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Preface

Why this book? Why a new book on optimal transport? The two books by Fields
Medalist Cédric Villani were not enough? and what about the Bible of Gradient Flows,
the book by Luigi Ambrosio, Nicola Gigli and Giuseppe Savaré, which also contains
many advanced and very general details about optimal transport?

The present text, very vaguely inspired by the classes that I gave in Orsay in 2011
and 2012 and by two short introductory courses that I gave earlier in a summer school
in Grenoble ([276, 277]), would like to propose a different point of view, and partially
adresses to a different audience. There is nowadays a large and expanding community
working with optimal transport as a tool to do applied mathematics. We can think in
particular at applications to image processing, economics and evolution PDEs, in par-
ticular when modeling population dynamics in biology or social sciences, or fluid me-
chanics. More generally, in applied mathematics optimal transport is both a technical
tool to perform proofs, do estimates, and suggest numerical methods, and a modeling
tool to describe phenomena where distances, paths and costs are involved.

For those who arrive to optimal transport from this side, some of the most important
issues are how to handle numerically the computations of optimal maps and costs;
which are the different formulations of the problem, so as to adapt them to new models
and purposes; how to obtain in the most concrete ways the main results connecting
transport and PDEs, and how the theory is used in the approach of existing models. We
cannot say that the answers to these questions are not contained in the existing books,
but it is true that probably none of them has been written with this purpose.

The first book by C. Villani, [292], is the closest to our intentions. It is a wide
introduction to the topic and its applications, suitable for every public. Yet, some of
the subjects that I decided to deal with here are unfortunately not described in [292]
(think at the minimal flow problems of our Chapter 4). Also, since 2003, the theory has
enormously advanced. Another book that we should not forget (actually, two volumes)
is the one by S. T. Rachev and L. Rüschendorf [257, 258]: on the contrary, they cover
many applications in probability and statistics. But their scopes diverge quite soon from
ours, and we will not develop most of the applications and of the language developed
in [257]. We will mainly stick to a deterministic framework and to a variational taste.

If we look at what happened after [292], we should mention at least two beautiful
books which appeared since then. The new book by C. Villani [293] has expanded the
previous presentation into an almost-thousand-pages volume, where most of the extra
content actually deals with geometrical issues, in connection in particular with the
notion of curvature. Optimal transport for the quadratic cost on a manifold becomes
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a central tool, and it is the starting point to study the case of metric measure spaces.
The other reference book is the one by L. Ambrosio, N. Gigli and G. Savaré, [17],
devoted to the study of gradient flows evolution in metric space, and in particular in the
Wasserstein space of probability measures. This topic has many interesting application
(let us mention the Heat equation, Fokker-Planck, porous media. . . ), and the tools that
are developed are very useful. Yet, the main point of view of the authors is the study
of the hidden differential structures in these abstract spaces; modeling and applied
mathematics were probably not their first concerns.

Some of the above references are very technical, and develop powerful abstract
machineries, that can be applied in very general situations, but could be difficult to
use for many readers. As a consequence, some shorter surveys and more tractable
lecture notes appeared. Let us mention [12] for a simplified version of some parts of
[17], or [10] as a short introduction to the topic by L. Ambrosio and N. Gigli. Yet, a
deeper analysis of the content of [10] shows that, if the first half of it really deals with
the general theory of optimal transport, with some words on some variants, the rest is
devoted to gradient flows in metric spaces in their generality and to metric measure
spaces with curvature bounds. We also mention a very recent survey, [64], accounting
for the main achievements on the theory in the occasion of the centennial of the birth
of L. V. Kantorovich.

In the meanwhile, many initiatives took place underlining the increasing interest
for the applied side of optimal transport: publications1, schools, workshops, research
projects. . . the community is very lively since the ’10s (current century) in particular in
France, but also in Canada, Italy, Austria, the UK. . . All these considerations suggested
that a dedicated book could have been a good idea, and the one that you have in your
hands now is the result of the work of the last three years.

What about this book? The book contains a rigorous description of the theory of
optimal transport and of some neglected variants, and explains the most important con-
nections that it has with many topics in evolution PDEs, image processing and eco-
nomics.

I avoided as much as possible the most general frameworks, and concentrated on
the Euclidean case, except where statements in Polish spaces did not cost any more
and could indeed be clarifying. I skipped many difficulties by choosing to add com-
pactness to the assumptions every time that it simplified the exposition, at least when
the statement stayed interesting enough (in my personal opinion) even with this ex-
tra assumption. Also, in many cases, I first started from the easiest cases (e.g., with
compactness, or continuity) before generalizing.

When a choice was possible, I tried to prefer more “concrete” proofs, which I think
are easier to figure out for the readership of the book. As an example, the existence of
velocity fields for Lipschitz curves in Wasserstein spaces has been proven by approxi-
mation, and not via abstract functional analysis tools, as in [17], where the main point
is a clever use of the Hahn-Banach theorem.

I did not search for an exhaustive survey of all possible topics, but I structured the
book into 8 chapters, more or less corresponding to one (long) lecture each. Obviously,

1A special issue of ESAIM M2AN on “Optimal Transport in Applied Mathematics” is in preparation.
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I added a lot of material to what one could really deal with during one single lecture,
but the choice of the topics and their order really follows an eight-lectures course given
in Orsay in 2011 (only exceptions: Chapter 1 and Chapter 5 took one lecture and a half,
and the subsequent ones were shortened to half a lecture in 2011). The topics which
are too far from those of the eight “lectures” have been omitted from the main body
of the chapters. On the other hand, every chapter ends with a discussion section. It
is a place where extensions, connections, side topics and different points of view are
presented. In some cases (congested and branched transport), they really correspond to
a mini-survey on a related transport model. Discussion sections are more informal, and
sometimes statements are proven, while other times they are only sketched or evoked.

In order to enhance the readership and allow as many people as possible to access
the content of the book, I decided to spend more words on some notions that I could
have probably consider as known (but it is always better to recall them). Throughout
the chapters some notions are recalled via special boxes called Memo or Important
notion2. A third type of box, called Good to know! provides extra notion that are not
usually part of the background of non-specialized graduate students in mathematics.
The density of the boxes, and of explanatory figures as well, decreases as the book
goes by.

For the sake of simplicity, I also decided not to insist too much on at least one
important issue: measurability. You can trust me that all the sets, functions and maps
that are introduced throughout the text are indeed measurable as desired, but I did not
underline it explicitly. Yet, actually, this is the only concession to sloppiness: proofs
are rigorous (at least, I hope) throughout the book, and could be used for sure by pure
or applied mathematicians looking for a reference on the corresponding subjects. The
only chapter where the presentation is a little bit informal is Chapter 6, on numerical
methods, in the sense that we do not give proofs of convergence, or precise implemen-
tation details.

Ah yes. . . last but not least, there is a Chapter on numerical methods! In particular
those that are most linked to PDEs (continuous methods), while the most combinatorial
and discrete ones are briefly described in the discussion section.

For whom this book? The book has been written with the point of view of an applied
mathematician, and applied mathematicians are supposed to be the natural readership
for it. Yet, the ambition is to speak to a much wider public. Pure mathematicians
(whether this distinction between pure and applied makes sense, this is a matter of per-
sonal taste) are obviously welcome. They will find rigorous proofs, sometimes inspired
by a different point of view than what they know better. They could be interested in
discovering where optimal transport can be used and how, and to bring their own con-
tributions.

More generally, the distinction can be moved to the level of people working with
optimal transport rather than on optimal transport (instead of pure vs applied). The
former are the natural readership, but the latter can find out they are interested in the
content too. On the opposite direction, can we say that the text is also addressed to

2The difference between the two is just that in the second case I would rather consider it as a Memo, but
students usually do not agree.
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non-mathematicians (physicists, engineers, theoretical economists. . . )? This raises the
question of the mathematical background that the readers need in order to read it. Obvi-
ously, if they have enough mathematical background, and if they work on fields close
enough to the applications that are presented, it could be interesting for them to see
what is behind those applications.

The question of how much mathematics is needed also concerns students. This is a
graduate text in mathematics. Even if I tried to give tools to catch-up the required back-
ground, it is true that some previous knowledge is required to fully profit of the content
of the book. The main prerequisites are measure theory and functional analysis. I de-
liberately decided not to follow the advice of an “anonymous” referee, who suggested
to include an appendix on measure theory. The idea is that mathematicians who want
to approach optimal transport should already know something on these subjects (what
is a measurable function, what is a measure, which are the conditions for the main con-
vergence theorems, what about Lp and W 1,p functions, what is weak convergence. . . ).
The goal of the memo boxes is to help readers not to get lost. For non-mathematicians
reading the book, the hope is that the choice of a more concrete approach could help
them in finding out which kind of properties are important and reasonable. On the
other hand, also these readers are expected to know some mathematical language, and
for sure they will need some extra efforts to fully profit of it.

Concerning readership, the numerical part (Chapter 6) deserves some extra words.
Comparing in details the different methods, their drawback and their strengths, the
smartest tricks for the implementation, and discussing the most recent algorithms is
beyond the scopes of this book. Hence, this chapter is probably useless for people
already working in this very field. On the other hand, it can be of interest for people
working with optimal transport without knowing numerical methods, or for numericists
who are not into optimal transport.

Also, I am quite sure that, because of the many boxes recalling the main background
notions and of the exercises at the end of the book, it will be possible to use some of
the material that I present here for a graduate course on these topics.

What in this book? After this preface (the only part which is written in 1st person,
do not worry) and a short introduction to optimal transport (where I mainly present the
problem, its history, and its main connections with other part of mathematics), the book
contains 8 chapters. The two most important chapters, those which really constitute the
general theory of optimal transport, are Chapters 1 and 5. In the structure of the book,
the first half of the text is devoted to the problem of the optimal way of transporting
mass from a given measure to another (in the Monge-Kantorovich framework, and
then with a minimal flow approach), and Chapter 1 is the most important. Then, in the
second half I move to the case where also measures vary, which is indeed the case in
chapter 5 and later in chapters 7 and 8. Chapter 6 comes after Chapter 5 because of the
connections of the Benamou-Brenier method with geodesics in the Wasserstein space.

Chapter 1 presents the relaxation that Kantorovich did of the original Monge prob-
lem and its duality issues (Kantorovich potentials, c-cyclical monotonicity. . . ). It uses
these tools to provide the first theorem of existence of an optimal map (Brenier Theo-
rem). The discussion section as well mainly stems from the Kantorovich interpretation
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and duality.
Chapter 2 focuses on the unidimensional case, which is easier and has already

many consequences. Then, the Knothe map is presented: it is a transport map built
with 1D bricks, and its degenerate optimality is discussed. The main notion here is
that of monotone transport. In the discussion section, 1D and monotone maps are used
for applications in mathematics (isoperimetric inequalities) and outside mathematics
(histogram equalization in image processing).

Chapter 3 deals with some limit cases, not covered by Chapter 1. Indeed, from the
results of the first chapter we know how to handle transport costs of the form |x− y|p
for p∈]1,+∞[, but not p = 1, which was the original question by Monge. This requires
extra ideas, in particular selecting a special minimizer via a secondary variational prob-
lem. Similar techniques are also needed for the other limit case, i.e. p = ∞, which is
also detailed in the chapter. In the discussion section we present the main challenges
and methods to tackle the general problem of convex costs of the form h(y− x) (with-
out strict convexity, and with possible infinite values), which has been a lively research
subject in the last years, and later we consider the case 0 < p < 1, i.e. costs which are
concave in the distance.

Chapter 4 presents alternative formulations, more Eulerian in spirit: how to de-
scribe a transportation phenomenon via a flow, i.e. a vector field w with prescribed
divergence, and minimize the total cost via functionals involving w. When we mini-
mize the L1 norm of w this turns out to be equivalent to the original problem by Monge.
The main body of the chapters gives the language to pass from Lagrangian to Eulerian
frameworks and back, and studies this minimization problem and its solutions. In the
discussion section, two variants are proposed: traffic congestion (with strictly convex
costs in w) and branched transport (with concave costs in w).

Chapter 5 introduces another essential tool in the theory of optimal transport: the
distances (called Wasserstein distances) induced by transport costs on the space of
measures. After studying their properties, we study the curves in these spaces, and
in particular geodesics, and we underline the connection with the continuity equation.
The discussion section makes a comparison between Wasserstein distances and other
distances on probabilities, and finally describes an application in terms of barycenters
of measures.

Chapter 6 starts from the ideas presented in the previous chapter and uses them to
propose numerical methods. Indeed, in the description of the Wasserstein space one
can see that finding the optimal transport is equivalent to minimizing a kinetic energy
functional among solutions of the continuity equation. This provided the first numer-
ical method for optimal transport, called Benamou-Brenier method. In the rest of the
chapter, two other “continuous” numerical methods are described, and the discussion
section deals with discrete and semi-discrete methods.

Chapter 7 contains a “bestiary” of useful functionals defined over measures, and
studies their properties, not necessarily in connection with optimal transport (convexity,
semi-continuity, computing the first variation. . . ). The idea is that these functional
often appear in modeling issues accompanied by transport distances. Also, the notion
of displacement convexity (i.e. convexity along geodesics of the Wasserstein space) is
described in details. The discussion section is quite heterogeneous, with applications
to geometrical inequalities but also equilibria in urban regions.
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Chapter 8 gives an original presentation of one of the most striking applications
of optimal transport: gradient flows in Wasserstein spaces, which allow to deal with
many evolution equations, in particular of parabolic type. The general framework is
presented, and the Fokker-Planck equation is studied in details. The discussion sec-
tion presents other equations which have this gradient flow structure, and also other
evolution equations where optimal transport plays a role, without being gradient flows.

Before the detailed bibliography (exactly 300 items) and the index which conclude
the book, there is a list of 69 exercises, from the various chapters and of different level
of difficulties. From students to senior researchers, the readers are invited to play with
these exercises, and enjoy the taste of optimal transport.

Paris, Filippo Santambrogio
May 2015



Introduction to optimal
transport

The history of optimal transport started long-time ago, in France, few years before the
revolution, when Gaspard Monge proposed the following problem in a report that he
submitted to the Académie des Sciences ([239])3. Given two densities of mass f , g≥ 0
on Rd , with

´
f (x)dx =

´
g(y)dy = 1, find a map T : Rd → Rd pushing the first one

onto the other, i.e. such that
ˆ

A
g(y)dy =

ˆ
T−1(A)

f (x)dx for any Borel subset A⊂ Rd (1)

and minimizing the quantity

M(T) :=
ˆ
Rd
|T(x)− x| f (x)dx

among all the maps satisfying this condition. This means that we have a collection of
particles, distributed according to the density f on Rd , that have to be moved so that
they form a new distribution whose density is prescribed and is g. The movement has to
be chosen so as to minimize the average displacement. In the description of Monge, the
starting density f represented a distribution of sand, that had to be moved to a target
configuration g. These two configurations correspond to what was called in French
déblais and remblais. Obviously the dimension of the space was only supposed to be
d = 2 or 3. The map T describes the movement (that we must choose in an optimal
way), and T(x) represents the destination of the particle originally located at x.

In the following, we will often use the image measure of a measure µ on X (mea-
sures will indeed replace the densities f and g in the most general formulation of the
problem) through a measurable map T : X →Y : it is the measure on Y denoted by T#µ

and characterized, as in (1), by

(T#µ)(A) = µ(T−1(A)) for every measurable set A,

or
ˆ

Y
φ d(T#µ) =

ˆ
X
(φ ◦T)dµ for every measurable function φ .

3This happened in 1781, but we translate his problem into modern mathematical language.

vii



viii

More generally, we can consider the problem

(MP) min{M(T) :=
ˆ

c(x,T(x))dµ(x) : T#µ = ν},

for a more general transport cost c : X×Y → R.
When we stay in the Euclidean setting, with two measures µ,ν induced by densities

f ,g, it is easy – just by a change-of-variables formula – to transform the equality ν =
T#µ into the PDE

g(T(x))det(DT(x)) = f (x), (2)

if we suppose f ,g and T to be regular enough and T to be injective.
Yet, this equation is highly nonlinear in T and this is one of the difficulties prevent-

ing from an easy analysis of the Monge Problem. For instance: how to prove existence
of a minimizer? Usually what one does is the following: take a minimizing sequence
Tn, find a bound on it giving compactness in some topology (here, if the support of ν is
compact the maps Tn take value in a common bounded set, spt(ν), and so one can get
compactness of Tn in the weak-* L∞ convergence), take a limit Tn ⇀ T and prove that
T is a minimizer. This requires semicontinuity of the functional M with respect to this
convergence (which is true in many cases, for instance if c is convex in its second vari-
able) for this convergence: we need Tn ⇀ T⇒ liminfn M(Tn) ≥ M(T)), but we also
need that the limit T still satisfies the constraint. Yet, the nonlinearity of the PDE pre-
vents from proving this stability when we only have weak convergence (the reader can
find an example of a weakly converging sequence such that the corresponding image
measures do not converge as an exercise; it is actually Ex(1) in the list of exercises).

In [239] Monge analyzed fine questions on the geometric properties of the solution
to this problem and he underlined several important ideas that we will see in Chapter
3: the fact that transport rays do not meet, that they are orthogonal to a particular
family of surfaces, and that a natural choice along transport rays is to order the points
in a monotone way. Yet, he did not really solve the problem. The question of the
existence of a minimizer was not even addressed. In the following 150 years, the
optimal transport problem mainly remained intimately French, and the Académie des
Sciences offered a prize on this question. The first prize was won by P. Appell [22]
with a long mémoire which improved some points, but was far from being satisfactory
(and did not address neither the existence issue4).

The problem of Monge has stayed with no solution (does a minimizer exist? how
to characterize it?. . . ) till progress was made in the 1940s. Indeed, only with the
work by Kantorovich (1942, see [201]) it was inserted into a suitable framework which
gave the possibility to attack it and, later, to provide solutions and study them. The
problem has then been widely generalized, with very general cost functions c(x,y)
instead of the Euclidean distance |x− y| and more general measures and spaces. The
main idea by Kantorovich is that of looking at Monge’s problem as connected to linear
programming. Kantorovich indeed decided to change the point of view, and to describe
the movement of the particles via a measure γ on X ×Y , satisfying (πx)#γ = µ and
(πy)#γ = ν . These probability measures over X ×Y are an alternative way to describe

4The reader can see [182] - in French, sorry - for more details on these historical questions about the
work by Monge and the content of the papers presented for this prize.
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the displacement of the particles of µ: instead of giving, for each x, the destination T(x)
of the particle originally located at x, we give for each pair (x,y) the number of particles
going from x to y. It is clear that this description allows for more general movements,
since from a single point x particles can a priori move to different destinations y. If
multiple destinations really occur, then this movement cannot be described through
a map T. The cost to be minimized becomes simply

´
X×Y cdγ . We have now a linear

problem, under linear constraints. It is possible to prove existence of a solution, but also
to use techniques from convex optimization, such as duality, in order to characterize
the optimal solution (see Chapter 1).

In some cases, and in particular if c(x,y) = |x−y|2 (another very natural cost, with
many applications in physical modeling because of its connection with kinetic energy),
it is even possible to prove that the optimal γ does not allow this splitting of masses.
Particles at x are only sent to a unique destination T(x), thus providing a solution to
the original problem by Monge. This is what is done by Brenier in [83], where he
also proves a very special form for the optimal map: the optimal T is of the form
T(x) = ∇u(x), for a convex function u. This makes, by the way, a strong connection
with the Monge-Ampère equation. Indeed, from (2) we get

det(D2u(x)) =
f (x)

g(∇u(x))
,

which is a (degenerate and non-linear) elliptic equation exactly in the class of convex
functions. Brenier also uses this result to provide an original polar factorization theo-
rem for vector maps (see Section 1.7.2): vector fields can be written as the composition
of the gradient of a convex function and of a measure-preserving map. This general-
izes the fact that matrices can be written as the product of a symmetric positive-definite
matrix and an orthogonal one.

The results by Brenier can be easily adapted to other costs, strictly convex functions
of the difference x− y. They have also been adapted to the squared distance on Rie-
mannian manifolds (see [231]). But the original cost proposed by Monge, the distance
itself, was more involved.

After the French school, the time of the Russians arrived. From the precise ap-
proach introduced by Kantorovich, Sudakov ([290]) proposed a solution for the orig-
inal Monge problem (MP). The optimal transport plan γ in the Kantorovich problem
with cost |x− y| has the following property: the space Rd can be decomposed in an
essentially disjoint union of segments that are preserved by γ (i.e. γ is concentrated on
pairs (x,y) belonging to the same segment). This segments are built from a Lipschitz
function, whose level set are the surfaces “foreseen” by Monge. Then, it is enough to
reduce the problem to a family of 1D problems. If µ �L d , the measures that µ in-
duces on each segment should also be absolutely continuous, and have no atoms. And
in dimension one, as soon as the source measure has no atoms, then one can define a
monotone increasing transport, which is optimal for any convex cost of the difference
x− y.

The strategy is clear, but there is a small drawback: the absolute continuity of the
disintegrations of µ along segments, which sounds like a Fubini-type theorem, fails for
arbitrary families of segments. Some regularity on their directions is needed. This has
been observed by Ambrosio, and fixed in [8, 11]. In the meanwhile, other proofs were
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obtained by Evans-Gangbo, [160] (via a method which is linked to what we will see
in Chapter 4, and unfortunately under stronger assumptions on the densities) and by
Caffarelli-Feldman-McCann, [102] and, independently, Trudinger-Wang, [291], via an
approximation through strictly convex costs.

After many efforts on the existence of an optimal map, its regularity properties have
also been studied: the main reference in this framework is Caffarelli, who proved reg-
ularity in the quadratic case, thanks to a study of the Monge-Ampère equation above.
Surprisingly, at the beginning of the present century Ma-Trudinger-Wang ([220]) found
out the key for the regularity under different costs. In particular they found a condi-
tion on costs c ∈C4 on Rd (some inequalities on their fourth-order derivatives) which
ensured regularity. It can be adapted to the case of squared distances on smooth man-
ifolds, where the assumption becomes a condition on the curvature of the underlying
manifolds. These conditions have later been proven to be sharp by Loeper in [217].
Regularity is a beautiful and delicate matter, which cannot have in this book all the
attention that it would deserve. We refer anyway to Section 1.7.6 for more details and
references.

But the theory of optimal transport cannot be reduced to the existence and the prop-
erties of optimal maps. The success of this theory can be associated to the many con-
nections it has with many other branches of mathematics. Some of these connections
pass through the use of the optimal map, yes: think at some geometric and functional
inequalities that can be proven (or reproven) in this way. In this book we only present
the isoperimetric inequality (Section 2.5.3) and the Brunn-Minkowski one (Section
7.4.2). We stress that one of the most refined advances in quantitative isoperimetric
inequalities is a result by Figalli-Maggi-Pratelli, strongly using optimal transport as a
tool for their proof, [169].

On the other hand, many applications of optimal transport pass, instead, through
the distances it defines (Wasserstein distances, see Chapter 5). Indeed, it is possible to
associate to every pair of measure a quantity, denoted by Wp(µ,ν), based on the mini-
mal cost to transport µ onto ν for the cost |x−y|p. It can be proven to be a distance, and
to metrize the weak convergence of probability measures (at least on compact spaces).
This distance is very useful in the study of some PDEs. Some evolution equations, in
particular of parabolic type, possibly with non-local terms, can be interpreted as gra-
dient flows (curves of steepest descent, see Chapter 8) for this distance. This idea has
first been underlined in [199, 246]. It can be used to provide existence results or ap-
proximation of the solutions. For other PDEs, the Wasserstein distance, differentiated
along two solutions, may be a technical tool to give stability and uniqueness results,
or rate of convergence to a steady state (see Section 5.3.5). Finally, other evolution
models are connected either to the minimization of some actions involving the kinetic
energy, as it is standard in physics (the speed of a curve of densities computed w.r.t.
the W2 distance is exactly a form of kinetic energy), or to the gradient of some special
convex functions appearing in the PDE (see Section 8.4.4).

The structure of the space Wp of probability measures endowed with the distance
Wp also received and still receives a lot of attention. In particular, the study of its
geodesics and of the convexity properties of some functionals along these geodesics
have been important, both because they play a crucial role in the metric theory of
gradient flows developed in the reference book [17] and because of their geometrical
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consequences. The fact that the entropy E(ρ) :=
´

ρ logρ is or not convex along these
geodesics turned out to be equivalent, on Riemannian manifolds, to lower bounds on
the Ricci curvature of the manifold. This gave rise to a wide theory of analysis in
metric measure spaces, where this convexity property was chosen as a definition for
the curvature bounds (see [219, 288, 289]). This theory underwent many progresses in
these last years, thanks to the many recent results by Ambrosio, Gigli, Savaré, Kuwada,
Ohta and their collaborators (see, as an example, [184, 18]).

From the point of view of modeling, optimal transport may appear in many fields
more or less linked to spatial economics, traffic, networks and collective motions, but
the pertinence of the Monge-Kantorovich model can be questioned, at least for some
specific applications. This leads to the study of alternative model, either more “convex”
(for traffic congestion), or more “concave” (for the organization of an efficient transport
network). These models are typically built under the form of a flow minimization under
divergence constraints, and are somehow a variant of the original Monge cost. Indeed,
the original Monge problem (optimal transport from µ to ν with cost |x− y|) is also
equivalent to the problem of minimizing the L1 norm of a vector field w under the
condition ∇ ·w = µ − ν . This very last problem is presented in Chapter 4, and the
traffic congestion and branched transport models are presented as a variant in Section
4.4.

Finally, in particular due to its applications in image processing (see Section 2.5.1
and 5.5.5), it has recently become crucial to have efficient ways of computing, or ap-
proximating, the optimal transport or the Wasserstein distances between two measures.
This is a new and very lively field of investigation: the methods that are presented in
Chapter 6 are only some classical ones. This book does not want to be exhaustive
on this point, but one of its claimed goals is for sure to enhance the interest on these
subjects.

It is not our intention to build a separating wall between two sides of optimal trans-
portation, the “pure” one, and the “applied one”. Both are progressing at an impressive
rate in these last years. This book is devoted to those topics in the theory that could
be more interesting for the reader who looks at modeling issues in economics, image
processing, social and biological evolutionary phenomena, and fluid mechanics, at the
applications to PDEs, and at numerical issues. It would be impossible to summarize
the new directions that these topics are exploring in this short introduction, and also the
book cannot do it completely.

We will only try to give a flavor of these topics, as well as a rigorous analysis of the
mathematics which are behind them.
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Notation

The following are standard symbols used throughout the book without always recalling
their meaning.

• “domain”: a non-empty connected set in Rd , equal to the closure of its interior.

• R+: non-negative real numbers, i.e. [0,+∞[.

• log: the natural neperian logarithm of a positive number.

• limn, liminfn, limsupn (but n could be replaced by k,h, j . . . ): limit, inferior limit
(liminf), superior limit (limsup) as n→ ∞ (or k,h, j · · · → ∞).

• ∇ and ∇· denote gradients and divergence, respectively.

• ∆ denotes the Laplacian: ∆u := ∇ · (∇u) (and not minus it).

• ∆p denotes the p-Laplacian: ∆pu := ∇ · (|∇u|p−2∇u).

• D2u: Hessian of the scalar function u.

• P(X),M (X),M+(X),M d(X): the spaces of probabilities, finite measures, pos-
itive finite measures and vector measures (valued in Rd) on X .

• M d
div(Ω): on Ω⊂ Rd , the space of measures w ∈M d(Ω) with ∇ ·w ∈M (Ω).

• Rd ,Td ,Sd : the d−dimensional Euclidean space, flat torus and sphere.

• C(X),Cb(X),Cc(X),C0(X): continuous, bounded continuous, compactly sup-
ported continuous, and continuous vanishing at infinity functions on X .

• L∞
c (Ω): L∞ functions with compact support in Ω.

• δa: the Dirac mass concentrated at the point a.

• 1A: the indicator function of a set A, equal to 1 on A and 0 on Ac.

• ∧,∨: the min and max operators, i.e. a∧b := min{a,b} and a∨b := max{a,b}.

• |A|,L d(A): the Lebesgue measure of a set A ⊂ Rd ; integration w.r.t. this mea-
sure is denoted by dx or dL d .
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• ωd : the measure of the unit ball in Rd .

• H k: the k-dimensional Hausdorff measure.

• Per(A): the perimeter of a set A in Rd (equal to H d−1(∂A) for smooth sets A).

• µ � ν : the measure µ is absolutely continuous w.r.t. ν .

• µn ⇀ µ: the sequence of probabilities µn converges to µ in duality with Cb.

• f ·µ: the measure with density f w.r.t. µ .

• µ A: the measure µ restricted to a set A (i.e. 1A ·µ).

• f|A: the restriction of a function f to a set A.

• T#µ: the image measure of µ through the map T.

• Mk×h: the set of real matrices with k lines and h columns.

• I: the identity matrix.

• Tr: the trace operator on matrices.

• Mt : the transpose of the matrix M.

• cof(M): the cofactor matrix of M, such that cof(M) ·M = det(M)I.

• id: the identity map.

• If T : X→Y , the map (id,T) goes from X to X×Y and is given by x 7→ (x,T(x)).

• Π(µ,ν): the set of transport plans from µ to ν .

• µ⊗ν : the product measure of µ and ν (s.t. µ⊗ν(A×B) = µ(A)ν(B)).

• γT: the transport plan in Π(µ,ν) associated to a map T with T#µ = ν .

• M(T), K(γ): the Monge cost of a map T and the Kantorovich cost of a plan γ .

• πx,πy,πi: the projection of a product space onto its components.

• AC(Ω) (or C , if there is no ambiguity): the space of absolutely continuous
curves, parametrized on [0,1], and valued in Ω.

• L(ω),Lk(ω): the length, or weighted length (with coefficient k) of the curve ω .

• et : AC(Ω)→Ω: the evaluation map at time t, i.e. et(ω) := ω(t).

• ai
j,a

i j
kh . . . : superscripts are components (of vectors, matrices. . . ) and subscripts

denote derivatives. No distinction between vectors and covectors is performed.

• x1, . . . ,xd : coordinates of points in the Euclidean space are written as subscripts.
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• ρt ,vt . . . : the subscript t denotes the value at time t, not a derivative in time,
which is rather denoted by ∂t , or d

dt .

• n: the outward normal vector to a given domain.

• Wp,Wp: Wasserstein distance and Wasserstein space of order p, respectively.

• Tc(µ,ν): the minimal transport cost from µ to ν for the cost c.

• Lip1(Ω): the set of 1−Lipschitz functions.

• δF
δρ

: first variation of F : P(Ω)→ R, defined via d
dε

F(ρ+εχ)|ε=0 =
´

δF
δρ

dχ.

—

The following, instead, are standard choices of notations.

• The dimension of the ambient space is d; we use RN when N stands for a number
of particles, of points in a discretization. . .

• T is a transport map, while T is typically a final time.

• ω is usually a curve (but sometimes a modulus of continuity).

• Ω is usually a domain in Rd , and general metric spaces are usually called X .

• X is typically an abstract Banach spaces.

• ξ is usually a vector function (often a test function).

• Q is typically a measure on C .

• φ is typically a test function, while ϕ is a Kantorovich potential or similar.

• u is typically the Kantorovich potential for the cost |x−y|, or the convex potential
T = ∇u in the |x− y|2 case.

• Velocity fields are typically denoted by v, momentum fields by w (when they are
not time-dependent) or E (when they could be time-dependent).
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Chapter 1

Primal and dual problems

In this chapter we will start with generalities on the transport problem from a measure
µ on a space X to another measure ν on a space Y . In general, X and Y can be complete
and separable metric spaces, but soon we will focus on the case where they are the same
subset Ω⊂Rd (often compact). The cost function c : X×Y → [0,+∞] will be possibly
supposed to be continuous or semi-continuous, and then we will analyze particular
cases (such as c(x,y) = h(x− y) for strictly convex h).

For the sake of the exposition, the structure of this chapter is somehow involved,
and deserves being explained. In Section 1.1 we present the problems by Monge and
Kantorovich and prove existence for the Kantorovich Problem (KP). In Section 1.2
we present the dual problem (DP), but we do not prove the duality result min(KP) =
sup(DP). In Section 1.3, taking this duality result as proven, we discuss cases where
the solution of (KP) turns out to be induced by a transport map, hence solving (MP).
Sections 1.4 and 1.5 are devoted to counter-examples to the existence for (MP) and to
the equality min(MP) = min(KP). In Section 1.6, we introduce the notion of cyclical
monotonicity, which allows to prove the duality min(KP) = sup(DP), as well as sta-
bility results and sufficient optimality conditions. We also give an independent proof of
duality, based on notion of convex analysis that we actually introduce in a Memo Box
in the same section 1.6. The chapter is concluded by a long discussion section, 1.7.

1.1 Kantorovich and Monge problems
The starting point of Optimal Transport is the classical problem by Monge ([239])
which reads in its most general version, and in modern language, as follows.

Problem 1.1. Given two probability measures µ ∈P(X) and ν ∈P(Y ) and a cost
function c : X×Y → [0,+∞], solve

(MP) inf
{

M(T) :=
ˆ

c(x,T(x))dµ(x) : T#µ = ν

}
, (1.1)

where we recall that the measure denoted by T#µ is defined through (T#µ)(A) :=
µ(T−1(A)) for every A, and is called image measure or push-forward of µ through T.

1
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As we pointed out in the introduction, Problem (MP)1 is difficult because of its
constraint. In particular, this constraint on T is not closed under weak convergence:
see Ex(1) or consider Tn(x) = sin(nx) on [0,2π].

Because of this difficulty, we will forget (MP) for a while and pass to the general-
ization that appears as natural from the work of Kantorovich ([201]):

Problem 1.2. Given µ ∈P(X), ν ∈P(Y ) and c : X ×Y → [0,+∞], we consider the
problem

(KP) inf
{

K(γ) :=
ˆ

X×Y
cdγ : γ ∈Π(µ,ν)

}
, (1.2)

where Π(µ,ν) is the set of the so-called transport plans, i.e.

Π(µ,ν) = {γ ∈P(X×Y ) : (πx)#γ = µ, (πy)#γ = ν ,}

where πx and πy are the two projections of X ×Y onto X and Y , respectively. These
probability measures over X×Y are an alternative way to describe the displacement of
the particles of µ: instead of specifying, for each x, which is the destination T(x) of
the particle originally located at x, we specify for each pair (x,y) how many particles
go from x to y. More precisely, the value γ(A×B) denotes the amount of mass moving
from A to B. It is clear that this description allows for more general movements, since
from a single point x particles can a priori move to different destinations y. If multiple
destinations really occur, then this movement cannot be described through a map T.
Note that the constraints on (πx)#γ and (πy)#γ exactly mean that we restrict our atten-
tion to the movements that really take particles distributed according to the distribution
µ and move them onto the distribution ν .

The minimizers for this problem are called optimal transport plans between µ and
ν . Should γ be of the form (id,T)#µ for a measurable map T : X → Y (i.e. when no
splitting of the mass occurs), the map T would be called optimal transport map from µ

to ν .

Remark 1.3. It can be easily checked that (id,T)#µ (this trasport plan will be denoted
by γT) belongs to Π(µ,ν) if and only if T pushes µ onto ν (i.e. ν(A) = µ(T−1(A)) for
any Borel set A) and the functional takes the form

´
c(x,T(x))dµ(x), thus generalizing

the Monge Problem.

This generalized problem by Kantorovich is much easier to handle than the original
one proposed by Monge: for instance in the Monge case we would need existence of at
least a map T satisfying the constraints. This is not verified when µ = δ0, if ν is not a
single Dirac mass (see Section 1.4). On the contrary, there always exist transport plans
in Π(µ,ν) (for instance µ ⊗ ν ∈ Π(µ,ν)). Moreover, one can state that (KP) is the
relaxation of the original problem by Monge (something which will be made precise
in Section 1.5, and it means, roughly speaking, that (KP) is somehow the minimal
extension of (MP) which has some chances to admit a minimizer).

Anyway, it is important to note that an easy use of the Direct Method of Calculus
of Variations proves that a minimum does exist. This means that we take a minimizing
sequence, we say that it is compact in some topology (here it is the weak convergence

1To clarify the notation, let us stress that we use (MP) to denote the name of the minimization problem,
as well as (KP), (BP) and many others later on. For its minimal value, we write min(MP).



1.1. KANTOROVICH AND MONGE PROBLEMS 3

of probability measures), we find a limit, and prove semi-continuity (or continuity) of
the functional we minimize, so that the limit is a minimizer.

Box 1.1. – Memo – Weierstrass criterion for the existence of minimizers, semi-continuity

The most common way to prove that a function admits a minimizer is called “direct
method in calculus of variations”. It simply consists in the classic Weierstrass Theorem,
possibly replacing continuity with semi-continuity.

Definition - On a metric space X , a function f : X→R∪{+∞} is said to be lower-semi-
continuous (l.s.c. in short) if for every sequence xn→ x we have f (x)≤ liminfn f (xn).

Definition - A metric space X is said to be compact if from any sequence xn we can
extract a converging subsequence xnk → x ∈ X .

Theorem (Weierstrass) - If f : X → R∪{+∞} is lower semi-continuous and X is com-
pact, then there exists x̄ ∈ X such that f (x̄) = min{ f (x) : x ∈ X}.

Proof- Define ` := inf{ f (x) : x ∈ X} ∈ R∪ {−∞} (` = +∞ only if f is identically
+∞, but in this case any point in X minimizes f ). By definition there exists a minimizing
sequence xn, i.e. points in X such that f (xn)→ `. By compactness we can assume xn→ x̄.
By lower semi-continuity, we have f (x̄) ≤ liminfn f (xn) = `. On the other hand, we have
f (x̄)≥ ` since ` is the infimum. This proves `= f (x̄) ∈R and this value is the minimum of
f , realized at x̄.

Box 1.2. – Memo – Weak compactness in dual spaces

Definition - A sequence xn in a Banach space X is said to be weakly converging to x,
and we write xn ⇀ x, if for every ξ ∈X ′ (where X ′ is the topological dual of X and 〈·, ·〉
stands for the duality product between these spaces) we have 〈ξ ,xn〉 → 〈ξ ,x〉. A sequence
ξn ∈X ′ is said to be weakly-* converging to ξ , and we write ξn

∗
⇀ ξ , it for every x ∈X

we have 〈ξn,x〉 → 〈ξ ,x〉.
Theorem (Banach-Alaoglu) - If X is separable and ξn is a bounded sequence in X ′

then there exists a subsequence ξnk weakly converging to some ξ ∈X ′.
We refer for instance to [91] for all the details on functional analysis.

Box 1.3. – Memo – Duality between C0 and M

Definition - A finite signed measure λ on a metric space X is a map associating to
every Borel subset A ⊂ X a value λ (A) ∈ R (we will see in Chapter 4 the case of vector
measures, where λ is valued in Rd) such that, for every countable disjoint union A =

⋃
i Ai

(with Ai∩A j = /0 for i 6= j), we have

∑
i
|λ (Ai)|<+∞ and λ (A) = ∑

i
λ (Ai).

We denote by M (X) the set of finite signed measures on X . To such measures we can
associate a positive scalar measure |λ | ∈M+(X) through

|λ |(A) := sup

{
∑

i
|λ (Ai)| : A =

⋃
i

Ai with Ai∩A j = /0 for i 6= j

}
.
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Theorem (Riesz representation theorem) - Suppose that X is a separable and locally
compact metric space. Let X =C0(X) be the space of continuous function on X vanishing
at infinity, i.e. f ∈ C0(X) ⇐⇒ f ∈ C(X) and for every ε > 0 there exists a compact
subset K ⊂ X such that | f |< ε on X \K. Let us endow this space with the sup norm since
C0(X) ⊂ Cb(X) (this last space being the space of bounded continuous functions on X).
Note that C0(X) is a Banach space, and that it is a closed subset Cb(X). Then every element
of X ′ is represented in a unique way as an element of M (X) : for all ξ ∈X ′ there exists a
unique λ ∈M (X) such that 〈ξ ,φ〉=

´
φ dλ for every φ ∈X ; moreover, X ′ is isomorphic

to M (X) endowed with the norm ||λ || := |λ |(X).
For signed measures of M (X) we should call weak-* convergence the convergence in

the duality with C0(X). Yet, another interesting notion of convergence is that in duality with
Cb(X). We will call it (by abuse of notation) weak convergence and denote it through the
symbol ⇀: µn ⇀ µ if and only if for every φ ∈Cb(X) we have

´
φ dµn→

´
φ dµ (note that,

taking φ = 1, we also have µn(X)→ µ(X), which is not the case for the ∗⇀ convergence).
Note that C0(X) = Cb(X) = C(X) if X is compact, and in this case the two notions of
convergence are the same. On the other hand, for non-compact X the space M (X) is not
the dual of Cb(X): by Hahn-Banach’s theorem, it is possible to produce (see for instance
Section 1.3 in [292]) elements of Cb(X)′ that only look at the behavior of functions of
Cb(X) “out of compact subsets” (i.e, at infinity, or on the boundary). The notion of weak
convergence in duality with Cb is also sometimes called narrow convergence. For all details
about measure theory, we refer for instance to [268].

Box 1.4. – Memo – Weak convergence of probability measures

Probability measures are particular measures in M (X): µ ∈P(X) ⇐⇒ µ ∈M+(X)
and µ(X) = 1 (note that for positive measures µ and |µ| coincide).

Definition - A sequence µn of probability measures over X is said to be tight if for every
ε > 0 there exists a compact subset K ⊂ X such that µn(X \K)< ε for every n.

Theorem (Prokhorov) - Suppose that µn is a tight sequence of probability measures over
a complete and separable metric space X (these spaces are also called Polish spaces). Then
there exists µ ∈P(X) and a subsequence µnk such that µnk ⇀ µ (in duality with Cb(X)).
Conversely, every sequence µn ⇀ µ is necessarily tight.

Sketch of proof (of the direct implication) - For every compact K ⊂ X , the measures
(µn) K admit a converging subsequence (in duality with C(K)). From tightness, we have
an increasing sequence of compact sets Ki such that µn(Kc

i ) < εi = 1/i for every i and
every n. By a diagonal argument, it is possible to extract a subsequence µnh such that
(µnh) Ki ⇀ νi (weak convergence as n→ ∞ in duality with C(Ki)). The measures νi are
increasing in i, and define a measure µ = supi νi (i.e. µ(A) = supi νi(A∩Ki)). In order to
prove µnh ⇀ µ , take φ ∈Cb(X) and write

´
X φ d(µnh − µ) ≤ 2εi +

´
Ki

φ d(µnh −νi). This
allows to prove the convergence. Proving µ ∈P(X) we only need to check µ(X) = 1, by
testing with φ = 1.

We are now ready to state some existence results.

Theorem 1.4. Let X and Y be compact metric spaces, µ ∈P(X), ν ∈P(Y ) and
c : X×Y → R a continuous function. Then (KP) admits a solution.
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Proof. We just need to show that the set Π(µ,ν) is compact and that γ 7→ K(γ) =´
c dγ is continuous, and apply Weierstrass’s theorem. We have to choose a notion

of convergence for that and we choose to use the weak convergence of probability
measures (in duality with Cb(X×Y ), which is the same here as C(X×Y ) or C0(X×Y )).
This gives continuity of K by definition, since c ∈C(X×Y ).

As for the compactness, take a sequence γn ∈ Π(µ,ν). They are probability mea-
sures, so that their mass is 1, and hence they are bounded in the dual of C(X ×Y ).
Hence usual weak-* compactness in dual spaces guarantees the existence of a subse-
quence γnk ⇀ γ converging to a probability γ . We just need to check γ ∈Π(µ,ν). This
may be done by fixing φ ∈ C(X) and using

´
φ(x)dγnk =

´
φ dµ and passing to the

limit, which gives
´

φ(x)dγ =
´

φ dµ . This shows (πx)#γ = µ . The same may be done
for πy. More generally, the image measure through continuous maps preserves weak
convergence (and here we use the map (x,y) 7→ x or (x,y) 7→ y).

Theorem 1.5. Let X and Y be compact metric spaces, µ ∈P(X), ν ∈P(Y ) and
c : X×Y → R∪{+∞} be lower semi-continuous and bounded from below. Then (KP)
admits a solution.

Proof. Only difference : K is no more continuous, it is l.s.c. for the weak convergence
of probabilities. This is a consequence of the following lemma, applied to f = c on the
space X×Y .

Lemma 1.6. If f : X → R∪{+∞} is a lower semi-continuous function, bounded from
below, on a metric space X, then the functional J : M+(X)→ R∪{+∞} defined on
positive measures on X through J(µ) :=

´
f dµ is lower semi-continuous for the weak

convergence of measures.

Proof. Consider a sequence fk of continuous and bounded functions converging in-
creasingly to f . Then write J(µ) = supk Jk(µ) :=

´
fk dµ (actually Jk ≤ J and Jk(µ)→

J(µ) for every µ by monotone convergence). Every Jk is continuous for the weak
convergence, and hence J is l.s.c. as a supremum of continuous functionals.

Box 1.5. – Memo – l.s.c. functions as suprema of Lipschitz functions

Theorem - If fα is an arbitrary family of lower semi-continuous functions on X , then
f = supα fα (i.e. f (x) := supα fα (x)) is also l.s.c.

Proof - Take xn → x and write fα (x) ≤ liminfn fα (xn) ≤ liminfn f (xn). Then pass to
the sup in α and get f (x) ≤ liminfn f (xn). It is also possible to check the same fact using
epigraphs: indeed, a function is l.s.c. if and only if its epigraph {(x, t) : t ≥ f (x)} ⊂ X×R
is closed, and the epigraph of the sup is the intersection of the epigraphs.

Theorem - Let f : X →R∪{+∞} be a function bounded from below. Then f is l.s.c. if
and only there exists a sequence fk of k-Lipschitz functions such that for every x ∈ X , fk(x)
converges increasingly to f (x)

Proof - One implication if easy, since the functions fk are continuous, hence lower
semi-continuous, and f is the sup of fk. The other is more delicate. Given f lower semi-
continuous and bounded from below, let us define

fk(x) = inf
y

( f (y)+ kd(x,y)) .
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These functions are k-Lipschitz continuous since x 7→ f (y)+ kd(x,y) is k-Lipschitz. For
fixed x, the sequence fk(x) is increasing and we have inf f ≤ fk(x)≤ f (x). We just need to
prove that ` := limk fk(x) = supk fk(x) = f (x). Suppose by contradiction ` < f (x), which
implies in particular ` < +∞. For every k, let us choose a point yk such that f (yk) +

kd(yk,x) < fk(x)+1/k. We get d(yk,x) ≤
`+1/k− f (yk)

k ≤ C
k , thanks to the lower bound on

f and to ` < ∞. Hence we know yk → x. Yet, we have fk(x)+ 1/k ≥ f (yk) and we get
limk fk(x) ≥ liminfk f (yk) ≥ f (x). This proves ` ≥ f (x). Finally, the functions fk may be
made bounded by taking fk ∧ k.

Theorem 1.7. Let X and Y be Polish spaces, i.e. complete and separable metric
spaces, µ ∈P(X), ν ∈P(Y ) and c : X ×Y → [0,+∞] lower semi-continuous. Then
Problem (KP) admits a solution.

Proof. It is now the compactness which is no more evident. We need to use Prokhorov
theorem. This means showing that any sequence in Π(µ,ν) is tight. To do that, fix
ε > 0 and find two compact sets KX ⊂ X and KY ⊂Y such that µ(X \KX ),ν(Y \KY )<
1
2 ε (this is possible thanks to the converse implication in Prokhorov Theorem, since a
singe measure is always tight). Then the set KX ×KY is compact in X ×Y and, for any
γn ∈Π(µ,ν), we have

γn((X×Y )\ (KX ×KY ))≤ γn((X \KX )×Y )+ γn(X× (Y \KY ))

= µ(X \KX )+ν(Y \KY )< ε.

This shows tightness (and hence compactness) of all sequences in Π(µ,ν).

