ν)

}
, (5.1)

where Π(µ,ν) is the set of the so-called transport plans, i.e. Π(µ,ν) = {γ ∈P(X ×
Y ) : (πx)#γ = µ, (πy)#γ = ν ,} where πx and πy are the two projections of X ×Y onto
the two factors X and Y . These probability measures over X ×Y are an alternative
way to describe the displacement of the particles of µ: instead of saying, for each x,
which is the destination T (x) of the particle originally located at x, we say for each
pair (x,y) how many particles go from x to y. It is clear that this description allows
for more general movements, since from a single point x particles can a priori move
to different destinations y. If multiple destinations really occur, then this movement
cannot be described through a map T .

If we define the map (id,T ) : X→ X×Y via (id,T )(x) := (x,T (x)), it can be easily
checked that γT := (id,T )#µ belongs to Π(µ,ν) if and only if T pushes µ onto ν and
the functional

´
cdγT takes the form

´
c(x,T (x))dµ(x), thus generalizing Monge’s

problem.
This generalized problem by Kantorovich is much easier to handle than the original

one proposed by Monge and the Direct Method of Calculus of Variations proves that
a minimum does exist (at least when c is l.s.c. and bounded from below). This is not
the case for the original Monge problem, since in general we can only obtain weakly
converging minimizing sequences Tn ⇀ T but the limit T could have a different image
measure than ν . Hence, the general strategy to prove the existence of an optimizer in
the Monge problem consists in first considering the minimizer γ of the Kantorovich
problem and then trying to prove that it is actually of the form (id,T )#µ . This is
possible (see, for instance, Chapter 1 in [30]) under some conditions on µ and on
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the cost c. Anyway, we will not consider this quesiton here. Another important fact
which makes the Katorovich problem easier to consider is that it is convex (it is a
linear optimization problem under linear constraints) and hence an important tool will
be duality theory.

As we already did many times in this chapter, we first find a formal dual problem,
by means of an inf-sup exchange. To this aim, we first express the constraint γ ∈
Π(µ,ν) in the following way : notice that, if γ is a non-negative measure on X ×Y ,
then we have

sup
φ∈C(X),ψ∈C(Y )

ˆ
φ dµ +

ˆ
ψ dν−

ˆ
(φ(x)+ψ(y)) dγ =

{
0 if γ ∈Π(µ,ν)

+∞ otherwise
.

Hence, we can remove the constraints on γ if we add the previous sup. Then, we
look at the problem we get by interchanging the inf in γ and the sup in φ ,ψ:

sup
φ ,ψ

ˆ
φ dµ +

ˆ
ψ dν + inf

γ

ˆ
(c(x,y)− (φ(x)+ψ(y))) dγ.

We can then re-write the inf in γ as a constraint on φ and ψ , since we have

inf
γ≥0

ˆ
(c(x,y)− (φ(x)+ψ(y))) dγ =

{
0 if φ(x)+ψ(y)≤ c(x,y) for all (x,y)
−∞ otherwise

.

The validity of the exchange of inf and sup can be proven with the techniques that
we developed in Sections 4.3 and 4.5. A precise proof can be found, for instance,
in Section 1.6 of [30]. The spaces are not reflexive but the proof works since it is
(magically) possible to prove a compactness result for the functions φ and ψ when
x and Y are compact and c is continous (indeed, it is possible to restrict to functions
sharing the same modulus of continuity of c).

We then have the following dual optimization problem:

(D) max
{ˆ

X
φ dµ +

ˆ
Y

ψ dν : φ ∈C(X),ψ ∈C(Y ),φ ⊕ψ ≤ c
}
, (5.2)

where the notation φ ⊕ψ stands for the two-variable function (x,y) 7→ φ(x)+ψ(y).
We now look in particular at the case where c is the Euclidean distance (i.e. X =

Y ⊂ Rd and c(x,y) = |x− y|). A first observation concerning the dual problem is that
for any φ one can choose the best possible (the largest) function ψ which satisfies,
together with φ , the constraint φ(x)+ψ(y)≤ c(x,y). Such a function is given by

ψ(y) = inf
x
|x− y|−φ(x)

and it belongs to Lip1. This means that we can restrict the maximization in the dual
problems to ψ ∈ Lip1 and, analoguously, to φ ∈ Lip1. Not only, if we now know
φ ∈ Lip1 there is an easy epxression for the function ψ(y) = infx |x− y|−φ(x), which
is just ψ =−φ (see Exercise 6.16). In this case the dual problem hence becomes

(D−dist) max
{ˆ

X
φ d(µ−ν) : φ ∈ Lip1(X)

}
.
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Another important point of the optimal transport problem when the cost is given by
the Euclidean distance is its connection with the minimal-flow problem

(B) min
{
||v|| : v ∈M d(X); ∇ ·v = µ−ν

}
, (5.3)

where ||v|| denotes the mass of the vector measure v and the divergence condition is
to be read in the weak sense, with no-flux boundary conditions, i.e. −

´
∇φ · dv =´

φ d(µ−ν) for any φ ∈C1(X). Indeed, if X is convex then the value of this problem
is equal to that of the optimal transport problem with c(x,y) = |x− y| (in case X is not
convex then the Euclidean distance has to be replaced with the geodesic distance inside
X)

Box 5.2. – Memo – Vector measures

Definition - A finite vector measure λ on a set Ω is a map associating to every Borel
subset A⊂Ω a value λ (A)∈Rd such that, for every disjoint union A=

⋃
i Ai (with Ai∩A j =

/0 for i 6= j), we have

∑
i
|λ (Ai)|<+∞ and λ (A) = ∑

i
λ (Ai).