We add to this section an improvement of the continuity and semi-continuity results
above, which could be useful when the cost functions is not continuous.

Lemma 1.8. Let γn,γ ∈ Π(µ,ν) be probabilities on X ×Y and a : X → X̃ and b :
Y → Ỹ be measurable maps valued in two separable metric spaces X̃ and Ỹ . Let
c : X̃×Ỹ→R+ be a continuous function with c(a,b)≤ f (a)+g(b) with f ,g continuous
and

´
( f ◦a)dµ,

´
(g◦b)dν <+∞. Then

γn ⇀ γ ⇒
ˆ

X×Y
c(a(x),b(y))dγn→

ˆ
X×Y

c(a(x),b(y))dγ.

Proof. We start from the case where c is bounded, say 0 ≤ c ≤M. We can apply the
weak version of Lusin’s Theorem (see the observations in the next Memo 1.6) to maps
valued in X̃ and Ỹ . Let us fix δ > 0 and find two compact sets KX ⊂ X , KY ⊂ Y , with
µ(X \KX )< δ and ν(Y \KY )< δ , such that a and b are continuous when restricted to
KX and KY , respectively. Let us set K := KX ×KY ⊂ X ×Y , which is a compact set in
the product.

We can write ˆ
c(a,b)dγn ≤

ˆ
1Kc(a,b)dγn +2Mδ ,
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and the function 1Kc(a,b) is upper semi-continuous on X ×Y (since it is continuous,
positive and bounded on a closed set, and vanishes outside it). This implies

limsup
n

ˆ
c(a,b)dγn ≤

ˆ
1Kc(a,b)dγ +2Mδ ≤

ˆ
c(a,b)dγ +2Mδ

and, since δ is arbitrary, limsupn
´

c(a,b)dγn ≤
´

c(a,b)dγ . This proves upper semi-
continuity of the integral functional when c is bounded by M. An analogous computa-
tion with M− c instead of c proves lower semi-continuity.

If c is positive but unbounded, just approximate it from below with its truncations
cM = c∧M, and lower semi-continuity is proven for the integral functional, which
will be a sup of lower semi-continuous functionals. By replacing c with the function
X̃×Ỹ 3 (x̃, ỹ) 7→ f (x̃)+g(ỹ)−c(x̃, ỹ) upper semi-continuity is proven as well.

Box 1.6. – Memo – Lusin’s theorem.

A well-known theorem in measure theory states that every measurable function f on
a reasonable measure space (X ,µ), is actually continuous on a set K with µ(X \K) small.
This set K can be taken compact. Actually, there can be at least two statements: either we
want f to be merely continuous on K, or we want f to coincide on K with a continuous
function defined on X . This theorem is usually stated for real-valued functions, but we
happen to need it for functions valued in more general spaces. Let us be more precise:
take a topological space X endowed with a finite regular measure µ (i.e. any Borel set
A ⊂ X satisfies µ(A) = sup{µ(K) : K ⊂ A, K compact} = inf{µ(B) : B ⊃ A, B open}).
The arrival space Y will be supposed to be second-countable (i.e. it admits a countable
family (Bi)i of open sets such that any other open set B ⊂ Y may be expressed as a union
of Bi; for instance, separable metric spaces are second-countable).

Theorem (weak Lusin) - Under the above assumptions on X ,Y,µ , if f : X → Y is
measurable, then for every ε > 0 there exists a compact set K ⊂ X such that µ(X \K)< ε

and the restriction of f to K is continuous.
Proof - For every i ∈ N, set A+

i = f−1(Bi) and A−i = f−1(Bc
i ). Consider compact sets

K±i ⊂ A±i such that µ(A±i \K±i )< ε2−i. Set Ki = K+
i ∪K−i and K =

⋂
i Ki. For each i we

have µ(X \Ki)< ε21−i. By construction, K is compact and µ(X \K)< 4ε . To prove that f
is continuous on K it is sufficient to check that f−1(B)∩K is relatively open in K for each
open set B, and it is enough to check this for B = Bi. Equivalently, it is enough to prove that
f−1(Bc

i )∩K is closed, and this is true since it coincides with K−i ∩K.
Theorem (strong Lusin) - Under the same assumptions on X , if f : X → R is mea-

surable, then for every ε > 0 there exists a compact set K ⊂ X and a continuous function
g : X → R such that µ(X \K)< ε and f = g on K.

Proof - First apply weak Lusin’s theorem, since R is second countable. Then we just
need to extend f|K to a continuous function g on the whole X . This is possible since f|K is
uniformly continuous (as a continuous function on a compact set) and hence has a modulus
of continuity ω: | f (x)− f (x′)| ≤ ω(d(x,x′)) (the function ω can be taken sub additive and
continuous). Then define g(x) = inf{ f (x′)+ω(d(x,x′)) : x′ ∈ K}. It can be easily checked
that g is continuous and coincides with f on K.

Note that this last proof strongly uses the fact that the arrival space is R. It could
be adapted to the case of Rd just by extending component-wise. On the other hand, it is
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clear that the strong version of Lusin’s Theorem cannot hold for any space Y : just take
X connected and Y disconnected. A measurable function f : X → Y taking values in two
different connected components on two sets of positive measure cannot be approximated
by continuous functions in the sense of the strong Lusin’s Theorem.

The consequence of all these continuity, semi-continuity, and compactness results
is the existence, under very mild assumptions on the cost and the space, of an optimal
transport plan γ . Then, if one is interested in the problem of Monge, the question may
become “does this minimal γ come from a transport map T?”. Should the answer to this
question be yes, then (MP) would have a solution, which also solves a wider problem,
that of minimizing among transport plans. This is the object of the next two sections 1.2
and 1.3. On the other hand, in some cases proving that the optimal transport plan comes
from a transport map (or proving that there exists at least one optimal plan coming from
a map) is equivalent to proving that (MP) has a solution, since very often the infimum
among transport plans and among transport maps is the same. This depends on the
presence of atoms (see Sections 1.4 and 1.5).

1.2 Duality
The problem (KP) is a linear optimization under convex constraints, given by linear
equalities or inequalities. Hence, an important tool will be duality theory, which is
typically used for convex problems. We will find a dual problem (DP) for (KP) and
exploit the relations between dual and primal.

The first thing we will do is finding a formal dual problem, by means of an inf-sup
exchange.

Let us express the constraint γ ∈ Π(µ,ν) in the following way : note that, if γ ∈
M+(X×Y ), then we have

sup
ϕ,ψ

ˆ
X

ϕ dµ +

ˆ
Y

ψ dν−
ˆ

X×Y
(ϕ(x)+ψ(y)) dγ =

{
0 if γ ∈Π(µ,ν),

+∞ otherwise,

where the supremum is taken among bounded and continuous functions ϕ,ψ .
Hence, we can remove the constraints on γ if we add the previous sup, since if

they are satisfied nothing has been added and if they are not we get +∞ (which will be
avoided by the minimization). Hence we may look at the problem we get:

min
γ

ˆ
X×Y

cdγ + sup
ϕ,ψ

ˆ
X

ϕ dµ +

ˆ
Y

ψ dν−
ˆ

X×Y
(ϕ(x)+ψ(y))dγ (1.3)

and consider interchanging sup and inf:

sup
ϕ,ψ

ˆ
X

ϕ dµ +

ˆ
Y

ψ dν + inf
γ

ˆ
X×Y

(c(x,y)− (ϕ(x)+ψ(y))) dγ.
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We would like the two above optimization problems (“inf sup” and “sup inf”) to be
equivalent, and the value to be the same. This is not always possible, and the main
tool to do it is a theorem by Rockafellar (see [260], Section 37) requiring concavity
in one variable, convexity in the other one, and some compactness assumption. Yet,
Rockafellar’s statement concerns finite-dimensional spaces, which is not the case here.
To handle infinite-dimensional situations one needs to use a more general mini-max
theorems2.

For now, we prefer not to investigate anymore the question of obtaining the duality
equality. The result is true (under suitable assumptions) and we will see later on how
to prove it. For the moment, let us accept it as true.

If we come back to the maximization over (ϕ,ψ), one can re-write the inf in γ as a
constraint on ϕ and ψ:

inf
γ≥0

ˆ
X×Y

(c−ϕ⊕ψ)) dγ =

{
0 if ϕ⊕ψ ≤ c on X×Y
−∞ otherwise

,

where ϕ⊕ψ denotes the function defined through (ϕ⊕ψ)(x,y) := ϕ(x)+ψ(y). The
above equality is easy to see: if ϕ ⊕ψ > c somewhere, then use measures γ concen-
trated on the set where this strict inequality holds, with mass tending to ∞, and the
integral tends to −∞. This leads to the following dual optimization problem.

Problem 1.9. Given µ ∈P(X), ν ∈P(Y ) and the cost function c : X ×Y → [0,+∞[
we consider the problem

(DP) max
{ˆ

X
ϕ dµ +

ˆ
Y

ψ dν : ϕ ∈Cb(X),ψ ∈Cb(Y ) : ϕ⊕ψ ≤ c
}
. (1.4)

First of all, we notice that sup(DP) ≤ min(KP): it is enough to integrate the con-
dition ϕ⊕ψ ≤ c according to γ , to get

ˆ
X

ϕ dµ +

ˆ
Y

ψ dν =

ˆ
X×Y

(ϕ⊕ψ)dγ ≤
ˆ

X×Y
cdγ.

This is valid for every admissible (ϕ,ψ) and every admissible γ , and proves the desired
inequality.

Yet, (DP) does not admit a straightforward existence result, since the class of ad-
missible functions lacks compactness. Let us recall the main result concerning com-
pactness in the space of continuous functions.

Box 1.7. – Memo – Compactness for the uniform convergence.

Theorem (Ascoli-Arzelà) - If X is a compact metric space and fn : X → R are equi-
continuous (i.e. for every ε > 0 there exists a common δ > 0 such that | fn(x)− fn(y)|< ε

for all pairs x,y with d(x,y) < δ and for all n) and equi-bounded (i.e. there is a common

2We will give a proof in this spirit in Section 1.6.3.
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constant C with | fn(x)| ≤C for all x ∈ X and all n), then the sequence ( fn) admits a subse-
quence fnk uniformly converging to a continuous function f : X → R.

Conversely, a subset of C(X) is relatively compact for the uniform convergence (if and)
only if its elements are equi-continuous and equi-bounded.

The same result is true if the arrival space R and the equiboundedness assumption are
replaced with an arrival space which is a compact metric space.

Definition 1.10. Given a function χ : X → R we define its c-transform (also called
c-conjugate function) χc : Y → R by

χ
c(y) = inf

x∈X
c(x,y)−χ(x).

We also define the c̄-transform of ζ : Y → R by

ζ
c̄(x) = inf

y∈Y
c(x,y)−ζ (y).

Moreover, we say that a function ψ defined on Y is c̄-concave if there exists χ

such that ψ = χc (and, analogously, a function ϕ on X is said to be c-concave if there
is ζ : Y → R such that ϕ = ζ c̄) and we denote by c−conc(X) and c̄−conc(Y ) the
sets of c- and c̄-concave functions, respectively (when X = Y and c is symmetric this
distinction between c and c̄ will play no more any role and will be dropped as soon as
possible).

It is important to note that the notion of c-concavity implies a bound on the modulus
of continuity.

Box 1.8. – Memo – Continuity of functions defined as an inf or sup

Proposition - Let ( fα )α be a family (finite, infinite, countable, uncountable. . . ) of
functions all satisfying the same condition

| fα (x)− fα (x′)| ≤ ω(d(x,x′)).

Consider f defined through f (x) := infα fα (x). Then f also satisfies the same estimate.
This can be easily seen from fα (x) ≤ fα (x′) + ω(d(x,x′)), which implies f (x) ≤

fα (x′)+ω(d(x,x′)) since f ≤ fα . Then, taking the infimum over α at the r.h.s. one gets
f (x)≤ f (x′)+ω(d(x,x′)). Interchanging x and x′ one obtains

| f (x)− f (x′)| ≤ ω(d(x,x′)).

In particular, if the function ω : R+→R+ satisfies limt→0 ω(t) = 0 (which means that
the family ( fα )α is equicontinuous), then f has the same modulus of continuity (i.e. the
same function ω) as the functions fα . The same idea obviously work for the supremum
instead of the infimum.
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In our case, if c is continuous and finite on a compact set, and hence uniformly
continuous, this means that there exists an increasing continuous function ω :R+→R+

with ω(0) = 0 such that

|c(x,y)− c(x′,y′)| ≤ ω(d(x,x′)+d(y,y′)).

Hence, when we take the definition of χc, we have χc(y) = infx gx(y) with gx(y) :=
c(x,y)− χ(x) and the functions gx satisfy |gx(y)− gx(y′)| ≤ ω(d(y,y′)). This proves
that χc shares the same continuity modulus also.

It is quite easy to realize that, given a pair (ϕ,ψ) in the maximization problem (DP),
one can always replace it with (ϕ,ϕc), and then with (ϕcc̄,ϕc), and the constraints are
preserved and the integrals increased. Actually one could go on, but we will see that
ϕcc̄c =ϕc for any ϕ (see Section 1.6). The goal of these transformations is to “improve”
the maximizing sequence so as to get a uniform bound on its continuity.

A consequence of these considerations is the following existence result.

Proposition 1.11. Suppose that X and Y are compact and c is continuous. Then there
exists a solution (ϕ,ψ) to problem (DP) and it has the form ϕ ∈ c−conc(X),ψ ∈
c̄−conc(Y ), and ψ = ϕc. In particular

max(DP) = max
ϕ∈c−conc(X)

ˆ
X

ϕ dµ +

ˆ
Y

ϕ
c dν .

Proof. From the considerations above we can take a maximizing sequence (ϕn,ψn)
and improve it, by means of c- and c̄-transforms, so that we can assume a uniform
bound on the continuity of these functions (the same modulus of continuity as c).
Instead of renaming the sequence, we will still call (ϕn,ψn) the new sequence ob-
tained after these transforms. We only need to check equi-boundedness so as to ap-
ply Ascoli-Arzelà’s theorem. This may be done if we note that adding a constant
to ϕ and subtracting it to ψ is always possible: the value of the functional does not
change, nor the constraints are affected. Hence, since ϕn is continuous on a com-
pact set and hence bounded, we can always subtract its minimum and suppose with-
out loss of generality that minϕn = 0. We get maxϕn ≤ ω(diamX) (since the os-
cillation of a function is always less than its modulus of continuity computed at the
highest possible distance in the set). So, if we have chosen ψn = ϕc

n , we also have
ψn(y) = infx c(x,y)−ϕn(x) ∈ [minc−ω(diamX),maxc]. This gives uniform bounds
on ϕn and ψn and allows to apply Ascoli-Arzelà’s theorem.

Passing to a subsequence we can assume ϕn→ ϕ and ψn→ ψ , both convergences
being uniform. It is easy to see thatˆ

X
ϕn dµ +

ˆ
Y

ψn dν →
ˆ

X
ϕ dµ +

ˆ
Y

ψ dν ,

as a consequence of uniform convergence. Moreover

ϕn(x)+ψn(y)≤ c(x,y) ⇒ ϕ(x)+ψ(y)≤ c(x,y)

(here pointwise convergence would have been enough). This shows that (ϕ,ψ) is an
admissible pair for (DP) and that it is optimal.
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If we admit the duality result min(KP) = max(DP) (the proof is postponed to
Section 1.6), then we also have

min(KP) = max
ϕ∈c−conc(X)

ˆ
X

ϕ dµ +

ˆ
Y

ϕ
c dν ,

which also shows that the minimum value of (KP) is a convex function of (µ,ν), as it
is a supremum of linear functionals.

Definition 1.12. The functions ϕ realizing the maximum in (3.1) are called Kan-
torovich potentials for the transport from µ to ν . This is in fact a small abuse, because
traditionally this term was used only in the case c(x,y) = |x− y|, but it is nowadays
understood in the general case as well.

Remark 1.13. Note that Kantorovich potentials are not necessarily c-concave functions,
but coincide with the c-concave function ϕcc̄ µ−a.e. However, it is always possible to
choose a c-concave Kantorovich potential, and we will do it often.

1.3 The case c(x,y) = h(x− y) for h strictly convex, and
the existence of an optimal T

This section is mainly devoted to the results that we can obtain in the case where
X = Y = Ω ⊂ Rd and the cost c is of the form c(x,y) = h(x− y), for a strictly convex
function h. We will also assume Ω to be compact for simplicity. This case allows for
very strong results, and in particular we will find existence, as well as a representation
formula, for the optimal T. Anyway, the first few lines of this section will be concerned
with a more general case: that of costs functions c satisfying a twist condition, the most
remarkable case being exactly those of the form h(x− y) with h strictly convex.

The main tool is the duality result. More precisely, we use Theorem 1.39, which
applies to the case of compact domains with continuous cost functions c. It guarantees
max(DP) = min(KP).

From the equality between the minimum of (KP) and the maximum of (DP) and
the fact that both extremal values are realized, one can consider an optimal transport
plan γ and a Kantorovich potential ϕ and write

ϕ(x)+ϕ
c(y)≤ c(x,y) on Ω×Ω and ϕ(x)+ϕ

c(y) = c(x,y) on spt(γ).

The equality on spt(γ) is a consequence of the inequality which is valid everywhere
and of ˆ

Ω×Ω

cdγ =

ˆ
Ω

ϕ dµ +

ˆ
Ω

ϕ
c dν =

ˆ
Ω×Ω

(ϕ(x)+ϕ
c(y))dγ,

which implies equality γ-a.e. These functions being continuous, the equality is satisfied
on a closed set, i.e. on the support of the measure γ (let us recall the definition of
support of a measure, not to be confused with sets where it is concentrated).



1.3. STRICTLY CONVEX AND QUADRATIC COSTS 13

Definition 1.14. On a separable metric space X , the support of a measure γ is defined
as the smallest closed set on which γ is concentrated, i.e.

spt(γ) :=
⋂
{A : A is closed and γ(X \A) = 0} .

This is well defined since the intersection may be taken countable, due to the separa-
bility assumption. Moreover, there exists also this characterization

spt(γ) = {x ∈ X : γ(B(x,r))> 0 for all r > 0} .

Once we have that, let us fix a point (x0,y0) ∈ spt(γ). One may deduce from the
previous computations that

x 7→ ϕ(x)− c(x,y0) is minimal at x = x0

and, if ϕ and c(·,y0) are differentiable at x0 and x0 /∈ ∂Ω, one gets ∇ϕ(x0)=∇xc(x0,y0).
We resume this fact in a very short statement (where we do not put the sharpest assump-
tions on c) since we will use it much later on.

Proposition 1.15. If c is C1, ϕ is a Kantorovich potential for the cost c in the transport
from µ to ν , and (x0,y0) belongs to the support of an optimal transport plan γ , then
∇ϕ(x0) = ∇xc(x0,y0), provided ϕ is differentiable at x0. In particular, the gradients
of two different Kantorovich potentials coincide on every point x0 ∈ spt(µ) where both
the potentials are differentiable.

Proof. The proof is contained in the above considerations.

The equality ∇ϕ = ∇xc is particularly useful when c satisfies the following defini-
tion.

Definition 1.16. For Ω ⊂ Rd we say that c : Ω×Ω→ R satisfies the Twist condition
whenever c is differentiable w.r.t. x at every point, and the map y 7→ ∇xc(x0,y) is in-
jective for every x0. This condition is also known in economics as Spence-Mirrlees
condition (see, for instance, [261]). For “nice” domains and cost functions, it corre-
sponds to det

(
∂ 2c

∂yi∂x j

)
6= 0.

The goal of this condition is to deduce from (x0,y0) ∈ spt(γ), that y0 is indeed
uniquely defined from x0. This shows that γ is concentrated on a graph, that of the map
associating y0 to each x0, and this map will be the optimal transport. Since this map
has been constructed using ϕ and c only, and not γ , it also provides uniqueness for the
optimal γ .

We will see this strategy with more details in the particular case where c(x,y) =
h(x− y), with h strictly convex, but the reader can see how to translate it into the most
general case.

For this choice of c, if ϕ and h are differentiable at x0 and x0−y0, respectively, and
x0 /∈ ∂Ω, one gets ∇ϕ(x0) = ∇h(x0−y0). This works if the function h is differentiable,
if it is not we shall write ∇ϕ(x0) ∈ ∂h(x0 − y0) (using the subdifferential of h, see
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Box 1.12 in Section 1.6). For a strictly convex function h one may inverse the relation
passing to (∇h)−1 thus getting

x0− y0 = (∇h)−1(∇ϕ(x0)).

Notice that the expression (∇h)−1 makes sense for strictly convex functions h, inde-
pendently of h ∈C1, thanks to the considerations on the invertibility of ∂h in Box 1.12.

This fourmula gives the solution to the transport problem with this cost, provided
ϕ is differentiable a.e. with respect to µ . This is usually guaranteed by requiring µ to
be absolutely continuous with respect to the Lebesgue measure, and using the fact that
ϕ may be proven to be Lipschitz.

Box 1.9. – Memo – Differentiability of Lipschitz functions

Theorem (Rademacher) - Let f : Rd→R a Lipschitz continuous function. Then the set
of points where f is not differentiable is negligible for the Lebesgue measure.
We do not provide a proof of this fact, but one can look at Chapter 3 of [13].

Then, one may use the previous computation to deduce that, for every x0, the
point y0 (whenever it exists) such that (x0,y0) ∈ spt(γ) is unique (i.e. γ is of the form
γT := (id,T)#µ where T(x0) = y0). Moreover, this also gives uniqueness of the optimal
transport plan and of the gradient of the Kantorovich potential.

We may summarize everything in the following theorem:

Theorem 1.17. Given µ and ν probability measures on a compact domain Ω ⊂ Rd

there exists an optimal transport plan γ for the cost c(x,y) = h(x− y) with h strictly
convex. It is unique and of the form (id,T)#µ , provided µ is absolutely continuous
and ∂Ω is negligible. Moreover, there exists a Kantorovich potential ϕ , and T and the
potentials ϕ are linked by

T(x) = x− (∇h)−1(∇ϕ(x)).

Proof. The previous theorems give the existence of an optimal γ and an optimal ϕ . The
previous considerations show that if we take a point (x0,y0) ∈ spt(γ) where x0 /∈ ∂Ω

and ∇ϕ(x0) exists, then necessarily we have y0 = x0− (∇h)−1(∇ϕ(x0)). The points x0
on the boundary are negligible by assumption. The points where the differentiability
fails are Lebesgue-negligible by Rademacher’s theorem. Indeed, ϕ shares the same
modulus of continuity of c, which is a Lipschitz function on Ω×Ω since h is locally
Lipschitz continuous and Ω is bounded. Hence, ϕ is also Lipschitz. From the absolute
continuity assumption on µ , these two sets of “bad” points (the boundary and the non-
differentiability points of ϕ) are µ-negligible as well. This shows at the same time
that every optimal transport plan is induced by a transport map and that this transport
map is x 7→ x− (∇h)−1(∇ϕ(x)). Hence, it is uniquely determined (since the potential
ϕ does not depend on γ). As a consequence, we also have uniqueness of the optimal
γ .
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Remark 1.18. All the costs of the form c(x,y) = |x− y|p with p > 1 can be dealt with
via Theorem 1.17.

Remark 1.19. In the previous theorem we showed the uniqueness of the optimal plan
by giving an explicit expression for the optimal map. Yet, it is possible to use a more
general argument: every time that we know that any optimal γ mut be induced by
a map T, then we have uniqueness. Indeed, suppose that two different plans γ1 =
γT1 , γ2 = γT2 are optimal: consider 1

2 γ1 +
1
2 γ2, which is optimal as well by convexity.

This last transport plan cannot be induced by a map unless T1 = T2 µ-a.e., which gives
a contradiction.

Remark 1.20. Theorem 1.17 states that the optimal γ is of the form (id,T)#µ , under
some assumptions on µ . If the same assumptions are aslo satisfied by ν , then we can
also say that there is an optimal map the other xay oaround, i.e. γ = (S, id)#ν . In
particular, γ-a.e. we have y = T(x) and x = S(y), which means S(T(x)) = x γ-a.e., i.e.
for µ-a.e. point x. Hence, T is invertible on a set of full measure and its inverse is the
optimal map from ν to µ .

1.3.1 The quadratic case in Rd

The case where the cost is given by c(x,y)= 1
2 |x−y|2 in Rd deserves a special attention.

The main reason for this special attention is the connection between c-concavity and
the usual notion of convexity.

Proposition 1.21. Given a function χ : Rd → R∪{−∞} let us define uχ : Rd → R∪
{+∞} through uχ(x) = 1

2 |x|
2 − χ(x). Then we have uχc = (uχ)

∗. In particular, a
function ζ is c-concave if and if x 7→ 1

2 |x|
2−ζ (x) is convex and l.s.c.

Proof. Just compute

uχc(x) =
1
2
|x|2−χ

c(x) = sup
y

1
2
|x|2− 1

2
|x− y|2 +χ(y) = sup

y
x · y−

(
1
2
|y|2−χ(y)

)
.

This proves the first part of the statement. Moreover, since c-concave functions are
characterized by the fact that they are c-transforms and convex l.s.c. functions by the
fact that they are sup of affine functions (see the Box 1.11 in Section 1.6), the second
part of the statement follows.

As a consequence of the above proposition, we can particularize Theorem 1.17 to
the quadratic case c(x,y) = 1

2 |x−y|2, thus getting the existence of an optimal transport
map

T(x) = x−∇ϕ(x) = ∇

(
x2

2
−ϕ(x)

)
= ∇u(x)

for a convex function u. Since we will also see the converse implication (sufficient op-
timality conditions), this will also prove the existence and the uniqueness of a gradient
of a convex function transporting µ onto ν . This well known fact has been investigated
first by Brenier (see [83]) and is usually referred to as Brenier Theorem. Section 1.7.2
will present the original approach by Brenier, called “polar factorization”.
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Let us moreover note that a specific approach for the case |x− y|2, based on the
fact that we can withdraw the parts of the cost depending on x or y only and maximize´

x·y dγ , gives the same result in a easier way: we actually get ϕ(x0)+ϕ∗(y0) = x0 ·y0
for a convex function ϕ and its Legendre transform ϕ∗, and we deduce y0 ∈ ∂ϕ(x0)
(see Box 1.12 in Section 1.6).

We note now that the existence of an optimal transport map is true under weaker
assumptions on µ: we can replace the condition of being absolutely continuous with the
condition “µ(A) = 0 for any A⊂ Rd such that H d−1(A)<+∞” or with any condition
which ensures that the non-differentiability set of u is negligible.

In [5, 4] it is proven that the set where a convex function is not differentiable is
(d−1)-rectifiable (i.e. it is contained, up to H d−1-negligible sets, in a countable union
of Lipschitz images of Rd−1); more generally, the set of points where the subdifferential
has dimension at least k is (d−k)-rectifiable. Lipschitz (d−k)-surfaces can be replaced
with C1 surfaces, thanks to Lusin-type approximation results of Lipschitz functions via
C1 functions (see [161], chapter 6).

Also, it is possible to give an even stronger result about the non-differentiability
set: it is contained H d−1-a.e. in a countable union of (d−1)-surfaces of class C2, as
it is proven in [3]. Moreover, every set which is (d−1)-rectifiable in this C2 sense is
contained in the non-differentiability set of a convex function3.

After these subtle details on the sharpest assumptions on µ which guarantee the
existence of an optimal transport map T (essentially, the fact that convex functions must
be differentiable µ-a.e.), we want now to adapt our analysis to the case of unbounded
domains. This case is not covered by the general results of this section and has not
be detailed so far. Yet, it can be handled replacing Theorem 1.39 with Theorem 1.40,
which is valid for the cost c(x,y) = 1

2 |x− y|2 without compactness assumptions on the
domain (we just need

´
|x|2 dx,

´
|y|2 dy < +∞). It provides the existence of solution

(ϕ,ψ) to the following variant of (DP)

(DP−var) sup
{ˆ

Rd
ϕ dµ +

ˆ
Rd

ψ dν : ϕ ∈ L1(µ),ψ ∈ L1(ν), ϕ⊕ψ ≤ c
}
,

together with max(DP−var) = min(KP). The sharpest result in the unbounded case
is detailed in the following theorem.

Theorem 1.22. Let µ,ν be probabilities over Rd and c(x,y) = 1
2 |x− y|2. Suppose´

|x|2 dx,
´
|y|2 dy < +∞, which implies min(KP) < +∞ and suppose that µ gives no

mass to (d−1)-surfaces of class C2. Then there exists, unique, an optimal transport
map T from µ to ν , and it is of the form T = ∇u for a convex function u.

Proof. We follow again the same scheme as before: an optimal γ exists, and Theo-
rem 1.40 also gives the existence of an optimal dual pair (ϕ,ψ) ∈ L1(µ)×L1(ν) and

3These considerations allowed N. Gigli in [183] to prove the following characterization theorem, ex-
tending 1.17: given µ,ν ∈P(Ω), suppose µ(A) = 0 for every C2 surface A of co-dimension 1; then the
optimal transport plan γ ∈ Π(µ,ν) for the quadratic cost |x− y|2 is unique and induced by a transport map,
whatever ν is. Moreover, the condition “µ(A) = 0 for every C2 surface A of co-dimension 1” characterizes
the class of measures µ such that the optimal transport plans (for the quadratic cost ) from µ are unique and
induced by maps for every target measure ν .
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guarantees that we have no duality gap. Then, we can see that γ is concentrated on the
graph of x 7→ x−∇ϕ(x) := ∇u(x) provided u (or ϕ , which is equivalent) is differen-
tiable µ-a.e. Since ϕ ∈ L1(µ) we infer that u is finite µ-a.e. and, since u is convex,
we get spt(µ) ⊂ {u <+∞}, which is a convex set. Note that ∂ ({u < +∞}) can be
expressed locally as the graph of a concave function, hence it is (d−1)−C2 rectifiable
set, and is µ-negligble by assumption. In the interior of {u < +∞}, u is differentiable
µ-a.e. (again, because of the assumption on µ and of u being convex).

Remark 1.23. As a consequence of all these considerations, the quadratic case gives a
very interesting result in dimension one. Suppose that µ ∈P(R) is atomless. Then
every convex function is differentiable µ-a.e., since we know that the set of non-
differentiability points of a convex function is at most countable (this is a consequence
of the fact that, if ψ is convex, then the intervals ]ψ ′l (x),ψ

′
r(x)[, where ψ ′l and ψ ′r de-

note the left and right derivatives, are all non-empty and disjoint when x ranges among
non-differentiability points). This implies the existence of an optimal transport map for
the quadratic cost between µ and any measure ν ∈P(R). This transport map will be
the derivative of a convex function, i.e. a non-decreasing map.

Remark 1.24. Some of the properties of the quadratic case stay true if we pass to a
general cost c(x,y) which is C1,1 and satisfies the twist condition of Definition 1.16.
Obviously, the fact that the transport is the gradient of a convex function is no more
true; on the other hand, the differentiability properties of Kantorovich potentials are the
same as for convex functions, since one can prove that ϕ is semi-concave (i.e. concave,
up to subtracting a quadratic function), and this allows to use the same assumptions on
µ as in Theorem 1.22.

1.3.2 The quadratic case on the flat torus
It is useful and interesting to see what happens if we replace measures on Rd with
measures on the flat torus Td =Rd/Zd and the cost 1

2 |x−y|2 with the squared distance
on the torus, i.e. c(x,y) = 1

2 |[x− y]|2, where

|[z]| := min{|z+ k| : k ∈ Zd}. (1.5)

This is the simplest example of optimal transport on a manifold, for which a general
existence theorem has been established by McCann in [231]. Yet, the case of the torus,
first studied in [128], is much simpler, because of the structure that Td inherits from Rd .
In many cases (we will see in Chapters 5 and 6, in particular), studying what happens
on the torus allows to understand the main qualitative features of the problem, getting
rid of difficulties arising from lack of compactness and/or boundary issues. In the case
of compactly supported measures, it is possible to view their supports as part of a large
cube, to be identified with a torus, and this at no price. Indeed, if the measures are
far from the boundary of the cube, the optimal transport maps on the torus and on the
Euclidean space will coincide.

Note that an optimal k̄ in (1.5) always exists. If we take z ∈ Q := [− 1
2 ,

1
2 ]

d , then
k̄ ∈ {−1,0,+1}d , and it is unique (and equal to 0) unless z ∈ ∂Q. Moreover, the
function Rd 3 z 7→ 1

2 |[z]|
2 is semi-concave, as it is the infimum of a family of functions
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with Hessian equal to the identity matrix I. It is differentiable at every point where
the optimal k̄ is unique. For a given point x, we call cutlocus of x the set of points y
such that the squared distance function, viewed as a function of the pair (x,y), is not
differentiable at (x,y). This is a general notion in differential geometry, and we denote
it by cut(x) (see [294] for its use in optimal transport), but in the case of the flat torus
it simply coincides with the set of points y such that y− x ∈ ∂Q+Zd .

Theorem 1.25. Take µ,ν ∈P(Td), with µ � L d and c(x,y) = 1
2 |[x− y]|2. Then

there exists a unique optimal transport plan γ ∈ Π(µ,ν), it has the form γ = γT and
the optimal map T is given by T(x) = x−∇ϕ(x) for a.e. x, where the sum x−∇ϕ(x) is
to be intended modulo Zd . Here the function ϕ is a Kantorovich potential, solution to
the dual problem, in the transport from µ to ν for the cost c. Moreover, for a.e. x ∈ Td ,
the point T(x) does not belong to cut(x).

Proof. The strategy is the same as for the costs of the form h(x−y). We take an optimal
transport plan γ , together with a pair (ϕ,ψ), solution of the dual problem, and we fix
(x0,y0) ∈ spt(γ). We have

1
2
|[x− y0]|2−ϕ(x)≥ ψ(y0),

1
2
|[x0− y0]|2−ϕ(x0) = ψ(y0).

Now, take k0 ∈ Zd such that |[x0 − y0]| = |x0 − y0 − k0| and observe that, from the
inquality |[x− y0]| ≤ |x− y0− k0|, we have

1
2
|x− y0− k0|2−ϕ(x)≥ ψ(y0),

1
2
|x0− y0− k0|2−ϕ(x0) = ψ(y0).

This means that the function x 7→ 1
2 |x− y0− k0|2−ϕ(x) is minimal at x = x0. Yet,

ϕ(x) = infy
1
2 |[x−y]|2−ψ(y) is a semi-concave function, as it is defined as an infimum

of uniformly semi-concave functions. Hence, it is differentiable a.e. and µ-a.e.
If we assume that x0 is such that ∇ϕ(x0) exists, we deduce from the minimality

above that x0− y0− k0 = ∇ϕ(x0). This implies that k0 is uniquely determined by x0
and y0, and hence y0 /∈ cut(x0). Moreover, y0 is uniquely determined by x0 and we get
the usual result for the existence and uniqueness of the optimal map.

Remark 1.26. In the proof of the previous theorem we can also observe that we have
k0 = 0 if x0−y0 ∈Q; this means in particular that whenever spt(µ),spt(ν)⊂ 1

2 Q, then
the transport is completely identical to what we would have with the classical quadratic
cost in Rd instead of using the periodic framework of Td .

1.4 Counter-examples to existence
We want to give at least two examples that are not included in the statement of Theorem
1.17 and where an optimal transport does not exist. We concentrate on examples where
the cost c(x,y) would usually allow for existence results (take for instance c(x,y) = |x−
y|2), but the reason for this lack of existence is due to the measure µ , Other examples
where this is due to the cost and not to the measures are possible, see for instance
Ex(58) and Ex(59).
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No transport may exist The first one is very easy. Consider the case µ = δa, a ∈ X
and suppose that ν is not a Dirac mass. In this case there is no transport map at all.
Indeed, it is easy to check that T#δa = δT (a) and hence no transport map T : X →Y can
exist if ν is not of the form δb for some b ∈ Y .

More generally, we can say that the image measure T#µ always includes an atom
of mass at least µ({a}) for every atom a of µ . This implies in particular that measures
with atoms cannot be sent through a transport map onto measures without atoms. For
these reasons, the absence of atoms is a typical assumption on the source measure µ

when one wants to solve (MP).

On the contrary, the problem (KP) by Kantorovich still makes sense even for atomic
measures. In particular, the situation is very easy when µ = δa. In this case the set
Π(µ,ν) contains a unique element, which is γ = µ⊗ν = δa⊗ν .

Transport can exist, but no optimal one We consider the quadratic cost c(x,y) =
|x− y|2 (but any other cost strictly increasing in the distance would give the same
result). Set

µ = H 1 A and ν =
H 1 B+H 1 C

2

where A, B and C are three vertical parallel segments in R2 whose vertexes lie on the
two lines y = 0 and y = 1 and the abscissas are 0, 1 and −1, respectively, and H 1 is
the 1-dimensional Haudorff measure. It is clear that no transport plan may realize a
cost better than 1 since, horizontally, every point needs to be displaced of a distance 1.
Moreover, one can get a sequence of maps Tn : A→ B∪C by dividing A into 2n equal
segments (Ai)i=1,...,2n and B and C into n segments each, (Bi)i=1,...,n and (Ci)i=1,...,n
(all ordered downwards). Then define Tn as a piecewise affine map which sends A2i−1
onto Bi and A2i onto Ci. In this way the cost of the map Tn is less than 1+1/n, which
implies that the infimum of the Kantorovich problem is 1, as well as the infimum on
transport maps only. Yet, no map T may obtain a cost 1, as this would imply that all
points are sent horizontally, but this cannot respect the push-forward constraint. On the
other hand, the transport plans associated to Tn weakly converge to the transport plan
1
2 γ

+
T + 1

2 γ
−
T where T±(x) = x± e and e = (1,0). This transport plan turns out to be the

only optimal transport plan and its cost is 1.

Note that in this last example we also saw that the infimum among transport maps
was equal to the infimum (i.e. the minimum) among transport plans. This is a general
fact, which relies on the notion of relaxation, as we can see in the following section.
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A BC

Ci Bi
A2i

A2i−1

1.5 Kantorovich as a relaxation of Monge
Let us set again K(γ) :=

´
Ω×Ω

c dγ . Since we know that for any map T we have M(T) =´
Ω

c(x,T(x))dµ =
´

Ω×Ω
c dγT = K(γT), the Monge Problem may be re-written as

min{J(γ) : γ ∈Π(µ,ν)} ,

where

J(γ) =

{
K(γ) = M(T) if γ = γT,

+∞ otherwise.

This is simple to understand: the definition of J forces to restrict the minimization to
those plan induced by a transport map. This fact is useful in order to consider (MP) and
(KP) as two problems on the same set of admissible objects, where the only difference
is the functional to be minimized, J or K.

The question is now : why did Kantorovich decide to replace J with K? Can we
easily prove that infK = infJ? This is obviously true when, by chance, the minimizer
of K is of the form γ = γT, since in this case we would have equality of the two min-
ima. But is it possible to justify the procedure in general? The main mathematical
justification comes from the following notion of relaxation.

Box 1.10. – Memo – Relaxation

Lef F : X → R∪{+∞} be a given functional on a metric space X , and suppose that it
is bounded from below. We define the relaxation of F as the functional F : X → R∪{+∞}
which is the maximal functional among those G : X → R∪{+∞} which are lower semi-
continuous and such that G≤ F . This functional exists since the supremum of an arbitrary
family of l.s.c. functions is also l.s.c. Moreover, we also have a representation formula,
which is easy to prove:

F(x) = inf{liminf
n

F(xn) : xn→ x}.

A consequence of the definition is also that infF = infF (this latter infimum, that of F ,
being often a minimum, when X is compact). This is easy to check: F ≥ F implies infF ≥
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infF ; on the other hand we have F ≥ ` where ` := infF , and a constant function is l.s.c.
Hence F ≥ ` and infF ≥ infF .

Here we claim that, under some assumptions, K is actually the relaxation of J. It
will happen, in this case, by chance, that this relaxation is also continuous, instead of
only semi-continuous, and that it coincides with J on {J <+∞}.

The assumptions are the following: we take Ω ⊂ Rd to be compact, c continuous
and µ atomless (i.e. for every x ∈ Ω we have µ({x}) = 0). Compactness is supposed
for simplicity, while the result could be true under more general assumptions. The
reference on this subject are [253] and [8].

We need some preliminary results. The first concerns the one-dimensional case,
that we will analyze in details in Chapter 2, but can be stated right now.

Lemma 1.27. If µ,ν are two probability measures on the real line R and µ is atomless,
then there exists at least a transport map T such that T#µ = ν .

Proof. Just consider the monotone increasing map T provided by Remark 1.23. This
map also optimizes the quadratic cost, but here we don’t care about it.

Lemma 1.28. There exists a Borel map σd : Rd → R which is injective, its image is a
Borel subset of R, and its inverse map is Borel measurable as well.

Proof. First note that it is sufficient to prove this result for d = 2, since then one can
proceed by induction: if a map σd−1 is given on Rd−1, then one can produce a map σd
by considering σd(x1,x2, . . . ,xd) = σ2(x1,σd−1(x2,x3, . . . ,xd)).

Then, note also that it is enough to define such a map on ]0,1[2, since one can go
from R2 to ]0,1[2 by considering (x,y) 7→ ( 1

2 +
1
π

arctanx, 1
2 +

1
π

arctany).
Then, consider the map which associates to the pair (x,y), where x = 0,x1x2x3 . . .

and y = 0,y1y2y3 . . . in decimal (or binary) notation, the point 0,x1y1x2y2x3y3 . . . . In
order to avoid ambiguities, we can decide that no decimal notation is allowed to end
with a periodic 9 (i.e. 0,347299999 . . . has to be written as 0,3473). This is why the
image of this map will not be the whole interval, since the points like 0,39393939 . . .
are not obtained through this map. But this set of points is actually Borel measurable.

It is not difficult neither to check that the map is Borel measurable, as well as its
inverse, since the pre-image of every interval defined by prescribing the first 2k digits
of a number in R is just a rectangle in R2, the product of two intervals defined by
prescribing the first k digits of every component. These particular intervals being a
base for the Borel tribe, this proves the measurability we need.

Corollary 1.29. If µ,ν are two probability measures on Rd and µ is atomless, then
there exists at least a transport map T such that T#µ = ν .

Proof. This is just obtained by considering a transport map T from (σd)#µ to (σd)#ν

and then composing with σd and (σd)
−1.
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Remark 1.30. We provided here, through Lemma 1.28, an explicit way of constructing
a transport map between an atomless measure µ and an arbitrary measure ν , when the
ambient space is Rd . Actually, this fact is much more general, since it is well known
that any measure space endowed with an atomless measure is isomorphic to [0,1] with
the Lebesgue measure4. Yet, we do not want to introduce this kind of arguments when
an explicit construction is sufficient to deal with the Euclidean case, which already
meets our scopes.

A last lemma:

Lemma 1.31. Consider on a compact metric space X, endowed with a probability
ρ ∈P(X), a sequence of partitions Gn, each Gn being a family of disjoint subsets Ci,n
such that

⋃
i∈In Ci,n = X for every n. Suppose that size(Gn) := maxi diam(Ci,n) tends

to 0 as n→ ∞ and consider a sequence of probability measures ρn on X such that, for
every n and i ∈ In, we have ρn(Ci,n) = ρ(Ci,n). Then ρn ⇀ ρ .

Proof. Set mi,n := ρn(Ci,n) = ρ(Ci,n). It is sufficient to take a continuous function
φ ∈C(X) and note that∣∣∣∣ˆ

X
φ dρn−

ˆ
X

φ dρ

∣∣∣∣ ≤ ∑
i∈In

∣∣∣∣∣
ˆ

Ci,n

φ dρn−
ˆ

Ci,n

φ dρ

∣∣∣∣∣
≤ ω(diam(Ci,n)) ∑

i∈In

mi,n = ω(diam(Ci,n))→ 0,

where ω is the modulus of continuity of φ . This is justified by the fact that, whenever
two measures have the same mass on a set C ⊂ X , since the oscillation of φ on the
same set does not exceed ω(diam(C)), the difference of the two integrals is no more
than this number times the common mass.

This proves
´

φ dρn→
´

φdρ and hence ρn→ ρ .

We can now prove the following

Theorem 1.32. On a compact subset Ω⊂Rd , the set of plans γT induced by a transport
is dense in the set of plans Π(µ,ν) whenever µ is atomless.

Proof. Fix n, and consider any partition of Ω into sets Ki,n of diameter smaller than
1/(2n) (for instance, small cubes). The sets Ci, j,n := Ki,n×K j,n make a partition of
Ω×Ω with size smaller than 1/n.

Let us now take any measure γ ∈Π(µ,ν). Thanks to Lemma 1.31, we only need to
build a transport T sending µ to ν , such that γT gives the same mass as γ to each one of
the sets Ci, j,n. To do this, define the columns Coli,n := Ki,n×Ω and denote by γi,n the
restriction of γ on Coli,n. Its marginal will be denoted by µi,n and νi,n. Consider now,
for each i, a transport map Ti,n sending µi,n to νi,n. It exists thanks to Corollary 1.29,
since for each (i,n) we have µi,n ≤ µ , which makes these measures atomless. Since the

4Note that this was the argument used in [176] to obtain the existence of transport maps in general
spaces, and [253] points out that, when composing with the isomorphisms sending arbitrary spaces to [0,1],
the cost function is no more continuous. Yet, this could be handled using Lemma 1.8, which allows to use
costs of this form: the composition of a continuous function with measurable maps of x and y, separately.
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µi,n are concentrated on disjoint sets, by “gluing” the transports Ti,n we get a transport
T sending µ to ν (using ∑i µi,n = µ and ∑i νi,n = ν).

It is enough to check that γT gives the same mass5 as γ to every Ci, j,n, but it is
easy to prove. Indeed, this mass equals that of γTi,n and γTi,n(Ci, j,n) = µi,n({x : x ∈
Ki,n, Ti,n(x) ∈ K j,n}) = µi,n({x : Ti,n(x) ∈ K j,n}) = νi,n(K j,n) = γ(Ki,n×K j,n).

The relaxation result is just a consequence.

Theorem 1.33. Under the above-mentioned assumptions, K is the relaxation of J. In
particular, infJ = minK, and hence Monge and Kantorovich problems have the same
infimum.

Proof. First note that, since K is continuous, then it is l.s.c. and since we have K ≤ J,
then K is necessarily smaller than the relaxation of J. We only need to prove that,
for each γ , we can find a sequence of transports Tn such that γTn ⇀ γ and J(γTn)→
K(γ), so that the infimum in the sequential characterization of the relaxed functional
(see definition) will be smaller than K, thus proving the equality. Actually, since for
γ = γTn the two functionals K and J coincide, and since K is continuous, we only
need to produce a sequence Tn such that γTn ⇀ γ . This is possible thanks to Theorem
1.32

1.6 Convexity, c-concavity, cyclical monotonicity, dual-
ity and optimality

1.6.1 Convex and c-concave functions
In this section we analyze properties of c-concave functions in comparison with convex
functions, which are better known. We start from recalling some notions from convex
analysis.

Box 1.11. – Memo – Convex functions

The definition of convex function is always the same: f : Rd → R∪{+∞} is convex if
and only if for all x,y∈Rd and t ∈ [0,1] we have f ((1− t)x+ ty)≤ (1− t) f (x)+ t f (y). We
do not care about convex functions defined on subsets Ω ⊂ Rd (which should be convex,
for the definition to make sense) since one can always extend f outside Ω by setting it to
+∞, preserving convexity.

An easy stability property is the following: if fα is a family of convex functions, then
f defined through f (x) := supα fα (x) is also convex. This can be checked easily by writing
fα ((1− t)x+ ty) ≤ (1− t) fα (x)+ t fα (y) ≤ (1− t) f (x)+ t f (y) and passing to the sup in
α . Otherwise, we can also use the epigraphs (and a function is convex if and only if its
epigraph is convex) and note that the interesection of convex sets is still convex.