We denote by M d(Ω) the set of finite vector measures on Ω. To such measures we can
associate a positive scalar measure |λ | ∈M+(Ω) through

|λ |(A) := sup

{
∑

i
|λ (Ai)| : A =

⋃
i

Ai with Ai∩A j = /0 for i 6= j

}
.

This scalar measure is called total variation measure of λ . Note that for simplicity we only
consider the Euclidean norm on Rd , and write |λ | instead of ||λ || (a notation that we keep
for the total mass of the total variation measure, see below), but the same could be defined
for other norms as well.

The integral of a Borel function ξ : Ω→Rd w.r.t. λ is well-defined if |ξ | ∈ L1(Ω, |λ |),
is denoted

´
ξ · dλ and can be computed as ∑

d
i=1
´

ξi dλi, thus reducing to integrals of
scalar functions according to scalar measures. It could also be defined as a limit of integral
of piecewise constant functions.

Functional analysis facts - The quantity ||λ || := |λ |(Ω) is a norm on M d(Ω), and this
normed space is the dual of C0(Ω;Rd), the space of continuous function on Ω vanishing at
infinity, through the duality (ξ ,λ ) 7→

´
ξ · dλ . This gives a notion of ∗⇀ convergence for

which bounded sets in M d(Ω) are compact. As for scalar measures, we denote by ⇀ the
weak convergence in duality with Cb functions.

A clarifying fact is the following.
Proposition - For every λ ∈M d(Ω) there exists a Borel function u : Ω→Rd such that

λ = u · |λ | and |u|= 1 a.e. (for the measure |λ |). In particular,
´

ξ · dλ =
´
(ξ ·u) d|λ |.

Sketch of proof - The existence of a function u is a consequence, via Radon-Nikodym
Theorem, of λ � |λ | (every A set such that |λ |(A) = 0 obviously satisfies λ (A) = 0).
The condition |u| = 1 may be proven by considering the sets {|u| < 1− ε} and {u · e >
a+ ε} for all hyperplane such that the unit ball B1 is contained in {x ∈ Rd : x · e ≤ a}
(and, actually, we have B1 =

⋂
e,a{x ∈ Rd : x · e ≤ a}, the intersection being reduced to a
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countable intersection). These sets must be negligible otherwise we have a contradiction
on the definition of |λ |.

Last point: note that L1 vector functions can be idenditifed with vector measures which
are absolutely continuous w.r.t. the Lebesgue measure. Their L1 norm coincides in this
case with the norm in M n(X)

This minimal flow problem has been first proposed by Beckmann in [3], under the
name of continuous transportation model. Such a problem is actually strongly related
to the Kantorovich problem with the distance cost c(x,y) = |x− y|, as we will show
in a while, even if Beckman was not aware of this, the two theories being developed
essentially at the same time.

In order to see the connection between the two problems, we start from a formal
computation. We re-write the constraint on v in (5.3) by means of the equality

sup
φ

ˆ
−∇φ · dv+

ˆ
φ d(µ−ν) =

{
0 if ∇ ·v = µ−ν

+∞ otherwise
.

Hence one can write (5.3) as

min
v
||v||+sup

φ

ˆ
−∇φ · dv+

ˆ
φ d(µ−ν)= sup

φ

ˆ
φ d(µ−ν)+inf

v
M(v)−

ˆ
∇φ · dv,

where inf and sup have been exchanged formally as in the previous computations. After
that one notices that

inf
v
||v||−

ˆ
∇φ · dv = inf

v

ˆ
d|v|

(
1−∇φ · dv

d|v|

)
=

{
0 if |∇φ | ≤ 1
−∞ otherwise

and this leads to the dual formulation for (B) which gives

sup
φ : |∇φ |≤1

ˆ
Ω

φ d(µ−ν).

Since this problem is exactly the same as (D-dist) (a consequence of the fact that Lip1
functions are exactly those functions whose gradient is smaller than 1, when the domain
is convex), this gives the equivalence between (B) and (K) (when we use c(x,y) =
|x− y| in (K)).

The proof of the duality for (B) is proposed as an exercise (Exercise 6.17), in the
more general case

(B−K) min
{ˆ

K d|v| : v ∈M d(X); ∇ ·v = µ−ν

}
,

where a given continuous weight K : X → R+ is integrated against the total variation
measure |v|. In this case the dual is given by

sup
{ˆ

Ω

φ d(µ−ν) : φ ∈ Lip, |∇φ | ≤ K
}
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and the corresponding Kantorovich problem is the one with cost given by c = dK , the
weighted distance with weight K (see Section 1.4.3), since the functions φ satisfying
|∇φ | ≤ K are exactly those which are Lip1 w.r.t. this distance.

As a transition to congestion problems, we will now see how to provide a new
equivalent formulation to (K) and (B) with geodesic cost functions.

We will use absolutely continuous curves ω : [0,1] 7→Ω. Given ω ∈ AC(Ω) and a
continuous function φ , we write Lφ (ω) :=

´ 1
0 φ(ω(t))|ω ′(t)|dt, which coincides with

the weighted length if φ ≥ 0. We will write C (the space of “curves”) for AC(Ω),
when there is no ambiguity on the domain, and consider probability measures Q on the
space C , which is endowed with the uniform convergence. Note that Ascoli-Arzelà’s
theorem guarantees that the sets {ω ∈ C : Lip(ω) ≤ `} are compact for every `. We
will associate with Q two measures on Ω. The first is a scalar one, called traffic intensity
and denoted by iQ ∈M+(Ω); it is defined (see [13]) via

ˆ
Ω

φ diQ :=
ˆ

C

(ˆ 1

0
φ(ω(t))|ω ′(t)|dt

)
dQ(ω) =

ˆ
C

Lφ (ω)dQ(ω).

for all φ ∈ C(Ω,R+). The interpretation is the following: for a subregion A, iQ(A)
represents the total cumulated traffic in A induced by Q, i.e. for every path we compute
“how long” does it stay in A, and then we average on paths.