5Note that [8] and [253] proved the same fact in a more complicated way: indeed, the use of a unique
transport map for every column is enough.The same idea has been used in [147] for a different density result,
concerning Lipschitz transport maps.
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Real-valued convex functions defined on Rd are automatically continuous and locally
Lipschitz (and in general, they are continuous and locally Lipschitz in the interior of their
domain { f < +∞}). However, on the boundary between { f < +∞} and { f = +∞} there
could be discontinuities. This is why typically we require at least lower semi-continuity.

Theorem - A function f : Rd→R∪{+∞} is convex and l.s.c. if and only if there exists
a family of affine functions fα such that f (x) := supα fα (x). This family can also be chosen
to be the family of all affine functions smaller than f .

One implication is easy (if f is a sup of affine functions, since affine implies convex,
then it is convex). The geometrical intuition behind the converse one is the fact that the
epigraph of a convex and l.s.c. function is a closed convex set in Rd×R, and can be written
as the intersection of the half-spaces which contain it. A precise proof requires the use of
Hahn-Banach Theorem in its geometrical form.

Box 1.12. – Memo – Legendre transform, subdifferential

Definition (Legendre-Flenchel transform) - for any given function f : Rd → R∪{+∞}
we can define its transform f ∗(y) := supx x · y− f (x).

Example - the Legendre transform of x 7→ 1
p |x|

p is x 7→ 1
q |x|

q, where 1
p +

1
q = 1.

A function f is convex and l.s.c. if and only if there exists g such that f = g∗ (since
the class of functions that are Legendre transform of something exactly agrees with that of
functions which are expressed as suprema of affine functions). To be convinced that every
supremum of affine functions can be expressed as g∗, just take f (y) = supα xα · y+ bα ;
then, for each vector x, set g(x) = −sup{bα : xα = x} (by setting g(x) = +∞ if no α is
such that xα = x) and check that we have f = g∗.

Proposition - A function f : Rd→R∪{+∞} is convex and l.s.c. if and only if f ∗∗ = f .
The proof of this fact can be seen as an application of the Hahn-Banach theorem. For a

complete proof, even in infinite dimension, see for instance [24].
Definition (subdifferential) - For every convex function f we define its subdifferential

at x as the set ∂ f (x) = {p ∈ Rd : f (y)≥ f (x)+ p · (y− x) ∀y ∈ Rd}.
It is possible to prove that ∂ f (x) is never empty if x lies in the interior of the set

{ f < +∞}. At every point where the function f is differentiable, then ∂ f reduces to the
singleton {∇ f}.

For the subdifferential of the convex functions f and f ∗ we have

p ∈ ∂ f (x)⇔ x ∈ ∂ f ∗(p)⇔ f (x)+ f ∗(p) = x · p.

This helps in proving the following equivalence: take two conjugate functions f and f ∗

(with f = f ∗∗); then f is C1 if and only if f ∗ is strictly convex. This comes from the fact
that C1 means that there is at most one p in every set ∂ f (x), while strictly convex means that
the same vector cannot belong to the subdifferential of more than one point. In particular, if
h is strictly convex then ∂h, which is a multi-valued map, can be inverted and is uni-valued,
thus getting a map (∂h)−1, that should use in the statement of Theorem 1.17 instead of
(∇h)−1.

Finally, note that the subdifferential of a convex function satisfies this monotonicity
property: if p1 ∈ ∂ f (x1) and p2 ∈ ∂ f (x2), then (p1− p2) · (x1− x2)≥ 0.
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Note the analogy with c-concave functions (or c̄-concave, this distinction being
meaningless in the symmetric case), which were defined as being the c̄-transform (or c-
transform) of something. Indeed, up to the change of sign, c-concavity has exactly been
defined as a generalization of convexity. Note that we admit the value +∞ for convex
functions and −∞ for concave and c-concave ones. Yet, we do not like the convex
function which is identically +∞; nor any c-concave function which is identically −∞.

Instead of proving the result on f ∗∗ = f we may prove this more general one con-
cerning c-concave functions6.

Proposition 1.34. Suppose that c is real valued. For any ϕ : X → R∪{−∞} we have
ϕcc̄ ≥ ϕ . We have the equality ϕcc̄ = ϕ if and only if ϕ is c-concave; in general, ϕcc̄ is
the smallest c-concave function larger than ϕ .

Proof. First we prove ϕcc̄ ≥ ϕ . Write

ϕ
cc̄(x) = inf

y
c(x,y)−ϕ

c(y) = inf
y

c(x,y)− inf
x′

c(x′,y)−ϕ(x′).

Consider that infx′ c(x′,y)−ϕ(x′)≤ c(x,y)−ϕ(x), and hence

ϕ
cc̄(x)≥ inf

y
c(x,y)− c(x,y)+ϕ(x) = ϕ(x).

Analogously, we have ζ cc̄ ≥ ζ for any ζ : Y → R∪{−∞}.
Then, let us prove ϕcc̄ = ϕ if ϕ is c-concave. In such a case, we may write

ϕ = ζ
c̄⇒ ϕ

c = ζ
c̄c ≥ ζ ⇒ ϕ

cc̄ ≤ ζ
c̄ = ϕ,

where the last inequality is obtained by noting that c- and c̄-transforms revert the in-
equalities between functions (due to the minus sign in the definition). This proves that
in such a case we have ϕcc̄ ≤ ϕ , and hence ϕcc̄ = ϕ .

Finally, we can prove that for any ϕ , the function ϕcc̄ is the smallest c-concave
function larger than ϕ . To prove that, take ϕ̃ = χ c̄ any c-concave function, and suppose
ϕ̃ ≥ ϕ . Then consider

χ
c̄ ≥ ϕ ⇒ χ

c̄c ≤ ϕ
c⇒ χ ≤ ϕ

c⇒ ϕ̃ = χ
c̄ ≥ ϕ

cc̄,

which proves the desired inequality.

We finish this section with a last concept about convex functions, that we will then
translate into the framework of c-concave functions later on.

Let us define the graph of the subdifferential of a convex function as

Graph(∂ f ) := {(x, p) : p ∈ ∂ f (x)}= {(x, p) : f (x)+ f ∗(p) = x · p}.

We already know that this graph is monotone in the sense that (xi, pi) ∈Graph(∂ f ) for
i = 1,2 implies

(p2− p1) · (x2− x1)≥ 0.
6Note that this result is easy to prove, since c-concave functions are exactly defined as c-transform of

something, while usually convex functions are not defined via sup of affine functions, but via the convexity
inequality. This is why the corresponding theorem for convex functions usually requires the use of Hahn-
Banach theorem.
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Yet, not all monotone graphs are the graphs of the subdifferential of a convex function,
nor they are contained in one of such graphs.7

Hence, monotonicity is not enough to characterize gradients and subdifferential of
convex functions (to be more precise, gradient vector functions that are monotone are
gradient of convex functions, but monotonicity alone does not imply gradientness).

A stronger notion is that of cyclical monotonicity.

Definition 1.35. A set A⊂Rd×Rd is said to be cyclically monotone if for every k∈N,
every permutation σ and every finite family of points (x1, p1), . . . ,(xk, pk) ∈ A we have

k

∑
i=1

xi · pi ≥
k

∑
i=1

xi · pσ(i).

The word “cyclical” refers to the fact that, since every σ is the disjoint composition
of cycles, it is enough to check this property for cyclical permutations, i.e. replacing
∑

k
i=1 xi · pσ(i) with ∑

k
i=1 xi · pi+1 in the definition (with the obvious convention pk+1 =

p1).
Note that if we take k = 2 we get the usual definition of monotonicity, since

x1 · p1 + x2 · p2 ≥ x1 · p2 + x2 · p1 ⇐⇒ (p1− p2) · (x1− x2)≥ 0.

A famous theorem by Rockafellar ([260], Theorem 24.8) states that every cyclically
monotone set is contained in the graph of the subdifferential of a convex function. We
will not prove this theorem here as will see it as a particular case of a theorem on
c-concave functions.

1.6.2 c-cyclical monotonicity and duality
We start from the translation to the c-concave case of the definition of cyclical mono-
tonicity.

Definition 1.36. Once a function c : Ω×Ω→R∪{+∞} is given, we say that a set Γ⊂
Ω×Ω is c-cyclically monotone (briefly c-CM) if, for every k ∈ N, every permutation
σ and every finite family of points (x1,y1), . . . ,(xk,yk) ∈ Γ we have

k

∑
i=1

c(xi,yi)≤
k

∑
i=1

c(xi,yσ(i)).

As for the convex case, the word “cyclical” refers to the fact that we can restrict our
attention to cyclical permutations. The word “monotone” is a left-over from the case
c(x,y) =−x · y.

7 Take for instance a 90◦ rotation R in R2 and consider the set A = {(x,Rx), x ∈ Rd}. This set satisfies
the monotonicity inequality since we have (Rx1−Rx2) · (x1−x2) = 0 for any x1 and x2. Yet, the map x 7→ Rx
is not the gradient of a convex functions (it is not a gradient at all), nor can it be contained in the graph of the
subdifferential of a convex function.
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It is useful to recall the following theorem, which is a generalization of a theorem
by Rockafellar in convex analysis. The classical reference for this proof is [269], but
it is interesting to see that it can actually be traced back to much older papers, such
as [261] (in the framework of rationalizability of actions in economics, Theorem 1 in
the paper) or [92] (for applications to liquid crystals, as a part of a proof of a discrete
Kantorovich duality for distance costs, see Lemma 2 in the paper).

Theorem 1.37. If Γ 6= /0 is a c-CM set in X ×Y and c : X ×Y → R (note that c is
required not to take the value +∞), then there exists a c-concave function ϕ : X →
R∪{−∞} (different from the constant −∞ function) such that

Γ⊂ {(x,y) ∈ X×Y : ϕ(x)+ϕ
c(y) = c(x,y)}

Proof. We will give an explicit formula for the function ϕ , prove that it is well-defined
and that it satisfies the properties that we want to impose.

Let us fix a point (x0,y0) ∈ Γ: for x ∈ X set

ϕ(x) = inf{c(x,yn)− c(xn,yn)+ c(xn,yn−1)− c(xn−1,yn−1)+ · · ·+
+c(x1,y0)− c(x0,y0) : n ∈ N, (xi,yi) ∈ Γ for all i = 1, . . . ,n} .

Since c is real-valued and Γ is non-empty, ϕ never takes the value +∞.
If we set, for y ∈ Y ,

−ψ(y) = inf{−c(xn,y)+ c(xn,yn−1)− c(xn−1,yn−1)+ · · ·+ c(x1,y0)+

−c(x0,y0) : n ∈ N, (xi,yi) ∈ Γ for all i = 1, . . . ,n, yn = y} .

Note that from the definition we have ψ(y)>−∞ if and only if y∈ (πy)(Γ). Moreover,
by construction we have ϕ = ψ c̄. This proves that ϕ is c-concave8. The fact that ϕ is
not constantly −∞ can be seen from ϕ(x0)≥ 0: indeed, if we take x = x0, then for any
chain of points (xi,yi) ∈ Γ we have

n

∑
i=0

c(xi+1,yi)≥
n

∑
i=0

c(xi,yi),

where we consider xn+1 = x0. This shows that the infimum in the definition of ϕ(x0) is
non-negative.

To prove ϕ(x)+ϕc(y) = c(x,y) on Γ it is enough to prove the inequality ϕ(x)+
ϕc(y) ≥ c(x,y) on the same set, since by definition of c-transform the opposite in-
equality is always true. Moreover, since ϕc = ψ c̄c and ψ c̄c ≥ ψ , it is enough to check
ϕ(x)+ψ(y)≥ c(x,y).

Suppose (x,y) ∈ Γ and fix ε > 0. From ϕ = ψ c̄ one can find a point ȳ ∈ πy(Γ) such
that c(x, ȳ)−ψ(ȳ)< ϕ(x)+ε . In particular, ψ(ȳ) 6=±∞. From the definition of ψ one
has the inequality −ψ(y) ≤ −c(x,y)+ c(x, ȳ)−ψ(ȳ) (since every chain starting from
ȳ may be completed adding the point (x,y) ∈ Γ).

8Note that we did not spend words here on the measurability of ϕ: from its c-concavity, this is straight-
forward, as it is also continuous, but this is based on the assumption that c is uniformly continuous. Measur-
ability and integrability in the general case are trickier.
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Putting together these two informations one gets

−ψ(y)≤−c(x,y)+ c(x, ȳ)−ψ(ȳ)<−c(x,y)+ϕ(x)+ ε,

which implies the inequality c(x,y)≤ ϕ(x)+ψ(y) since ε is arbitrary.

We can now prove the following.

Theorem 1.38. If γ is an optimal transport plan for the cost c and c is continuous, then
spt(γ) is a c-CM set.

Proof. Suppose by contradiction that there exist k, σ and (x1,y1), . . . ,(xk,yk) ∈ spt(γ)
such that

k

∑
i=1

c(xi,yi)>
k

∑
i=1

c(xi,yσ(i)).

Take now ε < 1
2k

(
∑

k
i=1 c(xi,yi)−∑

k
i=1 c(xi,yσ(i))

)
. By continuity of c, there exists r

such that for all i = 1, . . . ,k and for all (x,y) ∈ B(xi,r)×B(yi,r) we have c(x,y) >
c(xi,yi)− ε and for all (x,y) ∈ B(xi,r)×B(yσ(i),r) we have c(x,y)< c(xi,yσ(i))+ ε .

Now consider Vi := B(xi,r)×B(yi,r) and note that γ(Vi) > 0 for every i, because
(xi,yi) ∈ spt(γ). Define the measures γi := γ Vi/γ(Vi) and µi := (πx)#γi, νi := (πy)#γi.
Take ε0 <

1
k mini γ(Vi).

For every i, build a measure γ̃i ∈ Π(µi,νσ(i)) at will (for instance take γ̃i = µi⊗
νσ(i)).

Now define

γ̃ := γ− ε0

k

∑
i=1

γi + ε0

k

∑
i=1

γ̃i.

We want to find a contradiction by proving that γ̃ is a better competitor than γ in the
transport problem, i.e. γ̃ ∈Π(µ,ν) and

´
cdγ̃ <

´
c dγ .

First we check that γ̃ is a positive measure. It is sufficient to check that γ−ε0 ∑
k
i=1 γi

is positive, and, for that, the condition ε0γi <
1
k γ will be enough. This condition is

satisfied since ε0γi = (ε0/γ(Vi))γ Vi and ε0/γ(Vi)≤ 1
k .

Now, let us check the condition on the marginals of γ̃ . We have

(πx)#γ̃ = µ− ε0

k

∑
i=1

(πx)#γi + ε0

k

∑
i=1

(πx)#γ̃i = µ− ε0

k

∑
i=1

µi + ε0

k

∑
i=1

µi = µ,

(πy)#γ̃ = ν− ε0

k

∑
i=1

(πy)#γi + ε0

k

∑
i=1

(πy)#γ̃i = ν− ε0

k

∑
i=1

νi + ε0

k

∑
i=1

νσ(i) = ν .

Finally, let us estimate
´

c dγ−
´

cdγ̃ and prove that it is positive, thus concluding
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the proof. We have

ˆ
c dγ−

ˆ
cdγ̃ = ε0

k

∑
i=1

ˆ
c dγi− ε0

k

∑
i=1

ˆ
cdγ̃i

≥ ε0

k

∑
i=1

(c(xi,yi)− ε)− ε0

k

∑
i=1

(c(xi,yσ(i))+ ε)

= ε0

(
k

∑
i=1

c(xi,yi)−
k

∑
i=1

c(xi,yσ(i))−2kε

)
> 0,

where we used the fact that γi is concentrated on B(xi,r)×B(yi,r), γ̃i on B(xi,r)×
B(yσ(i),r), and that they have unit mass (due to the rescaling by γ(Vi)).

From the previous theorem, together with Theorem 1.37, we get the duality result
that we were waiting for9 from Section 1.2.

Theorem 1.39. Suppose that X and Y are Polish spaces and that c : X ×Y → R is
uniformly continuous and bounded. Then the problem (DP) admits a solution (ϕ,ϕc)
and we have max(DP) = min(KP).

Proof. First consider the minimization problem (KP). Since c is continuous, it admits
a solution γ . Moreover, the support Γ of γ is c-cyclically monotone, thanks to Theorem
1.38. Then, since c is real valued, we can apply Theorem 1.37 and obtain the existence
of a c-concave function ϕ such that

Γ⊂ {(x,y) ∈Ω×Ω : ϕ(x)+ϕ
c(y) = c(x,y)}.

From their c- (and c̄-) concavity, ϕ and ϕc are continuous. Moreover, from ϕc(y) =
infx c(x,y)−ϕ(x) we obtain an upper bound on ϕc (since c is supposed to be bounded),
which turns into a lower bound on ϕ . Symmetrically, we can also obtain upper bounds
on ϕ and lower on ϕc, which prove that ϕ and ϕc are both continuous and bounded.

Hence, we can use (ϕ,ϕc) as an admissible pair in (DP). Consider now
ˆ

X
ϕ dµ +

ˆ
Y

ϕ
c dν =

ˆ
X×Y

(ϕ(x)+ϕ
c(y))dγ =

ˆ
X×Y

c(x,y)dγ,

where the last equality is due to the fact that γ is concentrated on Γ and there we have
ϕ(x)+ϕc(y) = c(x,y). The equality just before comes from the fact that the marginals
of γ are µ and ν , respectively. This finally shows, using the optimality of γ ,

(DP)≥
ˆ

ϕ dµ +

ˆ
ϕ

c dν =

ˆ
c(x,y)dγ = (KP),

and implies (DP)=(KP), since we already know (DP)≤ (KP). As a byproduct of this
proof, the pair (ϕ,ϕc) turns out to be optimal for (DP).

9We insist that this is just a possible path: we prove duality via cyclical monotonicity; instead, one could
first prove duality (see Section 1.6.3) and then prove cyclical monotonicity through arguments as in Theorem
1.42).
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We also want to deal with some cases which are not covered by the previous theo-
rem. First we want to give a short statement about the quadratic case in Rd , in order to
comply with Section 1.3.1. The difference compared to Theorem 1.39 lies in the fact
that the cost c(x,y) = 1

2 |x− y|2 is neither bounded, nor uniformly continuous.

Theorem 1.40. Let µ,ν be probabilities over Rd and c(x,y) = 1
2 |x− y|2. Suppose´

|x|2 dx,
´
|y|2 dy <+∞. Consider the following variant of (DP)

(DP−var) sup
{ˆ

Rd
ϕ dµ +

ˆ
Rd

ψ dν : ϕ ∈ L1(µ),ψ ∈ L1(ν), ϕ⊕ψ ≤ c
}
.

Then (DP-var) admits a solution (ϕ,ψ), and the functions x 7→ 1
2 |x|

2−ϕ(x) and y 7→
1
2 |y|

2−ψ(y) are convex and conjugate to each other for the Legendre transform. More-
over, we have max(DP−var) = min(KP).

Proof. Applying the same considerations as in Theorem 1.39 we get the existence of a
pair (ϕ,ψ), with ϕ c-concave and ψ = ϕc such that ϕ(x)+ϕc(y) = c(x,y) for every
(x,y) in the support of an optimal transport plan γ . From Proposition 1.21 we deduce
that x 7→ 1

2 |x|
2−ϕ(x) and y 7→ 1

2 |y|
2−ψ(y) are convex and conjugate to each other.

In particular, 1
2 |x|

2−ϕ(x) is bounded from below by a linear function, and hence ϕ is
bounded from above by a second-order polynomial. This proves ϕ+ ∈ L1(µ), from the
assumption on µ . The same can be said on ψ , i.e. ψ+ ∈ L1(ν). We can now integrate
ϕ⊕ψ w.r.t. γ , thus obtaining

ˆ
Rd

ϕ dµ +

ˆ
Rd

ψ dν =

ˆ
Rd×Rd

ϕ⊕ψ dγ =

ˆ
Rd×Rd

cdγ ≥ 0.

This proves
´
Rd ϕ dµ,

´
Rd ψ dν >−∞, and hence ϕ ∈ L1(µ) and ψ ∈ L1(ν).

The conclusion follows as before.

Then, we also give some details about the case where c is not continuous but only
l.s.c. We recall that this assumption is sufficient for the existence of an optimal transport
plan.

The first result concerns the validity of the duality formula, i.e.

min(KP) = sup
{ˆ

X
ϕ dµ +

ˆ
Y

ψ dν : ϕ ∈C(X),ψ ∈C(Y ), ϕ⊕ψ ≤ c
}
. (1.6)

By now, we have established this equality when c is uniformly continuous and bounded,
also proving that the dual problem admits a maximizing pair. We also know that an
inequality is always true : the minimum on the left is always larger than the maximum
on the right. More precisely, we are able to deal with the uniformly continuous case
(since we want to guarantee continuity of c-concave functions of the form ϕ(x) =
infy c(x,y)−ψ(y)).

To deal with a l.s.c. cost c bounded from below, we will use the fact there ex-
ists a sequence ck of continuous functions (each one being k-Lipschitz) increasingly
converging to c. We need the following lemma.
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Lemma 1.41. Suppose that ck and c are l.s.c. and bounded from below and that ck
converges increasingly to c. Then

lim
k→∞

min
{ˆ

ck dγ : γ ∈Π(µ,ν)

}
= min

{ˆ
c dγ : γ ∈Π(µ,ν)

}
.

Proof. Due to the increasing limit condition, we have ck ≤ c and hence the limit on the
left (which exists by monotonicity) is obviously smaller than the quantity on the right.
Now consider a sequence γk ∈Π(µ,ν), built by picking an optimizer for each cost ck.
Up to subsequences, due to the tightness of Π(µ,ν), we can suppose γk ⇀ γ . Fix now
an index j. Since for k ≥ j we have ck ≥ c j, we have

lim
k

min
{ˆ

ck dγ : γ ∈Π(µ,ν)

}
= lim

k

ˆ
ck dγk ≥ liminf

k

ˆ
c j dγk.

By semi-continuity of the integral cost c j we have

liminf
k

ˆ
c j dγk ≥

ˆ
c j dγ.

Hence we have obtained

lim
k

min
{ˆ

ck dγ, γ ∈Π(µ,ν)

}
≥
ˆ

c j dγ.

Since j is arbitrary and lim j
´

c j dγ =
´

cdγ by monotone convergence, we also have

lim
k

min
{ˆ

ck dγ, γ ∈Π(µ,ν)

}
≥
ˆ

cdγ ≥min
{ˆ

c dγ, γ ∈Π(µ,ν)

}
.

This concludes the proof. Note that it also gives, as a byproduct, the optimality of γ for
the limit cost c.

We can now establish the validity of the duality formula for semi-continuous costs.

Theorem 1.42. If X ,Y are Polish spaces and c : X ×Y → R∪ {+∞} is l.s.c. and
bounded from below, then the duality formula min(KP) = sup(DP) holds.

Proof. Consider a sequence ck of k-Lipschitz functions approaching c increasingly.
Then the same duality formula holds for ck, and hence we have

min
{ˆ

ck dγ, γ ∈Π(µ,ν)

}
= max

{ˆ
ϕ dµ +

ˆ
ψ dν : ϕ⊕ψ ≤ ck

}
≤ sup

{ˆ
ϕ dµ +

ˆ
ψ dν : ϕ⊕ψ ≤ c

}
,

where the max and the sup are computed among Cb functions ϕ,ψ . The inequality is
justified by the fact that ck ≤ c and hence every pair (ϕ,ψ) satisfying ϕ(x)+ψ(y) ≤
ck(x,y) also satisfies ϕ(x)+ψ(y)≤ c(x,y). The conclusion follows by letting k→+∞,
using Lemma 1.41. Note that for the cost c we cannot guarantee the existence of a
maximizing pair (ϕ,ψ).
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The duality formula also allows to prove the following c-cyclical monotonicity
theorem.

Theorem 1.43. If c is l.s.c. and γ is an optimal transport plan, then γ is concentrated
on a c-CM set Γ (which will not be closed in general).

Proof. Thanks to the previous theorem the duality formula holds. This means that, if
we take a sequence of maximizing pairs (ϕh,ψh) in the dual problem, we have

ˆ
(ϕh(x)+ψh(y))dγ =

ˆ
ϕh dµ +

ˆ
ψh dν →

ˆ
c dγ,

since the value of
´

c dγ is the minimum of the primal problem, which is also the
maximum of the dual. Moreover, we have c(x,y)−ϕh(x)+ψh(y) ≥ 0, which implies
that the functions fh := c(x,y)−ϕh(x)−ψh(y), defined on X ×Y , converge to 0 in
L1(X ×Y,γ) (since they are positive and their integral tends to 0). As a consequence,
up to a subsequence (not relabeled) they also converge pointwisely γ-a.e. to 0. Let
Γ⊂ X×Y be a set with γ(Γ) = 1 where the convergence holds.

Take any k, σ and (x1,y1), . . . ,(xk,yk) ∈ Γ: we have

k

∑
i=1

c(xi,yi) = lim
h

k

∑
i=1

ϕh(xi)+ψh(yi) = lim
h

k

∑
i=1

ϕh(xi)+ψh(yσ(i))≤
k

∑
i=1

c(xi,yσ(i)),

which proves that this set is c-CM.

Remark 1.44. The duality formula that we proved for l.s.c. costs c differs from that
for continuous costs in that there is no existence for the dual problem (DP). Actually,
if one restates the dual problem as in (DP-var), then one can produce an optimizer by
first applying Theorem 1.43 to say that the optimal γ is concentrated on a c-CM set Γ,
and then build a potential ϕ through Theorem 1.37. This works under the assumption
that c is real-valued, and does not depend on its continuity10.

1.6.3 A direct proof of duality
In section 1.6.2 we paid off the debt that we contracted with duality in Section 1.2:
we proved, via c-cyclical monotonicity arguments, that min(KP) = sup(DP), with no
duality gap, under some very general assumptions.

Here we want to give an alternative proof, independent of c-cyclical monotonicity
and based on a simple convex analysis trick11. We will restrict to the compact case,
and only use the following fact: if H is convex and l.s.c., then H∗∗ = H (see Box 1.12
in Section 1.6.1).

10Yet, note that the construction requires to use an optimal γ , which is guaranteed in the case where c is
l.s.c., but could be the case in some special situations as well, such as when we can apply Lemma 1.8. Also,
for non-uniformly continuous costs c, there are measurability issues on the function ϕ of Theorem 1.37.

11Even if not strictly necessary, we prefer to give it for completeness, and because it is different than what
is presented in other texts, such as [292], where the main tool is a theorem from [91], Chapter 1, applied to
well-chosen functions and space. The present proof, suggested by C. Jimenez, is essentially adapted from
Section 4 in [71].
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Suppose that X and Y are compact metric spaces, and c : X×Y →R is continuous.
For every p ∈C(X×Y ) define

H(p) :=−max
{ˆ

X
ϕ dµ +

ˆ
Y

ψ dν : ϕ(x)+ψ(y)≤ c(x,y)− p(x,y)
}
,

which coincides with the opposite of the value of (DP) with cost c− p. The fact that
this value is attained is proven in Proposition 1.11, which also provides bounds on
the modulus of continuity of the optimal ϕ and ψ (the same as c− p) and on their
oscillation (if we assume ϕ(x0) = 0, then both ϕ and ψ are bounded by a constant only
depening on sup |c− p|).

Lemma 1.45. The function H : C(X ×Y )→ R is convex and l.s.c. for the uniform
convergence on the compact space X×Y .

Proof. For convexity, take p0 and p1 with their optimal potentials (ϕ0,ψ0) and (ϕ1,ψ1).
For t ∈ [0,1] define pt = (1−t)p0+t p1, ϕt = (1−t)ϕ0+tϕ1, and ψt = (1−t)ψ0+tψ1.
The pair (ϕt ,ψt) is admissible in the max defining −H(pt). We have

H(pt)≤−
(ˆ

X
ϕt dµ +

ˆ
Y

ψt dν

)
= (1− t)H(p0)+ tH(p1),

which shows convexity.
For semi-continuity, take pn→ p. Extract a subsequence pnk realizing the liminf of

H(pn). From uniform convergence, the sequence pnk is equicontinuous and bounded
(use the converse of the Ascoli Arzelà Theorem). Hence, the corresponding optimal
potential (ϕnk ,ψnk) are also equicontinuous and bounded and we can assume ϕnk →
ϕ,ψnk → ψ uniformly, up to extracting again. Obviously ϕnk(x)+ψnk(y) ≤ c(x,y)−
pnk(x,y) implies ϕ(x)+ψ(y)≤ c(x,y)− p(x,y). Hence

H(p)≤−
(ˆ

X
ϕ dµ +

ˆ
Y

ψ dν

)
= lim

k
H(pnk) = liminf

n
H(pn),

which proves lower semi-continuity.

Let us now compute H∗ : M (X×Y )→ R∪{+∞}. For γ ∈M (X×Y ) we have

H∗(γ) := sup
p

ˆ
X×Y

pdγ + sup
{ˆ

X
ϕ dµ +

ˆ
Y

ψ dν ϕ(x)+ψ(y)≤ c(x,y)− p(x,y)
}
,

which can be written as a unique sup over p,ϕ,ψ . Note that, if γ /∈M+(X ×Y ), then
there is p ≤ 0 such that

´
p0dγ > 0 and one can take ϕ = 0, ψ = 0, p = c+ np0 and,

for n→∞, we get H∗(γ) =+∞. On the contrary, if γ ∈M+(X×Y ), we should choose
the larget possible p, i.e. p(x,y) = c(x,y)−ϕ(x)−ψ(y). This gives

H∗(γ) = sup
ϕ,ψ

ˆ
X×Y

c(x,y)dγ +

ˆ
X

ϕ dµ−
ˆ

X×Y
ϕ(x)dγ +

ˆ
Y

ψ dν−
ˆ

X×Y
ψ(x)dγ.
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But this is exactly the expression that we introduced in Section 1.2 (see equation (1.3))
to re-write the constraints in (KP)! Indeed we have

H∗(γ) =

{
K(γ) if γ ∈Π(µ,ν),

+∞ if not.

The duality theorem follows.

Theorem 1.46. If X ,Y are compact spaces and c continuous, then min(KP)= sup(DP)
(proof by convex analysis).

Proof. We have max(DP) =−H(0) =−H∗∗(0) (since H is convex and l.s.c., see Box
1.12). Moreover, H∗∗(0) = supγ 〈0,γ〉−H∗(γ) =− inf H∗ =−min(KP).

1.6.4 Sufficient conditions for optimality and stability
The considerations of Sections 1.6.1 and 1.6.2 about c-transforms allow us to prove
sufficient conditions for optimality in optimal transportation, at least when the cost
satisfies the twist condition of Definition 1.16. As we did in Section 1.3, we will first
a general statement under compactness assumptions, and we will then give a different
proof in the quadratic case, with no need of compactness.

Theorem 1.47. Let Ω ⊂ Rd be compact, and c be a C1 cost function satisfying the
twist condition on Ω×Ω. Suppose that µ ∈P(Ω) and ϕ ∈ c−conc(Ω) are given,
that ϕ is differentiable µ-a.e. and that µ(∂Ω) = 0. Suppose that the map T satisfies
∇xc(x,T(x)) = ∇ϕ(x). Then T is optimal for the transport cost c between the measures
µ and ν := T#µ .

Proof. Consider the function ϕ , which may be written as ϕ(x) = infy c(x,y)−ψ(y) for
a certain function ψ : Ω→ R. The function ψ may be supposed to be c̄-concave and
hence continuous (actually, we can take ψ = ϕc, from the considerations of the previ-
ous section). Fix now x0 ∈ Ω such that ∇ϕ(x0) exists and x0 /∈ ∂Ω. By compactness
and continuity, one can say that infy c(x,y)−ψ(y) is realized by a certain point y0. This
gives

ϕ(x)≤ h(x− y0)−ψ(y0) for every x ϕ(x0) = h(x0− y0)−ψ(y0),

and hence x 7→ h(x− y0)−ϕ(x) is minimal at x = x0 (note that we defined y0 by the
optimality in y but now we use the optimality in x). As a consequence, we get

∇ϕ(x0) = ∇xc(x0,y0).

By assumption y 7→∇xc(x0,y) is injective: this implies y0 =T(x0). This proves ϕ(x0)+
ψ(T(x0)) = c(x0,T(x0)) and this same equality is true for µ-a.e. x0. If we integrate
with respect to µ we getˆ

ϕ dµ +

ˆ
ψ dν =

ˆ
ϕ dµ +

ˆ
ψ ◦T dµ =

ˆ
c(x,T(x))dµ(x),

which proves the optimality of T since the last integral equals the cost of T in the
problem of Monge, and we have

´
ϕ dµ +

´
ψ dν ≤ (DP) ≤ (KP), since (ϕ,ψ) is

admissible in (DP).
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As we promised, here is a different proof for the case c(x,y) = 1
2 |x− y|2.

Theorem 1.48. Suppose that µ ∈P(Rd) is such that
´
|x|2 dµ(x)< ∞, that u : Rd →

R∪{+∞} is convex and differentiable µ-a.e. Set T=∇u and suppose
´
|T(x)|2dµ(x)<

+∞. Then T is optimal for the transport cost c(x,y) := 1
2 |x−y|2 between the measures

µ and ν := T#µ .

Proof. First note that, for a convex function u, we have the following properties

u(x)+u∗(y)≥ x · y for all x,y ∈ Rd , u(x)+u∗(y) = x · y if y = ∇u(x).

Now, consider any transport plan γ ∈Π(µ,ν) and write
ˆ
Rd×Rd

(x · y)dγ(x,y)≤
ˆ
Rd×Rd

(u(x)+u∗(y)) dγ(x,y)

=

ˆ
Rd

u(x)dµ(x)+
ˆ
Rd

u∗(T(x))dµ(x) =
ˆ
Rd
(x ·T(x))dµ(x).

This proves
´
(x · y)dγ ≤

´
(x · y)dγT. Subtracting these quantities from the integral,

which only depends on µ and ν ,
´ 1

2 (|x|
2 + |y|2)dγ =

´ 1
2 (|x|

2 + |y|2)dγT we get
ˆ
Rd×Rd

1
2
|x− y|2 dγ ≥

ˆ
Rd×Rd

1
2
|x− y|2dγT,

which proves the claim.

Let us spend some words on the two different proofs that we just gave: we needed to
prove some optimality properties of the point T(x) among possible points y. In the first
case, we proved that an optimal point y0 existed, and we deduced from the first order
optimality conditions y0 = T(x0). In the second case, we used the characterization of
minimizers for convex functions: whenever a gradient vanishes, we are at a minimizer.
This is the idea behind the property u(x)+u∗(y) = x · y if y = ∇u(x).

We now pass to a more general criterion that can be used for almost arbitrary costs.
The main idea is that we proved that optimal plans are necessarily concentrated on
c-CM sets, but the converse is also true: a plan which is concentrated on a c-CM set
is optimal, at least in the most reasonable cases. We will prove this fact in the easiest
case, i.e. when c is uniformly continuous and bounded. Actually, we will see in the
next proof that the main ingredient is Theorem (1.37), which only requires finiteness
of the cost, but continuity and compactness are needed to avoid integrability issues (in
this case all the functions are measurable and bounded). Moreover, we will apply this
sufficient criterion to another interesting problem, i.e. stability of the optimal plans,
which will require these assumptions for other reasons. The fact that this converse
implication stays true when these assumptions are withdrawn (and in particular for
infinite costs) is a delicate matter, and we refer to [11] for a counter-example when the
cost takes the value +∞ and to [254, 31, 62] for interesting positive proofs.

Theorem 1.49. Suppose that γ ∈P(X ×Y ) is given, that X and Y are Polish spaces,
that c : X×Y →R is uniformly continuous and bounded, and that spt(γ) is c-CM. Then
γ is an optimal transport plan between its marginals µ = (πx)#γ and ν = (πy)#γ for
the cost c.
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Proof. Theorem (1.37) gives the existence of a c-concave function ϕ such that spt(γ)
is contained in the set {(x,y) : ϕ(x)+ϕc(y) = c(x,y)}. Both ϕ and ϕc are continuous
thanks to the continuity of c, and hence bounded on X and Y , respectively.

Thanks to what we know about duality we have

(KP)≤
ˆ

c(x,y) dγ =

ˆ
(ϕ(x)+ϕ

c(y)) dγ =

ˆ
ϕ dµ +

ˆ
ϕ

c dν ≤ (DP) = (KP)

which shows that γ is optimal (and that (ϕ,ϕc) solves the dual problem).

We are now able to prove the following stability result that we only state in the
compact case.

Theorem 1.50. Suppose that X and Y are compact metric spaces and that c : X×Y →
R is continuous. Suppose that γn ∈P(X×Y ) is a sequence of transport plan which are
optimal for the cost c between their own marginals µn := (πx)#γn and νn := (πy)#γn,
and suppose γn ⇀ γ . Then µn ⇀ µ := (πx)#γ , νn ⇀ ν := (πy)#γ and γ is optimal in the
transport between µ and ν .

Proof. Set Γn := spt(γn). Up to subsequences, we can assume Γn→ Γ in the Hausdorff
topology (see below). Each support Γn is a c-CM set (Theorem (1.38)) and the Haus-
dorff limit of c-CM sets is also c-CM. Indeed, if one fixes (x1,y1), . . . ,(xk,yk)∈ Γ there
are points (xn

1,y
n
1), . . . ,(x

n
k ,y

n
k) ∈ Γn such that, for each i = 1, . . . ,k, we have (xn

i ,y
n
i )→

(xi,yi). The cyclical monotonicity of Γn gives ∑
k
i=1 c(xn

i ,y
n
i )≤ ∑

k
i=1 c(xn

i ,y
n
σ(i)), which

implies, taking the limit n→ ∞

k

∑
i=1

c(xi,yi)≤
k

∑
i=1

c(xi,yσ(i)).

This proves that Γ is c-CM. Moreover, we know from the convergence γn ⇀ γ

together with Γn→ Γ, that spt(γ)⊂ Γ. This shows that spt(γ) is c-CM and implies the
optimality of γ

We finish with an easy but useful consequence of Theorem 1.50. To fix the nota-
tions, for a given cost c : X×Y → R and µ ∈P(X), ν ∈P(Y ), let us define

Tc(µ,ν) := min
{ˆ

X×Y
c dγ : γ ∈Π(µ,ν)

}
.

Theorem 1.51. Suppose that X and Y are compact metric spaces and that c : X ×
Y → R is continuous. Suppose that µn ∈P(X) and νn ∈P(Y ) are two sequences of
probability measures, with µn ⇀ µ and νn ⇀ ν . Then we have Tc(µn,νn)→Tc(µ,ν).

Proof. Let γn be an optimal transport plan for from µn to νn for the cost c. Up to
subsequences, we can assume γn ⇀ γ . Theorem 1.50 provides the optimality of γ . This
means that we have (along this subsequence, but since it is arbitrary. . . )

Tc(µn,νn) =

ˆ
X×Y

c dγn→
ˆ

X×Y
c dγ = Tc(µ,ν)

and proves the claim.
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Box 1.13. – Memo – Hausdorff convergence

Definition - In a compact metric space X we define the Hausdorff distance on pair of
compact subsets of X by setting

dH(A,B) := max{max{d(x,A) : x ∈ B},max{d(x,B) : x ∈ A}} .

Properties - We have the following equivalent definition:
1) dH(A,B) = max{|d(x,A)−d(x,B)| : x ∈ X}
2) dH(A,B) = inf{ε > 0 : A⊂ Bε , B⊂ Aε}, where Aε and Bε stand for the ε-neighborhood
of A and B, respectively.

Theorem (Blaschke) - dH is a distance: it is positive and symmetric, it only vanishes if
the two sets coincide, and satisfies triangle inequality. With this distance, the set of compact
subsets of X becomes a compact metric space itself.

We refer to [13] for a detailed discussion (with proofs) of this topic. Here we only
prove a simple fact that we need.

Proposition - If dH(An,A)→ 0 and µn is a sequence of positive measures such that
spt(µn)⊂ An with µn ⇀ µ , then spt(µ)⊂ A.

Sketch of proof - For each n we have
´

d(x,An)dµn = 0, since µn is supported on An.
Since d(x,An)→ d(x,A) uniformly and µn ⇀ µ , thanks to the duality between uniform
convergence and weak converge of measures we get

´
d(x,An)dµn →

´
d(x,A)dµ . This

implies
´

d(x,A)dµ = 0 and hence µ is concentrated on A.

Let us also conclude with a result on the stability of the Kantorovich potentials.

Theorem 1.52. Suppose that X and Y are compact metric spaces and that c : X ×
Y → R is continuous. Suppose that µn ∈P(X) and νn ∈P(Y ) are two sequences of
probability measures, with µn ⇀ µ and νn ⇀ ν . Let (ϕn,ψn) be, for each n, a pair of
c-concave Kantorovich potentials for the cost c in the transport from µn to νn. Then,
up to subsequences, we have ϕn→ ϕ , ψn→ ψ , where the convergence is uniform and
(ϕ,ψ) is a pair of Kantorovich potentials for µ and ν .

Proof. We know that c-concave functions have the same modulus of continuity as c
and hence, up to translating by a constant, we can apply the Ascoli Arzelà theorem.
We have ϕn→ ϕ̃ and ψn→ ψ̃ , the convergences being uniform. From ϕn(x)+ψn(y)≤
c(x,y) we deduce, as n→ ∞, the inequality ϕ̃(x)+ ψ̃(y)≤ c(x,y). Moreover we have

Tc(µn,νn) =

ˆ
ϕn dµn +

ˆ
ψn dνn→

ˆ
ϕ̃ dµ +

ˆ
ψ̃ dν .

Yet, we also have (Theorem 1.50) Tc(µn,νn)→Tc(µ,ν). We infer that the pair (ϕ̃, ψ̃)
is admissible in the dual problem and realizes the maximal value

´
ϕ̃ dµ +

´
ψ̃ dν =

Tc(µ,ν). Hence they are Kantorovich potentials.
The convergence is obviously true on the full sequence (without passing to a sub-

sequence) in case of uniqueness of the Kantorovich potentials at the limit.
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1.7 Discussion

This section presents alternative point of views (probabilistic language, polar factoriza-
tion), connections with economics and finance, generalizations and a brief presentation
of the regularity issues on the optimal transport map and the optimal potentials.

1.7.1 Probabilistic interpretation

We completely skipped up to now any interpretations involving probabilities, which are
actually natural in this setting. By changing for a while our language, let us describe
the situation in the following way.

Two probability measures µ and ν on some spaces (often, Rd) are given, and can
be interpreted as the laws of two random variables. Yet, we do not prescribe the joint
law (which corresponds to γ) of these two random variables and we consider the opti-
mization problem

min{E[c(X ,Y )] : X ∼ µ, Y ∼ ν}

where E denotes the expected value (according to a probability P on a probability
space Ω, which is not relevant for the minimization, but could be considered either “big
enough” or to be part of the optimization). This expected value obviously depends on
the joint law of (X ,Y ), which is the main unknown.

The particular case of real (or vector) valued r.v. with c(X ,Y ) = |X−Y |p reads

min{||X−Y ||Lp : X ∼ µ, Y ∼ ν}.

More interesting is the case p = 2, where the problem can be expressed in terms of
covariance. Indeed, let us set x0 = E[X ] =

´
x dµ and y0 = E[Y ] =

´
y dν , these two

values being the mean values of X and Y . We have

E[|X−Y |2] = E[|(X− x0)− (Y − y0)+(x0− y0)|2]
= E[|X− x0|2]+E[|Y − y0|2]+ |x0− y0|2

+2E[X− x0] · (x0− y0)−2E[Y − y0] · (x0− y0)

−2E[(X− x0) · (Y − y0)].

In this expression, the three first terms only depend on the laws of X and Y sepa-
rately (the first being the variance of X , the second the variance of Y , and the third the
squared distance between the two mean values), and the next two terms vanish (since
the mean value of X − x0 is 0, and so for the mean value of Y − y0). The problem is
hence reduced to the maximization of E[(X − x0) · (Y − y0)]. This means that we need
to find the joint law which guarantees maximal covariance (i.e. somehow maximal de-
pendence) of two r.v. with given laws. In the case of real valued r.v. (see next chapter)
the answer will be that the optimal coupling is obtained in the case where X and Y are
completely dependent, and one is an increasing function of the other. The multidimen-
sional case obviously replaces this increasing behavior with other monotone behaviors.
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1.7.2 Polar Factorization
A classical result in linear algebra states that every matrix A ∈MN×N can be decom-
posed as a product A = S ·U , where S is symmetric and positive-semidefinite, and U
is a unitary matrix, i.e. U ·U t = I. The decomposition is unique if A is non-singular
(otherwise U is not uniquely defined), and in such a case S is positive definite. Also,
one can see that the matrix U of this decomposition is also a solution (the unique one
if A is non singular) of

max{A : R : R ·Rt = I},

where A : R stands for the scalar product between matrices, defined as A : R := Tr(A ·
Rt).

Indeed, one can write

A : R = (S ·U) : R = Tr(S ·U ·Rt) = ∑
i, j

SiiU i jRi j

where the coordinates are chosen so that S is diagonal (and hence Sii ≥ 0). Let us
observe that U ·U t = I imposes that the vectors u(i) with components u(i) j :=U i j are
unit vectors (let us also define the unit vectors r(i) in the same way from the matrix R).
Thus

A : R = ∑i, j SiiU i jRi j = ∑i Siiu(i) · r(i)
≤∑

i
Sii = Tr(S) = Tr(S ·U ·U t) = Tr(A ·U t) = A : U.

Also note that maximizing A : R is the same as minimizing ||A−R||2 (where the norm of
a matrix is defined as the square root of its scalar product with itself). Indeed, we have
||A−R||2 = ||A||2−2A : R+ ||R||2 and both ||A||2 and ||R||2 = Tr(R ·Rt) = Tr(I) = N
are constants).

Analogously, in his first works about the quadratic optimal transport, Y. Brenier
noted that Monge-Kantorovich theory allowed to provide a similar decomposition for
vector fields instead of linear maps.

The statement is the following:

Theorem 1.53. Given a vector map ξ : Ω→ Rd with Ω ⊂ Rd , consider the rescaled
Lebesgue measure LΩ on Ω and suppose that ξ#LΩ is absolutely continuous; then,
one can find a convex function u : Ω→ R and a measure-preserving map s : Ω→ Ω

(i.e. such that s#LΩ = LΩ) such that ξ = (∇u) ◦ s. Moreover, both s and ∇u are
uniquely defined a.e. and s solves

max
{ˆ

ξ (x) · r(x)dx : r#LΩ = LΩ

}
.

Note that the statement concerning non-singular matrices exactly corresponds to
this one when one takes Ω = B(0,1), since the assumption on the image measure cor-
responds to the non-degeneracy of the linear map x 7→ Ax, the matrix S is the gradient
of the convex function x 7→ 1

2 (Sx) · x and the unitary matrix U is measure preserving.
We give a proof of this statement, see also [85].
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Proof. Consider µ = ξ#LΩ and take the optimal transport for the quadratic cost be-
tween µ and LΩ. This transport is the gradient of a convex function, that we will
call u∗. Set s := (∇u∗) ◦ ξ , and note that s#LΩ = (∇u∗)#(ξ#LΩ) = (∇u∗)#µ = LΩ,
hence s is measure preserving. Then, take the Legendre transform u of u∗ and note
(∇u)◦ s = (∇u)◦ (∇u∗)◦ξ = ξ (indeed, the gradients of both u and u∗ are defined a.e.
and we always have (∇u)◦(∇u∗) = id). In this way we have the desired decomposition.

The uniqueness of ∇u comes from the fact that ξ = (∇u) ◦ s with s measure-
preserving implies (∇u)#LΩ = µ and there is only one gradient of a convex function
transporting a given measure (here, LΩ) to another given measure (here, µ), and it is
the optimal transport between them.