We also associate with any traffic plan Q ∈P(C ) a vector measure vQ via

∀ξ ∈C(Ω;Rd)

ˆ
Ω

ξ · dvQ :=
ˆ

C

(ˆ 1

0
ξ (ω(t)) ·ω ′(t)dt

)
dQ(ω).

We will call vQ traffic flow induced by Q. Taking a gradient field ξ =∇φ in the previous
definition yields

ˆ
Ω

∇φ · dvQ =

ˆ
C
[φ(ω(1))−φ(ω(0))]dQ(ω) =

ˆ
Ω

φ d((e1)#Q− (e0)#Q)

(et denotes the evaluation map at time t, i.e. et(ω) :=ω(t)) so that, if we set (e0)#Q= µ

and (e1)#Q = ν , we have
∇ ·vQ = µ−ν

in the usual sense with no-flux boundary conditions.
It is easy to check that we have |vQ| ≤ iQ, where |vQ| is the total variation measure

of the vector measure vQ. This last inequality is in general not an equality, since the
curves of Q could produce some cancellations.

A re-formulation of the optimal transport problem with cost dK can then be given
in the following way:

min
{ˆ

C
LK(ω)dQ(ω) : (e0)#Q = µ, (e1)#Q = ν

}
.

It it then possible to see that, given a optimal Q, the measure γ := (e0,e1)#Q is an
optimal transport plan in (K) for the cost c = dK , and the vector measure vQ is optimal
in (B-K).
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Yet, this language allows to consider many other interesting situations, and in par-
ticular the case of congested traffic, where the weight function K is in general not given
a priori but depends on the traffic intensity itself. We present here the extension to the
continuous framework of the notion of Wardrop equilibrium (a very common definition
of equilibrium in traffic problems, introduced in [33], and generally used on networks)
proposed in [13].

Congestion effects are captured by the metric associated with Q via its traffic in-
tensity: suppose iQ�L d and set

KQ(x) := g(x, iQ(x))

for a given increasing function g(x, .) : R+ → R+. We then consider the weighted
length LKQ , as well as the corresponding weighted distance dKQ , and define a Wardrop
equilbrium as a measure Q ∈P(C ) such that

Q({ω : LKQ(ω) = dKQ(ω(0),ω(1))}) = 1. (5.4)

Of course this requires some technicalities, to take into account the case where iQ is
not absolutely continuous or its density is not smooth enough.

This is a typical situation in game theory, and a particular case of Nash equilib-
rium: a configuration where every agent makes a choice, has a cost depending on his
own choice and on the others’, and no agent will change his mind after knowing what
the others did choose. Here the choice of every agent consists in a trajectory ω , the
configuration of choices is described via a measure Q on the set of choices (since all
agents are indistinguishable, so we only care at how many of them made each choice),
the cost which is paid is LKQ(ω), which depends on the global configuration of choices
Q and, of course, on ω , and we require that Q is concentrated on optimal trajectories,
so that nobody wil change his mind.

Box 5.3. – Important notion – Nash equilibria

Definition - Consider a game where several players i = 1, . . . ,n must choose a strat-
egy among a set of possibilities Si and suppose that the pay-off of each player (i.e. how
much he gains out of the game) depends on what everybody chooses, i.e. it is given
by a function pi : S1 × ·· · × Sn → R. We say that a configuration (s1, . . . ,sn) (where
si ∈ Si) is an equilibrium (a Nash equilibrium) if, for every i, the choice si optimizes
Si 3 s 7→ fi(s1, . . . ,si−1,s,si+1, . . . ,sn) (i.e. si is optimal for player i under the assumption
that the other players freeze their choice).

Nash equilibria need not exist in all situations, but Nash proved (via convex analysis
and fixed point arguments) that they always exist when we consider the so-called mixed
strategies. This means that we accept that every player instead of choosing an element
si ∈ Si, only chooses a probability on Si and then randomly picks a strategy according to
the law he has chosen.

The notion of Nash equilibrium, first introduced by J. Nash in [27, 28] in the case of a
finite number of players, can be easily extended to a continuum of players where each one
is negligible compared to the others (non-atomic games). Considering for simplicity the
case of identical players, we have a common space S of possible strategies and we look for
a measure Q ∈P(S). This measure induces a payoff function fQ : S→ R and we want the
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following condition to be satisfied: there exists C ∈R such that fQ(x) =C for Q-a.e. x, and
fQ(x)≥C everywhere (if the players want to minmize the payoff fQ, otherwise, if it has to
be minimized, we impose fQ(x)≤C), i.e. fQ must be optimal Q-a.e.

A typical problem in road traffic is to find a Wardrop equilibrium Q with prescribed
transport plan γ = (e0,e1)#Q (what is usually called origin-destination matrix in the
engineering community, in the discrete case). Another possibility is to only prescribe
its marginals µ = (e0)#Q and ν = (e1)#Q. More generally, we impose a constraint
(e0,e1)#Q ∈ Γ⊂P(Ω×Ω). A way to find such equilibria is the following.

Let us consider the (convex) variational problem

(W) min
{ˆ

Ω

H(x, iQ(x)) dx : Q ∈P(C ),(e0,e1)#Q ∈ Γ

}
(5.5)

where H ′(x, .) = g(x, .), H(x,0) = 0. Under some technical assumptions, the main
result of [13] is that (W) admits at least one minimizer, and that such a minimizer is a
Wardrop equilibrium. Moreover, γQ := (e0,e1)#Q solves the optimization problem

min
{ˆ

Ω×Ω

dKQ(x,y) dγ(x,y) : γ ∈ Γ

}
.

In particular, if Γ is a singleton, this last condition does not play any role (there is only
one competitor) and we have existence of a Wardrop equilibrium corresponding to any
given transport plan γ . If, on the contrary, Γ = Π(µ,ν), then the second condition
means that γ solves a Monge-Kantorovich problem for a distance cost depending on Q
itself, which is a new equilibrium condition.

In the case where Γ = Π(µ,ν) it is possible to prove that (W) is indeed equivalent
to a variational divergence constrained problem à la Beckmann , i.e.

(B− cong) min
{ˆ

Ω

H (x,v(x)) dx : ∇ ·v = µ−ν

}
, (5.6)

where H (x,v) = H(x, |v|). It is then possible to prove that the optimizers of this prob-
lem are the vector fields of the form vQ where Q solves (W). And this class of problems
is exactly the one we considered in sections 4.3 and 4.4!

We now switch to optimal transport problems with other costs, and in particular
c(x,y) = |x−y|p. Since these costs do not satisfy the triangle inequality the dual formu-
lation is more involved than that in (D-dist) and no Beckmann formulation exists1. In-
stead, there exists a dynamic formulation, known under the name of Benamou-Brenier
problem, [5]. We can indeed consider the optimization problem

(BBp) min
{ˆ 1

0

ˆ
Ω

|vt |p dρt dt : ∂tρt +∇ · (ρtvt) = 0, ρ0 = µ, ρ1 = ν

}
1We mention anyway [16] which refomulates optimal transport problems with costs which are convex

but not 1-homogeneous in x− y into transport costs with 1-homogeneous costs, for which a Beckmann
formulation exists, after adding a time variable.
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which consists in minimizing the integral in time and space of a p-variant of the kinetic
energy among solutions of the continuity equation with prescribed intial and final data.

Box 5.4. – Good to know! – The continuity equation in mathematical physics

Suppose that a family of particles moves according to a velocity field v, depending on
time and space: v(t,x) stands for the velocity at time t of any particle which is located at
point x at such an instant of time. The position of the particle originally located at x will be
given by the solution of the ODE {

y′x(t) = vt(yx(t))
yx(0) = x.

(5.7)

We then define the map Yt through Yt(x) = yx(t), and, if we are given the distribution of
particles at t = 0, we look for the measure ρt := (Yt)#ρ0. We can then prove that ρt and vt
solve together the so-called continuity equation

∂tρt +∇ · (ρtvt) = 0

(as usual, with no-flux boundary condition on ∂Ω if we suppose that we have yx(t) ∈Ω for
all (t,x).

It is possible to prove that the minimal value in (BBp) equals that of (K) with cost
|x− y|p and that the optimal solutions of (BBp) are obtained by taking an optimal
transport map T for this same cost in the Monge problem, defining Tt := (1− t)id+ tT ,
and setting ρt = (Tt)#µ and vt = (T − id) ◦ (Tt)

−1. A corresponding formula may be
given using the optimizers of (K) if they are not given by transport maps.

Concerning Problem (BBp), we observe that it is not a convex optimization problem
in the variables (ρ,v), because of the product term ρ|v|p in the functional and of the
product ρv in the differential constraint. But if one changes variable, defining w = ρv
and using the variables (ρ,w), then the constraint becomes linear and the functional
convex. The important point for convexity is that the function

R×Rd 3 (s,w) 7→


|w|p

psp−1 if s > 0,

0 if (s,w) = (0,0),
+∞ otherwise

(5.8)

is convex (and it is actually obtained as sup{as+b ·w : a+ 1
p′ |b|

p′ ≤ 0}).
Some analogies and some differences may be underlined between the optimal flow

formulation à la Beckmann of the OT problem with p = 1 and the dynamic formulation
à la Benamou-Brenier of the case p > 1. Both involve differential constraints on the
divergence, and actually we can also look at the continuity equation as a time-space
constraint on ∇t,x ·(ρ,w) making the analogy even stronger. Yet, there is no time in the
Beckmann problem and even when time appears in the Lagrangian formulation with
measures Q on curves it is a fictitious time parameter since everything is invariant under
reparametrization. On the other hand, time plays an important role in the case p > 1.
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This is also the reason why the models that we will present in a while, for congestion
problems where the congestion effect is evaluated at each time, will be so close to the
Benamou-Brenier problem.

The models that we want to introduce are known as Mean Field Games, and this
theory was introduced around 2006 at the same time by Lasry and Lions, [19, 20,
21], and by Caines, Huang and Malhamé, [15], in order to describe the evolution of
a population in a game with a continuum of players where the effect on each player
of the presence of the others recalls what is called in physics mean field. This class
of games, called Mean Field Games (MFG for short), are very particular differential
games: typically, in a differential game the role of the time variable is crucial since if
a player decides to deviate from a given strategy (a notion which is at the basis of the
Nash equilibrium definition), the other can react to this change, so that the choice of a
strategy is usually not defined as the choice of a path, but of a function selecting a path
according to the information the player has at each given time. Yet, when each player
is considered as negligible, any deviation he/she performs will have no effect on the
other players, so that they will not react. In this way we have a static game where the
space of strategies is a space of paths.