Once ∇u is unique, the uniqueness of s is obtained by composing with ∇u∗.
Concerning the optimality of s, use the optimality of ∇u. If we use, instead of the

minimization of the quadratic cost the maximization of the scalar product, we get
ˆ
(∇u(x) · x)dx≥

ˆ
Ω×Rd

(y · x)dγ(x,y)

for every γ ∈Π(LΩ,µ). If we consider a measure-preserving map r : Ω→Ω and build
γ = (r,ξ )#LΩ, we get

ˆ
(ξ (x) · r(x))dx =

ˆ
(y · x)dγ(x,y)

≤
ˆ
(∇u(x) · x)dx =

ˆ
(∇u(s(x)) · s(x))dx =

ˆ
(ξ (x) · s(x))dx,

which provides the optimality of s.

1.7.3 Matching problems and economic interpretations
Optimal transport problems have several “abstract” economic interpretations, where
the role transport plans γ is that of matchings between different actors of an economy,
and the function c(x,y) does not represent anymore a cost for moving from x to y but
rather a compatibility of the two objects x and y or the opposite of the “utility” for x and
y to be coupled. Consider that, in economics, it is typical to maximize utility, instead
of minimizing costs.

A first easy and well known example is that of the maximization of the productivity.
A company has a certain number of employees of different types (let us use the variable
x for the types and the measure µ for the distribution of these types, i.e. the quantity of
employees for each type) and some tasks to attribute (we use y for the different kinds
of tasks, and ν for the distribution of different tasks), and if the productivity p(x,y) of
the employees of type x when they work out the task y is known, then the goal of the
company is to solve

max
{ˆ

p(x,y)dγ : γ ∈Π(µ,ν)

}
.

This problem is easy to understand, but we want to analyze some other ones where
also the Kantorovich potentials play a role.
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The first example is that of stable marriages. Given two populations W of women
and M of men, represented by a measure µ on W and a measure ν on M, we denote by
uw(x,y) the interest of Ms x for Mr y, and um(x,y) that of Mr y for Ms x. The problem
is that of finding a stable set of marriages, i.e. a measure γ on the set W ×M giving
how many women of type x get married with how many men of type y. This γ must
obviously belong to Π(µ,ν), and we want to select such a γ so that it is stable, i.e. no
new couple (x,y) will decide to divorce (each one from his/her current partner) to go
together. The case that we are interested in is that of transferable utility: it means that
we suppose that, once x and y get married, they decide how to split their total utility
uw(x,y)+ um(x,y). They divide into a quantity ϕ(x), which is the utility surplus for
Ms x (now Mrs y, but let us call her with her maiden name) and ψ(y) for Mr y. Note
that in this case only the sum U(x,y) := uw(x,y)+um(x,y) really plays a role. A stable
marriage is a triple (γ,ϕ,ψ) such that U(x,y) = ϕ(x)+ψ(y) γ-a.e. (this represents the
fact that ϕ and ψ are a splitting of the total utility) and U(x,y) ≤ ϕ(x)+ψ(y) for all
(x,y) (this represents the fact that no pair (x,y) will be interested in quitting the status
quo). It is easy to see that this corresponds to an optimal γ with its potentials. We
mention [126] for an interesting discussion of this problem. On the other hand, the
case of non-transferable utility is much more involved and does not correspond to a
transport problem.

If in the previous example the potentials represented splitted utilities, we can think
of other cases where they are really prices. Think indeed that the variable x represents
the goods that are available on the market and that µ is the distribution (how many of
each type) of these goods, that we consider as fixed. The variable y plays the role of the
type of consumers, and ν is their distribution. Let u(x,y) be the utility of the consumer
y when he buys the good x. The goal is to determine the prices of the goods and
who buys what. Suppose for a while that the price ϕ(x) of each good is known; then,
each consumer will choose what to buy by solving maxx u(x,y)−ϕ(x). Let us denote
(by abuse of notation since usually we used minimization instead of maximization)
this quantity as ϕu(y). We describe the choices of the consumers through a measure
γ ∈Π(µ,ν) where γ(A×B) stands for the number of consumers of type y ∈ B buying
a good x ∈ A. The constraint γ ∈Π(µ,ν) stands for the constraints given by the supply
and the demand on the market (we say that the market is cleared). Another natural
condition to impose is the fact that each consumer only buys goods which are optimal
for him, i.e. that γ is concentrated over the set of pairs (x,y) with ϕu(y) = u(x,y)−
ϕ(x), i.e. such that x is an optimal choice, given ϕ , for y.

This means that we are lead to the following problem

find (γ,ϕ) such that γ ∈Π(µ,ν) and ϕ(x)+ϕ
u(y) = u(x,y) γ−a.e.,

and we can see again an optimal transport problem for the maximization of the cost
u. Indeed, the pairs (γ,ϕ) can be characterized as the solutions of the Kantorovich
problem

max
{ˆ

u dγ : γ ∈Π(µ,ν)

}
and of the dual problem

min
{ˆ

ϕ dµ +

ˆ
ϕ

u dν

}
.
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By the way, this optimal transport interpretation shows that a simple equilibrium con-
dition (clearing the market and only using rational choices of the consumers) implies
good news, i.e. the fact that the general satisfaction

´
u dγ is maximized.

One could remark that the values of the functions ϕ and ϕu are only defined up
to additive constants, which means that this procedures only selects the relative dif-
ferences of prices between goods, and not the complete price chart. Yet, natural as-
sumptions guarantee uniqueness up to additive constants of the solution of the dual
problem (it is the case, for instance, when x and y belong to Euclidean spaces, u(x,y)
is differentiable and one of the two measures has strictly positive density a.e.). In this
case, as soon as the price of one special good x̄ is known, then everything is uniquely
determined. A typical example can be obtained if the “empty” good is included in the
market. Let us denote by x0 a special good which corresponds to “not buying anything
at all”. We can normalize utilities by setting u(y,x0) = 0 for every y, but this is not
really important. However, we can assume that no seller will charge a price different
than 0 when selling this empty good. This fixes ϕ(x0) = 0 and allows for computing
the other prices. If the measure µ is such that µ({x0})> 0, then this means that there
are not enough goods on the market so as to satisfy all the demand, and that some of
the consumers will stay “out of the market”, i.e. they will buy the empty good.

Another interesting problem is obtained when the measure µ on the sets of goods is
not fixed, and we consider a class of goods which are sold by a unique company, acting
as a monopolist on this market. We suppose that the set X of feasible goods (those that
the company can technically produce) is known, and that it includes the empty good x0.
The goal of the company is, hence, to select at the same time a measure µ (how much
production for each type of goods) and a price list ϕ : X → R, satisfying ϕ(x0) = 0,
so as to maximize its profit, assuming that each consumer will buy according to the
maximization of x 7→ u(x− y)−ϕ(x).

This problem may be expressed in two ways: indeed, the equilibrium condition of
the previous problem (when µ was fixed) induces a relationship between µ and ϕ , and
this allows to consider either one or the other as the variable of the problem.

Probably the easiest way to describe the problem is to think that the company
chooses the price list ϕ , that every consumer y selects its optimal good X(y)∈ argminx u(x,y)−
ϕ(x), and that the total income (supposing zero production costs) of the company
is
´

ϕ(X(y)) dν(y) =
´

ϕ dµ for µ = X#ν . The measure µ is also the measure of
the real production of goods that the company will implement. In other words, it
will adapt its production to the choice of the consumers. Anyway ϕ has then to be
chosen so as to maximize

´
ϕ(X(y)) dν(y), taking into account that the map X de-

pends on ϕ . The problem can also be adapted so as to take into account production
costs, in the form of a function c : X → R, and the maximization becomes that of´
(ϕ−c)(X(y)) dν(y) =

´
(ϕ−c) dµ . This formulation should be revisited in case the

optimal point X(y) is not uniquely defined (since different optimizers for the consumer
could lead to very different incomes for the company). We refer to [179] where differ-
ent relaxed formulations (defined as “optimistic” and “pessimistic”). Anyway, we will
see in a while that in a very reasonable case there is no ambiguity.

The other approach is complementary to this one: we can give the company the
right to select the production measure µ , then the market is cleared thanks to the pre-
vious considerations, thus determining a measure γ ∈ Π(µ,ν) and a potential ϕ . The
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goal of the company is to maximize
´
(ϕ − c)dµ , where µ is the unknown and ϕ de-

pends on µ . Note that this is an optimization problem in the space of measures which
involves the Kantorovich potential ϕ in the transport from a given measure ν to µ .

The case which is studied the most is the case where both x and y belong to convex
sets X ,Y ⊂ Rd and the function u(x,y) = x · y is a scalar product. This is natural if
one thinks that goods can be described through a set of parameters (think at cars: we
can use number of seats, size of the luggage van, fuel consumption, maximal speed. . . )
and that consumers are described through the importance that they give to each one of
these parameters. Customers of type y = (y1, . . . ,yn) are ready to spend yi extra unit of
money for every unit increase in the i-th parameter of the good. This means that the
values of the coefficients yi give the relative value of each feature of the good compared
to money (in the case of cars, we can expect that they will be higher for richer people,
who care less about money, or for people who like a lot, or need a lot, cars). The empty
good can be chosen as the point x0 = 0 ∈ Rd .

In this case it is easy to check that ϕu is simply the Legendre transform ϕ∗ of convex
analysis. Standard considerations in convex analysis imply that, if ϕ∗ is differentiable
at y, then the optimal choice x in maxx x · y−ϕ(x) is exactly x = ∇ϕ∗(y) and gives
uniqueness a.e. in case ν is absolutely continuous (due to differentiability properties of
convex functions). Then, the map ∇ϕ∗(y) sends ν onto µ and, conversely, ∇ϕ sends µ

onto ν . Hence, the optimization problem reads

max
{ˆ

ϕµ dµ : µ ∈P(X)

}
,

where, for every µ , ϕµ is the unique convex function with (∇ϕ)#µ = ν and ϕ(x0) =
0. It can also be rephrased as an optimization problem in the class of convex func-
tions, if one takes ψ = ϕ∗ as an unknown, since in this case one should maximize´

ψ∗ d(∇ψ)#ν =
´
(ψ∗(∇ψ(y))− c(∇ψ(y))) dν , but we know ψ∗(∇ψ(y))+ψ(y) =

y ·∇ψ(y), which turns the problem into

max
{ˆ

(y ·∇ψ(y)−ψ(y)− c(∇ψ(y))) dν(y) : minψ = 0,ψ convex
}
,

the constraint minψ = 0 coming from 0 = ψ∗(0) = supy 0 ·y−ψ(y). This is a standard
calculus of variations problem, but considered in the restricted class of convex func-
tions. It has been deeply studied in [262], and it is usually known as principal-agent
problem.

For more general couplings u(x,y) [168] studied fine features on the problem, and
in particular which assumptions on the utility u provide a convex optimization prob-
lem. Interestingly, the condition to guarantee this convexity is connected to the MTW
assumption that we will mention in Section 1.7.6 for regularity.

1.7.4 Multi-marginal transport problems
This recent part of the theory of optimal transport is becoming more and more popular
and finds applications in many different fields. We will only give a brief sketch of what
is done or can be done on this topic.
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It is not difficult to imagine that, instead of using measures γ ∈P(X ×Y ) with
prescribed marginals on the two factors X and Y , one could consider more than two
marginals. Take some spaces X1,X2, . . . ,XN , define X := X1×X2× ·· ·×XN , take a
cost function c : X → R∪{+∞}, some measures µi ∈P(Xi), and solve

min
{ˆ

X
c(x1, . . . ,xN)dγ : γ ∈P(X ), (πi)#γ = µi

}
,

where πi : X → Xi is the canonical projection map. Duality could be performed in the
same way as for the two-marginal case, getting to problems such as

max

{
∑

i

ˆ
Xi

ϕi dµi : ϕi : Xi→ R, ∑
i

ϕi(xi)≤ c(x1, . . . ,xN)

}
.

The existence of a transport map (in the sense that there exist maps Ti : X1→ Xi, i≥ 2,
such that the optimal γ is of the form γ = (id,T2, . . . ,TN)#µ1) is a much more delicate
question than the usual case. In some sense, it corresponds to considering the above
transport problem as a two-marginal Monge problem on the spaces X1 and X2×·· ·×
XN . Yet, the difference in “dimensions” between the source and target spaces makes
the existence of an optimal map trickier. On the other hand, the image measure on
X2× ·· ·×XN is not really prescribed, but only its marginals on X2, . . . ,XN are fixed.
This means that extra optimality properties should be taken into account.

This kind of problems may have several different interpretations. For a comprehen-
sive survey about multi-marginal transport problems and their applications in physics
and economics, see [249].

Among the first examples that have been treated in this setting we cite the cost

c(x1, . . . ,xN) := ∑
i, j
|xi− x j|2,

which has many similar properties to the 2-marginal case (see [178]), and the determi-
nant cost, where the goal is to maximize

c(x1, . . . ,xd) := det(x1, . . . ,xd) or c(x1, . . . ,xd) := |det(x1, . . . ,xd)|,

where the determinant of a family of d vectors in Rd is intended as the determinant of
the matrix where these vectors are the columns (see [110]). The problem is interesting
for d > 2 since in 2D, from det(x,y) = x ·Ry (where R is the roation of 90◦), one comes
back to Brenier problem via a change-of-variable (also compare to Ex(2)). The case of
[178] will also appear in Section 5.5.5 in connection with barycenters.

Yet, we prefer to present some few cases where important applications naturally
lead to a multi-marginal transport problem. For instance, in economics (see [109]), one
can think at contracts with more than two agents (when a seller given a good to a buyer
in exchange of money, this is a contract between two agents; when somebody wants
to build a house, he buys some land and hires a carpenter and an architect, there are
at least four agents). A point in the space X means in this case a possible contract
between the agents x1,x2, . . . ,xN and c(x1, . . . ,xN) the global utility of this contract.
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A completely different setting is found in recent works from physics, in the frame-
work of Electronic Density Function Theory (see [96] and [129]). To describe in a
very simplified way these issues, consider a family of N electrons moving around a
nucleus. In quantum physics, the configuration of the electrons is described through
a wave function ψ : ΩN → C, where Ω is the physical region where the electrons live
(typically Ω = R3). For simplicity, we will ignore spin issues and the fact that the
symmetry properties of ψ depend on the distinction between Fermionic and Bosonic
particles. We will only consider that the quantity |ψ|2 is invariant under permutations
of the variables. This same scalar function denotes the joint law of the position of the
electrons. Hence, the probability measure ρ ∈P(R3) given by (π1)#(|ψ|2), represents
the law of the position of a single electron. The energy of the state is represented by
the following sum

h̄
ˆ

ΩN
|∇ψ|2 dx+

ˆ
ΩN

(V (x1)+ · · ·+V (xN))|ψ|2 dx+
ˆ

ΩN

(
∑
i< j

1
|xi− x j|

)
|ψ|2 dx,

where the first term represents the kinetic energy, the second the potential energy (cre-
ated, for instance, by the nucleus), and the last the electric interaction energy between
the electrons. As far as the parameter N is concerned, it is meant to be the atomic
number of an atom, which means that it ranges from 2 to one or two hundreds. The
minimization of the above energy becomes a multi marginal transport problem as soon
as one takes the semi-classical limit h̄→ 0 (see [129, 130], the rigorous limit for N > 2
is an ongoing work). This allows to get rid of the first term in the energy, and the second
is easily seen to depend on ρ only. Hence, the only unknown is the joint law of the posi-
tions of the N electrons, i.e. the probability γ ∈P((R3)N) given by γ = |ψ|2dx1 . . .dxN ,
with marginals all equal to ρ . The cost c is given by

c(x1, . . . ,xN) := ∑
i< j

1
|xi− x j|

,

so that γ should minimize
´

cdγ under marginal constraints. The fact that c is neither
bounded nor finite (it goes to +∞ as soon as two electrons approach to each other)
is a strong difficulty of this problem even in the “easy” case N = 2. It is by the way
an interesting transport problem where configurations with equalities xi = x j cost the
most, so that the problem is meaningful and intriguing even and in particular when the
marginals are all equal (which would not be the case for costs increasingly depending
on the distances).

We observe that we already faced several examples of “symmetric” cost functions,
meaningful when the marginals are identical (which is not the case for the costs in
[178] and [110]). This raises several questions about symmetric minimizers. Indeed,
that all these problems can be restricted to the set of plans γ which are invariant un-
der permutations of the components. The theory of symmetric transport problems, in
connections with variant of polar factorization theory and with self-dual convex prob-
lems, has been investigated a lot by N. Ghoussoub and collaborators, and we refer to
[180, 181] without entering into extra details.

We finish this section by underlining another point: in evolution problems, and
particularly in fluid mechanics, a natural Lagrangian point of view is the description
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of the global movement by using a measure on the set of possible trajectories. This
typically requires the use of probabilities on the set of continuous or Lipschitz paths on
[0,1] but any kind of time-discretization of such a setting can be interpreted in terms of
measures on ΩN , where Ω is the state space and N represents the number of time steps,
each one of length τ = 1/N. In this case the marginals are somehow “ordered” and the
cost takes into account this feature: for instance, natural costs could be

c(x1, . . . ,xN) =
N−1

∑
i=1
|xi− xi+1| or c(x1, . . . ,xN) =

N−1

∑
i=1

|xi− xi+1|2

τ
,

which are, respectively, the total length of a discrete path or the total kinetic energy (the
term |x− y|2/τ standing for the integration over a time interval of length τ of a speed
(x−y)/τ). Let us mention that the continuous counterpart of this last cost, i.e. c(ω) :=´ 1

0 |ω
′(t)|2dt for ω ∈ C := H1([0,1];Ω) appears in Brenier’s variational formulation

of the incompressible Euler equation (see [84]), which gives rise to a minimization
problem such as

min
{ˆ

H
c(ω)dQ(ω) : Q ∈P(C ), (et)#Q = LΩ, (e0,e1)#Q = γ0,1

}
,

where et : C → Ω is the evaluation map et(ω) := ω(t), LΩ is the rescaled Lebesgue
measure over Ω and γ0,1 is a fixed measure in P(Ω×Ω) with both marginals equal to
LΩ

1.7.5 Martingale optimal transport and financial applications
We present in this section two problems from mathematical finance involving multi-
marginal optimal transport. To analyze them, one should know what is an option. An
option is a contract giving the owner the right to buy or sell some financial assets at
some given conditions, which could bring a monetary advantage. The most typical
case is the European Call option, saying “at time T you will have the right to buy this
asset at price K”: should the price be ST , higher than K, then you gain ST −K; should
it be lower, than simply do not use the option, so that finally the gain is (ST −K)+.
More generally, we call option any financial contract giving the owner a gain which is
a function of the value ST at time T of a given asset (a share, for instance). This value
is a random variable (based on a probability P) evolving in time. More exotic options
such that their payoff depends on the whole history (St)t of the asset value also exist.
One of the main issue of financial mathematics is to give formulas to compute the cor-
rect price for these contracts. This is based on the no-arbitrage assumption: the only
reasonable price for a contract is the one which avoids the existence of arbitrage12 op-
portunities on the market, i.e. the possibility of buy-and-sell this contract together with
the related underlying asset and to produce a positive amount of money out of nothing
(more precisely, since all the values are random variables: to produce with probabil-
ity 1 a non-negative amount of money, which is strictly positive with strictly positive
probability). A general theorem in financial mathematics (see for instance [140] for

12The absence of arbitrage is usually refereed to as “no free lunch”.
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references) states that all these no-arbitrage prices are actually the expected value of
the contract according to a probability Q which is in general not P (but P� Q and
Q� P, so that they have the same negligible sets) and which has the property that all
the asset values on the market are martingales under Q. This means, for instance, that
the price of a European Call option should be EQ[(ST −K)+]. Note that the knowledge
of this price for every K implies the knowledge of the law of ST under Q.

A first problem that one could find in finance is the following: consider a com-
plicated option with payoff depending on the values at time T of several assets Si

T at
the same time T . One should compute EQ[ f (S1

T ,S
2
T , . . . ,S

N
T )]. Yet, this depends on the

joint law of the different assets under the unknwon probability Q. If we suppose that
this option is new on the market, but that all the European Calls on each of the assets Si

are regularly sold on the market for each strike price K, then this means that we know
the marginal laws µ i under Q of each asset, and we only lack the joint law. We can
have an estimate of the correct price of the option by computing

min/max
{ˆ

f (x1,x2, . . . ,xN) dγ : (πi)#γ = µi

}
which is nothing but a transport problem. We ignored here the constraints on the fact
that Q should make the asset value process a martingale since they are already included
in the law of each asset and do not involve the joint law. Indeed, in this case the different
marginals represent different financial assets, and not different instant of times, and the
martingale condition does not play any role13.

Another problem, much more intriguing, can be obtained when one considers a
single asset, but uses several marginals for several time steps. This allows to consider
exotic options depending on the whole history of the asset value. Consider a process
(St)t defined for various instants of time (we will consider discrete time models for
the sake of simplicity: t = 0,1, . . . ,N). Suppose that an option pays f (S0,S1, . . . ,SN).
Suppose that European Calls are traded in the market for each maturity time t and each
strike price K, which provides the law of St under the unknown martingale measure Q.
Then, the price of the option may be estimated by solving

min/max
{
EQ[ f (S0,S1, . . . ,SN)] : (Si)#Q= µ

i, (St)t is a martingale under Q
}
.

This can also be expressed in terms of the measure γ = (S0,S1, . . . ,SN)#Q as

min/max
{ˆ

f (x1,x2, . . . ,xN) dγ : (πi)#γ = µi, γ ∈MartN

}
,

where the set MartT is the set of discrete time martingale measures γ , satisfying for
each t ≤ N−1

ˆ
xt+1φ(x0,x1, . . . ,xt)dγ =

ˆ
xtφ(x0,x1, . . . ,xt))dγ. (1.7)

13We could have presented this problem in Section 1.7.4, but we preferred to do it here in order to
introduce the martingale setting.
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These problems are now called martingale optimal transport problems and are out of
the framework of usual transport problems that we presented before. By the way, in
general there is no reason to hope for the existence of an optimal transport map. Indeed,
even in the easiest case, i.e. two marginals, this will not be the case. The reason is the
fact that the only martingale measure which is of the form γT = (id,T)#µ is that with
T = id. This can be seen from Equation (1.7), since it gives

ˆ
T(x)φ(x)dµ =

ˆ
yφ(x)dγT =

ˆ
xφ(x)dγT =

ˆ
xφ(x) dµ,

which implies, φ being an arbitrary test function, T(x) = x µ-a.e. This means that, un-
less ν = µ , the martingale transport problem with two marginals admits no admissible
transport plan issued by a transport map. On the contrary, it is possible to realize γ as
a combination of two transport maps, and optimality results of this kind are proven in
[32, 194]. For a general presentation of the martingale optimal transport problem, see
[33] and [174].

We finish this section presenting an alternative approach, leading to the same prob-
lems, and based on the idea of optimal hedging. Think that f (S0, . . . ,SN) is the loss
that a company would face, depending on the prices of the asset S (i.e. it is the amount
of money that the company needs to pay, because of a debt of or other contracts). The
company wants to “cover” (or “hedge”) this amount, by using the possibilities in the
market. In order to hedge this amount, the company can

• buy usual options, based on the value of the asset at time t, i.e. buy a contract
whose value will be φ(St), and whose price is known to be

´
φ dµt ;

• buy some amounts of the asset itself: at time t ≤ N− 1, it is possible to but for
a price St and to re-sell at price St+1; the number of assets to buy can only be
chosen according to the information that are available at time t, which means
that one can buy (and then re-sell) an amount of the form ψ(S0,S1, . . . ,St); this
results in covering a quantity ψ(S0,S1, . . . ,St)(St+1−St), at cost 0.

The optimal hedging problem becomes

min

{
N

∑
t=0

ˆ
ϕt dµt :

N

∑
t=0

ϕt(xt)+
N−1

∑
t=0

ψ(x0,x1, . . . ,xt)(xt+1− xt)≥ f (x0,x1, . . . ,xN)

}
.

It is not difficult to check, thanks to the marginal constraints and to the martingale
condition (1.7), that this problem is exactly the dual of the above martingale transport
problem.

1.7.6 Monge-Ampère equations and regularity
We saw in Section 1.3.1 that the optimal transport for the quadratic case is of the form
T(x) = ∇u(x), for a convex function u. If this function is smooth and strictly convex,
and the two measures µ and ν are absolutely continuous (say, with densities f and
g) then we can write the condition T#µ = ν in a PDE form. Indeed, this condition is
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equivalent, if µ = f (x)dx and ν = g(y)dy, and if T is C1 and injective, to the Jacobian
condition

det(DT(x)) =
f (x)

g(T(x))

which can be obtained as a consequence of a simple change-of-variable computation,
as explained here below.

Box 1.14. – Memo – Change-of-variable and image measures

Proposition - Suppose that ρ ∈ L1(Ω) is a positive density on Ω⊂ Rd and T : Ω→ Rd

is a Lipschitz injective map, which is thus differentiable a.e. We suppose that det(DT) 6= 0
a.e. on {ρ > 0}. Then the image measure T#ρ is absolutely continuous and its density ρT
is given by

ρT(y) =
ρ(T−1(y))

det(DT(T−1(y)))
.

If T is non-injective, the formula becomes T#ρ = ρT ·L d with ρT given by

ρT(y) = ∑
x:T(x)=y

ρ(x)
det(DT(x))

.

The same formulas stay true if T is not Lipschitz, but if there are measurable sets Ei such
that |Ω\

⋃
i Ei|= 0 and T is Lipschitz continuous on each set Ei (see also Definition 3.13 for

countably Lipschitz functions), with the differential DT which is actually the differential of
the restriction of T to each set where it is Lipschitz continuous (and coincides thus with the
approximate differential of T, see Section 3.3.2).

In the particular case where T = ∇u (where we suppose u to be strictly convex just
to guarantee injectivity of T), this becomes the so-called Monge-Ampère equation

det(D2u(x)) =
f (x)

g(∇u(x))
, (1.8)

which is a nonlinear PDE of elliptic type. Nonlinearity comes both from the right-
hand side with the term g(∇u) but also from the higher order term det(D2u). This
Jacobian term is non linear, but has some monotonicity property when we assume
the matrix D2u to be positive (which is the case for convex functions), as we have
0 ≤ A ≤ B⇒ det(A) ≤ det(B). This monotonicity is anyway very much degenerate,
but enough to classify this non-linear PDE as a fully nonlinear (degenerate) elliptic
equation. We refer, for instance, to [191] for the general theory about this equation.

In our case, it is important to understand the meaning and the boundary conditions
to be associated to this equation.

First, let us consider the boundary conditions. In view of the transportation meaning
of this PDE, if we consider µ ∈P(Ω) and ν ∈P(Ω′), there is no point in imposing the
behavior of u or ∇u on ∂Ω. On the contrary, the natural condition is just ∇u(Ω) = Ω′,
which is a global condition on u. This corresponds, roughly speaking and only when u
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is a homeomoprhism, to u(∂Ω) = ∂Ω′. This particular sort of “boundary” condition is
usualy called second boundary value problem for the Monge-Ampère equation.

We define various notions of solutions for (1.8):

• we say that u satisfies (1.8) in the Brenier sense if (∇u)#( f ·L d) = g ·L d (and
this is actually the sense to be given to this equation in optimal transport);

• we say that u satisfies (1.8) in the Alexandroff sense if the measure ρ defined via
ρ(A) := |

⋃
x∈A ∂u(x)| is absolutely continuous and its density equals the right-

hand side of (1.8) a.e. (warning: the fact that ρ is a measure is not straigthfor-
ward, one has to use properties of convex functions, as in Lemma 1.1.12 and
Theorem 1.1.13 in [191]);

• we say that u satisfies (1.8) in the viscosity sense if it satisfies the usual com-
parison properties required by viscosity theory but restricting the comparisons to
regular convex test functions (this is possible because of the monoticity proper-
ties of the determinant);

• we say that u satisfies (1.8) in the classical sense if it is of class C2 and the
equation holds pointwise.

Note that all these notions except the first may be also applied to the more general
equation detD2u = f (for fixed f , without the structure f/g◦T), while the first one just
applies to this specific transportation case.

The regularity of the solutions of (1.8), which implies regularity results for the op-
timal transport map, has been studied in the ’90s by Caffaelli, with very strong results.
The results we want to use are well summarized in Theorem 50 of [292]:

Theorem 1.54. If f and g are C0,α(Ω) and are both bounded from above and from
below on the whole Ω by positive constants and Ω is a convex open set, then the unique
Brenier solution u of (1.8) belongs to C2,α(Ω)∩C1,α(Ω) and u satisfies the equation
in the classical sense (hence also in the Alexandroff and viscosity senses).

We just detail a possible bibliographical path to arrive at this result. It is not easy to
deal with Brenier solutions, so the idea is to consider viscosity solutions, for which it
is in general easy to prove existence by Perron’s method. Then prove some regularity
result on viscosity solutions, up to getting a classical solution. After that, once we
have a classical convex solution to Monge-Ampère equation, this will be a Brenier
solution too. Since this is unique (up to additive constants) we have got a regularity
statement for Brenier solutions. We can find results on viscosity solutions in [99],
[101] and [100]. In [99] some conditions are given so as to ensure strict convexity of
the solution of detD2u = f when f is bounded from above and below. In [101] for
the same equation it is proved C1,α regularity provided we have strict convexity. In this
way the term f/g(∇u) becomes a C0,α function and in [100] it is proved C2,α regularity
for solutions of detD2u = f with f ∈C0,α .

Some recent improvements on this regularity theory are due to De Philippis and
Figalli, who worked on this natural question: if f and g are bounded from above and
below, then the transport map is a BV map (since it is the gradient of a convex func-
tion), which happens to be continuous (since u ∈C1,α ); its derivative has no jump part
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(because of continuity), and the question arises whether T ∈W 1,1, i.e. u ∈W 2,1. The
answer is yes, as it is shown in [148, 150, 151], and one can even prove sharper esti-
mates (D2u is not only L1 but slightly better, including some L1+ε results, also proven
by Schmidt in [281]).

The situation becomes much trickier when dealing with different costs than the
quadratic one. If the cost c satisfies the twist condition it is still possible to express
the optimal map T in terms of a gradient, T(x) = (∇xc(x, ·))−1(∇ϕ(x)). If we write
∇xc(x,T(x)) = ∇ϕ(x), differentiating this equality we get

D2
xxc(x,T(x))+D2

xyc(x,T(x))DT(x) = D2
ϕ(x),

which means that the equation on det(DT) reads

det(D2
xyc(x,T(x)))det(DT(x)) = det(D2

ϕ(x)−D2
xxc(x,T(x))),

i.e.

det(D2
ϕ(x)−D2

xxc(x,T(x))) = det(D2
xyc(x,T(x)))

f (x)
g(T(x))

,

which is a Monge-Ampère-type equation of the form

det(D2
ϕ(x)−A(x,∇ϕ(x))) = F(x,∇ϕ(x)).

The regularity problem of the Kantorovich potentials for general costs has been
a long-standing problem, and it was listed as open in [292]. It is now well clarified
after a remarkable paper by Ma, Trudinger and Wang, who found out in [220] a key
assumption on the cost c so as to be able to develop regularity estimates, based on
some Pogorelov-type methods. The assumption on c is very technical and requires
some inequalities on its fourth-order derivatives. We do not want to write them here,
but it is worth noting that these assumptions have later been proven to be sharp by
Loeper in [217]. In particular, the case c(x,y) = |x− y|2 is covered by this assumption
but is a limit case, and no other power cost |x− y|p for p ∈]1,+∞[ satisfies it. The cost√

ε2 + |x− y|2 also satisfies the MTW assumption for every ε > 0, and this allowed
some approximation result for the linear cost |x− y| (see [211]). The convexity of the
domain Ω is also replaced by a suitable notion of c-convexity that we do not detail
here. The connection with convexity properties related to c-concave functions is also
underlined in [168], as we saw in Section 1.7.3. The theory has been deeply studied
after this discovery and many costs have been considered: the case of the squared
distance on a manifold can also be investigated, and the condition translates into a
curvature condition on the manifold. We refer to [165] for an interesting survey of the
whole theory.
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Chapter 2

One-dimensional issues

This chapter is devoted to the special features of the 1D case, and to a less known
transport map in the higher-dimensional case, called the Knothe map, built from 1D
constructions and related to some degenerate transport cost. The discussion section
deals with applications of 1D transport maps to image processing and geometric in-
equalities.

2.1 Monotone transport maps and plans in 1D
We already discussed, in Section 1.3, the quadratic cost in 1D: as soon as the source
measure µ has no atoms, there exists an optimal map, which is monotone non-decreasing.

In this section we want to discuss monotone (in the following “monotone” means
“monotone non-decreasing”) transport maps between two given measures in terms of
their cumulative distribution functions, and generalize to the case where µ may have
atoms. This discussion is independent of optimal transport considerations.

Box 2.1. – Memo – Cumulative distribution function

Definition - Given a probability measure µ ∈P(R) we define its cumulative distribu-
tion function Fµ through

Fµ (x) = µ((−∞,x]).

The cumulative distribution function Fµ is easily seen to be non-decreasing and right-
continuous since if xn→ x with xn > x, then (−∞,x] = ∩n(−∞,xn] and hence µ((−∞,x]) =
limn µ((−∞,xn]) = infn µ((−∞,xn]). It is continuous at any point where µ has no atom
since if xn→ x with xn < x, then limn µ((−∞,xn]) = µ((−∞,x[).

The CDF Fµ is important because it characterizes the measure µ . Indeed, the sets of
the form (−∞,x] are enough to generate all open sets: we have µ(]a,b]) = Fµ (b)−Fµ (a),
µ(]a,b[) = sup{Fµ (t)−Fµ (a) : t < b} and the measure of any open set is obtained via
countable disjoint unions of open intervals.

In Rd the situation is trickier, but the knowledge of µ(]−∞,x1]× ·· ·×]−∞,xd ]) for
every x = (x1, . . . ,xd) is enough, as in 1D, to characterize µ (by finite differences one could

53



54 CHAPTER 2. ONE-DIMENSIONAL ISSUES

get all the semi-open rectangles ]x−1 ,x
+
1 ]×·· ·×]x

−
d ,x

+
d ], and by countable disjoint unions

all the open sets).

Unfortunately, the CDF above cannot always be inverted, as it is not always strictly
increasing, but we can define a pseudo-inverse:

Definition 2.1. Given a non-decreasing and right-continuous function F : R→ [0,1],
its pseudo-inverse is the function F [−1] : [0,1]→ R given by

F [−1](x) := inf{t ∈ R : F(t)≥ x},

where the infimum is a minimum as soon as the set is non-empty (otherwise it is +∞)
and bounded from below (otherwise it is −∞), thanks to right-continuity of F .

Note, as a simple consequence of the definition of pseudo-inverse, that we have

F [−1](x)≤ a⇔ F(a)≥ x ; F [−1](x)> a⇔ F(a)< x. (2.1)

We look now at some properties of the pseudo-inverse of cumulative distribution func-
tions.

Proposition 2.2. If µ ∈P(R) and F [−1]
µ is the pseudo-inverse of its cumulative distri-

bution function Fµ , then (F [−1]
µ )#(L

1 [0,1]) = µ .

Moreover, given µ,ν ∈P(R), if we set η := (F [−1]
µ ,F [−1]

ν )#(L
1 [0,1]), then η ∈

Π(µ,ν) and η((−∞,a]× (−∞,b]) = Fµ(a)∧Fν(b).

Proof. For the first part of the statement, using (2.1), we write

|{x ∈ [0,1] : F [−1]
µ (x)≤ a}|= |{x ∈ [0,1] : Fµ(a)≥ x}|= Fµ(a)

and this proves that the image measure is µ , using the characterization of a measure
through its CFD (see the Memo box 2.1 above).

For the second part of the statement, η ∈Π(µ,ν) is just a consequence of the first.
Then, let us compute

η((−∞,a]× (−∞,b]) = |{x ∈ [0,1] : F [−1]
µ (x)≤ a, F [−1]

ν (x)≤ b}|
= |{x ∈ [0,1] : Fµ(a)≥ x, Fν(b)≥ x}|= Fµ(a)∧Fν(b),

which is the desired equality.

Definition 2.3. We will call the transport plan η := (F [−1]
µ ,F [−1]

ν )#(L
1 [0,1]) the

co-monotone transport plan between µ and ν , and denote it by γmon.

Now, consider two measures µ,ν ∈P(R): we want to build a monotone transport
map (and not only a plan) sending µ onto ν , provided µ is atomless.

We first need a simple lemma on the CFD of atomless measures.
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Lemma 2.4. If µ ∈P(R) is atomless, then (Fµ)#µ = L 1 [0,1]. As a consequence,
for every ` ∈ [0,1] the set {x : Fµ(x) = `} is µ-negligible.

Proof. First note that Fµ is continuous because µ is atomless. Hence, for a ∈]0,1[, the
set {x : Fµ(x)≤ a} is a closed interval of the form ]−∞,xa], with Fµ(xa) = a. Hence,
µ({x : Fµ(x)≤ a}) = Fµ(xa) = a, which proves (Fµ)#µ = L 1 [0,1].

As a consequence, for ` ∈ [0,1], the sets {x : Fµ(x) = `} are µ-negligible, since
otherwise the image measure (Fµ)#µ would have an atom at `, which contradicts the
first part of the statement.

Theorem 2.5. Given µ,ν ∈P(R), suppose that µ is atomless. Then, there exists
unique a non-decreasing map Tmon : R→ R such that (Tmon)#µ = ν .

Proof. First, let us build one such a map. Let us consider the cumulative distribution
functions Fµ and Fν , and define the map Tmon through

Tmon(x) := F [−1]
ν (Fµ(x)).

This quantity is well-defined and belongs to R provided Fµ(x) ∈]0,1[ (so that the set
on which we take the infimum in Definition 2.1 is neither empty nor unbounded from
below). The sets {x : Fµ(x) = 0} and {x : Fµ(x) = 1} are µ-negligible thanks to
Lemma 2.4. Hence, Tmon is well-defined µ-a.e.

The fact that Tmon is monotone non-decreasing is obvious; we just have to prove
(Tmon)#µ = ν . Since we already know (F [−1]

ν )#(L
1 [0,1]) = ν , by composition we

just need to use Lemma 2.4, which proves (Fµ)#µ = L 1 [0,1].
We now pass to the proof of uniqueness. Consider any non-decreasing function T

such that T#µ = ν .
From monotonicity we have T−1(]−∞,T(x)])⊃]−∞,x]. We deduce

Fµ(x) = µ(]−∞,x])≤ µ(T−1(]−∞,T(x)])) = ν(]−∞,T(x)]) = Fν(T(x)),

which means T(x) ≥ F [−1]
ν (Fµ(x)). Suppose that the inequality is strict. This means

that there exists ε0 > 0 such that Fν(T(x)− ε) ≥ Fµ(x) for every ε ∈]0,ε0[. On the
other hand, from T−1(]−∞,T(x)− ε[)⊂]−∞,x[, we get Fν(T(x)− ε)≤ Fµ(x).

Hence, we obtain Fν(T(x)− ε) = Fµ(x) for every ε ∈]0,ε0[. Thus, Fν(T(x)− ε)
is the value that Fν takes on an interval where it is constant. These intervals are a
countable quantity, hence the values of Fν on those intervals are also countable. We
call `i these values. As a consequence, the points x where T(x) > F [−1]

ν (Fµ(x)) are
contained in

⋃
i{x : Fµ(x) = `i}. Lemma 2.4 proves that this set is negligible. This

allows to conclude T(x) = F [−1]
ν (Fµ(x)) µ-a.e.

Remark 2.6. Note that the previous proof was complicated by the possibility that the
cumulative distribution functions could be either discontinous or not strictly increasing.
Should Fν be continuous and strictly monotone (which means that ν is atomless and
supported on the whole R), then one would simply have

Tmon = (Fν)
−1 ◦Fµ .
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Remark 2.7. As a consequence of the explicit formula of the previous remark, one
can also study the regularity of this map Tmon depending on the regularity of µ and
ν . Indeed, as soon as these measures are fully supported and have no atoms, the two
functions Fµ and Fν are homeomorphisms, and so it Tmon. Moreover, if µ and ν are
absolutely continuous, with continuous densities which do not vanish, then they are
also diffeomorphisms, and so is Tmon. In general, the regularity of Tmon is one degree
higher than that of the two measures, as it is the case for Fµ ,Fν ,F−1

µ and F−1
ν .

In the next section we will see that the map Tmon that we have just built optimizes a
whole class of transport costs. To prove it, we will need the following characterization
of γmon and Tmon.

Lemma 2.8. Let γ ∈Π(µ,ν) be a transport plan between two measures µ,ν ∈P(R).
Suppose that it satisfies the property

(x,y),(x′,y′) ∈ spt(γ), x < x′ ⇒ y≤ y′. (2.2)

Then, we have γ = γmon. In particular, there is a unique γ satisfying (2.2).
Moreover, if µ is atomless, then γ = γTmon .

Proof. For the first part of the statement we just need to prove

γ((−∞,a]× (−∞,b]) = Fµ(a)∧Fν(b).

Indeed, from Proposition 2.2, this condition is satisfied by γmon, and we saw that this is
enough to characterize a measure on R2.

Consider the two sets A =]−∞,a]×]b,+∞[ and B =]a,+∞[×]−∞,b]. From the
assumption on γ , it is not possible to have both γ(A) > 0 and γ(B) > 0 (otherwise we
would have points in spt(γ) violating the condition (2.2)). Hence, we can write

γ((−∞,a]× (−∞,b]) = γ(((−∞,a]× (−∞,b])∪A)∧ γ(((−∞,a]× (−∞,b])∪B).

Yet, we have

γ(((−∞,a]× (−∞,b])∪A) = γ((−∞,a]×R) = Fµ(a)

and
γ(((−∞,a]× (−∞,b])∪B) = γ(R× (−∞,b]) = Fν(b).

This proves the first part of the claim. For the second part, we suppose µ to be
atomless. For any point x ∈ R one can define the interval Ix as the minimal interval
I such that spt(γ)∩ ({x}×R) ⊂ {x}× I. This interval can obviously be reduced to
a singleton. The assumption on γ implies that the interior of all these intervals are
disjoint (and ordered). In particular, there can be at most a countable quantity of points
such that Ix is not a singleton. Since these points are µ-negligible (as a consequence
of µ being atomless), we can define µ-a.e. a map T such that γ is concentrated on the
graph of T. This map will be monotone non-decreasing because of (2.2), and this gives
T = Tmon since we already know the uniqueness of a non-decreasing map with fixed
marginals (Theorem 2.5).
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2.2 The optimality of the monotone map
Now that we know quite well the properties, definitions and characterizations of the
map Tmon and of the plan γmon, we can see that they are, in the 1D case, optimal for
several different costs, and not only for the quadratic one. This is really specific to
the one-dimensional case, it will not be true in higher dimension. The cost that we
will consider will be convex functions of the difference x−y and, to stress the possible
asymmetric behavior of these costs, we prefer to write h(y− x) instead of h(x− y).

Theorem 2.9. Let h : R→ R+ be a strictly convex function, and µ,ν ∈P(R) be
probability measures. Consider the cost c(x,y) = h(y− x) and suppose that (KP) has
a finite value. Then, (KP) has a unique solution, which is given by γmon. In the case
where µ is atomless, this optimal plan is induced by the map Tmon.

Moreover, if the strict convexity assumption is withdrawn and h is only convex, then
the same γmon is actually an optimal transport plan, but no uniqueness is guaranteed
anymore.

Proof. We will use the fact that the support of any optimal γ is a c-CM set Γ. This
means in particular that for (x,y),(x′,y′) ∈ Γ we have

h(y− x)+h(y′− x′)≤ h(y′− x)+h(y− x′). (2.3)

We only need to show that this implies (in the strictly convex case) a monotone behavior
: we will actually deduce from (2.3) that x < x′ implies y ≤ y′, and this will allow to
conclude from Lemma 2.8.

To prove y≤ y′ suppose by contradiction y> y′ and denote a= y−x, b= y′−x′ and
δ = x′−x > 0. Condition (2.3) reads h(a)+h(b)≤ h(b+δ )+h(a−δ ). Moreover, the
assumption y′ < y implies b+δ < a. Hence, b+δ and a−δ are located in the segment
between b and a (and b < a). More precisely, we have

b+δ = (1− t)b+ ta, a−δ = tb+(1− t)a, for t =
δ

a−b
∈]0,1[.

Thus, strict convexity yields

h(a)+h(b) ≤ h(b+δ )+h(a−δ )

< (1− t)h(b)+ th(a)+ th(b)+(1− t)h(a) = h(a)+h(b).

This gives a contradiction and proves the statement in the strictly convex case.
The statement when h is only convex is trivial if h is constant (since every γ is

optimal) and, if not, it is obtained by approximation. Lemma 2.10 below proves that
there exist a sequence of strictly convex functions hε such that h≤ hε ≤ (1+ ε)h+ ε .
Let us take the transport cost cε(x,y) := hε(y− x). In this case we know that γmon
optimizes the cost

´
cε dγ and hence

ˆ
h(y− x)dγmon ≤

ˆ
hε(y− x)dγmon ≤

ˆ
hε(y− x)dγ ≤ ε +(1+ ε)

ˆ
hε(y− x)dγ

for all γ ∈ Π(µ,ν). Passing to the limit as ε →, we get that γmon also optimizes the
cost c.
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Lemma 2.10. For every non-constant convex and positive function h : R→ R+ and
every ε > 0 there exists hε : R→ R+ strictly convex, such that h≤ hε ≤ (1+ ε)h+ ε .

Proof. We just need to prove that there is a strictly convex function f : R→ R+ such
that f ≤ h+ 1. Then, we will take hε := h+ ε f . From the fact that h is convex, it is
bounded from below by an affine function, and we have h(t)≥ (at +b)+ (we take the
positive part since we also know h≥ 0). It can be checked that

f (t) :=
1
2

√
4+(at +b)2 +

1
2
(at +b)

is strictly convex, and satisfies f (t)≤ 1
2 (2+ |at +b|+(at +b)) = 1+(at +b)+.

Remark 2.11. Positivity of the function h is not really necessary, as soon as µ and ν

satisfy some integrability conditions so that inf(KP) > −∞. For instance, if we have´
|x|dµ(x),

´
|y|dν(y) < +∞, we can add an affine function to h and make it convex,

and the cost of this affine function does not depend on γ and is finite (see Example 2.14
below).

Remark 2.12. We stress that a completely analogous proof could be used to prove that
optimal maps for strictly concave costs (of the form h(x−y) for h strictly concave) are
monotone decreasing, instead of monotone increasing. Compare to what described in
Section 3.3.2.

Remark 2.13. Also, the optimality of γmon is true under more general assumptions, i.e.
for some costs which are not of the form h(x− y), but satisfy the twist condition. See
Ex(10).

Easy examples where c is convex but not strictly convex and Tmon is not the unique
optimal transport map may be built as follows.

Example 2.14 (Linear costs). Suppose that c(x,y) = L(x− y), the map a : Rd → R
being linear. In this case any transport plan γ is optimal, and any transport map as well.
This can be easily seen if one writes

ˆ
L(x− y) dγ =

ˆ
L(x) dγ−

ˆ
L(y) dγ =

ˆ
L(x) dµ−

ˆ
L(y) dν ,

which shows that the result does not depend on γ but only on its marginals. This general
example works for µ,ν compactly supported (so that we do not have any problem of
integrability of L(x) and L(y)), and in any dimension. Hence, also in 1D.

Example 2.15 (Distance costs on the line). Suppose that c(x,y) = |x− y|, and that
µ,ν ∈P(R) are such that supspt(µ) < infspt(ν). In this case as well any transport
plan γ is optimal, and any transport map as well. This can be seen by noting that for
every (x,y) ∈ spt(µ)× spt(ν) we have c(x,y) = y− x, which is again a linear cost.

Example 2.16 (Book-shifting). Consider c(x,y)= |x−y|, µ = 1
2L 1

[0,2] and ν = 1
2L 1

[1,3].
Then Tmon(x) = x+1 is the monotone transport plan transporting µ onto ν . Its cost is
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µ

Tmon

ν

µ

T
ν

µ ν

T

Tmon

Figure 2.1: The transport maps in the book shifting example

M(T) =
´
|Tmon(x)− x| dµ = 1. Yet, the transport map T given by

T(x) =

{
x+2 if x≤ 1,
x if x > 1,

also satisfies T#µ = ν and
´
|T(x)− x| dµ = 1

2

´ 1
0 2dx = 1, and is optimal as well.

Starting from the fact that the optimal transport for all these costs is the monotone
one we can express the cost for sending a given measure µ onto another measure ν in
terms of their cumulative distribution functions Fµ and Fν .

Proposition 2.17. Given µ,ν ∈P(R), consider the cost c(x,y) = h(x−y), where h is
a convex function. Then, we have

Tc(µ,ν) =

ˆ 1

0
h(F [−1]

ν −F [−1]
µ )dL 1.

If h(z) = |z| then this also coincides with
´
R |Fµ(t)−Fν(t)|dt.

Proof. The first part of the statement is just a consequence of the optimality of γmon
(Theorem 2.9).

The particular case of h(z) = |z| may be treated by geometric consideration: in-
deed, the integral

´ 1
0

∣∣(Fν)
−1− (Fµ)

−1
∣∣ equals the area of the part of the strip [0,1]×R

bounded by the graphs of (Fµ)
−1 and (Fν)

−1. In order to pass from the inverse func-
tions to the direct ones it is enough to turn the head and look at the same strip from the
variable t instead of x. But, if we want to prove it through computations, we have

ˆ
|F [−1]

ν (x)−F [−1]
µ (x)|dx

= L 2({(x, t) ∈ [0,1]×R : F [−1]
µ (x)≤ t<F [−1]

ν (x) or F [−1]
ν (x)≤ t<F [−1]

µ (x)}
)

= L 2({(x, t) ∈ [0,1]×R : F [−1]
µ (x)≤ t<F [−1]

ν (x)}
)

+L 2({(x, t) ∈ [0,1]×R : F [−1]
ν (x)≤ t<F [−1]

µ (x)}
)
.
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Fν Fµ

1

Fν Fµ

1

Figure 2.2: The computation of the areas in the last part of Proposition 2.17: the inte-
gral of |F [−1]

ν −F [−1]
µ | corresponds to seeing “horizontally” the graph on the left, while,

if seen “vertically”, we get the integral of |Fµ −Fν |.

Then, by Fubini’s theorem, we have

L 2({(x, t) ∈ [0,1]×R : F [−1]
µ (x)≤ t<F [−1]

ν (x)}
)

=

ˆ
R

L 1({x ∈ [0,1] : x≤ Fµ(t) and Fν(t)< x}
)
dt

=

ˆ
R

L 1({x ∈ [0,1] : Fν(t)< x≤ Fµ(t)}
)
dt.

Analogously,

L 2({(x, t) ∈ [0,1]×R : F [−1]
ν (x)≤ t<F [−1]

µ (x)}
)

=

ˆ
R

L 1({x ∈ [0,1] : Fµ(t)< x≤ Fν(t)}
)
dt.

and, summing up,

L 2({(x, t) ∈ [0,1]×R : F [−1]
µ (x)≤ t<F [−1]

ν (x) or F [−1]
ν (x)≤ t<F [−1]

µ (x)}
)

=

ˆ
R

L 1({x ∈ [0,1] : Fν(t)<x≤Fµ(t) or Fµ(t)<x≤Fν(t)}
)
dt

=

ˆ
R
|Fµ(t)−Fν(t)|dt.

This concludes the proof.

2.3 The Knothe transport
The Knothe transport, also known as Knothe-Rosenblatt rearrangement, is a special
transport map, which has a priori nothing to do with optimal transport, that may be
associated to two given measures µ,ν ∈P(Rd). It was independently proposed by
Rosenblatt [264] for statistical purposes and by Knothe [204] for applications to geo-
metric inequalities (see also Section 2.5.3). The main interesting point of such a map
is its computational simplicity. We will explain the principle of this transport map
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in the simpler case where the two measures are absolutely continuous: µ = f (x)dx,
ν = g(y)dy.

Let us first define the densities f̂ d and ĝd via

f̂ d(xd) =

ˆ
f (t1, t2, . . . , td−1,xd)dt1dt2 . . .dtd−1,

ĝd(yd) =

ˆ
g(s1,s2, . . . ,sd−1,yd)ds1ds2 . . .dsd−1

as well as, for k < d

f̂ k(xk,xk+1, . . . ,xd) =

ˆ
f (t1, . . . , tk−1,xk, . . . ,xd)dt1 . . .dtk−1,

ĝk(yk,yk+1, . . . ,yd) =

ˆ
f (s1, . . . ,sk−1,yk, . . . ,yd)ds1 . . .dsk−1.

It is easy to check that f̂ d and ĝd are the densities of (πd)#µ and (πd)#ν , where
πd : Rd → R is the projection on the last variable. More generally, f̂ k and ĝk are the
densities of µk = (πk,d)#µ and νk = (πk,d)#ν , where πk,d : Rd → Rd−k+1 is the map
given by the projection onto the variables from k to d:

πk,d(x1, . . . ,xk−1,xk,xk+1, . . . ,xd) = (xk,xk+1, . . . ,xd).

Then, we define, for k = 1, . . . ,d−1,

f k(xk,xk+1, . . . ,xd) =
f̂ k(xk,xk+1, . . . ,xd)

f̂ k+1(xk+1, . . . ,xd)
,

gk(yk,yk+1, . . . ,yd) =
ĝk(yk,yk+1, . . . ,yd)

ĝk+1(yk+1, . . . ,yd)
,

(note that all these functions will only be used on the set of points where the denomi-
nator does not vanish).

The function f k, considered as a function of xk with parameters (xk+1, . . . ,xd), can
be actually seen as the density of the disintegration of µk according to the variables
(xk+1, . . . ,xd), as well as gk is, in the same terms, the density of the disintegration of
νk. We briefly sketch below the main notions about the disintegration of measures.
With this language, the Knothe transport that we are going to define could be defined
even in the case of non-absolutely continuous measures, under some assumptions on
the absence of atoms. Anyway, for the sake of simplicity, we will give most of the
results in the case of absolutely continuous measures.

Box 2.2. – Important notion – Disintegrations of Measures

Definition - Consider a measure space X endowed with a Borel measure µ and a map
f : X → Y valued in a topological space Y . We say that a family (µy)y∈Y is a disintegration



62 CHAPTER 2. ONE-DIMENSIONAL ISSUES

of µ according to f if every µy is a probability measure concentrated on f−1({y}) and for
every test function φ ∈C(X) the map y 7→

´
X φ dµy is Borel-measurable and

ˆ
X

φ dµ =

ˆ
Y

dν(y)
ˆ

X
φ dµy,

where ν = f#µ .
The disintegration of µ is also often written (by abuse of notation) as µ = µy⊗ν .
In the particular case where X =Y×Z and f is the projection on the Y factor, we usually

identify the measures µy, which are “officially” defined as measures on Y ×Z concentrated
on {y}×Z, with measures on Z, so that we get

ˆ
Y×Z

φ(y,z)dµ(y,z) =
ˆ

Y
dν(y)

ˆ
Z

φ(y,z)dµy(z).

The disintegration of a measure µ exactly corresponds to the conditional law in prob-
ability. The reader is invited to consult [153] to find proofs about conditional probabilities
and then to translate them into the disintegration language. Indeed, in probability we usu-
ally speak of the conditional law of a random variable X knowing Y = y. This means that
the probability P on the probability space Ω is disintegrated according to the map Y : Ω→E
(where E is the image space of Y ) into probabilities Py and that we take the law of X under
Py. The existence and the uniqueness of the disintegration depend on some assumptions on
the spaces, but are true if X = Rd .

In order to define the Knothe rearrangement, let us start from k = d and define the
transport map Td : R→ R as the monotone non-decreasing transport map sending f d

onto gd (these functions being considered as probability densities). We know that this
map is well-defined and we know how to compute it in terms of cumulative distribution
functions. We will now define a family of maps Tk : Rd−k+1→ R, where the variables
of Tk will be (xk,xk+1, . . . ,xd). The first one is the map Td that we just defined. For the
sake of notations, we also define some maps T̂k : Rd−k+1→ Rd−k+1, given by

T̂k(xk,xk+1, . . . ,xd) = (Tk(xk,xk+1, . . . ,xd),Tk+1(xk+1, . . . ,xd), . . . ,Td(xd)).

Obviously Td and T̂d coincide. Now, if we write f k
(xk+1,...,xd)

and gk
(yk+1,...,yd)

for the

functions xk 7→ f k(xk,xk+1, . . . ,xd) and yk 7→ gk(yk,yk+1, . . . ,yd) and we interpret them
as densities of probability measures, we can define the map Tk, if we suppose that we
have already defined T j for j > k, in the following way: take Tk

(xk+1,...,xd)
to be the

monotone non-decreasing transport map sending f k
(xk+1,...,xd)

onto gk
T̂k+1(xk+1,...,xd)

.

Finally, the Knothe-Rosenblatt rearrangement T is defined by T = T̂1.
We want to check that this map T is a transport map from µ to ν .

Proposition 2.18. The Knothe-Rosenblatt rearrangement map T defined above satis-
fies T#µ = ν .
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Proof. We will prove by induction that T̂k satisfies

T̂k
#µ

k = ν
k (2.4)

(let us recall that µk = (πk,d)#µ and νk = (πk,d)#ν , are the marginals of µ and ν onto
the last d− k+ 1 variables). The equality (2.4) is fact is evident by construction for
k = d, and if we get it for k = 1 we have proven T#µ = ν .

We only need to prove that, if the claim is true for a given k+1, then it will be true
for k. To check the equality (2.4), we just need to use test functions χ(yk, . . . ,yd), and
checkˆ

χ(Tk(xk,xk+1, . . . ,xd),Tk+1(xk+1, . . . ,xd), . . . ,Td(xd))dµ =

ˆ
χ(yk, . . . ,yd) dν .

Moreover, by density (see below for Stone-Weierstrass theorem), it is enough to check
the equality above on functions χ which are separable, i.e. of the form χ(yk, . . . ,yd) =
φ(yk)ψ(yk+1, . . . ,yd). To ease the notations, for fixed k, we will denote by x̄ the vector
πk+1,d(x) and ȳ = πk+1,d(y). In this case we should check

ˆ
ψ ◦ T̂k+1

(ˆ
φ ◦Tk f k dxk

)
f̂ k+1 dx̄ =

ˆ
ψ(ȳ)

(ˆ
φ(yk)gk dyk

)
ĝk+1 dȳ.

In order to get this equality, we just need to use the definition of Tk, so that we get, for
every x, ˆ

φ ◦Tk f k dxk =

ˆ
φ(yk)gk

T̂k+1(x̄)(yk)dyk.

If we define G : Rd−k → R the function given by G(ȳ) =
´

φ(yk)gk
ȳ(yk)dyk, we have

now
ˆ

ψ ◦ T̂k+1
(ˆ

φ ◦Tk f k dxk

)
f̂ k+1 dx̄ =

ˆ
ψ ◦ T̂k+1 G◦ T̂k+1 f̂ k+1 dx̄.

By taking the image measure of f̂ k+1 under T̂k+1, the last expression is equal to´
ψ(ȳ)G(ȳ)ĝk+1(ȳ)dȳ, which is in turn equal to

ˆ
ψ(ȳ)

(ˆ
φ(yk)gk

ȳ(yk)dyk

)
ĝk+1(ȳ)dȳ

and proves the claim.

Box 2.3. – Memo – Stone-Weierstrass Theorem

Theorem - Suppose that X is a compact space and that E ⊂C(X) is a subset of the space
of continuous functions on X satisfying
i) constant functions belong to E
ii) E is an algebra, i.e. it is stable by sum and product : f ,g ∈ E⇒ f +g, f g ∈ E
iii) E separates the points of X , i.e. for all x 6= y ∈ X there is f ∈ E such that f (x) 6= f (y).
Then E is dense in C(X) for the uniform convergence (see, for instance [268]).
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This theorem is usually evoked to justify the density of polynomials when X ⊂ Rd .
Trigonometric polynomials are also dense for the same reason (and, by the way, this may
be used to prove the L2 convergence of the Fourier series). In product spaces X = Y ×Z,
linear combinations of separable functions of the form ∑i ϕi(y)ψi(z) are dense because of
this very same theorem.

We just proved that the map T is a transport map between µ and ν . Moreover,
by construction, should it be a regular map, the Knothe transport T has a triangular
Jacobian matrix with nonnegative entries on its diagonal. Compare this with the Bre-
nier optimal map for the quadratic cost: its Jacobian matrix is the Hessian matrix of
a convex function, which is symmetric (instead of traingular) and has also positive
eigenvalues. Moreover, we underline that assuming absolute continuity as we did, all
the monotone optimal transports that we use in defining T are invertible, since not only
the source measures are atomless, but also the arrival ones are atomless (they are all
absolutely continuous). As a consequence, each map T̂k is also invertible.

Remark 2.19. It is interesting to note that, due to its explicit definition, the Knothe
map automatically inherits some regularity properties from the measures µ and ν . In
general, T has the same regularity as µ and ν and not better. Indeed, each Tk is built
as a monotone transport, which gives one extra derivative than the regularity of µ

and ν (see Remark 2.7), but only in the direction of the variable xk. With respect
to the other variables, the explicit formula of monotone transports with cumulative
distribution functions allows to prove that the dependence on (xk+1, . . . ,xd) is as regular
as the densities are.

Remark 2.20. It is also interesting to note that the Knothe map defined above is the
(unique) transport map from µ to ν which is monotone for the lexicographic order, i.e.
the order where x < y is defined in the following way: “there exists k ∈ {1,2, . . . ,d}
such that x j = y j for j > k and xk < yk”.

Remark 2.21. How to define the Knothe transport for µ and ν which are not absolutely
continuous? The construction uses the notion of disintegration of measures (Box 2.2).

First we define the transport map Td :R→R as the monotone non-decreasing trans-
port map sending (πd)#µ onto (πd)#ν . We need to suppose that (πd)#µ has no atoms.
Then, for each k we consider (πk,d)#µ and we disintegrate it with respect to (πk+1,d)#µ ,
and we do the same for (πk,d)#ν with (πk+1,d)#ν . We obtain some families of proba-
bilities on the real line that we can call µk

xk+1,...,xn and νk
yk+1,...,yn , respectively. They are

measures on the variables xk and yk and they replace the densities f k(·,xk+1, . . . ,xd) and
gk(·,yk+1, . . . ,yd). Again, we need to suppose that each measure µk

xk+1,...,xn is atomless.
The maps T̂k(xk,xk+1, . . . ,xd) are defined as before, using one-dimensional monotone
increasing maps.
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2.4 Knothe transport as a limit of quadratic optimal
transports

Let us slightly modify the quadratic cost that we discussed in Section 1.3.1 and replace
it with the weighted quadratic cost

cε(x,y) :=
d

∑
i=1

λi(ε)(xi− yi)
2

where the λi(ε)’s are positive scalars depending on a parameter ε > 0. If µ is ab-
solutely continuous with respect to the Lebesgue measure, the corresponding optimal
transportation problem admits a unique solution Tε . For simplicity, in this section we
will only consider the case where the supports of µ and ν are compact (but everything
could be adapted to the case

´
|x|2dµ,

´
|y|2dν <+∞).

When in addition, for all k ∈ {1, . . . ,d−1}, λk(ε)/λk+1(ε)→ 0 as ε → 0, it is
natural to expect the convergence of Tε to the Knothe transport T. This convergence
result was conjectured by Y. Brenier as a very natural one.

We will show it under the absolute continuity assumption of the previous section.
On the other hand, [114] proves the same result under a slightly weaker assumption,
namely the absence of atoms in all the disintegrated measures. The curios point is that
absence of atoms is also needed on the target measure ν , and that a counter-example to
the convergence result exists if it is not satisfied.

Example 2.22 (explicit computations for Gaussians). To illustrate the problem in a
particular case where explicit solutions are available, take d = 2, and µ and ν two

Gaussian measures where µ = N (0, I) and ν = N
(

0,
(

a b
b c

))
(with ac > b2, a > 0;

the notation N(a,A) stands for the Gaussian density with covariance matrix A, centered
at a). Take λ1 (ε) = ε and λ2 (ε) = 1. Then it can be verified (see also Ex(11)) that Tε

is linear, and that its matrix in the canonical basis of R2 is

Tε =
1√

aε2 + c+2ε
√

ac−b2

(
aε +

√
ac−b2 b

bε c+ ε
√

ac−b2

)

which converges as ε→ 0 to T =

(√
a−b2/c b/

√
c

0
√

c

)
, i.e. the matrix of the Knothe

transport from µ to ν .

We directly state our first result, whose proof, in the spirit of Γ-convergence devel-
opments (see [134] and Box 4.6), will require several steps.

Theorem 2.23. Let µ and ν be two absolutely continuous probability measures on Rd

with compact supports and γε ∈ Π(µ,ν) be an optimal transport plan for the costs
cε(x,y) = ∑

d
i=1 λi(ε)(xi− yi)

2, for some weights λk(ε) > 0. Suppose that for all k ∈
{1, . . . ,d−1}, λk(ε)/λk+1(ε)→ 0 as ε → 0. Let T be the Knothe-Rosenblatt map
between µ and ν and γK ∈P(Rd ×Rd) the associated transport plan (i.e. γK :=
(id,T)#µ). Then γε ⇀ γK as ε → 0.
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Moreover, the plans γε are induced by transport maps Tε , and these maps converge
to T in L2(µ) as ε → 0.

The proof will roughly stick to the following strategy. We will take a limit point of
γε and show that it shares the same (xd ,yd)-marginal as γK . Then, we will disintegrate
with respect to (xd ,yd) and prove that the conditional (xd−1,yd−1)-marginals coincide.
We will end the proof by iterating this argument.

Proof. Without loss of generality, we assume λd(ε) = 1 and λi(ε)/λi+1(ε)→ 0.
Take the optimal plans γε and suppose (which is possible, up to subsequences)

γε ⇀ γ . We want to prove γ = γK . From the uniqueness of the Knothe transport, the
convergence will hold on the full sequence, and not only on subsequences.

By comparing γε to γK and using optimality we first get
ˆ

cε dγε ≤
ˆ

cε dγK (2.5)

and, passing to the limit as ε → 0, since cε converges uniformly to c(d)(x,y) = (xd −
yd)

2 (we will use the general notation c(k)(x,y) = |xk− yk|2), we get
ˆ

c(d) dγ ≤
ˆ

c(d) dγK .

Yet, the function c(d) only depends on the variables xd and yd and this shows that the
measure (πx,y

d )#γ gets a result at least as good as (πx,y
d )#γK with respect to the quadratic

cost (πx,y
d being the projection onto the last coordinates of x and y, i.e. π

x,y
d (x,y) =

(xd ,yd)). Yet, the measure γK has been chosen on purpose to be optimal from µd to νd

for this cost, and this optimal transport plan is unique. Then (πx,y
d )#γ = (πx,y

d )#γK . Let
us call γd this common measure.

We go back to (2.5) and go on by noting that all the measures γε have the same
marginals as γK and hence their (separate) projection onto xd and yd are µd and νd ,
respectively. This implies that (πx,y

d )#γε must realize a result which is not better than
(πx,y

d )#γK as far as the 1D quadratic cost is concerned. Consequently, we have

ˆ
|xd− yd |2d(πx,y

d )#γK(xd ,yd)+
d−1

∑
i=1

λi(ε)

ˆ
(xi− yi)

2 dγε

≤
ˆ

cε dγε ≤
ˆ

cε dγK

=

ˆ
|xd− yd |2d(πx,y

d )#γK(xd ,yd)+
d−1

∑
i=1

λi(ε)

ˆ
(xi− yi)

2 dγK ,

which implies, by simplifying the common term, dividing by λd−1(ε) and passing to
the limit, ˆ

c(d−1) dγ ≤
ˆ

c(d−1) dγK . (2.6)
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We can note that both integrals depend on the variables xd−1 and yd−1 only. Anyway, we
can project onto the variables (xd−1,xd) and (yd−1,yd) (obtaining measures (πx,y

d−1,d)#γ

and (πx,y
d−1,d)#γK) so that we disintegrate with respect to the measure γd . We have

ˆ
dγ

d(xd ,yd)

ˆ
|xd−1− yd−1|2 dγ

d−1
(xd ,yd)

(xd−1,yd−1)

≤
ˆ

dγ
d(xd ,yd)

ˆ
|xd−1− yd−1|2 dγ

d−1
(xd ,yd),K

(xd−1,yd−1). (2.7)

We want to prove that the measures γ
d−1
(xd ,yd)

share the same marginals on xd−1 and yd−1 of

the corresponding γ
d−1
(xd ,yd),K

. Should this be the case, their quadratic cost would be not

better than the corresponding cost of γ
d−1
(xd ,yd),K

(because the Knothe measure has been
chosen exactly with the intention of being quadratically optimal on (xd−1,yd−1) once xd
and yd are fixed). Yet, (2.7) shows that, on average, the result given by those measures
is not worse than the results of the optimal ones. Thus, the two results coincide for
almost any pair (xd ,yd) and, by uniqueness of the optimal transports in the 1D case, we
get γ

d−1
(xd ,yd)

= γ
d−1
(xd ,yd),K

. To let this proof work it is sufficient to prove that the marginals

of the two measures coincide for γd-a.e. pair (xd ,yd). For fixed (xd ,yd) we would like
to prove, for any φ

ˆ
φ(xd−1)dγ

d−1
(xd ,yd)

=

ˆ
φ(xd−1)dγ

d−1
(xd ,yd),K

(and to prove an analogous equality for functions of yd−1). Since we want to prove it
for a.e. pair (xd ,yd), it is sufficient to prove this equality:

ˆ
dγ

d(xd ,yd)ψ(xd ,yd)

ˆ
φ(xd−1)dγ

d−1
(xd ,yd)

=

ˆ
dγ

d(xd ,yd)ψ(xd ,yd)

ˆ
φ(xd−1)dγ

d−1
(xd ,yd),K

for any φ and any ψ . This means proving
ˆ

ψ(xd ,yd)φ(xd−1)dγ
d−1 =

ˆ
ψ(xd ,yd)φ(xd−1)dγ

d−1
K ,

which is not trivial. As far as now, we only know that the two measures γd−1 and γ
d−1
K

have the same marginals with respect to the pairs (xd−1,xd), (yd−1,yd) (since they have
the same projections onto x and onto y) and (xd ,yd) (since we just proved it). But here
there is a function of the three variables (xd−1,xd ,yd). Yet, we know that the measure γd

is concentrated on the set yd =Td(xd) for a certain map Td (here we use that the optimal
plan is indeed a map), and this allows to replace the expression of yd , thus getting rid
of one variable. This proves that the function ψ(xd ,yd)φ(xd−1) is actually a function
of (xd−1,xd) only, and that equality holds when passing from γ to γK .The same can be
performed on functions ψ(xd ,yd)φ(yd−1) but we have in this case to ensure that we can
replace xd with a function of yd , i.e. that we can invert Td . This is possible thanks to
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the absolute continuity of νd , since Td is the optimal transport from µd to νd , but an
optimal transport exists in the other direction as well and it gives the same optimal plan
(thanks to uniqueness). These facts prove that the measures γ

d−1
(xd ,yd)

and γ
d−1
(xd ,yd),K

have
the same marginals and hence, since they are both optimal, they coincide for a.e. pair
(xd ,yd). This implies (πx,y

d−1,d)#γ = (πx,y
d−1,d)#γK , and we will call this common measure

γd−1.
In the case d = 2, the proof would be finished. Now, it is possible to go on by

induction in the following way: we prove, by induction on N, that the statement of
the theorem is true if d ≤ N and that, whatever the dimension is, we have (πx,y

k,d)#γ =

(πx,y
k,d)#γK (i.e. that we have convergence in what concerns the components from the

k-th to the d-th) for every k ≥ d− (N−1). Both facts are proven for N = 2.
Suppose the result proven for a certain value of N. Take d > N and k = d−(N−1).

We want to prove (πx,y
k−1,d)#γ = (πx,y

k−1,d)#γK . If we can do it, we are done, since this
also proves that the result is true in dimension d = N + 1 (since in this case we have
k = 2 and with our extra step we conclude the proof).

Write x = (x−,x+) and y = (y−,y+) with x−,y− ∈ Rk−1 and x+,y+ ∈ Rd−k+1 (de-
composing into the components up to k−1 and after k). Then, define a competitor γε

K
in the following way: γε

K is a measure on Rd×Rd with the following marginals

(πx−,x+)#γ
ε
K = µ, (πy−,y+)#γ

ε
K = ν , (πx+,y+)#γ

ε
K = ηε,k,

where ηε,k, is the measure which optimizes the transport cost ∑
d
i=k λi(ε)c(i) between

the marginals µk = (πx+)#µ and νk = (πy+)#ν . Thanks to the recursive structure of the
proof, we know that ηε,k converges to (πx+,y+)#γK (since we suppose the result to be
true in dimension N).

We need to specify how to build the measure γε
K (which is likely not to be unique).

One easy way to construct such a measure is the following: disintegrate µ and ν ac-
cording to πx+ and πy+ , respectively, thus getting two family of measures µx+ and
νy+ . Then, for every pair (x+,y+) pick a transport plan γx+,y+ between them. The
measure γx+,y+ ⊗ηε,k satisfies the required properties. Moreover, we will choose for
γx+,y+ the Knothe transport between those two measures. Indeed, for the sake of this
step of the proof, the only important point is that, in what concerns the (k−1)-th com-
ponent, we choose for any (x+,y+) the monotone map from µx+

k−1 := (πxk−1)#µx+ to

ν
y+
k−1 := (πyk−1)#νy+ , so that

´
c(k−1) dγx+,y+ = Tc(µ

x+,
k−1ν

y+
k−1) (in this last expression

Tc denotes the quadratic transport cost on the real line).
With this choice in mind, we write

∑
i≥h

λi(ε)

ˆ
|xi− yi|2 dγ

ε
K +

k−1

∑
i=1

λi(ε)

ˆ
(xi− yi)

2 dγε

≤
ˆ

cε dγε ≤
ˆ

cε dγ
ε
K

= ∑
i≥h

λi(ε)

ˆ
|xi− yi|2 dγ

ε
K +

k−1

∑
i=1

λi(ε)

ˆ
(xi− yi)

2 dγ
ε
K ,
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and consequently, by erasing the common terms and dividing by λk−1(ε), we get
ˆ

c(k−1) dγε ≤
ˆ

c(k−1) dγ
ε
K =

ˆ
Tc(µ

x+,
k−1ν

y+
k−1)dηε,h.

Then we pass to the limit as ε → 0. The left-hand side of the last inequality tends
to
´

c(k−1) dγ , while the right-hand side converges to
ˆ

Tc(µ
x+,
k−1ν

y+
k−1)d(πx+,y+)#γK =

ˆ
c(k−1) dγK .

This convergence result is justified by the following Corollary 2.24 of Lemma 1.8. In
the end we get ˆ

c(k−1) dγ ≤
ˆ

c(k−1) dγK

and we can go on. This last inequality was obtained thanks to a procedure which was
similar to what we did for getting (2.6), but it required some more work since γK is not
exactly optimal for all the components i≥ k as it was the case for k = d.

We disintegrate with respect to π
x,y
k,d and we act exactly as before: proving that the

marginals of the disintegrations coincide is sufficient to prove equality of the measures.
Here we will use test-functions of the form

ψ(xh,xk+1, . . . ,xd ,yh,yk+1, . . . ,yd)ϕ(xk−1)

and
ψ(xh,xk+1, . . . ,xd ,yh,yk+1, . . . ,yd)ϕ(yk−1).

The same trick as before, i.e. replacing the variables y with functions of the variables
x is again possible. To invert the trick and replace x with y one needs to invert part of
Knothe’s transport. This is possible since, as we noted, our assumptions implied that all
the monotone transports we get are invertible. In the end we get, as before, γk−1 = γ

k−1
K .

This proves that we can move from step N to step (N +1) in the induction and allows
to conclude.

We have now proven γε ⇀ γK . Yet, if all these transport plans come from transport
maps, then (id,Tε)#µ ⇀ (id,T)#µ implies Tε → T in L2(µ) (see Lemma 2.25 below).

In the proof we used the following result, which is a corollary of Lemma 1.8.

Corollary 2.24. If µ and ν are two probabilities over Rd = Rk×Rd−k with compact
support which disintegrate as µ = µ+⊗µx+ and ν = ν+⊗νy+ , and c is a continuous
cost, then the functional

η 7→
ˆ

Tc(µ
x+ ,νy+)dη(x+,y+)

is continuous over the transport plans between µ+ and ν+.
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Proof. It is sufficient to apply Lemma 1.8 to the following setting: X = Y = Rk, X̃ =
Ỹ = P(Ω), where Ω ⊂ Rd−k is such that spt(µ),spt(ν) ⊂ Rk×Ω. The space P(Ω)
is endowed with any distance metrizing weak convergence and making this space a
separable metric space (see, for instance, Chapter 5 for a choice of distances with this
property, or build it with standard methods for the weak convergence in the unit ball
of a Banach space). For the cost function which appears in the statement of Lemma
1.8 we take (a,b) 7→ Tc(a,b) and a(x+) := µx+ , b(y+) := νy+ . Since this quantity is
bounded by max |c| (as we are on compact supports), there is no difficulty in choosing
two bounded functions f ,g so that Tc(a,b)≤ f (a)+g(b).

Another easy lemma that we needes is the following.

Lemma 2.25. Given µ ∈P(X) and νn ∈P(Ω), where Ω ⊂ Rd is a compact set,
suppose that γn := γTn ∈Π(µ,νn) is such that γn→ γ = γT. Then Tn→ T in L2(X ,µ).

Proof. Since the functions Tn are valued in Ω, they are equibounded and they admit a
weak limit in L2(X ,µ) up to subsequences. Let us call S this limit. To prove S = T,
take a continuous function ξ ∈C(X ;Rd) and consider the limit of

ˆ
(ξ (x) ·S(x))dµ(x) = lim

n

ˆ
(ξ (x) ·Tn(x))dµ(x) = lim

n

ˆ
(ξ (x) · y) dγn(x,y)

=

ˆ
(ξ (x) · y) dγT(x,y) =

ˆ
(ξ (x) ·T(x))dµ(x).

This proves S = T.
In order to prove strong convergence, just consider

ˆ
|Tn|2 dµ =

ˆ
|y|2 dγn→

ˆ
|y|2 dγ =

ˆ
|T|2 dµ.

This proves that we do not only have weak convergence in L2, but also convergence of
the L2 norm. This implies strong convergence, as usual in Hilbert spaces.

Note that the above proof also works in other spaces Lp and that the boundedness
assumption (i.e. compact supports) could be replaced by suitable integrability bounds.

Let us remark here that if instead of considering the quadratic cost cε , one considers
the more general separable cost

cε(x,y) :=
d

∑
i=1

λi(ε)ci(xi− yi)

where each ci is a smooth strictly convex function (with suitable growth), then the
previous convergence proof carries over.

Example 2.26 (A counterexample when the measures have atoms). We now show that
interestingly, the absolute continuity hypothesis in Theorem 2.23 is necessary not only
for µ , but also for ν (see Remark 2.21 to check the definition of the Knothe map in such
a case). We propose a very simple example in R2 where µ is absolutely continuous
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µ ν

Figure 2.3: The measures µ and ν in the counter-example

with respect to the Lebesgue measure but ν is not, and we show that the conclusion of
the Theorem fails. On the square Ω := [−1,1]× [−1,1], define µ = 1

21E ·L 2, where
E = {(x1,x2)∈ [−1,1]× [−1,1] : x1x2 < 0}, so that the measure µ is uniformly spread
on the upper left and the lower right quadrants, and ν = 1

2H 1
|S , S being the segment

[−1,1]×{0}.
The Knothe-Rosenblatt map is easily computed as

T(x) := (2x1 + sign(x2)),0)

(indeed, the measure ν2 is a Dirac mass at 0, hence T2(x) = 0). The solution of any
transportation problem with cost |x1−y1|2+ε|x2−y2|2 is T0(x) := (x1,0) (no transport
may do better than this one, which projects on the support of ν). Therefore, in this
example the optimal transportation maps fail to tend to the Knothe-Rosenblatt map.
The reason is the atom in the measure ν2 = δ0.

2.5 Discussion

2.5.1 Histogram equalization
A very typical problem where we encounter monotone transport maps in image pro-
cessing is histogram equalization. The setting is easy to explain: take a black and white
digital picture, and consider all possible grey levels; these levels are number from 0 to
255; for each i = 0, . . . ,255 count how many pixels have exactly such a grey level, and
make an histogram of that. In some situations, it could be interesting to transform the
given picture into a different one, which should represent again the same subject, but
have a different histogram. Why? a typical example is the following: you have two
pictures, A and B, which are supposed to represent the same object, with minor modi-
fications (something has moved. . . ), at different instants of time; you want to compare
them, but B happens to be much darker than A (this means that the histogram of B
is much more concentrated on the right-hand part of the graph than that of A). Then,
before comparing them, one prefers to transform B into a new picture B’, where the
darkness level of B’ is comparable to that of A, i.e. the histogram of B’ is equal to that
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of A. Similarly, one can also consider the case where A and B represent two parts of
a same object, and the two pictures must be merged, but it could happen that the two
partial pictures have been taken from different angles, and the light is different.

In some other cases we have only one picture, but its histogram is too much con-
centrated around one peak. This means that pixels have different grey levels, but not
so different. In order to see better what is inside the picture, one would like to enhance
the contrast, which corresponds to using a more widespread histogram. In such a case
one fixes a target histogram, for instance the uniform one, where every level is used by
the same number of pixels. This is the best possible histograms in the sense that we do
not waste information by concentrating too much around a same grey level.

In all these cases, we want to perform a transformation which does not act pixel by
pixel, but grey level by grey level: we look for a map T from the set X of grey levels
to itself (all pixels with grey level x will be turned into the grey level T(x)), and we
want to prescribe the histogram of the image after the transformation. This is the same
as saying that we have a measure µ on X and we want to impose a condition of the
form T#µ = ν . Here the important fact is that the space X is a subset of R, i.e. it is
one-dimensional and ordered. The natural condition on T is that it should be monotone
increasing. This condition translates the fact that we do not want to invert darker and
brighter pixels.

Up to the fact that, in this discrete setting (the grey level only takes value in a
finite set of integers), the two measures µ and ν are atomic (and hence a transport map
could not exist, the situation is exactly the one described in this chapter. The problem
of non-existence of transport maps could be solved in several ways in practice: one
could introduce some rounding rules, or use a transport plan, which corresponds to
use different colors on pixels which had the same colors on the original picture, i.e.
splitting the mass.

The situation becomes trickier when we take color images. In this case the space
X of colors becomes three-dimensional, and the notion of monotone transport does not
make sense any more. Obviously the quadratic optimal transport (Brenier’s map) could
play the role of a monotone map, since it is monotone in the vector sense (T(x)−T (y)) ·
(x− y) ≥ 0. On the other hand, it is expensive to compute (we will see in Chapter
6 some numerical methods to do it, and the associated difficulties) and some of its
features are probably useless for this kind of application in image processing (the fact
that it is a gradient, for instance).

Several solutions are now matter of current research: looking for transport maps
which are more regular but not so far from the optimal one ([164]), or producing maps
defined from the composition/superposition of several one-dimensional bricks, so that
they keep some monotonicity properties and are easier to compute (see [252] and Sec-
tion 2.5.2).

Also, in some cases all the components of the color space are not equally important,
and one could decide to look only at one or two components, or to treat them separately.
In this case, colors are often described by different sets of parameters.

See, for instance, [141], where some applications of a 1D analysis on the circle are
proposed for hue component of the color space (with the HSL decomposition into Hue,
Saturation, and Lightness).

The same space of colors can also be written as the combination of a 1D informa-
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tion (the luma signal, corresponding to a weighted average of the three components
R, G and B, and standing for the brightness of the image) and of a 2D information
(called chrominance or chroma, standing for the color information). In Figure 2.4 we
see an application of optimal transport in 1D and 2D to the color transfer between a
two streets with very different colors.

Figure 2.4: First column: the images of a souq arcade and of a narrow Western street
with tags on the walls, in different lights. Second column: the two images, each with
the colors of the other. Third column: their chrominance histograms (in the CIE-lab
representation). The transfer has been done independently on the 1D feature of the
luma on the 2D feature of the chroma. Only the chroma histograms are represented.
Pictures kindly provided by G. Peyré.

For a wider discussion about 1D histogram equalization and 3D color transfer in
connection with optimal transport, we refer to [164] and [255], and the references
therein (in particular some older papers such as [259, 242]).

2.5.2 Efficient monotone maps from 1D constructions

For many applications, in particular in image processing (as in the previous Section
2.5.1), people tried to build “good” transport maps, which are not necessarily opti-
mal, but satisfy at least two criteria: they must be computationally easy to find, and
they must have some “monotonicity” properties. A good idea to cope with these two
requirements is to build these maps by using one-dimensional bricks.

A very first idea that one could have is to use the Knothe map. Yet, the main
drawback of such a choice is that it is highly anisotropic. The choice of the orthonormal
basis is crucial, and the map gives very different roles to the different axes.

A different idea was contained in [252], where it is proposed the so-called Iterative
Distribution Transfer algorithm: a source measure µ is given, together with a target
measure ν ; starting from µ0 = µ the authors build recursively a sequence of maps Tn
and set µn+1 = (Tn)#µn. The sequence is built so that µn should converge to ν , which
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Box 2.4. – Good to know! – The Radon or X-ray transform

Definition - Given a measure µ on Rd , we define the Radon transform Rµ of µ as the family
of measures (µe), parametrized by e ∈ Sd−1, and defined as (πe)#µ , where πe(x) := x · e.
When µ is absolutely continuous, these measures are also absolutely continuous, and we
can define Rµ as a function over Sd−1×R, through Rµ(e, t) = fe(t) and µe = fe(t)dt. In
dimension d > 2, one could consider projections onto hyperplanes instead of lines (note that
projecting onto all (d−1)-dimensional hyperplanes means considering the integral of the
measure (or of its density) on arbitrary one-dimensional lines. This transformation is called
X-ray transform, but Radon and X-ray transforms coincide for d = 2. See for instance [193]
for more details and applications.
Proposition - Given two measures µ,ν on Rd , if their Radon transforms coincide, then
µ = ν .
Proof - Note that

´
Rd eiξ ·x dµ =

´
R eit|ξ | dµξ/|ξ |(t)dt. This means that the Radon transform

uniquely determines the Fourier transform of a measure, so that Rµ = Rν ⇒ µ̂ = ν̂ . The
equality µ = ν follows from standard results about the Fourier transform.
The Radon and the X-ray transform are very well known objects in applications such as
tomography. Computer tomography devices in medical images are exactly based on the
inversion of the X-ray transform.

means that, for large n, the map Tn ◦Tn−1 ◦T1 ◦T0 is a transport map from µ to a
measure µn very close to ν .

In the construction of [252] the maps Tn are obtained in the following way: at
every step n an orthonormal basis Bn is randomly selected; then, we define T j

n as the
monotone transport map from (π j)#µn to (π j)#ν , where π j is the projection on the j-th
coordinate of the selected basis; the map Tn is defined, in the corresponding basis, as
Tn(x) = (T1

n(x1), . . . ,Td
n(xd)).

There are two ideas behind this choice: first, all the maps Tn are easy to compute,
because composed of finitely many 1D monotone maps, and have monotonicity prop-
erties; second, if the basis Bn are chosen in a suitable diversified way, then the only
possibility for the algorithm to stop on a constant measure µn is that µn and ν have the
same projections on all directions. This implies µn = ν , thanks to the considerations
on Radon and X-ray transforms of Box 2.4, and obviously suggests that the limit of µn
should be ν .

Yet, this convergence is observed empirically but proven in [252] only if ν is Gaus-
sian and the bases Bn are i.i.d. random variable, uniform on the set of orthonormal
bases. See also Chapter 5 in [66] for a revised and more general proof.

Another interesting idea on how to build similar transport maps, is due to M.
Bernot. Many features are in common with the approach of [252].

Consider two measures µ,ν ∈P(Rd) and project them onto any one-dimensional
direction. For every e ∈ Sd−1 (the unit sphere of Rd), we take the map πe : Rd → R
given by πe(x) = x · e and look at the image measures (πe)#µ and (πe)#ν . Again, they
are measures on the real line, and we call Te : R→ R the monotone optimal transport
between them. The idea is that, as far as the direction e is concerned, every point x of
Rd should be displaced of a vector Se(x) := (Te(πe(x))−πe(x))e. To do a global dis-
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Figure 2.5: Optimal transport between a finite number of points on an annulus and on
a duck. Colors represent the assignment of points in the annulus to points on the duck.
Middle: 1D-sliced assignement; right: optimal map for the quadratic cost. The two
results are very similar (but one can find few points with different colors, which means
a slightly different assignement). Picture taken from [256] with permission.

placement, consider S(x) =
ffl
Sd−1 Se(x)dH d−1(e), where H d−1 is the uniform measure

on the sphere.
Again, there is no reason to guarantee that id+ S is a transport map from µ to

ν . But if one fixes a small time step τ > 0 and uses a displacement τS getting a
measure µ1 = (id+τS)#µ , then it is possible to iterate the construction, as it is done in
[252]. Only the definition of the transport map Tn is different. Again, one expects the
sequence of measures µn that are built in this way to converge to ν , but the problem is
not really solved. From the empirical point of view, the transport maps that are obtained
in this way are quite satisfactory, and have been tested in particular in the discrete
case (a finite number of Dirac masses with equal mass, i.e. the so-called assignment
problem). An example is given in Figure 2.5.2, where there is a comparison between
the optimal transport obtained via linear programming methods (see Section 6.4.1) and
the assignement obtained via these 1D-sliced ideas by M. Bernot.

Moreover, we will see in Section 5.5 that one can also build an interesting distance
on the set of probabilities with this kind of idea (taking the average of a distance defined
direction by direction: it will be much easier to compute than the corresponding mul-
tidimensional distance). In Section 8.4 we will also show that the iterative algorithm
above corresponds indeed to a gradient flow evolution.

2.5.3 Isoperimetric inequality via Knothe or Brenier maps
For the last discussion section of this chapter we review one of the most spectacular
applications of optimal transport, i.e. its role in geometric inequalities. We will see here
how the isoperimetric inequality can be proven either by using the optimal (Brenier)
map, or even the Knothe map.

It is interesting to learn that it was indeed one of the first motivations for the use
of Knothe transport to deal with geometric inequalities (see [204]). However, the short
proof of the isoperimetric inequality that we see here was first found by Gromov (see
the appendix in [236]), while the original goal of Knothe in [204] was to establish other
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inequalities concerning convex sets.
The isoperimetric inequality states that every set E has a larger perimeter than the

ball B with the same volume |B|= |E|. Thanks to the scaling properties of the volume
and the perimeter, it is possible to write this fact in the following way:

Per(E)≥ dω
1/d
d |E|

1−1/d ,

where ωd is the volume of the unit ball in Rd .
As usual in these discussion sections, we will not give full details on the ideas that

we mention, and we will be quite sloppy concerning regularity. Anyway, think that E
is a smooth domain in Rd . By scaling, we can also suppose that E has the same volume
of the unit ball B = B(0,1)

The idea to prove this result is the following: consider the densities µ = LE and
ν = LB, and use the Knothe transport between these densities, denoted by T. Due to
the considerations on the Jacobian matrix of T, it has only positive eigenvalues and it
satisfies the condition

det(DT) =
|B|
|E|

= 1

(with no absolute value at the determinant). Hence we can write

ωd = |B|= |E|=
ˆ

E
(det(DT))

1
d ≤ 1

d

ˆ
E

∇ ·T =
1
d

ˆ
∂E

T ·n≤ 1
d

Per(E), (2.8)

where the inequalities are obtained thanks to the arithmetic-geometric inequality 1
d ∑i λi≥

(λ1 . . .λd)
1
d applied to the eigenvalues of DT (which gives an inequality between the

determinant and the trace, i.e. the divergence of T), and to the fact that T is valued in
B, whence T ·n ≤ 1. This shows Per(E) ≥ dωd = Per(B). Note that we only used the

E B

T

fact that the Jacobian matrix of T has positive eigenvalues and that it transports one
measure onto the other. These properties are also satisfied by the Brenier map, simply
this map was not known at the time this proof was first performed.

The same proof can also be used to prove the uniqueness of the optimal sets (i.e. if
a set E is such that Per(E) = dωd , then it is a unit ball, up to negligible sets).

The use of the Brenier map strongly simplifies the study of the equality cases.
Suppose indeed to have equality in the above inequalities. This implies the equality
(det(DT))

1
d = (∇ ·T)/d a.e. and, from the cases of equality in the arithmetic-geometric

inequality, we get that the eigenvalues of DT should all be equal. Thanks to the con-
dition on the determinant, they are equal to 1. If the matrix is known to be symmetric
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(which is the case for Brenier’s map, but not for Knothe’s one), then we get DT = I
and T(x) = x+ x0. Since T would be a translation, then we conclude E = B, up to
translations.

It is slightly harder for the Knothe transport, since DT is not symmetric. Yet, if
all the eigenvalues are 1, one deduces that Td (the last component) is a translation. If
we suppose from the beginning that (up to a fixed translation) E and B share the same
barycenter, then this translation is the identity. This means (πd)#µ = (πd)#ν . This
is not yet enough to get µ = ν , and hence E = B, unless one uses the fact that the
Knothe transport is not isotropic (i.e. its definition depends on the choice of the axes),
and that the directions of the axes are arbitrary. Hence, if E is a set giving equality
in the isoperimetric inequality, then its projections onto any direction coincide with
those of the ball. This implies E ⊂ B and, by equality of the volumes, E = B (the
argument may also be done through the measures and the notion of Radon transform,
since (πd)#µ = (πd)#ν for arbitrary direction of the d-th axis implies µ = ν).

We finish the section by stressing that, if the isoperimetric inequality can obviously
be proven in many other ways, one recent advanced refinement of it (i.e. the quantita-
tive version of the anisotropic perimetric inequality, where the definition of perimeter
is modified, and the optimal set is no more the ball but another convex set, unit ball
of another norm) was only proven with the optimal exponent via optimal transport
techniques (see [169], and [274] for a short review).
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Chapter 3

L1 and L∞ theory

Chapter 1 gave, in the framework of the general theory of optimal transportation based
on duality methods, an existence result for the optimal transport map when the cost is of
the form c(x,y) = h(x−y) and h is strictly convex. In particular, using c(x,y) = |x−y|p,
this applies to the minimization problems

min
{
||T− id||Lp(µ) : T#µ = ν

}
,

(expressed in Kantorovich terms as min
{
||y− x||Lp(γ) : γ ∈Π(µ,ν)

}
), for p∈]1,+∞[.

We look in this chapter at the two limit cases p= 1 and p=∞, which require additional
techniques.

Then, the discussion section will go into two different directions: on the one hand
the L1 and L∞ cases introduced and motivated the study of convex costs which could
be non strictly-convex or infinite-valued somewhere, and the last developments on this
topic will be debated in Section 3.3.1; on the other hand one could wonder what is
the situation for 0 < p < 1, and more generally for costs which are concave increasing
functions of the distance, which will be the subject of Section 3.3.2.

3.1 The Monge case, with cost |x− y|
This section will prove that, if µ,ν ∈P(Ω), where Ω⊂ Rd is a compact domain, and
µ�L d , then there exists an optimal transport map T for the cost |x−y| (the Euclidean
distance in Rd). The proof that we present is essentially due to Ambrosio [8], as a
modification from that of Sudakov, [290]. In the introduction we gave references for
the other alternative proofs of the existence in this case, and in the discussion section
we will see their generalizations.