We can give a Lagrangian description of the equilibria by using again measures
on paths, or an Eulerian one through a system of PDEs, where the key ingredients are
the density ρ and the value function ϕ of the control problem solved by each player,
the velocity v(t,x) of the agents at (t,x) being, by optimality, related to the gradient
∇ϕ(t,x). For a general overview of the MFG theory, it is possible to refer to the lecture
notes by P. Cardaliaguet [11], based on the course by Lions at Collège de France [23].

Let us describe in a more precise way the simplest MFG models. We look at a
population of agents moving inside a domain Ω and suppose that every agent chooses
his own trajectory ω solving a minimization problem

min
ˆ T

0

(
|ω ′(t)|2

2
+h[ρt ](ω(t))

)
dt +Ψ(ω(T )),

with given initial point x(0). The mean-field effect will be modeled through the fact
that the function h depends on the density ρt of the agents at time t. The dependence
of the cost on the velocity ω ′ could of course be more general than a simple quadratic
function.

For the moment, we consider the evolution of the density ρt as an input, i.e. we
suppose that agents know it. Hence, we can suppose the function h to be given, and
we want to study the above optimization problem. The main tool to analyze it, coming
from optimal control theory, is the value function ϕ (see Section 1.7): we know that it
solves the Hamilton-Jacobi equation −∂tϕ + 1

2 |∇ϕ|2 = h with final datum ϕ(T,x) =
Ψ(x) and that the optimal trajectories ω(t) can be computed using ϕ , since they are the
solutions of

ω
′(t) =−∇ϕ(t,ω(t)).

This means that the velocity field which advects the particles when each agent
follows the optimal curves will be given by v=−∇ϕ . If we want to find an equilibrium,
the density ρt that we fixed at the beginning should also coincide with that which is
obtained by following this optimal velocity field v and so ρ should evolve according
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to the continuity equation with such a velocity field. This means solving the following
coupled (HJ)+(CE) system:

−∂tϕ + |∇ϕ|2
2 = h[ρ]

∂tρ−∇ · (ρ∇ϕ) = 0,
ϕ(T,x) = Ψ(x), ρ(0,x) = ρ0(x).

(5.9)

The above system is a PDE, and Eulerian, description, of the equilibrium we look
for. In Lagrangian terms we could express the equilibrium condition in a similar way to
what we did for Wardrop equilibria. Consider again the space of curves C and define
the kinetic energy functional K : C → R given by

K(ω) =
1
2

ˆ T

0
|ω ′|2(t)dt.

For notational simplicity, we write KΨ for the kinetic energy augmented by a final cost:
KΨ(ω) :=K(ω)+Ψ(ω(T )); similarly, we denote by KΨ,h the same quantity when also
a running cost h is included: KΨ,h(ω) := KΨ(ω)+

´ T
0 h(t,ω(t))dt.

We now define a MFG equilibrium as a measure Q ∈ P(C ) such that Q-a.e.
curve ω minimizes KΨ,h with given initial point when h(t, ·) := h[(et)#Q]. Whenever
(x,ρ) 7→ h[ρ](x) has some continuity properties it is possible to prove the existence
of an equilibrium by the Kakutani fixed point method (see, for instance, [14] or [24]
where such a theorem is used to prove the existence of a MFG equilibrium ina slihtly
different seting).

On the other hand, the assumption that h is continuous does not cover a very natural
case, which is the local case, where h[ρ](x) directly depends on the density of ρ at the
point x. We can focus for instance on the case h[ρ](x) = V (x)+ g(ρ(x)), where we
identify the measure ρ with its density w.r.t. the Lebesgue measure on Ω. The function
V : Ω→ R+ is a potential taking into account different local costs of different points
in Ω.

In this case it is not possible to prove the existence of an equilibrium using a ixed
point theorem, but luckily there exists a variational formulation. Indeed, we can con-
sider all the possible population evolutions, i.e. pairs (ρ,v) satisfying ∂tρ+∇ ·(ρv)= 0
and we minimize the following energy

A (ρ,v) :=
ˆ T

0

ˆ
Ω

(
1
2

ρt |vt |2 +ρtV +G(ρt)

)
dxdt +

ˆ
Ω

ΨdρT ,

where G is the anti-derivative of g, i.e. G′(s) = g(s) for s ∈ R+ with G(0) = 0. We
fix by convention G(s) = +∞ for ρ < 0. Note in particular that G is convex, as its
derivative is the increasing function g.

The above minimization problem recalls, in particular when V = 0, the Benamou-
Brenier dynamic formulation for optimal transport: tThe main difference with the
Benamou-Brenier problem is that here we add to the kinetic energy a congestion cost
G; also note that usually in optimal transport the target measure ρT is fixed, and here it
is part of the optimization (but this is not a crucial difference).
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As is often the case in congestion games, the quantity A (ρ,v) is not the total cost
for all the agents. Indeed, the term

´ ´ 1
2 ρ|v|2 is exactly the total kinetic energy, and

the last term
´

ΨdρT is the total final cost, as well as the cost
´

V dρt exactly coincides
with the total cost enduced by the potential V ; yet, the term

´
G(ρ) is not the total

congestion cost, which should be instead
´

ρg(ρ). This means that the equilibrium
minimizes an overall energy (we have what is called a potential game), but not the total
cost; this gives rise to the so-called price of anarchy.