3.1.1 Duality for distance costs
Let us spend some words on the case where the cost c(x,y) is actually a distance (thus
satisfying the triangle inequality, vanishing if x = y. . . ). Since the cost is symmetric,
we will avoid the distinction between the c̄ and the c transform.

79
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Proposition 3.1. If c : X×X→R is a distance then a function u : X→R is c-concave
if and only if it is Lipschitz continuous with Lipschitz constant less than 1 w.r.t. the
distance c. We will denote by Lip1 the set of these functions. Moreover, for every
u ∈ Lip1 we have uc =−u.

Proof. First take a c-concave function u. It can be written as

u(x) = χ
c(x) = inf

y
c(x,y)−χ(y)

for some function χ : X→R∪{−∞}. One can ignore the points y such that χ(y) =−∞

and, for the others, note that x 7→ c(x,y)− χ(y) is a Lip1 function, since x 7→ c(x,y) is
Lip1 as a consequence of the triangle inequality. Hence, u ∈ Lip1 since the infimum
of a family of Lipschitz continuous functions with the same constant shares the same
modulus of continuity.

Take now a function u ∈ Lip1. We claim that one can write

u(x) = inf
y

c(x,y)+u(y).

Actually, it is clear that the infimum at the r.h.s. is not larger than u(x), since one
can always use y = x. On the other hand, u ∈ Lip1 implies u(x)− u(y) ≤ c(x,y), i.e.
u(x)≤ u(y)+ c(x,y) for every y, and hence the infimum is not smaller than u(x). This
expression shows that u = (−u)c and that u is c-concave.

Applying this last formula to −u, which is also Lip1, we get uc = −u and the last
part of the claim follows.

As a consequence, the duality formula, in the case of a distance cost function, gives

min
{ˆ

X×X
c(x,y) dγ, γ ∈Π(µ,ν)

}
= max

{ˆ
X

ud(µ−ν) : u ∈ Lip1

}
. (3.1)

This also implies a useful property concerning the transport cost Tc when c is a
distance, namely the fact that it satisfies the triangle inequality. We will see it again in
Chapter 5, where transport costs Tc for c(x,y) = |x− y|p are used to define distances
over P(Ω). We want to stress it here since we will need it later on in this chapter.

Corollary 3.2. If c : X×X → R is a distance, given µ,ν ,ρ ∈P(X) we have

Tc(µ,ν)≤Tc(µ,ρ)+Tc(ρ,ν).

Proof. Take an arbitrary function u ∈ Lip1 and write
ˆ

ud(µ−ν) =

ˆ
ud(µ−ρ)+

ˆ
ud(ρ−ν)≤Tc(µ,ρ)+Tc(ρ,ν).

The result follows by taking the supremum in u.

We also note another useful property, typical of distances

Corollary 3.3. If c : X ×X → R is a distance and µ,ν are such that Tc(µ,ν) = 0,
then µ = ν
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Proof. Many proofs can be given of this simple fact. For instance, the duality formula
gives

´
ud(µ−ν) = 0 for every u ∈ Lip1, which is enough to guarantee µ = ν . Other-

wise, one can simply note that Tc(µ,ν) = 0 implies the existence of γ ∈Π(µ,ν) such
that

´
c dγ = 0, i.e. c(x,y) = 0 γ-a.e. Since c is a distance this means x = y γ-a.e.,

which implies
´

φ dµ =
´

φ(x)dγ =
´

φ(y)dγ =
´

φ dν for every test function φ , and
hence µ = ν .

3.1.2 Secondary variational problem
As we already saw in the book-shifting example 2.15, the optimal γ for a distance cost
like |x− y| in R is not unique in general. We want now to select a special optimizer
γ , so as to be able to prove that it is induced by a transport map. For simplicity, as
we will use very soon some Euclidean features of the problem, in connection with the
quadratic cost |x− y|2, we switch back to a concrete presentation in a domain Ω of the
Euclidian space Rd . In particular, we will not use general distances, and the norm will
only be the Euclidean norm.

Let us call O(µ,ν) the set of optimal transport plans for the cost |x− y|. For nota-
tional simplicity we will also denote by Kp the functional associating to γ ∈P(Ω×Ω)
the quantity

´
|x− y|p dγ , and mp its minimal value on Π(µ,ν). In this language

O(µ,ν) = argminγ∈Π(µ,ν) K1(γ) = {γ ∈Π(µ,ν) : K1(γ)≤ m1}.

Note that O(µ,ν) is a closed subset (w.r.t. the weak convergence of measures) of
Γ(µ,ν), which is compact. This is a general fact whenever we minimize a lower semi-
continuous functional of γ .

From now on, we fix a Kantorovich potential u for the transport between µ and ν

with cost c(x,y) = |x− y|, and we will use it as a tool to check optimality. Indeed, we
have

γ ∈ O(µ,ν)⇔ spt(γ)⊂ {(x,y) : u(x)−u(y) = |x− y|}. (3.2)

This is true because optimality implies
´
(u(x)−u(y))dγ =

´
|x− y|dγ and the global

inequality u(x)−u(y)≤ |x−y| gives equality γ-a.e. All these functions being continu-
ous, the equality finally holds on the whole support. Viceversa, equality on the support
allows to integrate it and prove that K1(γ) equals the value of the dual problem, which
is the same of the primal, hence one gets optimality.

As we said, we want to select a special minimizer, somehow better than the others,
and prove that it is actually induced by a map.

Let us consider the problem

min{K2(γ) : γ ∈ O(µ,ν)}.

This problem has a solution γ since K2 is continuous for the weak convergence and
O(µ,ν) is compact for the same convergence. We do not know a priori about the
uniqueness of such a minimizer. It is interesting to note that the solution of this problem
may also be obtained as the limits of solutions γε of the transport problem

min{K1(γ)+ εK2(γ), : γ ∈Π(µ,ν)},
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but we will not exploit this fact here (its proof can be done in the spirit of Γ-convergence
developments, as in Section 2.4).

The goal is now to characterize this plan γ and prove that it is induced by a transport
map.

The fact that the condition γ ∈ O(µ,ν) may be rewritten as a condition on the
support of γ is really useful since it allows to state that γ also solves

min
{ˆ

c dγ : γ ∈Π(µ,ν)

}
, where c(x,y) =

{
|x− y|2 if u(x)−u(y) = |x− y|
+∞ otherwise.

Actually, minimizing this new cost implies being concentrated on the set where u(x)−
u(y) = |x− y| (i.e. belonging to O(µ,ν)) and minimizing the quadratic cost among
those plans γ concentrated on the same set (i.e. among those γ ∈ O(µ,ν)).

Let us spend some words more in general on costs of the form

c(x,y) =

{
|x− y|2 if (x,y) ∈ A
+∞ otherwise,

(3.3)

where A is a given closed subset of Ω×Ω. First of all we note that such a cost is l.s.c.
on Ω×Ω.

Semi-continuity of the cost implies that optimal plans are concentrated on a set
which is c−CM (Theorem 1.43). What does it mean in such a case? c-cyclical mono-
tonicity is a condition which imposes an inequality for every k, every σ and every fam-
ily (x1,y1), . . . ,(xk,yk); here we will only need to use the condition for k = 2, which
gives the following result.

Lemma 3.4. Suppose that Γ⊂Ω×Ω is c−CM for the cost c defined in (3.3). Then

(x1,y1),(x2,y2) ∈ Γ,(x1,y2),(x2,y1) ∈ A⇒ (x1− x2) · (y1− y2)≥ 0.

Proof. From the definition of c-cyclical monotonicity we have

(x1,y1),(x2,y2) ∈ Γ⇒ c(x1,y1)+ c(x2,y2)≤ c(x1,y2)+ c(x2,y1).

For costs c of this form, this is only useful when both (x1,y2) and (x2,y1) belong to
A (otherwise we have +∞ at the right hand side of the inequality). If we also use the
equivalence

|x1− y1|2 + |x2− y2|2 ≤ |x1− y2|2 + |x2− y1|2⇔ (x1− x2) · (y1− y2)≥ 0,

(which can be obtained just by expanding the squares), the claim is proven.

3.1.3 Geometric properties of transport rays
Let us consider for a while the role played by the function u. We collect some proper-
ties.

Lemma 3.5. If x,y∈Ω are such that u(x)−u(y) = |x−y|, then u is affine on the whole
segment [x,y] := {z = (1− t)x+ ty, t ∈ [0,1]}.
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Proof. Take z = (1− t)x+ ty. Just consider that the Lip1 condition implies

u(x)−u(z)≤ |x− z|= t|x− y], u(z)−u(y)≤ |z− y|= (1− t)|x− y].

Summing up the two inequalities we get u(x)− u(y) ≤ |x− y|, but the assumption is
that this should be an equality. Hence we can infer that both inequalities are equalities,
and in particular u(z) = u(x)− t|x−y|, i.e. u((1− t)x+ ty) = u(x)− t|x−y| is an affine
function of t.

Lemma 3.6. If z ∈]x,y[:= {z = (1− t)x+ ty, t ∈]0,1[}, for a pair of points x 6= y such
that u(x)−u(y) = |x− y|, then u is differentiable at z and ∇u(z) = e := x−y

|x−y| .

Proof. First of all, let us give an estimate on the increment of u in directions orthogonal
to e. Consider a unit vector h with h · e = 0 and a point z′ ∈]x,y[, and let t0 be such that
z′± t0e ∈ [x,y]. Set δ := u(z′+ th)−u(z′). By using u ∈ Lip1 we can say

u(z′+ th)−u(z′− t0e) = u(z′+ th)−u(z′)+u(z′)−u(z′− t0e) = δ + t0 ≤
√

t2 + t2
0

as well as

u(z′+ th)−u(z′+ t0e) = u(z′+ th)−u(z′)+u(z′)−u(z′+ t0e) = δ − t0 ≤
√

t2 + t2
0 .

By raising these inequalities to power 2 we get

δ
2 + t2

0 ±2t0δ ≤ t2 + t2
0 .

These two inequalities give ±2t0δ ≤ δ 2±2t0δ ≤ t2, and hence 2t0|δ | ≤ t2, i.e. |δ | ≤
t2/2t0.

Consider now a point z ∈]x,y[ and a number t0 < min{|z−x], |z−y|}. Any point z′′

sufficiently close to z may be written as z′′ = z′+ th with h a unit vector orthogonal to
e, t� 1, z′ ∈]x,y[ such that z′± t0e ∈ [x,y]. This allows to write

u(z′′)−u(z) = u(z′+th)−u(z′)+u(z′)−u(z) = (z′−z) ·e+O(t2) = (z′′−z) ·e+O(t2).

Using O(t2) = o(t) = o(|z′′− z|), we get ∇u(z) = e.

Definition 3.7. We call transport ray any non-trivial (i.e. different from a singleton)
segment [x,y] such that u(x)−u(y) = |x−y|, which is maximal for the inclusion among
segments of this form. The corresponding open segment ]x,y[ is called the interior of
the transport ray and x and y its boundary points. We call direction of a transport ray
the unit vector x−y

|x−y| . We call Trans(u) the union of all non degenerate transport rays,

Trans(b)(u) the union of their boundary points and Trans(u)(i) the union of their interi-
ors. Moreover, let Trans(b+)(u) be the set of upper boundary points of non-degenerate
transport rays (i.e. those where u is minimal on the transport ray, say the points y in the
definition u(x)− u(y) = |x− y|) and Trans(b−)(u) the set of lower boundary points of
non-degenerate transport rays (where u is maximal, i.e. the points x).
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•z′
•z′− t0e

•z′+ t0e

•z

•z′′ = z′+ th

eh

Figure 3.1: The points used in the proof of Lemma 3.6.

Corollary 3.8. Two different transport rays can only meet at a point z which is a
boundary point for both of them, and in such a case u is not differentiable at z. In
particular, if one removes the negligible set Sing(u) of non-differentiability points of u,
the transport rays are disjoint.

Proof. First of all note that if a point z belongs to a transport ray with direction e, and
u is differentiable at z, then necessarily we have e = ∇u(z). Indeed, close to z there are
points of the form z+ te which belong to the same transport ray, for arbitrarily small
values of t (we do not care about the sign of t), and on these points we can write

t = u(z+ te)−u(z) = ∇u(z) · te+o(t).

This shows ∇u(z) · e = 1. Together with |∇u(z)| ≤ 1, the only possibility is ∇u(z) = e.
Now, suppose that two transport rays meet at a point z which is internal for both

rays. In such a case u must have two different gradients at z, following both the di-
rections of the rays, which is impossible (recall that the different rays meeting at one
point must have different directions, since otherwise they are the same transport ray,
by maximality).

Suppose that they meet at z, which is in the interior of a transport ray with direction
e but is a boundary point for another ray, with direction e′ 6= e. In such a case u
should be differentiable at z and again ∇u(z) should take two distinct values, which is
impossible.

Finally, suppose that the intersection point z is a boundary point for both segments,
one with direction e and the other one with direction e′ 6= e. In this case there is no
contradiction if u is not differentiable at z. On the other hand, if one supposes that u is
differentiable at z, then we get ∇u(z) = e= e′, which is, again, a contradiction.

We will see later on that we need to say something more on the direction of the
transport rays.

From this section on we fix a transport plan γ , optimal for the secondary variational
problem, and we will try to prove that it is actually induced by a transport map. We
use here that γ is actually concentrated on a set Γ which is c-CM (we recall that we
are using the cost c defined as in (3.3)) and see how this interacts with transport rays.
We can suppose Γ ⊂ A = {(x,y) : u(x)− u(y) = |x− y|}, since anyway γ must be
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concentrated on such a set, so as to have a finite value for
´

c dγ . We want to say that γ

behaves, on each transport ray, as the monotone increasing transport. More precisely,
the following is true.

Lemma 3.9. Suppose that x1,x2,y1 and y2 are all points of a transport ray [x,y] and
that (x1,y1),(x2,y2) ∈ Γ. Define an order relation on such a transport ray through
x≤ x′⇔ u(x)≥ u(x′). Then if x1 < x2 we also have y1 ≤ y2.

Proof. We already know that x1 ≤ y1 and x2 ≤ y2 (thanks to Γ ⊂ A). Hence, the only
case to be considered is the case where we have x1 < x2 ≤ y2 < y1. If we prove that
this is not possible than we have proven the claim. And this is not possible due to
the fat that Γ is c-CM, since on this transport ray, due to the order relationship we have
supposed and to the behavior of u on such a segment, the condition (x1,y2),(x2,y1)∈ A
is guaranteed. This implies (x1− x2) · (y1− y2) ≥ 0. But this is the scalar product of
two vectors parallel to e, and on the segment this simply means that y1 and y2 must be
ordered exactly as x1 and x2 are.

From what we have seen in Chapter 2, we know that when s is a segment and
Γ′ ⊂ s× s is such that

(x1,y1),(x2,y2) ∈ Γ
′, x1 < x2⇒ y1 ≤ y2

(for the order relation on s), then Γ′ is contained in the graph of a monotone increasing
multivalued function, which associates to every point either a point or a segment. Yet,
the interiors of these segments being disjoint, there is at most a countable number of
points where the image is not a singleton (see the proof of Lemma 2.8). This means
that Γ′ is contained in a graph over s, up to a countable number of points of s. We will
apply this idea to Γ′ = Γ∩ (s× s), where s is a transport ray.

If we combine what we obtained on every transport ray, we obtain:

Proposition 3.10. The optimal transport plan γ is concentrated on a set Γ with the
following properties:

• if (x,y) ∈ Γ, then

– either x ∈ Sing(u) (but this set of points is Lebesgue-negligible),

– or x /∈ Trans(u), i.e. it does not belong to a non-degenerate transport ray
(and in this case we necessarily have y = x, since otherwise [x,y] would be
contained in a non-degenerate transport ray),

– or x ∈ Trans(b+)(u) \Sing(u) (and in this case we necessarily have y = x,
since x is contained in a unique transport ray s and it cannot have other
images y ∈ s, due to the order relation x≤ y,

– or x ∈ Trans(u)\(Trans(b+)(u)∪Sing(u)) and y belongs to the same trans-
port ray s of x (which is unique);

• on each transport ray s, Γ∩ (s× s) is contained in the graph of a monotone
increasing multivalued function;
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• on each transport ray s, the set

Ns = {x ∈ s\Trans(b+)(u) : #({y : (x,y) ∈ Γ})> 1}

is countable.

It is clear that γ is induced by a transport map if µ(
⋃

s Ns) = 0, i.e. if we can get rid of
a countable number of points on every transport ray.

This could also be expressed in terms of disintegration of measures (if µ is abso-
lutely continuous, then all the measures µs given by the disintegrations of µ along the
rays s are atomless, see Box 2.2 in Section 2.3 for the notion of disintegration), but we
will try to avoid such an argument for the sake of simplicity. The only point that we
need is the following (Property N, for negligibility).

Definition 3.11. We say that Property N holds for a given Kantorovich potential u if,
whenever B⊂Ω is such that

• B⊂ Trans(u)\Trans(b+)(u),

• B∩ s is at most countable for every transport ray s,

then |B|= 0.

This property is not always satisfied by any disjoint family of segments in Rd and
there is an example (by Alberti, Kirchheim and Preiss, later improved by Ambrosio
and Pratelli, see [19]) where a disjoint family of segments contained in a cube is such
that the collection of their middle points has positive measure. We will prove that the
direction of the transport rays satisfy additional properties, which guarantee property
N.

Please be aware that, as usual, we are ignoring here measurability issues of the
transport map T that we are constructing: this map is obtained by gluing the monotone
maps on every segment, but this should be done in a measurable way1.

It appears that the main tool to prove Property N is the Lipschitz regularity of the
directions of the transport rays (which is the same as the direction of ∇u).

Theorem 3.12. Property N holds if ∇u is Lipschitz continuous or if there exists a
countable family of sets Eh such that ∇u is Lipschitz continuous when restricted to
each Eh and |Trans(u)−\

⋃
h Eh|= 0.

Proof. First, suppose that ∇u is Lipschitz. Consider all the hyperplanes parallel to d−1
coordinate axes and with rational coordinates on the last coordinate. Consider a set B
in the definition of Property N. By definition, the points of B belong to non-degenerate
transport rays, i.e. to segments with positive length. Hence, every point of B belongs to
a transport ray that meets at least one of the above hyperplanes at exactly one point of
its interior. Since these hyperplanes are a countable quantity, up to countable unions,

1Measurability could be proven, either by restricting to a σ -compact set Γ, or by considering the disin-
tegrations µs and νs and using the fact that, on each s, T is the monotone map sending µs onto νs (and hence
it inherits some measurability properties of the dependence of µs and νs w.r.t. s, which are guaranteed by
abstract disintegration theorems).
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B′ = f−1(B)⊂ A

Y

•

•

•
•

•

•
• •(y,0)

(y, t) f

Y

•

•

•
•
•

•
•

B

•y

y+ t∇u(y)

Figure 3.2: The map f in Theorem 3.12. The points of B and B′ are only a countable
number on each line, and represented by bullets.

we can suppose that B is included in a collection SY of transport rays all meeting the
same hyperplane Y . Not only, we can also suppose that B does not contain any point
which is a boundary point of two different transport rays, since we already know that
those points are negligible. Now, let us fix such an hyperplane Y and let us consider
a map f : Y ×R→ Rd of the following form: for y ∈ Y and t ∈ R the point f (y, t)
is defined as y+ t∇u(y). This map is well-defined and injective on a set A ⊂ Y ×R
which is the one we are interested in. This set A is defined as those pairs (y, t) where y
is in the interior of a transport ray of SY , hence u is differentiable at such a point, and
y+ t∇u(y) belongs to the interior of the same transport ray. The map f is injective,
since getting the same point as the image of (y, t) and of (y′, t ′) would mean that two
different transport rays cross at such a point. B is contained in the image of f by
construction, so that f is a bijection between B and B′ := f−1(B). The map f is also
Lipschitz continuous, as a consequence of the Lipschitz behavior of ∇u. Note that B′ is
a subset of Y ×R containing at most countably many points on every line {y}×R. By
Fubini’s theorem, this implies |B′|= 0. Then we have also |B|= | f (B′)| ≤ Lip( f )d |B′|,
which implies |B|= 0.

It is clear that the property is also true when ∇u is not Lipschitz but is Lipschitz
continuous on each set Eh of a partition covering almost all the points of Trans(u), since
one can apply the same kind of arguments to all the sets B∩Eh and then use countable
unions.

We now need to prove that ∇u is countably Lipschitz.

Definition 3.13. A function f : Ω → Rd is said to be countably Lipschitz if there
exist a countable family of sets Eh such that f is Lipschitz continuous on each Eh and
|Ω\

⋃
h Eh|= 0.

Note that “being Lipschitz continuous on a set E” or “being the restriction to E of a
Lipschitz continuous function defined on the whole Rd” are actually the same property,
due to Lipschitz extension theorems. Indeed, whenever E ⊂ X are metric spaces, every
L-Lipschitz function f : E → R can be extended to an L−Lipschitz function over X .
This is known as Kirszbraun Theorem and can be easily obtained by using the functions
fk of the Memo Box 1.5, for k ≥ L.
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We want to prove that ∇u is countably Lipschitz. We will first prove that u coincides
with some λ -convex or λ -concave functions on a sequence of sets covering almost
everything. This requires a definition.

Definition 3.14. A function f : Ω→ R is said to be λ -convex if x 7→ f (x)− λ

2 |x|
2 is

convex, and λ -concave if x 7→ f (x)+ λ

2 |x|
2 is concave. Note that the number λ is not

required to be positive, so that λ -convex functions for λ > 0 are strictly convex, and,
for λ < 0, they just have second derivatives (where they exist) which are bounded from
below. Functions which are λ -convex (or λ -concave) for some values of λ are called
semi-convex (or semi-concave).

Proposition 3.15. There exist some sets Eh such that

•
⋃

h Eh = Trans(u)\Trans(u)(b+),

• on each set Eh the function u is the restriction of a λ -concave function, for a
value λ depending on h.

Proof. Let us define

Eh =

{
x ∈ Trans(u) : ∃z ∈ Trans(u) with u(x)−u(z) = |x− z|> 1

h

}
,

which is roughly speaking made of those points in the transport rays that are at least
at a distance 1

h apart from the upper boundary point of the ray. It is clear that Eh ⊂
Trans(u)\Trans(u)(b+). Moreover, we easily have

⋃
h Eh = Trans(u)\Trans(b+)(u).

Let us fix a function ch : Rd → R with the following properties: ch ∈ C2(Rd),
|∇ch| ≤ 1, ch(z) ≥ |z| for all z ∈ Rd , ch(z) = |z| for all z /∈ B(0,1/h). Set λh :=
−||D2ch||L∞ (note that we can take this value to be of the order of − 1

h ). It is easy
to check that, if x ∈ Eh, one has

u(x) = inf
y∈Rd
|x− y|+u(y)≤ inf

y∈Rd
ch(x− y)+u(y)≤ inf

y/∈B(x,1/h)
|x− y|+u(y) = u(x),

where the first inequality is a consequence of |z| ≤ ch(z) and the second is due to the
restriction to y /∈ B(x,1/h). The last equality is justified by the definition of Eh. This
implies that all the inequalities are actually equalities, and that u(x) = uh(x) for all
x ∈ Eh, where

uh(x) := inf
y∈Rd

ch(x− y)+u(y).

It is important to note that uh is a λh-concave function.
Let us justify that uh is λh-concave. With this choice of λh, ch is obviously λh-

concave. Consider

uh(x)+
λh

2
|x|2 = inf

y∈Rd
ch(x− y)+

λh

2
2|x|2 +u(y)

= inf
y∈Rd

ch(x− y)+
λh

2
|x− y|2 +λhx · y− λh

2
|y|2 +u(y).
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This last expression shows that uh(x)+
λh
2 |x|

2 is concave in x, since it is expressed as
an infimum of concave functions (ch(x−y)+ λh

2 |x−y|2 is concave, λhx ·y is linear, and
the other terms are constant in x). Hence uh(x) is λh-concave.

The previous theorem allows to replace the function u with the functions uh, which
are more regular (since they are λ -concave, they share the same regularity of convex
functions). Unfortunately, this is not enough yet, since convex functions in general are
not even differentiable. A new countable decomposition is needed, and can be obtained
from the following theorem that we do not prove.

Theorem 3.16. If f is a convex function, then ∇ f is countably Lipschitz.

The proof of this theorem may be found in [16], in Theorem 5.34. It is also true
when we replace ∇ f with an arbitrary BV function, and this is the framework that one
finds in [16].

Box 3.1. – Memo – BV functions in Rd

On a domain Ω ⊂ Rd , an L1 function f : Ω→ R is said to be a BV function if its
distributional derivatives are finite measures. This means that we require

ˆ
Ω

f (∇ ·ξ )dx≤C||ξ ||L∞ ,

for every C1
c vector field ξ : Ω→Rd . The space BV is hence a wider class than the Sobolev

spaces W 1,p, where the distributional derivatives are supposed to belong to Lp (i.e. they are
absolutely continuous measures with integrability properties).

It happens that the distributional derivative ∇ f cannot be any measure, but must be of
the form ∇ f = ∇a f (x)dx+Ds f +D j f , where ∇a f (x)dx is the absolutely continuous part
of ∇ f (with respect to the Lebesgue measure), D j f is the so-called “jump part” and has a
density with respect to H d−1 (it is concentrated on the set J f of those points where there
is an hyperplane such that the function f has two different limits on the two sides of the
hyperplane, in a suitable measure-theoretical sense, and the density of D ju with respect to
H d−1
|J f

is exactly the difference of these two limit values times the direction of the normal

vector to the hyperplane: D j f = ( f+− f−)nJ f ·H
d−1
|J f

), and Dc is the so-called Cantor part,
which is singular to the Lebesgue measure but vanishes on any (d−1)-dimensional set.

We denote by BVloc(Rd) the space of functions which are locally BV in the sense that
their derivatives are Radon measures, i.e. measures which are locally finite (in the definition
with test functions ξ , we use ξ ∈ C1

c (Rd) and the constant C may depend on the support
of ξ ). Vector-valued BV functions are just defined as functions f = ( f1, . . . , fk) : Rd → Rk

which are componentwise BV, i.e. fi ∈ BV for each i = 1, . . . ,k. It is interesting that gra-
dients g = ∇ f of convex functions are always locally BV. This depends on the fact that the
Jacobian matrix of the gradient of a convex function is indeed the Hessian of such a func-
tion, and is positive-definite. This means that the matrix-valued distribution ∇(∇ f ) = D2 f
is a positive distribution, and we know that positive distributions are necessarily positive
measures (warning: this requires precise definitions when we work with matrix- and vector-
valued functions).
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BV functions satisfy several fine regularity properties almost everywhere for the
Lebesgue or the H d−1-measure, and the reader may refer to [16] or [161]. In particular we
cite the following (not at all easy) result, which implies Theorem 3.16.

Theorem - If f ∈ BVloc(Rd), then f is countably Lipschitz.

As a consequence of Proposition 3.15 and Theorem 3.16 one has.

Proposition 3.17. If u is a Kantorovich potential, then ∇u : Trans(u)→Rd is countably
Lipschitz.

Proof. It is clear that the countably Lipschitz regularity of Theorem 3.16 is also true
for the gradients of λ -convex and λ -concave functions. This means that this is true for
∇uh and, by countable union, for ∇u.

3.1.4 Existence and non-existence of an optimal transport map
From the analysis performed in the previous sections, we obtain the following result.

Theorem 3.18. Under the usual assumption µ�L d , the secondary variational prob-
lem admits a unique solution γ , which is induced by a transport map T, monotone
non-decreasing on every transport ray.

Proof. Proposition 3.17, together with Theorem 3.12, guarantees that Property N holds.
Hence, Proposition 3.10 may be applied to get γ = γT. The uniqueness follows in the
usual way: if two plans γ

′ = γT′ and γ
′′ = γT′′ optimize the secondary variational prob-

lem, the same should be true for 1
2 γT′ +

1
2 γT′′ . Yet, for this measure to be induced by a

map, it is necessary to have T′ = T′′ a.e. (see Remark 1.19).

Definition 3.19. The optimal transport plan γ will be called ray-monotone transport
plan, and the transport map which corresponds to it ray-monotone transport map.

Note that as a byproduct of this analysis we also obtain |Trans(u)(b)| = 0, since
Trans(u)(b) is a set meeting every transport ray in two points, and it is hence negligible
by Property N. Yet we could not have proven it before, so unfortunately every strategy
based on a decomposition of Trans(u)(i) is not complete.

To complete this section, one could wonder whether the assumption µ � L d is
really necessary for this existence result: would the condition “µ(A) = 0 for every
(d−1)-rectifiable set A” (or other conditions as in Section 1.3.1) be enough for the
existence of an optimal map, as it happened for the quadratic case?

The answer is not, as it is shown in the following example.

Transport from a graph to a square Consider a continuous function B : [0,1]→ R
with the following property: for every Lipschitz function f : R→ R, the sets {t ∈
[0,1] : B(t) = f (t)} and {t ∈ [0,1] : f (B(t)) = t} are Lebesgue-negligible. Then take
µ = (id,B)#(L

1 [0,1]) and ν =L 2 Q, where Q is the square [0,1]× [L,L+1] with
L = ||B||L∞ .
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L+1
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Q

Figure 3.3: The measure µ concentrated on a graph, with ν on a square.

In practice, µ is concentrated on the graph of B and ν on a square above the graph.
With this choice, the measure µ gives zero mass to any rectifiable curve of the form
{(t, f (t))} or {( f (s),s)}, for f Lipschitz. On the other hand, it is not absolutely con-
tinuous, as it is concentrated on a graph, which is L 2-negligible. The goal is now to
prove that no optimal transport map exists from µ to ν .

First consider that there is an obvious transport map S sending ν into µ . Just take
S(x1,x2) = (x1,B(x1)) (i.e. each point moves vertically to the corresponding point
on the graph of B). Obviously, S is not injective. The Monge cost of S is given by´

Q |x2−B(x1)|dx1 dx2 =
´

Q(x2−B(x1))dx1 dx2. Moreover, the function u(x1,x2) =
−x2 is in Lip1 and we have

ˆ
R2

ud(µ−ν) =−
ˆ 1

0
B(x1)dx1 +

ˆ
Q

x2 dx1 dx2 =

ˆ
Q
|x2−B(x1)|dx1 dx2.

This proves that S is an optimal map from ν to µ and u is a Kantorovich potential (more
precisely: u is a Kantorovich potential from µ to ν , and −u from ν to µ). But this also
proves that any optimal transport plan between µ and ν must be concentrated on the
set {(x,y) : y2− x2 = |x− y|}, i.e. on {(x,y) : y1 = x1, and x2 ≤ y2}. In particular, the
transport can only occur vertically, exactly as it happens for S. Yet, there is no transport
map from µ to ν with this property: indeed, the image of spt(µ) through such a map
could only contain one point in each vertical segment of spt(ν), and could not cover
almost all Q.

To make the example complete2, one only needs to produce such a function B.
As the reader could imagine, the choice of the notation has been done on purpose:
the typical trajectory of the Brownian motion satisfies this assumption. Indeed, it is
known that the trajectories of a Brownian motion are almost surely never differentiable,
and even never approximately differentiable (see the Box 3.3 in Section 3.3.2 for this
notion, and see [223] for the behavior of the Brownian motion with this respect). By the

2 Note that the construction is essentially the same as in the example provided in [200], for a different
goal. The regularity degree is slightly different, and we decided to handle by hands “vertical” Lipschitz
curves in order to make a self-contained presentation.
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way, it is also proven in [26] that, almost surely, there is no set A with dimension bigger
than 1/2 on which B could be Hölder continuous with exponent larger than 1/2. This
prevents the possibility that B coincides with a Lipschitz function on a 1-dimensional
set. We can even say that {t ∈ [0,1] : B(t) = f (t)} has dimension less or equal than
1/2.

For the other set (i.e. the points where t = f (B(t))), it is trickier. We can assume, by
contradiction, that there exists a compact set K with |K|> 0 and f ◦B= id on K. Hence,
the set H = B(K) is also compact, and must have positive measure. Otherwise, if
|H|= 0, K ⊂ f (H) would be negligible too, because f is Lipschitz. We can assume that
f is C1, if we restrict H. Indeed, for every Lipschitz function f and every n there is a
C1 function f̃n with |{ f 6= f̃n}|< 1

n (see [161] for this fact). If we set Hn = { f = f̃n}we
have |H \

⋃
n Hn|= 0 and | f (H \

⋃
n Hn)|= 0; this proves | f (

⋃
n Hn)|= |

⋃
n f (Hn)|> 0

and at least for some n we must have |Hn|, | f (Hn)|> 0. Hence, we can suppose f ∈C1.
Now, there are two possibilities: either f ′ = 0 on H, or there is a small interval where f
is a diffeomorphism. In this second case we find B = f−1 on a set of positive measure,
which is a contradiction with the well-known properties of Brownian motions (since
f−1 is Lipschitz, and even C1). On the contrary, if f ′ = 0 on H then the area formula
provides |K|= 0, which is also a contradiction.

3.1.5 Approximation issues for the ray-monotone optimal trans-
port

The present section deals with some natural questions concerning the ray-monotone
optimal transport plan γ , and in particular approximation questions. Indeed, we have
seen (Theorem 1.50) that for any weakly converging sequence γn ⇀ γ , if γn is optimal
for a continuous cost between its marginal, then so is γ . Yet, we know that for c(x,y) =
|x− y| the optimal transport plan is not in general unique, and for many applications
one prefers to stick to the ray-monotone one. Hence, the question is how to select this
special transport plan by approximation, when the measures and/or the cost vary.

For many applications (see in particular Chapter 4), it is interesting to approximate
transport plans through transport maps sending a given measure to an atomic one. This
is because this kind of transport maps is actually composed of different homotheties
defined on a partition of the domain.

Here is a useful approximation lemma in the spirit of Γ-convergence developments
(see [134], Section 2.4 and Box 4.6 in Section 4.4.2).

For fixed measures µ,ν ∈P(Ω), with µ �L d , consider the following family of
minimization problems (Pε):

(Pε) = min
{
Tc((πy)#γ,ν)+ εK1(γ)+ ε

2K2(γ)+ ε
3d+3#((πy)#γ) :

γ ∈P(Ω×Ω), (πx)#γ = µ} ,

where Tc is the minimum value of the transport problem for the cost c(x,y) = |x− y|,
Kp(γ) =

´
|x−y|pγ(dx,dy) for p = 1,2 and the symbol # denotes the cardinality of the

support of a measure. Note that K1(γ) 6= Tc((πx)#γ,(πy)#γ) in general.
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Actually, the minimization of (Pε) consists in looking for a transport plan with
first marginal equal to µ satisfying the following criteria with decreasing degree of
importance: the second marginal must be close to ν , the K1 cost of transportation
should be small, the K2 as well, and, finally, the second marginal must be atomic with
not too many atoms.

This minimization problem has obviously at least a solution (by the direct method,
since Ω is compact). We denote by γε such a solution and νε := (πy)#γε its second
marginal. It is straightforward that νε is an atomic measure and that γε is the (unique,
since µ �L d) solution of min{K1(γ)+ εK2(γ) : γ ∈Π(µ,νε)}, which is an optimal
transport problem from µ to νε for the cost |x− y|+ ε|x− y|2. Set

γ = argmin{K2(γ) : γ is a K1-optimal transport plan from µ to ν} . (3.4)

This transport plan γ is unique, and it is the unique ray-monotone optimal transport
plan from µ to ν (this is a consequence of Section 3.1.4); note that the functional K2
could have been replaced by any functional γ 7→

´
h(x− y)dγ for a strictly convex

function h).

Lemma 3.20. As ε → 0 we have νε ⇀ ν and γε ⇀ γ .

Proof. It is sufficient to prove that any possible limit of subsequences coincides with
ν or γ, respectively. Let γ0 be one such a limit and ν0 = (πy)#γ0 the limit of the cor-
responding subsequence of νε . Consider a regular grid Gn ⊂ Ω composed of approx-
imately Cnd points (take Gn = 1

nZ
d ∩Ω), and let pn be any measurable map from Ω

to Gn, with the property |pn(x)− x| ≤ 1/n (for instance, pn can be the projection map,
where it is well-defined). Set νn := (pn)#ν and note #νn ≤Cnd , as well as νn ⇀ ν and
Tc(ν

n,ν)≤ 1
n .

First step: ν0 = ν . Take γn any transport plan from µ to νn. By optimality of γε

we have
Tc(νε ,ν)≤Tc(ν

n,ν)+ εK1(γ
n)+ ε

2K2(γ
n)+Cε

3d+3nd .

Fix n, let ε go to 0 and get

Tc(ν0,ν)≤Tc(ν
n,ν)≤ 1

n
.

Then let n→∞ and get Tc(ν0,ν) = 0, which implies ν0 = ν (thanks to Corollary 3.3).
Second step: γ0 is optimal for K1 from µ to ν . Take any optimal transport plan

γn (for the K1 cost) from µ to νn (i.e. K1(γ
n) = Tc(µ,ν

n)). These plans converge to a
certain optimal plan γ̃ from µ to ν (i.e. K1(γ̃) = Tc(µ,ν)). Then, by optimality of γε ,
we have

εK1(γε)≤Tc(ν
n,ν)+ εK1(γ

n)+ ε
2K2(γ

n)+Cε
3d+3nd

≤ 1
n
+ εK1(γ

n)+Cε
2 +Cε

3d+3nd .

Then take n≈ ε−2 and divide by ε:

K1(γε)≤ ε +K1(γ
n)+Cε +Cε

d+2.
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Passing to the limit we get

K1(γ0)≤ K1(γ̃) = Tc(µ,ν),

which implies that γ0 is also optimal.
Third step: γ0 = γ . Take any optimal transport plan γ (for the cost K1) from µ to

ν . Set γn = (id× pn)#γ , where (id× pn)(x,y) := (x, pn(y)). We have (πy)#γn = νn.
Then we have

Tc(νε ,ν)+ εK1(γε)+ ε
2K2(γε)≤Tc(ν

n,ν)+ εK1(γ
n)+ ε

2K2(γ
n)+Cε

3d+3nd .

Moreover, using the triangle inequality of Corollary 3.2, we infer

K1(γε)≥Tc(µ,νε)≥Tc(µ,ν)−Tc(νε ,ν).

We also have

K1(γ
n)≤ K1(γ)+

ˆ
|pn(y)− y|dγ(x,y)≤ K1(γ)+

1
n
= Tc(µ,ν)+

1
n
.

Hence we have

(1−ε)Tc(νε ,ν)+ εTc(µ,ν)+ ε
2K2(γε)≤

1
n
+ εTc(µ,ν)+

ε

n
+ ε

2K2(γ
n)+Cε

3d+3nd .

Getting rid of the first term (which is positive) in the left hand side, simplifying εTc(µ,ν),
and dividing by ε2, we get

K2(γε)≤
1+ ε

nε2 +K2(γ
n)+Cε

3d+1nd .

Here it is sufficient to take n≈ ε−3 and pass to the limit to get

K2(γ0)≤ K2(γ),

which is the condition characterizing γ (K2-optimality among plans which are K1-
minimizers).

This approximation result will be useful in Chapter 4. It is mainly based on the
fact (already mentioned in Section 3.1.2) that, when we minimize the transport cost
|x−y|+ε|x−y|2, we converge to the solution of the secondary variational problem, i.e.
to the ray-monotone transport map. As we said, any kind of strictly convex perturbation
should do the same job as the quadratic one.

Yet, there are other approximations that are as natural as this one, but are still open
questions. We list two of them.

Open Problem (stability of the monotone transport): take γn to be the ray-
monotone optimal transport plan for the cost |x− y| between µn and νn. Suppose
µn ⇀ µ,νn ⇀ ν and γn ⇀ γ . Is γ the ray-monotone optimal transport plan between
µ and ν?

Open Problem (limit of
√

ε2 + |x− y|2): take γε to be the optimal transport plan
for the cost

√
ε2 + |x− y|2 between two given measures µ and ν . If spt(µ)∩ spt(ν) =
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/0, then γε can be easily proven to converge to the ray-monotone optimal transport plan
(because, at the first non-vanishing order in ε , the perturbation of the cost is of the form
|x− y|+ ε2/|x− y|+o(ε2), and the function h(t) = 1/t is strictly convex on {t > 0}).
Is the same true if the measures have intersecting (or identical) supports as well?

This last approximation is very useful when proving (or trying to prove) regularity
results (see [211]).

3.2 The supremal case, L∞

We consider now a different problem: instead of minimizing

Kp(γ) =

ˆ
|x− y|p dγ,

we want to minimize the maximal displacement, i.e. its L∞ norm. This problem has
been first adressed in [123], but the proof that we present here is essentially taken from
[198].

Let us define

K∞(γ) := ||x− y||L∞(γ) = inf{m ∈ R : |x− y| ≤ m for γ−a.e.(x,y)}
= max{|x− y| : (x,y) ∈ spt(γ)}

(where the last equality, between an L∞ norm and a maximum on the support, is justified
by the continuity of the function |x− y|).

Lemma 3.21. For every γ ∈P(Ω×Ω) the quantities Kp(γ)
1
p increasingly converge

to K∞(γ) as p→ +∞. In particular K∞(γ) = supp≥1 Kp(γ)
1
p and K∞ is l.s.c. for the

weak convergence in P(Ω×Ω). Thus, it admits a minimizer over Π(µ,ν), which is
compact.

Proof. It is well known that, on any finite measure space, the Lp norms converge to the
L∞ norm as p→∞, and we will not reprove it here. This may be applied to the function
(x,y) 7→ |x−y| on Ω×Ω, endowed with the measure γ , thus getting Kp(γ)

1
p → K∞(γ).

It is important that this convergence is monotone here, and this is true when the measure
has unit mass. In such a case, we have for p < q, using Hölder (or Jensen) inequality

ˆ
| f |p dγ ≤

(ˆ
| f |q dγ

)p/q(ˆ
1 dγ

)1−p/q

=

(ˆ
| f |q dγ

)p/q

,

for every f ∈ Lq(γ). This implies, by taking the p-th root, || f ||Lp ≤ || f ||Lq . Applied to
f (x,y) = |x− y| this gives the desired monotonicity.

From this fact, we infer that K∞ is the supremum of a family of functionals which
are continuous for the weak convergence (since Kp is the integral of a bounded continu-
ous function, Ω being compact, and taking the p-th root does not break continuity). As
a supremum of continuous functionals, it is l.s.c. and the conclusion follows.
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The goal now is to analyze the solution of

min{K∞(γ) : γ ∈Π(µ,ν)}

ant to prove that there is at least a minimizer γ induced by a transport map. This map
would solve

min{||T− id||L∞(µ) , T#µ = ν}.

Here as well there will be no uniqueness (it is almost always the case when we min-
imize an L∞ criterion), hence we define O∞(µ,ν) = argminγ∈Π(µ,ν) K∞(γ), the set of
optimal transport plans for this L∞ cost. Note that O∞(µ,ν) is compact, since K∞ is
l.s.c. (as for O(µ,ν)). Set now L := min{K∞(γ) : γ ∈Π(µ,ν)}: we can write

γ ∈ O∞(µ,ν)⇔ spt(γ)⊂ {(x,y) : |x− y| ≤ L}

(since any transport plan γ concentrated on the pairs where |x−y| ≤ L satisfies K∞(γ)≤
L and is hence optimal). We will suppose L > 0 otherwise this means that it is possible
to obtain ν from µ with no displacement, i.e. µ = ν and the optimal displacement is
the identity.

Consequently, exactly as for the L1 case, we can define a secondary variational
problem:

min{K2(γ) : γ ∈ O∞(µ,ν)}.

This problem has a solution γ since K2 is continuous for the weak convergence and
O∞(µ,ν) is compact. We do not know for the moment whether we have uniqueness
for this minimizer. Again, it is possible to say that γ also solves

min
{ˆ

Ω×Ω

cdγ : γ ∈Π(µ,ν)

}
, where c(x,y) =

{
|x− y|2 if |x− y| ≤ L
+∞ otherwise.

The arguments are the same as in the L1 case. Moreover, also the form of the cost c
is similar, and this cost is l.s.c. as well. Hence, γ is concentrated on a set Γ ⊂ Ω×Ω

which is c-CM. This means

(x1,y1),(x2,y2) ∈ Γ, |x1− y2|, |x2− y1| ≤ L⇒ (x1− x2) · (y1− y2)≥ 0. (3.5)

We can also suppose Γ ⊂ {(x,y) : |x− y| ≤ L}. We will try to “improve” the set Γ,
by removing negligible sets and getting better properties. Then, we will show that the
remaining set Γ̃ is contained in the graph of a map T, thus obtaining the result.

As usual, we will assume µ�L d . Then, we need to recall the notion of Lebesgue
points, which is specific to the Lebesgue measure.

Box 3.2. – Memo – Density points

Definition - For a measurable set E ⊂ Rd we call Lebesgue point of E a point x ∈ Rd

such that

lim
r→0

|E ∩B(x,r)|
|B(x,r)|

= 1.
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The set of Lebesgue points of E is denoted by Leb(E) and it is well-known that
|E \Leb(E)|+ |Leb(E) \E| = 0. This is actually a consequence of a more general fact:
given a function f ∈ L1

loc(R
d), a.e. point x is a Lebesgue point for f , in the sense that

limr→0
ffl

B(x,r) | f (y)− f (x)|dy = 0, which also implies f (x) = limr→0
ffl

B(x,r) f (y)dy. If this
is applied to f = 1E , then one recovers the notion of Lebesgue points of a set (also called
density points).

Lemma 3.22. The plan γ is concentrated on a c-CM set Γ̃ such that for every (x0,y0)∈
Γ̃ and for every ε,δ > 0, every unit vector ξ and every sufficiently small r > 0, there
are a point x ∈

(
B(x0,r)\B(x0,

r
2 )
)
∩C(x0,ξ ,δ ) and a point y ∈ B(y0,ε) such that

(x,y) ∈ Γ̃, where C(x0,ξ ,δ ) is the following convex cone:

C(x0,ξ ,δ ) := {x : (x− x0) ·ξ > (1−δ )|x− x0|}.

Proof. First, take a c-CM set Γ such that γ(Γ) = 1 . Then, let Bi be a countable family
of balls in Rd , generating the topology of Rd (for instance, all the balls such that the
coordinates of the center and the radius are rational numbers). Consider now

Ai := (πx)(Γ∩ (Ω×Bi)),

i.e. the set of all points x such that at least a point y with (x,y) ∈ Γ belongs to Bi (the
points that have at least one “image” in Bi, if we imagine γ as a multi-valued map).
Then set Ni := Ai \Leb(Ai). This set has zero Lebesgue measure, and hence it is µ-
negligible. Also µ(

⋃
i Ni)= 0. As a consequence, one can define Γ̃ :=Γ\((

⋃
i Ni)×Ω).

The plan γ is still concentrated on Γ̃, since we only removed µ-negligible points. Ob-
viously, Γ̃ stays c-CM and enjoys property (3.5), since it is a subset of Γ.

Moreover, Γ̃ has the property which is claimed in the statement. This is true since
there is at least one of the balls Bi containing y0 and contained in B(y0,ε). Since
x0 ∈ Ai and we have removed Ni, this means that x0 is a Lebesgue point for Ai. Since
the region

(
B(x0,r)\B(x0,

r
2 )
)
∩C(x0,ξ ,δ ) is a portion of the ball B(x0,r) which takes

a fixed proportion (depending on δ ) of the volume of the whole ball, for r→ 0 it is
clear that Ai (and also Leb(Ai)) must meet it (otherwise x0 would not be a Lebesgue
point). It is then sufficient to pick a point in Leb(Ai)∩

(
B(x0,r)\B(x0,

r
2 )
)
∩C(x0,ξ ,δ )

and we are done.

Lemma 3.23. If (x0,y0) and (x0,z0) belong to Γ̃, then y0 = z0.

Proof. Suppose by contradiction y0 6= z0. In order to fix the ideas, let us suppose
|x0− z0| ≤ |x0−y0| (and in particular y0 6= x0, since otherwise |x0− z0|= |x0−y0|= 0
and z0 = y0).

Now, use the property of Γ̃ and find (x,y)∈ Γ̃ with y∈B(y0,ε) and x∈
(
B(x0,r)\B(x0,

r
2 )
)
∩

C(x0,ξ ,δ ), for a vector ξ to be determined later. Use now the fact that Γ̃ is c-CM ap-
plied to (x0,z0) and (x,y).
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If we can prove that |x− z0|, |x0− y| ≤ L, then we should have

(x− x0) · (y− z0)≥ 0

and we would use this to get a contradiction, by means of a suitable choice for ξ .
Indeed, the direction of x−x0 is almost that of ξ (up to an error of δ ) and that of y− z0
is almost that of y0− z0 (up to an error of the order of ε/|z0−y0|). If we choose ξ such
that ξ · (y0− z0)< 0, this means that for small δ and ε we would get a contradiction.

We need to guarantee |x− z0|, |x0 − y| ≤ L, in order to prove the claim. Let us
compute |x− z0|2: we have

|x− z0|2 = |x0− z0|2 + |x− x0|2 +2(x− x0) · (x0− z0).

In this sum we have

|x0− z0|2 ≤ L2; |x−x0|2 ≤ r2; 2(x−x0) · (x0− z0) = |x−x0|(ξ · (x0− z0)+O(δ )).

Suppose now that we are in one of the following situations: either choose ξ such that
ξ · (x0− z0)< 0 or |x0− z0|2 < L2. In both cases we get |x− z0| ≤ L for r and δ small
enough. In the first case, since |x− x0| ≥ r

2 , we have a negative term of the order of
r and a positive one of the order of r2; in the second we add to |x0− z0|2 < L2 some
terms of the order of r or r2.

Analogously, for what concerns |x0− y| we have

|x0− y|2 = |x0− x|2 + |x− y|2 +2(x0− x) · (x− y).

The three terms satisfy

|x0− x|2 ≤ r2; |x− y|2 ≤ L2;
2(x0− x) · (x− y) = |x− x0|(−ξ · (x0− y0)+O(δ + ε + r)).

In this case, either we have |x0− y0|< L (which would guarantee |x0− y|< L for ε,δ
small enough), or we need to impose ξ · (y0− x0)< 0.

Note that imposing ξ · (y0− x0) < 0 and ξ · (x0− z0) < 0 automatically gives ξ ·
(y0− z0) < 0, which is the desired condition so as to have a contradiction. Set v =
y0− x0 and w = x0− z0. If it is possible to find ξ with ξ · v < 0 and ξ ·w < 0 we
are done. When is it the case that two vectors v and w do not admit the existence of
a vector ξ with both scalar products that are negative? The only case is when they
go in opposite directions. But this would mean that x0,y0 and z0 are colinear, with z0
between x0 and y0 (since we supposed |x0− z0| ≤ |x0− y0|). If we want z0 and y0 to
be distinct points, we should have |x0− z0| < L. Hence in this case we do not need
to check ξ · (x0− z0) < 0. We only need a vector ξ satisfying ξ · (y0− x0) < 0 and
ξ · (y0− z0)< 0, but the directions of y0− x0 and y0− z0 are the same, so that this can
be guaranteed by many choices of ξ , since we only need the scalar product with one
only direction to be negative. Take for instance ξ =−(y0− x0)/|y0− x0|.

Theorem 3.24. The secondary variational problem

min{K2(γ) : γ ∈ O∞(µ,ν)}
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Figure 3.4: The points in the proof of Lemma 3.23.

admits a unique solution γ , it is induced by a transport map T, and such a map is an
optimal transport for the problem

min{||T− id||L∞(µ) , T#µ = ν}.

Proof. We have already seen that γ is concentrated on a set Γ̃ satisfying some useful
properties. Lemma 3.23 shows that Γ̃ is contained in a graph, since for any x0 there is
no more than one possible point y0 such that (x0,y0)∈ Γ̃. Let us consider such a point y0
as the image of x0 and call it T(x0). Then γ = γT. The optimality of T in the “Monge”
version of this L∞ problem comes from the usual comparison with the Kantorovich
version on plans γ . The uniqueness comes from standard arguments (since it is true as
well that convex combinations of minimizers should be minimizers, and this allows to
perform the proof in Remark 1.19).

3.3 Discussion

3.3.1 Different norms and more general convex costs
The attentive reader will have observed that the proof in Section 3.1 about the case
of the distance cost function was specific to the case of the distance induced by the
Euclidean norm. Starting from the original problem by Monge, and relying on the
proof strategy by Sudakov [290] (which had a gap later solved by Ambrosio in [8, 11],
but was meant to treat the case of an arbitrary norm), the case of different norms has
been extensively studied in the last years. Note that the case of uniformly convex norms
(i.e. those such that the Hessian of the square of the norm is bounded from below by
a matrix which is positively definite) is the one which is most similar to the Euclidean
case, and can be treated in a similar way.
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One of the first extension was the case studied by Ambrosio, Kirchheim and Pratelli
about crystalline norms ([19]), i.e. norms such that their unit balls are convex polyhe-
dra. One can guess that the fact that we have a finite number of faces makes the task
easier, but it already required a huge approximation work. Indeed, if one uses duality,
the gradient ∇u(x) of a Kantorovich potential is not enough to determine the direction
of the displacement y− x for a pair (x,y) ∈ spt(γ), because a crystalline norm has the
same gradient on all the points of a same face (and not only on points on the same ray,
as is the case for the Euclidean norm, or for other strictly convex norms). To handle this
problem, [19] develops a strategy with a double approximation, where ||z|| is replaced
by something like ||z||+ ε|z|+ ε2|z|2, where ||z|| is the norm we consider, |z| is the
Euclidean norm which is added so as to select a direction, and its square is added so as
to get strict convexity and monotonicity on each ray (exactly as we saw in Section 3.1).
In this way the authors prove the existence of an optimal map for crystalline norms in
any dimensions, and for arbitrary norms in R2.

Later, the way was open to the generalization to other norms. The main tool is
always a secondary variational problem, since for norm costs it is in general false that
optimal plans all come from a map, and one needs to select a special one. The difficulty
with secondary variational problems, is that they correspond to a new cost c which is
not finitely valued. This prevents from using duality on the secondary problem. Indeed,
Proposition 1.42 proves that we have equality between the primal and the dual problem
for all costs which are l.s.c., but does not guarantee the existence of an optimizer in the
dual; existence is usually guaranteed either via Ascoli-Arzelà arguments, or through
Theorem 1.37, which requires finiteness of the cost. This is why some methods avoid-
ing duality, and concentrating on c-cyclical monotonicity have been developed. The
first time they appeared is in [123], for a different problem (an L∞ case): it corresponds
to the idea that we presented in Section 3.2 (looking for density points of this concen-
tration set). Later, Champion and De Pascale managed to use the same tools to prove
the existence of an optimal map first for arbitrary strictly convex norms (in [120], the
same result being obtained differently at almost the same time by Caravenna in [104]),
and then for general norms in [121]. This last result was more difficult to obtain and
required some extra approximation tools inspired from [273], and in particular the se-
lection of a special optimal transport plan via approximation through atomic marginals,
as we did in Section 3.1.5.

But the history of optimal transport did not look only at norms. Many studies
have been done for different distance cost functions (distances or squared distances on
manifolds, geodesic distances on Rd if obstacle are present. . . ). In this book we prefer
to stick to the Euclidean case, and in this section we only consider costs of the form
c(x,y) = h(x−y) for h convex. Even this case is far from being completely understood.
In a paper with Carlier and De Pascale, see [113], a general (straightforward) strategy
of decomposition according to the “faces” of the cost function h is presented.

The decomposition is based on the following steps:

• Consider an optimal plan γ and look at the optimality conditions as in Section
1.3. For all (x0,y0) ∈ spt(γ), if x0 is a differentiability point for the potential ϕ

(we write x0 ∈ Diff(ϕ)), one gets ∇ϕ(x0) ∈ ∂h(x0− y0), which is equivalent to

x0− y0 ∈ ∂h∗(∇ϕ(x0)). (3.6)
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Let us define
Fh := {∂h∗(p) : p ∈ Rd},

which is the set of all possible values of the subdifferential multi-map of h∗.
These values are those convex sets where the function h is affine, and they will
be called faces of h. The fact that ϕ is differentiable µ-a.e. is enforced by
supposing µ �L d and h to be Lipschitz, so that ϕ is also Lipschitz.

Thanks to (3.6), for every fixed x, all the points y such that (x,y) belongs to the
support of an optimal transport plan are such that the difference x− y belongs to
a same face of c. Classically, when these faces are singletons (i.e. when c∗ is
differentiable, which is the same as c being strictly convex), this is the way to
obtain a transport map, since only one y is admitted for every x.

Equation (3.6) also enables one to classify the points x as follows. For every
K ∈Fh we define the set

XK := {x ∈ Diff(ϕ) : ∂h∗(∇ϕ(x)) = K}.

Hence γ may be decomposed into several subplans γK according to the criterion
x ∈ XK . If K varies among all possible faces this decomposition covers γ-almost
all pairs (x,y). Moreover, if (x,y) belongs to spt(γ) and x to Diff(ϕ), then x ∈ XK
implies x− y ∈ K.

If the set Fh is finite or countable, we define

γK := γ|XK×Rd .

In this case, the marginal measures µK and νK of γK (i.e. its images under the
maps πx and πy, respectively) are sub-measures of µ and ν , respectively. In
particular µK inherits the absolute continuity from µ . This is often useful for
proving existence of transport maps.

If Fh is uncountable, in some cases one can still rely on a countable decomposi-
tion by considering the set F multi

h := {K ∈Fh : K is not a singleton }. If F multi
h

is countable, then one can separate those x such that ∂h∗(∇(ϕ(x)) is a singleton
(where a transport already exists) and look at a decomposition for K ∈F multi

h
only.

• This decomposition reduces the transport problem to a superposition of transport
problems of the type

min
{ˆ

h(x− y)dγ(x,y) : γ ∈Π(µK ,νK), spt(γ)⊂ {x− y ∈ K}
}
.

The advantage is that the cost c restricted to K is easier to study. If K is a face
of h, then h is affine on K and in this case the transport cost does not depend any
more on the transport plan.

• The problem is reduced to find a transport map from µK to νK satisfying the
constraint x− T(x) ∈ K, knowing a priori that a transport plan satisfying the
same constraint exists.
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In some cases (for example if K is a convex compact set containing 0 in its
interior) this problem may be reduced to an L∞ transport problem. In fact if one
denotes by || · ||K the (gauge-like) “norm” such that K = {x : ||x||K ≤ 1}, one has

min
{

max{||x− y||K , (x,y) ∈ spt(γ)},γ ∈Π(µ,ν)
}
≤ 1 (3.7)

and the question is whether the same inequality would be true if one restricted the
admissible set to transport maps only (passing from Kantorovich to Monge, say).
The answer would be yes if a solution of (3.7) were induced by a transport map
T. This is what we presented in Section 3.2 in the case K = B(0,1), and which
was first proven in [123] via a different strategy (instead of selecting a minimizer
via a secondary variational problem, selecting the limit of the minimizers for the
Lp norms or p→∞). Note also that this issue is easy in 1D, where the monotone
transport solves all the Lp problems, and hence the L∞ as well (and this does not
need the measure to be absolutely continuous, but just atomless).

Let us note that the assumption that the number of faces is countable is quite re-
strictive, and is essentially used to guarantee the absolute continuity of µK , with no
need of a disintegration argument (which could lead to difficulties at least as hard as
those faced by Sudakov). However, an interesting example that could be approached
by finite decomposition is that of crystalline norms. In this case the faces of the cost h
are polyhedral cones but, if the support of the two measures are bounded, we can sup-
pose that they are compact convex polyhedra. This means, thanks to the considerations
above, that it is possible to perform a finite decomposition and to reduce the problem
to some L∞ minimizations for norms whose unit balls are polyhedra (the faces of the
cone). In particular the L1 problem for crystalline norms is solved if we can solve L∞

optimal transport problem for other crystalline norms.
It becomes then interesting to solve the L∞ problem as in Section 3.2, replacing the

unit ball constraint |x−y| ≤ 1 with a more general constraint x−y ∈C, the set C being
a generic convex set, for instance a polyhedron. This is studied in [198] by minimizing
the quadratic cost

c(x,y) =

{
|x− y|2 if x− y ∈C,

+∞ otherwise,

which is also of the form c(x,y) = h(x− y) for h strictly convex (but not real valued).
The existence of an optimal map (better: the fact that any optimal γ for this problem
is induced by a map) is proven when µ is absolutely continuous and C is either strictly
convex or has a countable number of faces. This can be achieved by adapting the
arguments of Section 3.2 and proving that, if (x0,y0) and (x0,y1) belong to spt(γ) (and
hence y0 − x0,y1 − x0 ∈ C), then the middle point 1

2 (y0 + y1)− x0 cannot lie in the
interior of C. If C is strictly convex this proves y0 = y1. If not, this proves that the
points y0− x0 and y1− x0 are on a same face of C and one can perform a dimensional
reduction argument, and proceed by induction.

In particular, this argument applies to the case of polyhedra and of arbitrary convex
sets in R2 (since no more than a countable quantity of segments may be contained in
∂C), and provides an alternative proof for the result of [19].
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Many generalizations of this last result have been performed: Bertrand and Puel
([54]) studied the “relativistic” cost h(z) := 1−

√
1−|z|2, which is naturally endowed

with the constraint |z| ≤ 1 and is a strictly convex function (but not finite-valued since
the constraint means h(z) = +∞ outside the unit ball). They proved existence of an
optimal map by adapting the arguments of [123, 198] to the case of a strictly convex
function h with a strictly convex constraint C (from there, adapting to the case of a
countable number of faces seems to be also possible).

Finally, Chen, Jiang and Yang combined the arguments of [198] with those of [121],
thus getting existence for the cost function

c(x,y) =

{
|x− y| if x− y ∈C,

+∞ otherwise,

under the usual assumptions on C (strictly convex or countable number of faces). These
results can be found in [124, 125] and are the first which combine lack of strict con-
vexity and infinite values.

All these subsequent improvements paved the way to an obvious conjecture, i.e. the
fact that a mixture of duality, variational approximation and density points techniques
could finally prove the existence of an optimal transport map in a very general case:

Problem (existence for every convex cost): suppose µ � L d and take a cost
c(x,y) of the form h(x− y) with h : Rd → R∪{+∞} convex; prove that there exists an
optimal map.

This problem was open till the final redaction phases of this book, when Bardelloni
and Bianchini paper [27] appeared, containing a proof of a disintegration result imply-
ing this very same statement, at least in the case where h is finite-valued but not strictly
convex.

3.3.2 Concave costs (Lp, with 0 < p < 1)
Another class of transport costs which is very reasonable for applications, rather than
convex functions of the Euclidean distance, is that of concave costs3, more precisely
c(x,y) = `(|x− y|) where ` : R+→ R+ is a strictly concave and increasing function4.
From the economic and modeling point of view, this is the most natural choice: moving
a mass has a cost which is proportionally less if the distance increases, as everybody
can note from travel fares of most transport means (railways, highway tolls, flights. . . ).
All these costs are sub-additive. In many practical cases, moving two masses, each
on a distance d, is more expensive than moving one at distance 2d and keeping at rest
the other. The typical example of costs with these property is given by the power cost
|x− y|α , α < 1.

Note that all these costs satisfy the triangle inequality and are thus distances on
Rd . Moreover, under strict concavity assumptions, these costs satisfy a strict triangle
inequality. This last fact implies that the common mass between µ and ν must stay at
rest, a fact first pointed out in [177].

3We mean here costs which are concave functions of the distance |x− y|, not of the displacement x− y,
as instead we considered in Remark 2.12.

4We will not explicitly state it every time, but this also implies that ` is strictly increasing.
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Theorem 3.25. Let γ be an optimal transport plan for the cost c(x,y) = `(|x−y|) with
` : R+ → R+ strictly concave, increasing, and such that `(0) = 0. Let γ = γD + γO,
where γD is the restriction of γ to the diagonal D = {(x,x) : x ∈Ω} and γO is the part
outside the diagonal, i.e. the restriction to Dc = (Ω×Ω)\D. Then this decomposition
is such that (πx)#γO and (πy)#γO are mutually singular measures.

Proof. It is clear that γO is concentrated on spt(γ)\D and hence (πx)#γO is concentrated
on πx(spt(γ) \D) and (πy)#γO on πy(spt(γ) \D). We claim that these two sets are
disjoint. Indeed suppose that a common point z belongs to both. Then, by definition,
there exists y such that (z,y)∈ spt(γ)\D and x such that (x,z)∈ spt(γ)\D. This means
that we can apply c-cyclical monotonicity to the points (x,z) and (z,y) and get

`(|x− z|)+ `(|z− y|)≤ `(|x− y|)+ `(|z− z|) = `(|x− y|)< `(|x− z|)+ `(|z− y|),

where the last strict inequality gives a contradiction.

This gives a first constraint on how to build optimal plans γ: look at µ and ν , take
the common part µ ∧ ν , leave it on place, subtract it from the rest, and then build an
optimal transport between the two remainders, which will have no mass in common.
Note that when the cost c is linear in the Euclidean distance, then the common mass
may stay at rest but is not forced to do so (think at the book-shifting example); on
the contrary, when the cost is a strictly convex function of the Euclidean distance,
in general the common mass does not stay at rest (in the previous example only the
translation is optimal for c(x,y) = |x− y|p, p > 1). Note that the fact that the common
mass stays at rest implies that in general there is no optimal map T, since whenever
there is a set A with µ(A) > (µ ∧ ν)(A) = ν(A) > 0 then almost all the points of A
must have two images: themselves, and another point outside A.

A typical case is represented in Figure 3.3.2 in the 1D case, where the transport
map (after removing the common mass) is decreasing as a consequence of Remark
2.12. Note that the precise structure of the optimal transport map for this kind of
“concave” costs in 1D follows a sort of hierarchical construction, first investigated in
[230] and then used in [142] for numerical purposes.

This suggests to study the case where µ and ν are mutually singular, and the best
that one could do would be to prove the existence of an optimal map in this case.
In particular, this allows to avoid the singularity of the function (x,y) 7→ `(|x− y|)
concentrated on the diagonal {x = y} (look at the example |x− y|α ), since when the
two measures have no common mass almost no point x is transported to y = x.

Yet, exploiting this fact needs some attention. The easiest case is when µ and ν

have disjoint supports, since in this case there is a lower bound on |x−y| and this allow
to stay away from the singularity. Yet, spt(µ)∩ spt(ν) = /0 is too restrictive, since even
in the case where µ and ν have smooth densities f and g it may happen that, after
subtracting the common mass, the two supports meet on the region { f = g}.

The problem has been solved in the classical paper by Gangbo and McCann, [177],
one of the first classical papers about optimal transportation. In such a paper, the
authors used the slightly less restrictive assumption µ(spt(ν)) = 0. This assumption
covers the example above of two continuous densities, but does not cover many other
cases. Think at µ being the Lebesgue measure on a bounded domain Ω and ν being
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µ ν
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Figure 3.5: The optimal plan in 1D in the case of common mass

an atomic measure with an atom at each rational point, or other examples that one can
build with fully supported absolutely continuous measures concentrated on disjoint sets
A and Ω \A (see Ex(20)). In the present section we show how to prove the existence
of a transport map when µ and ν are singular to each other and µ �L d .

We will prove the following result.

Theorem 3.26. Suppose that µ and ν are two mutually singular probability measures
on Rd such that µ�L d , and take the cost c(x,y) = `(|x−y|), for ` :R+→R+ strictly
concave, C1 on ]0,+∞[, and increasing. Then there exists a unique optimal transport
plan γ and it is induced by a transport map.

Proof. We will use the standard procedure explained in Chapter 1 for costs of the form
c(x,y) = h(x− y). In particular we get the existence of a Kantorovich potential ϕ such
that, if (x0,y0) ∈ spt(γ), then

x0− y0 = (∇h)−1(∇ϕ(x0)). (3.8)

This allows to express y0 as a function of x0, thus proving that there is only one point
(x0,y) ∈ spt(γ) and hence that γ comes from a transport T(x) = x− (∇h)−1(∇ϕ(x)).
This approach also proves uniqueness in the same way. In Chapter 1 we presented it
under strict convexity assumptions on h, so that ∇h is injective and (∇h)−1 = ∇h∗. But
the injectivity is also true if h(z) = `(|z|). Indeed we have ∇h(z) = `′(|z|) z

|z| , and the
modulus of this vector identifies the modulus |z| (since `′ is strictly increasing) and the
direction identifies the direction of z.
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The main difficulty is the fact that we need to guarantee that ϕ is differentiable a.e.
with respect to µ . Since µ�L d , it is enough to have ϕ Lipschitz continuous, which is
usually proven using the fact that ϕ(x) = infy h(|x−y|)−ψ(y). Yet, concave functions
on R+ may have an infinite slope at 0 and be non-Lipschitz, and this could be the case
for ϕ as well. This suggests the use of an alternate notion of differentiability.

Box 3.3. – Important notion – Approximate gradient

We recall here some facts about a measure-theoretical notion replacing the gradient for
less regular functions. The interested reader can find many details in [161].

Let us start from the following observation: given a function f : Ω→ R and a point
x0 ∈Ω, we say that f is differentiable at x0 ∈Ω and that its gradient is v = ∇ f (x0) ∈ Rd if
for every ε > 0 the set

A(x0,v,ε) := {x ∈Ω : | f (x)− f (x0)−v · (x− x0)|> ε |x− x0|}

is at positive distance from x0, i.e. if for small δ > 0 we have B(x0,δ )∩A(x0,v,ε) = /0.
Instead of this requirement, we could ask for a weaker condition, namely that x0 is a zero-
density point for the same set A(v,ε) (i.e. a Lebesgue point of its complement). More
precisely, if there exists a vector v such that

lim
δ→0

|A(x0,v,ε)∩B(x0,δ )|
|B(x0,δ )|

= 0

then we say that f is approximately differentiable at x0 and its approximate gradient is
v. The approximate gradient will be denoted by ∇app f (x0). As one can expect, it enjoys
several of the properties of the usual gradient, that we list here.

• The approximate gradient, provided it exists, is unique.

• The approximate gradient is nothing but the usual gradient if f is differentiable.

• The approximate gradient shares the usual algebraic properties of gradients, in par-
ticular ∇app( f +g)(x0) = ∇app f (x0)+∇appg(x0).

• If x0 is a local minimum or local maximum for f , and if ∇app f (x0) exists, then
∇app f (x0) = 0.

Another very important property is a consequence of Rademacher theorem.
Proposition - Let f ,g : Ω→ R be two functions defined on a same domain Ω with g

Lipschitz continuous. Let E ⊂ Ω be a Borel set such that f = g on E. Then f is approxi-
mately differentiable almost everywhere on E and ∇app f (x) = ∇g(x) for a.e. x ∈ E.

Proof - It is enough to consider all the Lebesgue points of E where g is differentiable.
These points cover almost all E. It is easy to check that the definition of approximate
gradient of f at a point x0 is satisfied if we take v = ∇g(x0).

As a consequence, it is also clear that every countably Lipschitz function is approxi-
mately differentiable a.e.

We just need to prove that ϕ admits an approximate gradient Lebesgue-a.e.: this
would imply that Equation (3.8) is satisfied if we replace the gradient with the approx-
imate gradient.
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Recall that we may suppose

ϕ(x) = ϕ
cc(x) = inf

y∈Rd
`(|x− y|)−ϕ

c(y) .

Now consider a countable family of closed balls Bi generating the topology of Rd ,
and for every i consider the function defined as

ϕi(x) := inf
y∈Bi

`(|x− y|)−ϕ
c(y) .

for x ∈ Rd . One cannot provide straight Lipschitz properties for ϕi, since a priori y is
arbitrarily close to x and in general ` is not Lipschitz close to 0. However ϕi is Lipschitz
on every B j such that dist(Bi,B j)> 0. Indeed if x ∈ B j, y ∈ Bi one has |x− y| ≥ d > 0,
therefore the Lipschitz constant of `(|·− y|)−ϕc(y) does not exceed `′(d). It follows
that ϕi is Lipschitz on B j, and its Lipschitz constant does not exceed `′(d).

Then ϕ has an approximate gradient almost everywhere on {ϕ = ϕi} ∩ B j. By
countable union, ϕ admits an approximate gradient a.e. on⋃

i, j
d(Bi,B j)>0

[{ϕi = ϕ}∩B j] .

In order to prove that ϕ has an approximate gradient µ-almost everywhere, it is enough
to prove that

µ

( ⋃
i, j

d(Bi,B j)>0

{ϕi = ϕ}∩B j

)
= 1.

In order to do this, note that for every i and j we have

πx(spt(γ)∩ (B j×Bi))⊂ {ϕ = ϕi}∩B j .

Indeed, let (x,y) ∈ spt(γ)∩ (B j×Bi). Then ϕ(x)+ϕc(y) = l(|x− y|). It follows
that

ϕi(x) = inf
y′∈Bi

`(
∣∣x− y′

∣∣)−ϕ
c(y′)≤ `(|x− y|)−ϕ

c(y) = ϕ(x) .

On the other hand, for every x ∈ Rd

ϕi(x) = inf
y∈Bi

`(|x− y|)−ϕ
c(y)≥ inf

y∈Rd
`(|x− y|)−ϕ

c(y) = ϕ(x) .

As a consequence of this,

µ

( ⋃
i, j

d(Bi,B j)>0

{ϕi = ϕ}∩B j

)
≥ µ

( ⋃
i, j

d(Bi,B j)>0

πx(spt(γ)∩ (B j×Bi))

)

= µ

(
πx

(
spt(γ)∩

⋃
i, j

d(Bi,B j)>0

B j×Bi

))
= µ(πx(spt(γ)\D))

= γ
[
(πx)

−1(πx(spt(γ)\D))
]

≥ γ(spt(γ)\D) = 1,
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where D is the diagonal in Ω×Ω.

From the previous theorem, we can also easily deduce the following extension. De-
fine µ ∧ν as the maximal positive measure which is both less or equal than µ and than
ν , and (µ−ν)+ = µ− µ ∧ν , so that the two measures µ and ν uniquely decompose
into a common part µ ∧ν and two mutually singular parts (µ−ν)+ and (ν−µ)+.

Theorem 3.27. Suppose that µ and ν are probability measures on Ω with (µ−ν)+�
L d , and take the cost c(x,y) = `(|x− y|), for ` : R+ → R+ strictly concave, C1 on
]0,+∞[, and increasing with `(0) = 0. Then there exists a unique optimal transport
plan γ , and it has the form (id, id)#(µ ∧ν)+(id,T)#(µ−ν)+.

As we said, the above results can be extended to more general situations: differen-
tiability of ` is not really necessary, and the assumption µ �L d can be weakened. In
[250], the result is proven under the natural assumption that µ does not give mass to
small sets, i.e. for every A ⊂ Rd which is (d−1)-rectifiable we have µ(A) = 0. The
key tool is the following lemma, which is an interesting result from Geometric Mea-
sure Theory that can be used instead of Lebesgue points-type results when we face a
measure which is not absolutely continuous but “does not give mass to small sets”. It
states that, in such a case, for µ-a.e. point x every cone exiting from x, even if very
small, has positive µ mass. In particular it means that we can find points of spt(µ)
in almost arbitrary directions close to x. This lemma is strangely more known among
people in optimal transport (see also [122]), than in Geometric Measure Theory (even
if it corresponds more or less to a part of Lemma 3.3.5 in [162]).

Lemma 3.28. Let µ be a Borel measure on Rd , and suppose that µ does not give mass
to small sets. Then µ is concentrated on the set

{x : ∀ε > 0,∀δ > 0,∀e ∈ Sd−1, µ(C(x,e,δ ,ε))> 0} ,

where

C(x,e,δ ,ε) =C(x,e,δ )∩B(x,ε) := {y : 〈y− x,e〉 ≥ (1−δ ) |y− x|}∩B(x,ε)



Chapter 4

Minimal flows, divergence
constraints and transport
density

4.1 Eulerian and Lagrangian points of view
We review here the main languages and the main mathematical tools to describe static
or dynamical transport phenomena.

4.1.1 Static and Dynamical models
This section presents a very informal introduction to the physical interpretation of dy-
namical models in optimal transport.

In fluid mechanics, and in many other topics with similar modeling issues, it is
classical to consider two complementary ways of describing motions, which are called
Lagrangian and Eulerian.

When we describe a motion via Lagrangian formalism we give “names” to particles
(using either a specific label, or their initial position, for instance) and then describe,
for every time t and every label, what happens to that particle. “What happens” means
providing its position and/or its speed. Hence we could for instance look at trajectories
yx(t), standing for the position at time t of particle originally located at x. As another
possibility, instead of giving names we could consider bundles of particles with the
same behavior and indicate how many are they. This amounts to giving a measure on
possible behaviors.

The description may be more or less refined. For instance if one only considers
two different times t = 0 and t = 1, the behavior of a particle is only given by its initial
and final positions. A measure on those pairs (x,y) is exactly a transport plan. This
explains why we can consider that the Kantorovich problem is expressed in Lagrangian
coordinates. The Monge problem is also Lagrangian, and particles are labelled by their
initial position.

109
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More refined models can be easily conceived: reducing a movement to the initial
and final positions is embarrassingly poor! Measures on the set of paths (curves ω :
[0,1]→ Ω, with possible assumptions on their regularity) have been used in many
modeling, and in particular in traffic issues, branched transport (see the Section 4.4 for
both these subjects), or in Brenier’s variational formulation of the incompressible Euler
equations for fluids (see Section 1.7.4, 8.4.4 and [84, 86, 53]).

On the other hand, in the Eulerian formalism, we describe, for every time t and
every point x, what happens at such a point at such a time. “What happens” usually
means what are the velocity, the density and/or the flow rate (both in intensity and in
direction) of particles located at time t at point x.

Eulerian models may be distinguished into static and dynamical ones. In a dynami-
cal model we usually use two variables, i.e. the density ρ(t,x) and the velocity vt(x). It
is possible to write the equation satisfied by the density of a family of particles moving
according to the velocity field v. This means that we prescribe the initial density ρ0,
and that the position of the particle originally located at x will be given by the solution
of the ODE {

y′x(t) = vt(yx(t))
yx(0) = x.

(4.1)

We define the map Yt through Yt(x) = yx(t), and we look for the measure ρt := (Yt)#ρ0.
It is well known that ρt and vt solve together the so-called continuity equation

∂tρt +∇ · (ρtvt) = 0

that is briefly addressed in Section 4.1.2.
The static framework is a bit harder to understand, since it is maybe not clear what

“static” means when we want to describe movement. One has to think to a permanent,
cyclical movement, where some mass is constantly injected into the motion at some
points and constantly withdrawn somewhere else. We can also think at a time average
of some dynamical model: suppose that we observe the traffic in a city and we wonder
what happens at each point, but we do not want an answer depending on the hour of
the day. We could for instance consider as a traffic intensity at every point the average
traffic intensity at such a point on the whole day. In this case we usually use a unique
variable w standing for the mass flow rate (which equals density times speed: hence, it
is rather a momentum than a velocity), and the divergence ∇ ·w stands for the excess
of mass which is injected into the motion at every point. More precisely, if particles
are injected into the motion according to a density µ and then exit with density ν , the
vector fields w standing for flows connecting these two measures must satisfy

∇ ·w = µ−ν .

4.1.2 The continuity equation

This section is devoted to the equation

∂tρt +∇ · (ρtvt) = 0,
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its meaning, formulations, and uniqueness results. The remainder of the chapter will
mainly deal with the static divergence equation, but we will see later that the dynamical
case can also be useful (in particular, to produce transport plans associated to a given a
vector field). Hence, we need to develop some tools.

First, let us spend some words on the notion of solution for this equation. Here
below Ω⊂ Rd is a bounded domain, or Rd itself.

Definition 4.1. We say that a family of pairs measures/vector fields (ρt ,vt) with vt ∈
L1(ρt ;Rd) and

´ T
0 ||vt ||L1(ρt )

dt =
´ T

0

´
Ω
|vt |dρt dt <+∞ solves the continuity equation

on ]0,T [ in the distributional sense if for any bounded and Lipschitz test function φ ∈
C1

c (]0,T [×Ω), (note that we require the support to be far from t = 0,1 but not from
∂Ω, when ω is bounded; also Ω is usually supposed to be itself closed but we write Ω

to stress the fact that we do include its boundary), we have
ˆ T

0

ˆ
Ω

(∂tφ)dρt dt +
ˆ T

0

ˆ
Ω

∇φ ·vt dρt dt = 0. (4.2)

This formulation includes homogeneous Neumann boundary conditions on ∂Ω for vt
(if Ω is not Rd itself, obviously), i.e. ρtvt · n = 0. If we want to impose the initial
and final measures we can say that (ρt ,vt) solves the same equation, in the sense of
distribution, with initial and final data ρ0 and ρT , respectively, if for any test function
φ ∈C1

c ([0,T ]×Ω) (now we do not require the support to be far from t = 0,1), we have
ˆ T

0

ˆ
Ω

(∂tφ)dρt dt +
ˆ T

0

ˆ
Ω

∇φ ·vt dρt dt =
ˆ

Ω

φ(T,x)dρT (x)−
ˆ

Ω

φ(0,x)dρ0(x).

(4.3)
We can also define a weak solution of the continuity equation through the following

condition: we say that (ρt ,vt) solves the continuity equation in the weak sense if for
any test function ψ ∈ C1

c (Ω), the function t 7→
´

ψ dρt is absolutely continuous in t
and, for a.e. t, we have

d
dt

ˆ
Ω

ψ dρt =

ˆ
Ω

∇ψ ·vt dρt .

Note that in this case t 7→ ρt is automatically continuous for the weak convergence, and
imposing the values of ρ0 and ρ1 may be done pointwisely in time.

Proposition 4.2. The two notions of solutions are equivalent: every weak solution is
actually a distributional solution and every distributional solution admits a represen-
tative (another family ρ̃t = ρt for a.e. t) which is weakly continuous and is a weak
solution.

Proof. To prove the equivalence, take a distributional solution, and test it against func-
tions φ of the form φ(t,x) = a(t)ψ(x), with ψ ∈C1

c (Ω) and a ∈C1
c (]0,1[). We get

ˆ T

0
a′(t)

ˆ
Ω

ψ(x)dρt dt +
ˆ 1

0
a(t)

ˆ
Ω

∇ψ ·vt dρt dt = 0.

The arbitrariness of a shows that the distributional derivative (in time) of
´

Ω
ψ(x)dρt is´

Ω
∇ψ ·vt dρt . This last function is L1 in time since

´ T
0

∣∣´
Ω

∇ψ ·vt dρt
∣∣dt ≤Lipψ

´ T
0 ||vt ||L1(ρt )

dt <
+∞. This implies that (ρ,v) is a weak solution.
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Conversely, the same computations shows that weak solutions satisfy (4.2) for any
φ of the form φ(t,x) = a(t)ψ(x). It is then enough to prove that finite linear combina-
tion of these functions are dense in C1([0,T ]×K) for every compact set K ⊂ Rd (this
is true, but is a non-trivial exercise: Ex(23)).

It is also classical that smooth functions satisfy the equation in the classical sense if
and only if they are weak (or distributional) solutions. We can also check the following.

Proposition 4.3. Suppose that ρ is Lipschitz continuous in (t,x), that v is Lipschitz in
x, and that the continuity equation ∂tρ +∇ · (ρv) = 0 is satisfied in the weak sense.
Then the equation is also satisfied in the a.e. sense.

Proof. First we note that with our assumptions both ∂tρ and ∇ · (ρv) are well de-
fined a.e. Fix a countable set D ⊂C1

c (Ω̊) which is dense for the uniform convergence
in C0

c (Ω̊) (for instance, use polynomial functions with rational coefficients multiplied
times suitable cutoff functions). Fix t0 such that (t,x) 7→ ρ(t,x) is differentiable at
(t0,x) for a.e. x, and also such that t 7→

´
Ω

φ dρt is differentiable at t = t0 with deriva-
tive given by

´
Ω

∇φ ·vt dρt for all φ ∈ D. Almost all t0 satisfy these conditions. Then
we can also write, by differentiating under the integral sign,

d
dt |t=t0

ˆ
Ω

φ dρt dx =
ˆ

Ω

φ (∂tρ)t0 dx,

which proves
´

Ω
(∇φ ·vt0)ρt0 dx =

´
φ (∂tρ)t0 dx. Yet, we can write

´
Ω

∇φ ·vt0ρt0 dx as
−
´

Ω
φ ∇ · (vt0ρt0)dx (by integration-by-parts of Lipschitz functions, with no boundary

term because of the compact support of φ ), and finally we get
ˆ

Ω

φ
(
(∂tρ)t0 +∇ · (ρt0vt0)

)
dx = 0 for all φ ∈ D,

which is enough to prove (∂tρ)t0 +∇ · (ρt0vt0) = 0 a.e. in x.

After checking the relations between these different notions of solutions, form now
on we will often say “solution” to mean, indifferently, “weak solution” or “solution in
the distributional sense”.

We now try to identify the solutions of the continuity equation and we want to
connect them to the flow of the vector field vt . First, we recall some properties of the
flow.

Box 4.1. – Memo – Flow of a time-dependent vector field

We consider the ODE y′x(t) = vt(yx(t)) with initial datum yx(0) = x, as in (4.1).
Proposition - If vt is continuous in x for every t, then for every initial datum there

is local existence (there exists at least a solution, defined on a neighborhood of t = 0).
If moreover v satisfies |vt(x)| ≤ C0 +C1|x|, then the solution is global in time. If vt is
Lipschitz in x, uniformly in t, then the solution is unique, and defines a flow Yt(x) := yx(t).
In this case, if we set L := supt Lip(vt), then the map Yt(·) is Lipschitz in x, with constant
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eL|t|. Moreover, Yt : Rd → Rd is invertible and its inverse is also Lipschitz with the same
constant.

Sketch of proof - We do not prove existence, which can be classically obtained by fixed-
point arguments in the space of curves. As for uniqueness, and for the dependence on the
initial datum x, we consider two curves y(1) and y(2), solutions of y′(t) = vt(y(t)), and we
define E(t) = |y(1)(t)− y(2)(t)|2. We have

E ′(t) = 2(y(1)(t)− y(2)(t)) · (vt(y(1)(t))−vt(y(2)(t))),

which proves |E ′(t)| ≤ 2LE(t). By Gronwall’s Lemma, this gives E(0)e−2L|t| ≤ E(t) ≤
E(0)e2L|t| and provides at the same time uniqueness, injectivity, and the bi-Lipschitz be-
havior of Yt (which is also a homeomorphism from Rd onto Rd since for every x0 ∈ Rd we
can solve the ODE imposing the Cauchy datum y(t) = x0).

Then, we can prove the following, that we state for simplicity in the case of Lips-
chitz and bounded vector fields.

Theorem 4.4. Suppose that Ω⊂ Rd is either a bounded domain or Rd itself. Suppose
that vt : Ω→ Rd is Lipschitz continuous in x, uniformly in t, and uniformly bounded,
and consider its flow Yt . Suppose that, for every x ∈ Ω and every t ∈ [0,T ], we have
Yt(x) ∈ Ω (which is obvious for Ω = Rd , and requires suitable Neumann conditions
on vt otherwise). Then, for every probability ρ0 ∈P(Ω) the measures ρt := (Yt)#ρ0
solve the continuity equation ∂tρt +∇ · (ρtvt) = 0 with initial datum ρ0. Moreover,
every solution of the same equation with ρt �L d for every t is necessarily obtained
as ρt = (Yt)#ρ0. In particular, the continuity equation admits a unique solution.

Proof. First we check the validity of the equation when ρt is obtained from such a
flow through (4.1). We will prove that we have a weak solution. Fix a test function
φ ∈C1(Rd) such that both φ and ∇φ are bounded, and compute

d
dt

ˆ
Ω

φ dρt =
d
dt

ˆ
φ(yx(t))dρ0(x) =

ˆ
Ω

∇φ(yx(t)) · y′x(t)dρ0(x)

=

ˆ
Ω

∇φ(yx(t)) ·vt(yx(t))dρ0(x) =
ˆ

Ω

∇φ(y) ·vt(y)dρt(y).

This characterizes weak solutions.
In order to prove the second part of the statement, we first observe that (4.2), i.e.

ˆ T

0

ˆ
Ω

(∂tφ +vt ·∇φ)dρt dt = 0,

is also valid for all Lipschitz compactly supported test functions φ , whenever ρt�L d

for every t. Indeed, if we fix a Lipschitz test function φ and we smooth it by convolution
with a compactly supported kernel, we have a sequence φε ∈ C∞

c such that ∇t,xφε →
∇t,xφ a.e. and we can apply dominated convergence since |∇t,xφε | ≤ Lip(φ) (we need
ρt to be absolutely continuous because we only have Lebesgue-a.e. convergence).
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Then we take a test function ψ ∈C1
c (Rd) and we define φ(t,x) := ψ((Yt)

−1(x)). If
we can prove that t 7→

´
φ(t,x)dρt(x) is constant, then we have proven ρt = (Yt)#ρ0.

The function φ is Lipschitz continuous, because the flow Yt is bi-Lipschitz; yet, it is not
compactly supported in time (it is compactly supported in space since sptφ is compact
and, if we set M := supt,x |vt(x)|, we see that φ(t,x) vanishes on all points x which are
at distance larger than tM from sptψ). Thus, we multiply it times a cut-off function
χ(t), with χ ∈C1

c (]0,T [). We have

∂t(χφ)+vt ·∇(χφ) = χ
′(t)φ(t,x)+χ(t)(∂tφ(t,x)+vt(x) ·∇φ(t,x)) .

We can prove that, by definition of φ , the term ∂tφ(t,x)+vt(x) ·∇φ(t,x) vanishes a.e.
(this corresponds to saying that φ is a solution of the transport equation, see Box 6.3).
This is true since we have φ(t,Tt(x)) = ψ(x) and, differentiating it w.r.t. t (which is
possible for a.e. (t,x)), we get ∂t(t,Yt(x))+ vt(Yt(x)) ·∇φ(t,Yt(x)) = 0, which means
that ∂tφ +vt ·∇φ vanishes everywhere, as Yt is surjective.

Hence, from the definition of distributional solution we have
ˆ T

0
χ
′(t)dt

ˆ
Rd

φ(t,x)dρt(x) =
ˆ T

0
dt
ˆ
Rd

(∂t(χφ)+vt ·∇(χφ)) dρt(x) = 0.

The test function χ ∈ C1
c (]0,T [) being arbitrary, we get that t 7→

´
Rd φ(t,x)dρt(x) is

constant.

4.2 Beckmann’s problem
In this section we discuss a flow-minimization problem introduced by Beckmann in
the ’50s as a particular case of a wider class of convex optimization problem, of the
form min{

´
H(w)dx : ∇ ·w = µ − ν}, for convex H. In this section we discuss the

case H(z) = |z|, which is a limit case in the class of costs studied by Beckmann, who
was indeed more interested in strictly convex costs. Strict convexity will be considered
in the Discussion section 4.4.1. The reason to stick to the linear cost here, and to
spend more words on it than on the general case, lies in its equivalence with the Monge
Problem. We will provide all the tools to study this equivalence and this problem.

4.2.1 Introduction, formal equivalences and variants
We consider here a simple version of a problem that has been proposed by Beckmann as
a model for optimal transport in the ’50s. Beckmann called it continuous transportation
model and he was not aware of Kantorovich’s works and the possible links between the
two theories.

Beckmann’s minimal flow problem
Problem 4.5. Consider the minimization problem

(BP) min
{ˆ
|w(x)|dx : w : Ω→ Rd , ∇ ·w = µ−ν

}
, (4.4)
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where the divergence condition is to be read in the weak sense, with Neumann bound-
ary conditions, i.e. −

´
∇φ · dw =

´
φ d(µ−ν) for any φ ∈C1(Ω).

We will see now that an equivalence between (BP) and (KP) (for the cost c(x,y) =
|x− y|) holds true. To do that, we can look at the following considerations and formal
computations.

We take the problem (BP) and re-write the constraint on w using

sup
φ

ˆ
Ω

∇φ ·wdx+
ˆ

Ω

φ d(µ−ν) =

{
0 if ∇ ·w = µ−ν ,

+∞ otherwise.

Hence one can write (BP) as

inf
w

(ˆ
Ω

|w|dx+ sup
φ

ˆ
Ω

∇φ ·wdx+
ˆ

Ω

φ d(µ−ν)

)

= sup
φ

(ˆ
Ω

φ d(µ−ν)+ inf
w

ˆ
Ω

(|w|−∇φ ·w)dx
)
, (4.5)

where inf and sup have been exchanged formally as in the computations of Chapter 1.
Then, one notes that

inf
w

ˆ
Ω

(|w|−∇φ ·w)dx =

{
0 if |∇φ | ≤ 1
−∞ otherwise

and this leads to the dual formulation for (BP) which gives

sup
{ˆ

Ω

φ d(µ−ν) : |∇φ | ≤ 1
}
.

Since this problem is exactly the same as (DP) (a consequence of the fact that Lip1
functions are exactly those functions whose gradient is smaller than 1), this provides
a formal equivalence between (BP) and (KP). We say that it is only formal because
we did not prove the equality in (4.5). Note that we also need to suppose that Ω is
convex, otherwise functions with gradient smaller than 1 are only Lip1 according to
the geodesic distance in Ω.

Most of the considerations above, especially those on the problem (BP), are specific
to the cost equal to the distance |x− y|. In general, for costs of the form h(x− y), h
needs to be 1-homogeneous, if one wants some similar result to hold. We refer to
[196, 197] for a general way to transform convex costs into convex 1-homogeneous
ones (by adding one variable, corresponding to time)1. An interesting generalization
which keeps the same formalism of the case of the Euclidean distance concerns a cost
c which comes from a Riemannian distance k(x).

1In this way the flow-minimization problem corresponding to costs of the form |x− y|p is transformed
into the so-called Benamou-Brenier problem, that we will discuss in Chapters 5 and 6, but we do not push
this analogy to further conclusions.



116 CHAPTER 4. MINIMAL FLOWS

Consider indeed

min
{ˆ

k(x)|w(x)|dx : ∇ ·w = µ−ν

}
which corresponds, by duality with the functions u such that |∇u| ≤ k, to

min
{ˆ

dk(x,y)dγ(x,y) : γ ∈Π(µ,ν)

}
,

where dk(x,y) = infω(0)=x,ω(1)=y Lk(ω) :=
´ 1

0 k(ω(t))|ω ′(t)|dt is the distance associ-
ated to the Riemannian metric k.

The generalization above is suitable when we want to model a non-uniform cost for
the movement (due to geographical obstacles or configurations). Such a model is not
always satisfying, for instance in urban transport, where we want to consider the fact
that the metric k is usually not a priori known, but it depends on the traffic distribution
itself. We will develop this aspect in the discussion section 4.4.1, together with a
completely different problem which is somehow “opposite” (Section 4.4.2): instead of
looking at transport problems where concentration of the mass is penalized (because of
traffic congestion), we look at problems where it is indeed encouraged, because of the
so-called “economy of scale” (i.e. the larger the mass you transport, the cheaper the
individual cost).

4.2.2 Producing a minimizer for the Beckmann Problem
The first remark on Problem (BP) is that a priori it is not well-posed, in the sense
that there could not exist an L1 vector field minimizing the L1 norm under divergence
constraints. This is easy to understand if we think at the direct method in Calculus of
Variations to prove existence: we take a minimizing sequence wn and we would like to
extract a converging subsequence. Could we do this, from wn ⇀ w it would be easy to
prove that w still satisfies ∇ ·w = µ−ν , since the relation

−
ˆ

∇φ ·wn dx =
ˆ

φ d(µ−ν)

would pass to the limit as n→∞. Yet, the information
´
|w(x)|dx≤C is not enough to

extract a converging sequence, even weakly. Indeed, the space L1 being non-reflexive,
bounded sequences are not guaranteed to have weakly converging subsequences. This
is on the contrary the case for dual spaces (and for reflexive spaces, which are roughly
speaking the dual of their dual).