In order to convince the reader of the connection between the minization of A (ρ,v)
and the equilibrium system (5.9), we will use some formal argument from convex du-
ality. A rigorous proof of duality would, by the way, require to re-wirte the problem
as a convex optimization problem, which requires to change variables and use again
w = ρv.

In order to formally produce a dual problem to minA , we wil use a min-max
exchange procedure. First, we write the constraint ∂tρ +∇ · (ρv) = 0 in weak form,
i.e. ˆ T

0

ˆ
Ω

(ρ∂tφ +∇φ ·ρv)+
ˆ

Ω

φ0ρ0−
ˆ

Ω

φT ρT = 0 (5.10)

for every function φ ∈ C1([0,T ]×Ω) (note that we do not impose conditions on the
values of φ on ∂Ω, hence this is equivalent to completing (CE) with a no-flux boundary
condition ρv ·n = 0).

Using (5.10) , we can re-write our problem as

min
ρ,v

A (ρ,v)+ sup
φ

ˆ T

0

ˆ
Ω

(ρ∂tφ +∇φ ·ρv)+
ˆ

Ω

φ0ρ0−
ˆ

Ω

φT ρT ,

since the sup in φ takes value 0 if the constraint is satisfied and +∞ if not. We now
switch the inf and the sup and get

sup
φ

ˆ
Ω

φ0ρ0+ inf
ρ, v

ˆ
Ω

(Ψ−φT )ρT +

ˆ T

0

ˆ
Ω

(
1
2

ρt |vt |2 +ρtV +G(ρt)+ρ∂tφ +∇φ ·ρv
)

dxdt.

First, we minimize w.r.t. v, thus obtaining v = −∇φ (on {ρt > 0}) and we replace
1
2 ρ|v|2 +∇φ ·ρv with − 1

2 ρ|∇φ |2. Then we get, in the double integral,

inf
ρ
{G(ρ)−ρ(−V −∂tφ +

1
2
|∇φ |2)}=−sup

ρ

{pρ−G(ρ)}=−G∗(p),

where we set p :=−V −∂tφ + 1
2 |∇φ |2 and G∗ is defined as the Legendre transform of

G. Then, we observe that the minimization in the final cost simply gives as a result
0 if Ψ ≥ φT (since the minimization is only performed among positive ρT ) and −∞

otherwise. Hence we obtain a dual problem of the form

sup
{
−B(φ , p) :=

ˆ
Ω

φ0ρ0−
ˆ T

0

ˆ
Ω

G∗(p) : φT ≤Ψ,−∂tφ +
1
2
|∇φ |2 =V + p

}
.

Note that the condition G(s) = +∞ for s < 0 implies G∗(p) = 0 for p ≤ 0. This in
particular means that in the above maximization problem one can suppose p ≥ 0 (in-
deed, replacing p with p+ does not change the G∗ part, but improves the value of φ0,
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considered as a function depending on p). The choice of using two variables (φ , p)
connected by a PDE constraint instead of only φ is purely conventional, and it allows
for a dual problem which has a sort of symmetry w.r.t. the primal one.

Now, standard arguments in convex duality would allow to say that optimal pairs
(ρ,v) are obtained by looking at saddle points ((ρ,v),(φ , p)), provided that there is no
duality gap between the primal and the dual problems, and that both problems admit a
solution. This would mean that, whenever (ρ,v) minimizes A , then there exists a pair
(φ , p), solution of the dual problem, such that

• v minimizes 1
2 ρ|v|2 +∇φ ·ρv, i.e. v = −∇φ ρ-a.e. This gives (CE): ∂tρ −∇ ·

(ρ∇φ) = 0.

• ρ minimizes G(ρ)− pρ , i.e. g(ρ)= p if ρ > 0 or g(ρ)≥ p if ρ = 0 (in particular,
when we have g(0) = 0, we can write g(ρ) = p+); this gives (HJ): −∂tφ +
1
2 |∇φ |2 =V +g(ρ) on {ρ > 0} (as the reader can see, there are some subtleties
where the mass ρ vanishes;).

• ρT minimizes (Ψ− φT )ρT among ρT ≥ 0. But this is not a condition on ρT ,
but rather on φT : we must have φT = Ψ on {ρT > 0}, otherwise there is no
minimizer. This gives the final condition in (HJ).

This provides an informal justification for the equivalence between the equilibrium
and the global optimization. It is only informal because we have not discussed whether
we have or not duality gaps and whether or not the maximization in (φ , p) admits a
solution. Moreover, even once these issues are clarified, what we will get will only be
a very weak solution to the coupled system (CE)+(HJ). Nothing guaranteees that this
solution actually encodes the individual minimization problem of each agent.

It is also possible to provide a Lagrangian version of the variational problem, which
has then the following form:

min
{

J(Q) :=
ˆ

C
K dQ+

ˆ T

0
G ((et)#Q)dt +

ˆ
Ω

Ψd(eT )#Q, Q ∈P(C ),(e0)#Q = ρ0

}
,

(5.11)
where G : P(Ω)→ R is defined through

G (ρ) =

{´
(V (x)ρ(x)+G(ρ(x))) dx if ρ �L d ,

+∞ otherwise.

The functional G is a typical local functional defined on measures (see [?]). It is lower-
semicontinuous w.r.t. weak convergence of probability measures provided lims→∞ G(s)/s=
+∞ (which is the same as lims→∞ g(s) = +∞), see Section 3.3.

In the Lagrangian language, it is possible to prove that the optimal Q̄ satisfies the
following optimality conditions: setting ρt = (et)#Q̄ and h(t,x) = g(ρt(x)) (identifying
as usual measures and densities), if we take take Q̃ another competitor, we have

Jh(Q̃)≥ Jh(Q̄),
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where Jh is the linear functional

Jh(Q) =

ˆ
KdQ+

ˆ T

0

ˆ
Ω

h(t,x)(et)#Q+

ˆ
Ω

Ψd(eT )#Q.

Since we only consider absolutely continuous (et)#Q, the functional Jh. It is well-
defined for any h ≥ 0 measurable. Formally, we can also write

´ T
0

´
Ω

h(t,x)(et)#Q =´
C dQ

´ T
0 h(t,γ(t))dt and hence we get that

Q 7→
ˆ

C
dQ(γ)

(
K(γ)+

ˆ T

0
h(t,γ(t))dt +Ψ(γ(T ))

)
is minimal for Q = Q̄. This corresponds to saying that Q̄ is concentrated on curves
minimizing Kπ,h), hence it is a Lagrangian MFG equilibrium. Unfortunately, this ar-
gument is not rigorous at all because of two main difficulties: first, it has no meaning
to integrate h on a path if h is a function which is only defined a.e.; second, in or-
der to prove that Q̄ is concentrated on optimal curves one needs to comapre it to a
competitor Q̃ which is indeed concentrated on optimal curves, but at the same time
we need (et)#Q̃�L d ,and these two conditions can be incompatible with each other.
These difficulties could be fixed by a density argument if h was continuous; another,
more technical approach requires h ∈ L∞ by choosing a precise representative. This
is explained for instance in [31] and is based on techniques from incompressible fluid
mechanics (see [2]). In any case, it becomes crucial to prove regularity results on h or,
equivalently, on ρ .

A general L∞ regularity result is presented in [?] and is based on optimal transport
techniques. Here we want, instead, to briefly explain that also this question can be
attacked via the techniques for regularity via convex duality of Section 4.4. By the way,
the first use of duality-based methods to prove regularity was eatly in time-dependent
problems: first in [9] (later improved by [1]), in the study of variational models for
the incompressible Euler Equation. This has been later adapted in [12] to density-
constrained mean-field games.

We can then come back to the primal and the dual problems in variational MFG and
do our usual computation taking arbitrary (ρ,v) and (φ , p) admissible in the primal and
dual problem. We compute

A (ρ,v)+B(φ , p)=
ˆ

Ω

(Ψ−φT )ρT +

ˆ T

0

ˆ
Ω

(G(ρ)+G∗(p)− pρ)+
1
2

ˆ T

0

ˆ
Ω

ρ|v+∇φ |2.
(5.12)

Notice (G(ρ)+G∗(p)− pρ) ≥ λ

2 |ρ − g−1(p)|2 where g = G′ and λ = infG′′. We
suppose λ > 0 and, for simplicity, Ω = Td . Using

A (ρ,v)+B(φ , p)≥ c
ˆ T

0

ˆ
Ω

|ρ−g−1(p)|2

we can deduce, with the same technique as in Section 4.4, ρ ∈ H1 (we can get both
regularity in space and local in time). By the way, using the last term in (5.12), we can
also get

´´
ρ|D2φ |2 < ∞.
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Exercises

Exercise 6.1. Prove that the function f : R+ → R given by f (x) = x logx admits a
unique extension to R which is convex and l.s.c., and compute its Legendre transform.

Exercise 6.2. If f : Rn→ R is given by f (x) = |x| log |x|, compute f ∗ and f ∗∗.

Exercise 6.3. Let f : Rn→R be convex. Prove that f is C1,1 if and only if f ∗ is elliptic
(meaning that there exists c > 0 such that f (x)− c|x|2 is convex).

Exercise 6.4. Prove that a convex and l.s.c. function f : X→R∪{+∞} is 1-homogeneous
(i.e. f (tx) = t f (x) for every t ≥ 0 and every x ∈ X) if and only if f ∗ takes its values in
{0,+∞}.

Exercise 6.5. Given f : X → R∪{+∞} and ξ0 ∈ X ′, define fξ0
: X → R∪{+∞} via

fξ0
(x) := f (x)−〈ξ0,x〉. Prove that we have f ∗

ξ0
(ξ ) = f ∗(ξ +ξ0) for every ξ .

Exercise 6.6. In dimension N = 1, prove the equivalence between these two facts:

1. f ∗ is strictly convex;

2. f satisfies the following property: it is C1 in the interior Ω of its domain, and it
coincides with x 7→ supx′∈Ω f (x′)+∇ f (x′) · (x− x′).

Exercise 6.7. Let X be a Banach space and f : X → R∪ {+∞} a convex and l.s.c.
function. Prove that f is superlinear if and only if ∂ f is surjective.

Exercise 6.8. Discuss what does not work in the following (wrong) counter-example
to the statement of Exercise 6.7. Consider X = L2(Ω) and F(u) :=

´
|∇u|2 (a func-

tional set to +∞ if u /∈ H1(Ω)). This functional is not superlinear because it vanishes
on constant functions, but for every u ∈ H2(Ω) we do have ∂F(u) = {−∆u}, which
shows that any L2 function (the elements of the dual of the Hilbert space on which the
functional is defined) is a subgradient, so the subgradient is surjective.

Also discuss what would change if taking F(u) :=
´
|∇u|2 if u ∈ H1

0 (Ω) (and F =
+∞ outside of H1

0 (Ω)).
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Exercise 6.9. Given a bounded, smooth and connected domain Ω ⊂ Rd , and f ∈
L2(Ω), set X(Ω) = {v ∈ L2(Ω;Rd) : ∇ · v ∈ L2(Ω)} and consider the minimization
problems

(P) := min
{

F(u) :=
ˆ

Ω

(
1
2
|∇u|2 + 1

2
|u|2 + f (x)u

)
dx : u ∈ H1(Ω)

}
(D) := min

{
G(v) :=

ˆ
Ω

(
1
2
|v|2 + 1

2
|∇ ·v− f |2

)
dx : v ∈ X(Ω)

}
,

1. Prove that (P) admits a unique solution;

2. Prove min(P)+ inf(D)≥ 0;

3. Prove that there exist v ∈ X(Ω) and u ∈ H1(Ω) such that F(u)+G(v) = 0;

4. Deduce that min(D) is attained and min(P)+ inf(D) = 0;

5. Justify by a formal inf-sup exchange the duality minF(u) = sup−G(v);

6. Prove minF(u) = sup−G(v) via a duality proof based on convex analysis.

Exercise 6.10. Consider the problem

min{A(v) :=
ˆ
Td

H(v(x))dx : v ∈ L2,∇ ·v = f}

for a function H which is elliptic. Prove that the problem has a solution, provided there
exists at least an admissible v with A(v)<+∞. Prove that, if f is an H1 function with
zero mean, then the optimal v is also H1.

Exercise 6.11. Let H : Rd → R be given by H(z) =
√

1+ |z|2 + |z|4 and Ω be the
d-dimensional torus. Consider the equation

∇ ·
(
(1+2|∇u|2)∇u

H(∇u)

)
= f .

1. Given f ∈ H−1(Ω) such that 〈 f ,1〉 = 0 (i.e. f has zero average), prove that
there exists a solution u ∈H1(Ω) to this equation, which is unique up to additive
constants.

2. If f ∈ H1, prove that the solution u is H2.

3. What can we say if f ∈ L2?

Exercise 6.12. Let f ∈ L1([0,1]) and F ∈W 1,1([0,1]) be such that F ′ = f and F(0) =
F(1) = 0. Let 1 < p < ∞ be a given exponent, and q be its conjugate exponent. Prove

min
{ˆ 1

0

1
p
|u′(t)|pdt +

ˆ 1

0
f (t)u(t)dt : u ∈W 1,p([0,1])

}
=−1

q
||F ||qLq([0,1]).
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Exercise 6.13. Let H : Rn→ R be given by

H(v) =
(4|v|+1)3/2−6|v|−1

12
.

1. Prove that H is C1 and strictly convex. Is it C1,1? Is it elliptic?

2. Compute H∗. Is it C1, strictly convex, C1,1 and/or elliptic?

3. Consider the problem min{
´

H(v) : ∇ ·v = f} (on the d-dimensional torus, for
simplicity) and find its dual.

4. Supposing f ∈ L2, prove that the optimal u in the dual problem is H2.

5. Under the same assumption, prove that the optimal v in the primal problem be-
longs to W 1,p for every p < 2 if d = 2, for p = d/(d− 1) if 3 ≤ d ≤ 5, and for
p = 6/5 if d ≥ 3.

Exercise 6.14. Given a function g ∈ L2([0,L]), consider the problem

min
{ˆ L

0

1
2
|u(t)−g(t)|2 dt : u(0) = u(L) = 0,u ∈ Lip([0,L]), |u′| ≤ 1a.e.

}
.

1. Prove that this problem admits a solution.

2. Prove that the solution is unique.

3. Find the optimal solution in the case where g is the constant function g = 1 in
the terms of the value of L, distinguishing L > 2 and L≤ 2.

4. Computing the value of

sup
{
−
ˆ L

0
(u(t)z′(t)+ |z(t)|)dt : z ∈ H1([0,L])

}
find the dual of the previous problem by means of a formal inf-sup exchange.

5. Assuming that the equality infsup = supinf in the duality is satisfied, write the
necessary and sufficient optimality conditions for the solutions of the primal and
dual problem. Check that these conditions are satisfied by the solution found in
the case g = 1.

6. Prove the the equality infsup = supinf.

Exercise 6.15. Given u0 ∈C1([0,1]) consider the problem

min
{ˆ 1

0

1
2
|u−u0|2 dx : u′ ≥ 0

}
,

which consists in the projection of u0 onto the set of monotone increasing functions
(where the condition u′ ≥ 0 is intended in the weak sense).
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1. Prove that this problem admits a unique solution.

2. Write the dual problem

3. Prove that the solution is actually the following: define U0 through U ′0 = u0, set
U1 := (U0)

∗∗ to be the largest convex and l.s.c. function smaller than U0, take
u =U ′1.

Exercise 6.16. Given a space X let us fix a cost function c : X ×X → R+ which is
symmetric (c(x,y) = c(y,x) for all x,y) and satisfies the triangle inequality c(x,y) ≤
c(x,z)+c(z,y).For ψ : X→R define ψc : X→R via ψc(x) := infy c(x,y)−ψ(y). Prove
that a function φ is of the form ψc if and only if it satisfies |φ(x)−φ(y)| ≤ c(x,y) for
all x,y. Also prove that for functions satisfying this condition we have φ c =−φ .

Exercise 6.17. Prove the equality

min
{ˆ

K d|v| : v ∈M d(X); ∇ ·v = µ−ν

}
= max

{ˆ
φ d(µ−ν) : |∇φ | ≤ K

}
using the duality methods inspired by those developed in Section 4.3.
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