Note that the strictly convex version that was proposed by Beckmann and that we
will review in Section 4.4.1 is much better to handle: if for instance we minimize´
|w|2 dx, then we can use weak compactness in L2, which is way easier to have than

compactness in L1.
To avoid this difficulty, we will choose the natural setting for (BP), i.e. the frame-

work of vector measures.
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Box 4.2. – Memo – Vector measures

Definition - A finite vector measure λ on a set Ω is a map associating to every Borel
subset A⊂Ω a value λ (A)∈Rd such that, for every disjoint union A=

⋃
i Ai (with Ai∩A j =

/0 for i 6= j), we have

∑
i
|λ (Ai)|<+∞ and λ (A) = ∑

i
λ (Ai).

We denote by M d(Ω) the set of finite vector measures on Ω. To such measures we can
associate a positive scalar measure |λ | ∈M+(Ω) through

|λ |(A) := sup

{
∑

i
|λ (Ai)| : A =

⋃
i

Ai with Ai∩A j = /0 for i 6= j

}
.

This scalar measure is called total variation measure of λ . Note that for simplicity we only
consider the Euclidean norm on Rd , and write |λ | instead of ||λ || (a notation that we keep
for the total mass of the total variation measure, see below), but the same could be defined
for other norms as well.

The integral of a Borel function ξ : Ω→Rd w.r.t. λ is well-defined if |ξ | ∈ L1(Ω, |λ |),
is denoted

´
ξ · dλ and can be computed as ∑

d
i=1

´
ξi dλi, thus reducing to integrals of

scalar functions according to scalar measures. It could also be defined as a limit of integral
of piecewise constant functions.

Functional analysis facts - The quantity ||λ || := |λ |(Ω) is a norm on M d(Ω), and this
normed space is the dual of C0(Ω;Rd), the space of continuous function on Ω vanishing at
infinity, through the duality (ξ ,λ ) 7→

´
ξ · dλ . This gives a notion of ∗⇀ convergence for

which bounded sets in M d(Ω) are compact. As for scalar measures, we denote by ⇀ the
weak convergence in duality with Cb functions.

A clarifying fact is the following.
Proposition - For every λ ∈M d(Ω) there exists a Borel function u : Ω→Rd such that

λ = u · |λ | and |u|= 1 a.e. (for the measure |λ |). In particular,
´

ξ ·dλ =
´
(ξ ·u)d|λ |.

Sketch of proof - The existence of a function u is a consequence, via Radon-Nikodym
Theorem, of λ � |λ | (every A set such that |λ |(A) = 0 obviously satisfies λ (A) = 0).
The condition |u| = 1 may be proven by considering the sets {|u| < 1− ε} and {u · e >

a+ ε} for all hyperplane such that the unit ball B1 is contained in {x ∈ Rd : x · e ≤ a}
(and, actually, we have B1 =

⋂
e,a{x ∈ Rd : x · e ≤ a}, the intersection being reduced to a

countable intersection). These sets must be negligible otherwise we have a contradiction
on the definition of |λ |.

With these definitions in mind, we can prove the following theorem. We denote by
M d

div the space of vector measures with divergence which is a scalar measure.

Theorem 4.6. Suppose that Ω is a compact convex domain in Rd . Then, the problem

(BP) min
{
|w|(Ω) : w ∈M d

div(Ω) , ∇ ·w = µ−ν

}
(with divergence imposed in the weak sense, i.e. for every φ ∈ C1(Ω) we impose
−
´

∇φ · dw =
´

φ d(µ − ν), which also includes homogeneous Neumann boundary
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conditions) admits a solution. Moreover, its minimal value equals the minimal value of
(KP) and a solution of (BP) can be built from a solution of (KP). The two problems are
hence equivalent.

Proof. The first point that we want to prove is the equality of the minimal values of
(BP) and (KP). We start from min(BP)≥ min(KP). In order to do so, take an arbitrary
function φ ∈C1 with |∇φ | ≤ 1. Consider that for any w with ∇ ·w = µ−ν , we have

|w|(Ω) =

ˆ
Ω

1d|w| ≥
ˆ

Ω

(−∇φ) ·dw =

ˆ
Ω

φ d(µ−ν).

If one takes a sequence of Lip1∩C1 functions uniformly converging to the Kantorovich
potential u such that

´
Ω

ud(µ−ν) = max(DP) = min(KP) (for instance take convolu-
tions φk = ηk ∗u) then we get

ˆ
Ω

d|w| ≥min(KP)

for any admissible w, i.e. min(BP)≥min(KP).
We will show at the same time the reverse inequality and how to construct an opti-

mal w from an optimal γ for (KP).
Actually, one way to produce a solution to this divergence-constrained problem, is

the following (see [71]): take an optimal transport plan γ and build a vector measure
w[γ] defined2 through

〈w[γ],ξ 〉 :=
ˆ

Ω×Ω

ˆ 1

0
ω
′
x,y(t) ·ξ (ωx,y(t))dt dγ(x,y),

for every ξ ∈C0(Ω;Rd), ωx,y being a parametrization of the segment [x,y] (it is clear
that this is the point where convexity of Ω is needed). Even if for this proof it would not
be important, we will fix the constant speed parametrization, i.e. ωx,y(t) = (1−t)x+ty.

It is not difficult to check that this measure satisfies the divergence constraint, since
if one takes ξ = ∇φ then

ˆ 1

0
ω
′
x,y(t) ·ξ (ωx,y(t))dt =

ˆ 1

0

d
dt

(φ(ωx,y(t))dt = φ(y)−φ(x)

and hence 〈w[γ],∇φ〉=
´

φ d(ν−µ) and w[γ] ∈M d
div(Ω).

To estimate its mass we can see that |w[γ]| ≤ σγ , where the scalar measure σγ is
defined through

〈σγ ,φ〉 :=
ˆ

Ω×Ω

ˆ 1

0
|ω ′x,y(t)|φ(ωx,y(t))dt dγ, for all φ ∈C0(Ω;R)

2The strange notation w[γ] is chosen so as to distinguish from the object wQ that we will introduce in
Section 4.2.3.
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and it is called transport density. Actually, we can even say more, since we can use the
Kantorovich potential u (see Chapter 3), and write3

ω
′
x,y(t) =−|x− y| x− y

|x− y|
=−|x− y|∇u(ωx,y(t)).

This is valid for every t ∈]0,1[ and every x,y ∈ spt(γ) (so that ωx,y(t) is in the interior
of the transport ray [x,y], if x 6= y ; anyway for x = y, both expression vanish).

This allow to write, for every ξ ∈C0(Ω;Rd)

〈w[γ],ξ 〉=
ˆ

Ω×Ω

ˆ 1

0
−|x− y|∇u(ωx,y(t)) ·ξ (ωx,y(t))dt dγ(x,y)

=−
ˆ 1

0
dt
ˆ

Ω×Ω

∇u(ωx,y(t)) ·ξ (ωx,y(t))|x− y|dγ(x,y)

If we introduce the function πt : Ω×Ω→Ω given by πt(x,y) = ωx,y(t) = (1− t)x+ ty,
we get

〈w[γ],ξ 〉=−
ˆ 1

0
dt
ˆ

Ω

∇u(z) ·ξ (z)d
(
(πt)#(c · γ)

)
,

where c · γ is the measure on Ω×Ω with density c(x,y) = |x− y| w.r.t. γ .
Since on the other hand the same kind of computations give

〈σγ ,φ〉=
ˆ 1

0
dt
ˆ

Ω

φ(z)d
(
(πt)#(c · γ)

)
, (4.6)

we get 〈w[γ],ξ 〉= 〈σγ ,−ξ ·∇u〉, which shows

w[γ] =−∇u ·σγ .

This gives the density of w[γ] with respect to σγ and confirms |w[γ]| ≤ σγ .
The mass of σγ is obviously

ˆ
Ω

dσγ =

ˆ
Ω

ˆ 1

0
|ω ′x,y(t)|dt dγ(x,y) =

ˆ
Ω×Ω

|x− y|dγ(x,y) = min(KP),

which proves the optimality of w[γ] since no other w may do better than this, thanks to
the first part of the proof. This also proves min(BP) = min(KP).

Monge-Kantorovich system and transport density The scalar measure σγ that we
have just defined is called transport density. It has been been introduced in [160] and
[72, 71] for different goals. In [72, 71] it is connected to some shape-optimization
problems that we will not develop in this book. On the other hand, in [160] it has
been used to provide one of the first solutions to the Monge problem with cost |x− y|.

3Pay attention to the use of the gradient of the Kantorovich potential u: we are using the result of Lemma
3.6 which provides differentiability of u on transport rays.
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The important fact is that the measure σ = σγ solves, together with the Kantorovich
potential u, the so-called Monge-Kantorovich system

∇ · (σ∇u) = µ−ν in Ω

|∇u| ≤ 1 in Ω,

|∇u|= 1 σ − a.e.
(4.7)

This system is a priori only solved in a formal way, since the product of the L∞ function
∇u with the measure σ has no meaning if σ /∈ L1. To overcome this difficulty there are
two possibilities: either we pass through the theory of σ -tangential gradient (see for
instance [146] or [72]), or we give conditions to have σγ ∈ L1. This second choice is
what we do in Section 4.3, where we also show better Lp estimates.

As we said, the solution of (4.7) has been used in [160] to find a transport map T,
optimal for the cost |x− y|. This map was defined as the flow of a certain vector field
depending on σ and ∇u, exactly in the spirit of the Dacorogna-Moser construction that
we will see in Section 4.2.3. However, because of the lack of regularity of σ and ∇u,
the Beckmann problem min

{´
|w| : ∇ ·w = µ−ν

}
, whose solution is w= σγ ∇u, was

approximated through min
{´
|w|p : ∇ ·w = µ−ν

}
, for p > 1. We will see in Section

4.4.1 that this problem, connected to traffic congestion issues, is solved by a vector
field obtained from the solution of a ∆p′ equation, and admits some regularity results.
In this way, the dual of the Monge problem is approximated by p′-Laplacian equations,
for p′→ ∞.

4.2.3 Traffic intensity and traffic flows for measures on curves
We introduce in this section some objects that generalize both w[γ] and σγ and that will
be useful for many goals. They will be used both for proving the characterization of
the optimal w as coming from an optimal plan γ and for the modeling issues of the
discussion section. As a byproduct, we also present a new proof of a decomposition
result by Smirnov, [287] (see also [278]).

Let us introduce some notations. We define the set AC(Ω) as the set of absolutely
continuous curves ω : [0,1] 7→ Ω. We suppose Ω to be compact, with non-empty in-
terior, in the whole section. Given ω ∈ AC(Ω) and a continuous function φ , let us
set

Lφ (ω) :=
ˆ 1

0
φ(ω(t))|ω ′(t)|dt. (4.8)

This quantity is the length of the curve, weighted with the weight φ . When we take
φ = 1 we get the usual length of ω and we denote it by L(ω) instead of L1(ω). Note
that these quantities are well-defined since ω ∈ AC(Ω) implies that ω is differentiable
a.e. and ω ′ ∈ L1([0,1]) (we recall the definition of AC curves: they are curves ω with
their distributional derivative ω ′ ∈ L1 and ω(t1)−ω(t0) =

´ t1
t0

ω ′(t)dt for every t0 < t1).
For simplicity, from now on we will write C (the space of “curves”) for AC(Ω), when
there is no ambiguity on the domain.

We consider probability measures Q on the space C . We restrict ourselves to mea-
sures Q such that

´
L(ω)dQ(ω) < +∞: these measures will be called traffic plans,
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according to a terminology introduced in [50]. We endow the space C with the uni-
form convergence. Note that Ascoli-Arzelà’s theorem guarantees that the sets {ω ∈C :
Lip(ω)≤ `} are compact (for the uniform convergence) for every `. We will associate
two measures on Ω to such a Q. The first is a scalar one, called traffic intensity and
denoted by iQ ∈M+(Ω); it is defined by

ˆ
Ω

φ diQ :=
ˆ

C

(ˆ 1

0
φ(ω(t))|ω ′(t)|dt

)
dQ(ω) =

ˆ
C

Lφ (ω)dQ(ω).

for all φ ∈ C(Ω,R+). This definition (taken from [115]) is a generalization of the
notion of transport density. The interpretation is the following: for a subregion A,
iQ(A) represents the total cumulated traffic in A induced by Q, i.e. for every path we
compute “how long” does it stay in A, and then we average on paths.

We also associate a vector measure wQ to any traffic plan Q ∈P(C ) via

∀ξ ∈C(Ω;Rd)

ˆ
Ω

ξ ·dwQ :=
ˆ

C

(ˆ 1

0
ξ (ω(t)) ·ω ′(t)dt

)
dQ(ω).

We will call wQ traffic flow induced by Q. Taking a gradient field ξ = ∇φ in the
previous definition yields

ˆ
Ω

∇φ ·dwQ =

ˆ
C
[φ(ω(1))−φ(ω(0))]dQ(ω) =

ˆ
Ω

φ d((e1)#Q− (e0)#Q)

(we recall that et denotes the evaluation map at time t, i.e. et(ω) := ω(t)).
From now on, we will restrict our attention to admissible traffic plans Q, i.e. traf-

fic plans such that (e0)#Q = µ and (e1)#Q = ν , where µ and ν are two prescribed
probability measures on Ω. This means that

∇ ·wQ = µ−ν

and hence wQ is an admissible flow connecting µ and ν . Note that the divergence is
always considered in a weak (distributional) sense, and automatically endowed with
Neumann boundary conditions, i.e. when we say ∇ ·w = f we mean

´
∇φ · dw =

−
´

φ d f for all φ ∈C1(Ω), without any condition on the boundary behavior of the test
function φ .

Coming back to wQ, it is easy to check that |wQ| ≤ iQ, where |wQ| is the total
variation measure of the vector measure wQ. This last inequality is in general not
an equality, since the curves of Q could produce some cancellations (imagine a non-
negligible amount of curves passing through the same point with opposite directions,
so that wQ = 0 and iQ > 0).

We need some properties of the traffic intensity and traffic flow.

Proposition 4.7. Both wQ and iQ are invariant under reparametrization (i.e. if T :
C → C is a map such that for every ω the curve T(ω) is just a reparametrization in
time of ω , then wT#Q = wQ and iT#Q = iQ).

For every Q, the total mass iQ(Ω) equals the average length of the curves according
to Q, i.e.

´
C L(ω)dQ(ω) = iQ(Ω). In particular, wQ and iQ are finite measures thanks

to the definition of traffic plan.
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If Qn ⇀ Q and iQn ⇀ i, then i≥ iQ.
If Qn ⇀ Q, wQn ⇀ w and iQn ⇀ i, then ||w−wQ|| ≤ i(Ω)− iQ(Ω). In particular, if

Qn ⇀ Q and iQn ⇀ iQ, then wQn ⇀ wQ.

Proof. The invariance by reparametrization comes from the invariance of both Lφ (ω)

and
´ 1

0 ξ (ω(t)) ·ω ′(t)dt.
The formula

´
C L(ω)dQ(ω) = iQ(Ω) is obtained from the definition of iQ by test-

ing against the function 1.
To check the inequality i ≥ iQ, fix a positive test function φ ∈ C(Ω) and suppose

φ ≥ ε0 > 0. Write

ˆ
Ω

φ diQn =

ˆ
C

(ˆ 1

0
φ(ω(t))|ω ′(t)|dt

)
dQn(ω). (4.9)

Note that the function C 3 ω 7→ Lφ (ω) =
´ 1

0 φ(ω(t))|ω ′(t)|dt is positive and lower-
semi-continuous w.r.t. ω . Indeed, if we take a sequence ωn→ ω , from the bound φ ≥
ε0 > 0 we can assume that

´
|ω ′n(t)|dt is bounded. Then we can infer ω ′n ⇀ ω ′ weakly

(as measures, or in L1), which implies, up to subsequences, the existence of a measure
f ∈M+([0,1]) such that f ≥ |ω ′| and |ω ′n| ⇀ f . Moreover, φ(ωn(t)) → φ(ω(t))
uniformly, which gives

´
φ(ωn(t))|ω ′n(t)|dt→

´
φ(ω(t))d f (t)≥

´
φ(ω(t))|ω ′(t)|dt.

This allows to pass to the limit in (4.9), thus obtaining

ˆ
φ di = lim

n

ˆ
φ diQn = liminf

n

ˆ
C

Lφ (ω)dQn(ω)≥
ˆ

C
Lφ (ω)dQ(ω) =

ˆ
φ diQ.

If we take an arbitrary test function φ (without a lower bound), add a constant ε0 and
apply the previous reasoning we get

´
(φ + ε0)di≥

´
(φ + ε0)diQ. Letting ε0→ 0, as i

is a finite measure and φ is arbitrary, we get i≥ iQ.
To check the last property, fix a smooth vector test function ξ and a number λ > 1

and look at

ˆ
Ω

ξ ·dwQn =

ˆ
C

(ˆ 1

0
ξ (ω(t)) ·ω ′(t)dt

)
dQn(ω)

=

ˆ
C

(ˆ 1

0
ξ (ω(t)) ·ω ′(t)dt +λ |ξ ||∞L(ω)

)
dQn(ω)−λ ||ξ ||∞iQn(Ω), (4.10)

where we just added and subtracted the total mass of iQn , equal to the average of L(ω)
according to Qn. Now note that

C 3 ω 7→
ˆ 1

0
ξ (ω(t)) ·ω ′(t)dt +λ ||ξ ||∞L(ω)≥ (λ −1)||ξ ||∞L(ω)

is l.s.c. in ω (use the same argument as above, noting that, if we take ωn→ ω , we may
assume L(ωn) to be bounded, and obtain ω ′n ⇀ ω ′). This means that if we pass to the
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limit in (4.10) we get

ˆ
Ω

ξ ·dw = lim
n

ˆ
Ω

ξ ·dwQn

≥
ˆ

C

(ˆ 1

0
ξ (ω(t)) ·ω ′(t)dt +λ ||ξ ||∞L(ω)

)
dQ(ω)−λ ||ξ ||∞i(Ω)

=

ˆ
Ω

ξ ·dwQ +λ ||ξ ||∞(iQ(Ω)− i(Ω)).

By replacing ξ with −ξ we get∣∣∣∣ˆ
Ω

ξ ·dw−
ˆ

Ω

ξ ·dwQ

∣∣∣∣≤ λ ||ξ ||∞(i(Ω)− iQ(Ω)).

Letting λ → 1 and taking the sup over ξ with ||ξ ||∞ ≤ 1 we get the desired estimate
||w−wQ|| ≤ i(Ω)− iQ(Ω).

The very last property is evident: indeed one can assume up to a subsequence that
wQn ⇀ w holds for a certain w, and i = iQ implies w = wQ (which also implies the full
convergence of the sequence).

Box 4.3. – Good to know! – Dacorogna-Moser transport

Let us present here a particular case of the ideas from [133] (first used in optimal
transport in [160]):

Construction - Suppose that w : Ω→ Rd is a Lipschitz vector field with w ·n = 0 on
∂Ω and ∇ ·w = f0− f1, where f0, f1 are positive probability densities which are Lipschitz
continuous and bounded from below. Then we can define the non-autonomous vector field
vt(x) via

vt(x) =
w(x)
ft(x)

where ft = (1− t) f0 + t f1

and consider the Cauchy problem{
y′x(t) = vt(yx(t))
yx(0) = x

,

We define a map Y : Ω→ C by associating to every x the curve Y (x) given by yx(·). Then,
we look for the measure Q =Y# f0 and ρt := (et)#Q := (Yt)# f0. Thanks to the consideration
in Section 4.1.2, ρt solves the continuity equation ∂tρt +∇ · (ρtvt) = 0. Yet, it is easy to
check that ft also solves the same equation since ∂t ft = f1− f0 and ∇ · (vt ft) = ∇ ·w =

f0 − f1. By the uniqueness result of Section 4.1.2, from ρ0 = f0 we infer ρt = ft . In
particular, x 7→ yx(1) is a transport map from f0 to f1.

It it interesting to compute the traffic intensity and the traffic flow associated to the
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measure Q in Dacorogna-Moser construction. Fix a scalar test function φ :

ˆ
Ω

φ diQ =

ˆ
Ω

ˆ 1

0
φ(yx(t))|vt(yx(t))|dt f0(x)dx

=

ˆ 1

0

ˆ
Ω

ϕ(y)|vt(y)| ft(y)dydt =
ˆ

Ω

φ(y)|w(y)|dy

so that iQ = |w|. Analogously, fix a vector test function ξ

ˆ
Ω

ξ ·dwQ =

ˆ
Ω

ˆ 1

0
ξ (yx(t)) ·vt(yx(t))dt f0(x)dx

=

ˆ 1

0

ˆ
Ω

ξ (y) ·vt(y) ft(y)dydt =
ˆ

Ω

ξ (y) ·w(y)dy,

which shows wQ = w. Note that in this case we have |wQ| = iQ and this is due to the
fact that no cancellation is possible, since all the curves share the same direction at
every given point.

With these tools we want to provide a proof of a decomposition result by Smirnov
([287]), for which we need an extra approximation result.

Lemma 4.8. Consider two probabilities µ,ν ∈P(Ω) on a smooth compact domain
Ω and a vector measure w ∈M d

div satisfying ∇ ·w = µ − ν in distributional sense
(with homogeneous Neumann boundary conditions). Then, for every smooth compact
domain Ω′ containing Ω in its interior, there exist a family of vector fields wε ∈C∞(Ω′)
with wε ·nΩ′ = 0, and two families of densities µε ,νε ∈C∞(Ω′), bounded from below
by positive constants kε > 0, with ∇ ·wε = µε − νε and

´
Ω′ µ

ε =
´

Ω′ ν
ε = 1, weakly

converging to w,µ and ν as measures, respectively, and satisfying |wε |⇀ |w|.

Proof. First, extend µ,ν and w at 0 out of Ω and take convolutions (in the whole space
Rd) with a gaussian kernel ηε , so that we get ŵε := w ∗ηε and µ̂ε := µ ∗ηε , ν̂ε :=
ν ∗ηε , still satisfying ∇ · ŵε = µε −νε . Since the Gaussian kernel is strictly positive,
we also have strictly positive densities for µ̂ε and ν̂ε . These convolved densities and
vector field would do the job required by the theorem, but we have to take care of the
support (which is not Ω′) and of the boundary behavior.

Let us set
´

Ω′ µ̂
ε = 1−aε and

´
Ω′ ν̂

ε = 1−bε . It is clear that aε ,bε → 0 as ε → 0.
Consider also ŵε ·nΩ′ : due to d(Ω,∂Ω′)> 0 and to the fact that ηε goes uniformly to
0 locally outside the origin, we also have |ŵε ·nΩ′ | ≤ cε , with cε → 0.

Consider uε the solution to
∆uε = aε−bε

|Ω′| inside Ω′

∂uε

∂n =−ŵε ·n on ∂Ω′,´
Ω′ u

ε = 0

and the vector field δ ε = ∇uε . Note that a solution exists thanks to −
´

∂Ω′ ŵ
ε ·nΩ′ =

aε −bε . Note also that an integration by parts shows
ˆ

Ω′
|∇uε |2 =−

ˆ
∂Ω′

uε(ŵε ·nΩ′)−
ˆ

Ω′
uε

(
aε −bε

|Ω′|

)
≤C||∇uε ||L2(cε +aε +bε),
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and provides ||∇uε ||L2 ≤C(aε +bε + cε)→ 0. This shows ||δ ε ||L2 → 0.
Now take

µ
ε = µ̂

ε
Ω
′+

aε

|Ω′|
; ν

ε = ν̂
ε

Ω
′+

bε

|Ω′|
; wε = ŵε

Ω
′+δ

ε ,

and check that all the requirements are satisfied. In particular, the last one is satisfied
since ||δ ε ||L1 → 0 and |ŵε |⇀ |w| by general properties of the convolutions.

Remark 4.9. Note that considering explicitly the dependence on Ω′ it is also possible
to obtain the same statement with a sequence of domains Ω′ε converging to Ω (for
instance in the Hausdorff topology). It is just necessary to choose them so that, setting
tε := d(Ω,∂Ω′ε), we have ||ηε ||L∞(B(0,tε )c)→ 0. For the Gaussian kernel, this is satisfied
whenever t2

ε /ε → ∞ and can be guaranteed by taking tε = ε1/3.

With these tools we can now prove

Theorem 4.10. For every finite vector measure w ∈M d
div(Ω) and µ,ν ∈P(Ω) with

∇ ·w = µ −ν there exists a traffic plan Q ∈P(C ) with (e0)#Q = µ and (e1)#Q = ν

such that |wQ| = iQ ≤ |w|, and ||w−wQ||+ ||wQ|| = ||w−wQ||+ iQ(Ω) = ||w||. In
particular we have |wQ| 6= |w| unless wQ = w.

Proof. By means of Lemma 4.8 and Remark 4.9 we can produce an approximating se-
quence (wε ,µε ,νε)⇀ (w,µ,ν) of C∞ functions supported on domains Ωε converging
to Ω. We apply Dacorogna-Moser’s construction to this sequence of vector fields, thus
obtaining a sequence of measures Qε . We can consider these measures as probability
measures on C := AC(Ω′) (where Ω ⊂ Ωε ⊂ Ω′) which are, each, concentrated on
curves valued in Ωε . They satisfy iQε

= |wε | and wQε
= wε . We can reparametrize by

constant speed the curves on which Qε is supported, without changing traffic intensi-
ties and traffic flows. This means that we use curves ω such that L(ω) = Lip(ω). The
equalities
ˆ

C
Lip(ω)dQε(ω) =

ˆ
C

L(ω)dQε(ω) =

ˆ
Ω′

iQε
=

ˆ
Ω′
|wε | → |w|(Ω′) = |w|(Ω)

show that
´
C Lip(ω)dQε(ω) is bounded and hence Qε is tight (since the sets {ω ∈

C : Lip(ω) ≤ L} are compact). Hence, up to subsequences, we can assume Qε ⇀ Q.
The measure Q is obviously concentrated on curves valued in Ω. The measures Qε

were constructed so that (e0)#Qε = µε and (e1)#Qε = νε , which implies, at the limit,
(e0)#Q = µ and (e1)#Q = ν . Moreover, thanks to Proposition 4.7, since iQε

= |wε |⇀
|v| and wQε

⇀ w, we get |w| ≥ iQ ≥ |wQ| and ||w−wQ|| ≤ |w|(Ω)− iQ(Ω). This gives
||w−wQ||+ ||wQ|| ≤ ||w−wQ||+ iQ(Ω) ≤ ||w|| and the opposite inequality ||w|| ≤
||w−wQ||+ ||wQ|| is always satisfied.

Remark 4.11. The previous statement contains a milder version of Theorem C in [287],
i.e. the decomposition of any w into a cycle w−wQ (we call cycle all divergence-
free vector measures) and a flow wQ induced by a measure on paths, with ||w|| =
||w−wQ||+ ||wQ||. The only difference with the theorem in [287] is the fact that it
guarantees that one can choose Q concentrated on simple curves, which we did not
take care of here (on the other hand, Ex(27) provides a partial solution to this issue).
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µ

ν

wQ w−wQ

Ω+ Ω−

Figure 4.1: The decomposition of w in the example of Remark 4.12.

Remark 4.12. It is possible to guess what happens to a cycle through this construction.
Imagine the following example (as in Figure 4.2.3): Ω is composed of two parts Ω+

and Ω−, with spt(µ)∪ spt(ν) ⊂ Ω+ and a cycle of w is contained in Ω−. When we
build the approximations µε and νε , we will have positive mass in Ω−, but very small.
Because of the denominator in the definition of v, the curves produced by Dacorogna-
Moser will follow this cycle very fast, passing many times on each point of the cycle.
Hence, the flow wε in Ω− is obtained from a very small mass which passes many times.
This implies that the measure Qε of this set of curves will disappear at the limit ε→ 0.
Hence, the measure Q will be concentrated on curves staying in Ω+ and wQ = 0 on
Ω−. However, in this way we got rid of that particular cycle, but the same does not
happen for cycles located in regions with positive masses of µ and ν . In particular
nothing guarantees that wQ has no cycles.

4.2.4 Beckman problem in one dimension

The one-dimensional case is very easy in what concerns Beckmann formulation of the
optimal transport problem, but it is interesting to analyze it: indeed, it allows to check
the consistency with the Monge formulation and to use the results throughout next
sections. We will take Ω = [a,b]⊂ R.

First of all, note that the condition ∇ ·w = µ−ν is much stronger in dimension one
than in higher dimension. Indeed, the divergence is the trace of the Jacobian matrix,
and hence prescribing it only gives one constraint on a matrix which has a priori d×d
degrees of freedom. On the contrary, in dimension one there is only one partial deriva-
tive for the vector field w (which is actually a scalar), and this completely prescribes
the behavior of w. Indeed, the condition ∇ ·w = µ−ν with Neumann boundary condi-
tions implies that w must be the antiderivative of µ−ν with w(a) = 0 (the fact that µ

and ν have the same mass also implies w(b) = 0). Note that the fact that its derivative
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is a measure gives w ∈ BV ([a,b]) (we can say that M d
div = BV when d = 1).

Box 4.4. – Memo – Bounded variation functions in one variable

BV functions are defined as L1 functions whose distributional derivatives are measures.
In dimension one this has a lot of consequences. In particular these functions coincide
a.e. with functions which have bounded total variation in a pointwise sense: for each
f : [a,b]→ R define

TV ( f ; [a,b]) := sup

{
N−1

∑
i=0
| f (ti+1)− f (ti)| : a = t0 < t1 < t2 < · · ·< tN = b

}
.

Functions of bounded variation are defined as those f such that TV ( f ; [a,b]) < ∞. It is
easy to check that BV functions form a vector space, and that monotone functions are BV
(indeed, if f is monotone we have TV ( f ; [a,b]) = | f (b)− f (a)|. Lipschitz functions are
also BV and TV ( f ; [a,b]) ≤ Lip( f )(b− a). On the other hand, continuous functions are
not necessarily BV (but absolutely continuous functions are BV), neither it is the case for
differentiable functions (obviously, C1 functions, which are Lipschitz on bounded intervals,
are BV). As an example one can consider

f (x) =

{
x2 sin

( 1
x2

)
if x 6= 0

0 for x = 0,

which is differentiable everywhere but not BV.
On the other hand, BV functions have several properties:
Properties of BV functions in R - If TV ( f ; [a,b]) < ∞ then f is the difference of two

monotone functions (in particular we can write f (x)= TV ( f ; [a,x])−(TV ( f ; [a,x])− f (x)),
both terms being non-decreasing functions); it is a bounded function and sup f − inf f ≤
TV ( f ; [a,b]); it has the same continuity and differentiability properties of monotone func-
tions (it admits left and right limits at every point, it is continuous up to a countable set of
points and differentiable a.e.).

In particular, in 1D, we have BV ⊂ L∞ which is not the case in higher dimension (in
general, we have BV ⊂ Ld/(d−1)).

We finish by stressing the connections with measures: for every positive measure µ on
[a,b] we can build a monotone function by taking its cumulative distribution function, i.e.
Fµ (x) = µ([a,x]) and the distributional derivative of this function is exactly the measure
µ . Conversely, every monotone increasing function on a compact interval is the cumu-
lative distribution function of a (unique) positive measure, and every BV function is the
cumulative distribution function of a (unique) signed measure.

As a consequence, we have the following facts:

• In dimension one, there is only one competitor w which is given by w = Fµ −Fν

with Fµ(x) = µ([a,x]) and Fν(x) = ν([a,x]).

• This field w belongs to BV ([a,b]) and hence to every Lp space, including L∞.

• Possible higher regularity of w depends on the regularity of µ−ν (for instance,
we have w ∈W 1,p whenever µ,ν ∈ Lp).



128 CHAPTER 4. MINIMAL FLOWS

• The minimal cost in Beckmann’s problem is given by ||Fµ −Fν ||L1 , which is
consistent with Proposition 2.17.

• The transport density σ , characterized by w = −u′ ·σ is given by σ = |w| and
shares the same summability properties of w; it also belongs to BV as a compo-
sition of a BV function with the absolute value function.

4.2.5 Characterization and uniqueness of the optimal w
In this section we will show two facts: first we prove that the optimal w in the (BP)
always comes from an optimal transport plan γ and then we prove that all the optimal
γ give the same w[γ] and the same σγ , provided one of the two measures is absolutely
continuous.

Theorem 4.13. Let w be optimal in (BP): then there is an optimal transport plan γ

such that w = w[γ].

Proof. Thanks to Theorem 4.10, we can find a measure Q ∈P(C ) with (e0)#Q = µ

and (e1)#Q = ν such that |w| ≥ |wQ| Yet, the optimality of w implies the equality
|w|= |wQ| and the same Theorem 4.10 gives in such a case w=wQ, as well as |w|= iQ.
We can assume Q to be concentrated on curves parametrized by constant speed. Define
S : Ω×Ω→C the map associating to every pair (x,y) the segment ωx,y parametrized
with constant speed: ωx,y(t) = (1− t)x+ ty. The statement is proven if we can prove
that Q = S#γ with γ an optimal transport plan.

Indeed, using again the optimality of w and Theorem 4.10, we get

min(BP) = |w|(Ω) = iQ(Ω) =

ˆ
C

L(ω)dQ(ω)≥
ˆ

C
|ω(0)−ω(1)|dQ(ω)

=

ˆ
Ω×Ω

|x− y|d((e0,e1)#Q)(x,y)≥min(KP).

The equality min(BP) = min(KP) implies that all these inequalities are equalities.
In particular Q must be concentrated on curves such that L(ω) = |ω(0)−ω(1)|, i.e.
segments. Also, the measure (e0,e1)#Q, which belongs to Π(µ,ν), must be optimal in
(KP). This concludes the proof.

The proof of the following result is essentially taken from [8].

Theorem 4.14. If µ�L d , then the vector field w[γ] does not depend on the choice of
the optimal plan γ .

Proof. Let us fix a Kantorovich potential u for the transport between µ and ν . This
potential does not depend on the choice of γ . It determines a partition into transport
rays: Corollary 3.8 guarantees that the only points of Ω which belong to several trans-
port rays are non-differentiability points for u, and are hence Lebesgue-negligible. Let
us call S the set of points which belong to several transport rays: we have µ(S) = 0,
but we do not suppose ν(S) = 0 (ν is not supposed to be absolutely continuous). How-
ever, γ is concentrated on (πx)

−1(Sc). We can then disintegrate (see Section 2.3) γ
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according to the transport ray containing the point x. More precisely, we define a map
R : Ω×Ω→R, valued in the set R of all transport rays, sending each pair (x,y) into
the ray containing x. This is well-defined γ-a.e. and we can write γ = γr⊗λ , where
λ = R#γ and we denote by r the variable related to transport rays. Note that, for a.e.
r ∈R, the plan γr is optimal between its own marginals (otherwise we could replace it
with an optimal plan, do it in a measurable way, and improve the cost of γ).

The measure w[γ] may also be obtained through this disintegration, and we have
w[γ] = wγr ⊗λ . This means that, in order to prove that w[γ] does not depend on γ , we
just need to prove that each wγr and the measure λ do not depend on it. For the measure
λ this is easy: it has been obtained as an image measure through a map only depending
on x, and hence only depends on µ . Concerning wγr , note that it is obtained in the
standard Beckmann way from an optimal plan, γr. Hence, thanks to the considerations
in Section 4.2.4 about the 1D case, it uniquely depends on the marginal measures of
this plan.

This means that we only need to prove that (πx)#γr and (πy)#γr do not depend on
γ . Again, this is easy for (πx)#γr, since it must coincide with the disintegration of µ

according to the map R (by uniqueness of the disintegration). It is more delicate for the
second marginal.

The second marginal νr := (πy)#γr will be decomposed into two parts:

(πy)#(γ
r
|Ω×S) + (πy)#(γ

r
|Ω×Sc).

This second part coincides with the disintegration of ν|Sc , which obviously does not
depend on γ (since it only depends on the set S, which is built upon u).

We need now to prove that νr
|S = (πy)#(γ

r
|Ω×S) does not depend on γ . Yet, this

measure can only be concentrated on the two endpoints of the transport ray r, since
these are the only points where different transport rays can meet. This means that this
measure is purely atomic and composed by at most two Dirac masses. Not only, the
endpoint where u is maximal (i.e. the first one for the order on the ray, see Section 3.1)
cannot contain some mass of ν : indeed the transport must follow a precise direction
on each transport ray (as a consequence of u(x)− u(y) = |x− y| on spt(γ)), and the
only way to have some mass of the target measure at the “beginning” of the transport
ray would be to have an atom for the source measure as well. Yet, µ is absolutely
continuous and Property N holds (see Section 3.1.4 and Theorem 3.12, which means
that the set of rays r where µr has an atom is negligible). Hence νr

|S is a single Dirac
mass. The mass equilibrium condition between µr and νr implies that the value of this
mass must be equal to the difference 1−νr

|Sc(r), and this last quantity does not depend
on γ but only on µ and ν .

Finally, this proves that each wγr does not depend on the choice of γ .

Corollary 4.15. If µ �L d , then the solution of (BP) is unique.

Proof. We have seen in Theorem 4.13 that any optimal w is of the form w[γ] and in
Theorem 4.14 that all the fields w[γ] coincide.
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4.3 Summability of the transport density
The analysis of the Beckmann Problem performed in the previous sections was mainly
made in a measure setting, and the optimal w, as well as the transport density σ , were
just measures on Ω. We investigate here the question whether they have extra regularity
properties supposing extra assumptions on µ and/or ν .

We will give summability results, proving that σ is in some cases absolutely contin-
uous and providing Lp estimates. The proofs are essentially taken from [273]: previous
results, through very different techniques, were first presented in [144, 146, 145]. In
these papers, different estimates on the “dimension” of σ were also presented, thus
giving interesting information should σ fail to be absolutely continuous. Let us also
observe that [209], while applying these tools to image processing problems, contains
a new4 proof of absolute continuity.

Note that higher order questions (such as whether σ is continuous or Lipschitz or
more regular provided µ and ν have smooth densities) are completely open up to now.
The only exception is a partial result in dimension 2, see [172], where a continuity
result is given if µ and ν have Lipschitz densities on disjoint convex domains.

Open Problem (continuity of the transport density): is it true that, supposing
that µ,ν have continuous densities, the transport density σ is also continuous? is it
true that it is Lipschitz if they are Lipschitz, and/or Hölder if they are Hölder?

In all that follows Ω is a compact and convex domain in Rd , and two probability
measures µ,ν are given on it. At least one of them will be absolutely continuous,
which implies uniqueness for σ (see Theorem 4.14).

Theorem 4.16. Suppose Ω ⊂ Rd is a convex domain, and µ � L d . Let σ be the
transport density associated to the transport of µ onto ν . Then σ �L d .

Proof. Let γ be an optimal transport plan from µ to ν and take σ = σγ ; call µt the
standard interpolation between the two measures: µt = (πt)#γ where πt(x,y) = (1−
t)x+ ty: we have µ0 = µ and µ1 = ν .

We have already seen (go back to (4.6)) that the transport density σ may be written
as

σ =

ˆ 1

0
(πt)#(c · γ)dt,

where c : Ω×Ω→ R is the cost function c(x,y) = |x− y| (hence c · γ is a positive
measure on Ω×Ω).

Since Ω is bounded it is evident that we have

σ ≤C
ˆ 1

0
µt dt. (4.11)

To prove that σ is absolutely continuous, it is sufficient to prove that almost every
measure µt is absolutely continuous, so that, whenever |A| = 0, we have σ(A) ≤
C
´ 1

0 µt(A)dt = 0.

4Their proof is somehow intermediate between that of [144] and the one we present here: indeed,
approximation by atomic measures is also performed in [209], as here, but on both the source and the target
measure, which requires a geometric analysis of the transport rays as in [144].
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Figure 4.2: Disjointness of the sets Ωi(t)

We will prove µt �L d for t < 1. First, we will suppose that ν is finitely atomic
(the point (xi)i=1,...,N being its atoms). In this case we will choose γ to be any optimal
transport plan induced by a transport map T (which exists, since µ �L d). Note that
the absolute continuity of σ is an easy consequence of the behavior of the optimal
transport from µ to ν (which is composed by N homotheties), but we also want to
quantify this absolute continuity, in order to go on with an approximation procedure.

Remember that µ is absolutely continuous and hence there exists a correspondence
ε 7→ δ = δ (ε) such that

|A|< δ (ε)⇒ µ(A)< ε. (4.12)

Take now a Borel set A and look at µt(A). The domain Ω is the disjoint union of a
finite number of sets Ωi = T−1({xi}). We call Ωi(t) the images of Ωi through the map
x 7→ (1− t)x+ tT(x). These sets are essentially disjoint. Why? Because if a point
z belongs to Ωi(t) and Ω j(t), then two transport rays cross at z, the one going from
x′i ∈Ωi to xi and the one from x′j ∈Ω j to x j. The only possibility is that these two rays
are actually the same, i.e. that the five points x′i, x′j, z, xi, x j are aligned. But this implies
that z belongs to one of the lines connecting two atoms xi and x j. Since we have finitely
many of these lines this set is negligible. Note that this argument only works for d > 1
(we will not waste time on the case d = 1, since the transport density is always a BV ,
and hence bounded, function). Moreover, if we sticked to the ray-monotone optimal
transport map, we could have actually proved that these sets are truly disjoint, with no
negligible intersection.

Now we have

µt(A) = ∑
i

µt(A∩Ωi(t)) = ∑
i

µ0

(
A∩Ωi(t)− txi

1− t

)
= µ0

(⋃
i

A∩Ωi(t)− txi

1− t

)
.
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Since for every i we have∣∣∣∣A∩Ωi(t)− txi

1− t

∣∣∣∣= 1
(1− t)d |A∩Ωi(t)|

we obtain ∣∣∣∣∣⋃
i

A∩Ωi(t)− txi

1− t

∣∣∣∣∣≤ 1
(1− t)d |A|.

Hence it is sufficient to suppose |A| < (1− t)dδ (ε) to get µt(A) < ε . This confirms
µt �L d and gives an estimate that may pass to the limit.

Take a sequence νn of atomic measures converging to ν . The corresponding opti-
mal transport plans γn converge to an optimal transport plan γ and µn

t converge to the
corresponding µt (see Theorem 1.50 in Chapter 1). Hence, to prove absolute continuity
for the transport density σ associated to such a γ it is sufficient to prove that these µt
are absolutely continuous.

Take a set A such that |A| < (1− t)dδ (ε). Since the Lebesgue measure is regular
(see the definition in the memo Box 1.6), A is included in an open set B such that
|B|< (1−t)dδ (ε). Hence µn

t (B)< ε . Passing to the limit, thanks to weak convergence
and semi-continuity on open sets, we have

µt(A)≤ µt(B)≤ liminf
n

µ
n
t (B)≤ ε.

This proves µt �L d and hence σ �L d .

Remark 4.17. Where did we use the optimality of γ? We did it when we said that
the Ωi(t) are disjoint. For a discrete measure ν , it is always true that the measures
µt corresponding to any transport plan γ are absolutely continuous for t < 1, but their
absolute continuity may degenerate at the limit if we allow the sets Ωi(t) to superpose
(since in this case densities sum up and the estimates may depend on the number of
atoms).

Remark 4.18. Note that we strongly used the equivalence between the two different
definitions of absolute continuity, i.e. the ε ↔ δ correspondence on the one hand
and the condition on negligible sets on the other. Indeed, to prove that the condition
µt �L d passes to the limit we need the first one, while to deduce σ �L d we need
the second one.

Remark 4.19. As a byproduct of our proof we can see that any optimal transport plan
from µ to ν which is approximable through optimal transport plans from µ to atomic
measures must be such that all the interpolating measures µt (for every t ∈]0,1[) are ab-
solutely continuous. This property is not satisfied by any optimal transport plan, since
for instance the plan γ which sends µ = L 2

|[−2,−1]×[0,1] onto ν = L 2
|[1,2]×[0,1] moving

(x,y) to (−x,y) is optimal but is such that µ1/2 = H 1
|{0}×[0,1]. Hence, this plan can-

not be approximated by optimal plans sending µ onto atomic measures. On the other
hand, we proved in Lemma 3.20 that the monotone optimal transport can indeed be
approximated in a similar way.
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Figure 4.3: An example of optimal transport plan that cannot be approximated with
optimal plans with atomic second marginal.

From now on we will often confuse absolutely continuous measures with their den-
sities and write ||µ||Lp for || f ||Lp(Ω) when µ = f ·L d .

Theorem 4.20. Suppose µ = f ·L d , with f ∈ Lp(Ω), where Ω is compact and convex.
Then, if p < d′ := d/(d−1), the unique transport density σ associated to the transport
of µ onto ν belongs to Lp(Ω) as well, and if p≥ d′ it belongs to any space Lq(Ω) for
q < d′.

Proof. Start from the case p< d′: following the same strategy (and the same notations)
as before, it is sufficient to prove that each measure µt (for t ∈ [0,1[) is in Lp and to
estimate their Lp norm. Then we will use

||σ ||Lp ≤C
ˆ 1

0
||µt ||Lpdt,

(which is a consequence of (4.11) and of Minkowski inequality), the conditions on p
being chosen exactly so that this integral converges.

Consider first the discrete case: we know that µt is absolutely continuous and that
its density coincides on each set Ωi(t) with the density of an homothetic image of µ on
Ωi, the homothetic ratio being (1− t). Hence, if ft is the density of µt , we have

ˆ
Ω

ft(x)p dx = ∑
i

ˆ
Ωi(t)

ft(x)p dx = ∑
i

ˆ
Ωi

(
f (x)

(1− t)d

)p

(1− t)d dx

= (1− t)d(1−p)
∑

i

ˆ
Ωi

f (x)p dx = (1− t)d(1−p)
ˆ

Ω

f (x)p dx.

We get ||µt ||Lp = (1− t)−d/p′ ||µ||Lp , where p′ = p/(p−1).
This inequality, which is true in the discrete case, stays true at the limit as well.

If ν is not atomic, approximate it through a sequence µn
1 and take optimal plans γn

and interpolating measures µn
t . Up to subsequences we have γn ⇀ γ (for an optimal
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transport plan γ) and µn
t ⇀ µt (for the corresponding interpolation); by semi-continuity

we have
||µt ||Lp ≤ liminf

n
||µn

t ||Lp ≤ (1− t)−d/p′ ||µ0||Lp

and we deduce

||σ ||Lp ≤C
ˆ 1

0
||µt ||Lpdt ≤C||µ0||Lp

ˆ 1

0
(1− t)−d/p′dt.

The last integral is finite whenever p′ > d, i.e. p < d′ = d/(d−1).
The second part of the statement (the case p ≥ d′) is straightforward once one

considers that any density in Lp also belongs to any Lq space for q < p.

Example 4.21. We can see an example where, even if µ ∈ L∞, the singularity of ν

prevents σ from being better than Ld′ . Consider µ = f ·L d with f = 1A and A =
B(0,R) \B(0,R/2) (with R chosen so that

´
f = 1), and take ν = δ0. Note that R

2 γ ≤
c · γ ≤ Rγ , which implies that the summability of σ =

´ 1
0 (πt)#(c · γ)dt, is the same

as that of
´ 1

0 (πt)#(γ)dt =
´ 1

0 µt dt. We have µt = ft ·L d , with ft = (1− t)−d
1(1−t)A,

hence ˆ 1

0
ft(x)dt =

ˆ 2
R |x|

1
R |x|

1
sd ds = c|x|1−d for |x| ≤ R

2

(where we used the change of variable s = 1− t). This function belongs to Lp in a
neighborhood of 0 in dimension d only if we have (1− d)p+ (d−1) > −1, i.e. if
(d−1)(p−1)< 1. This is exactly p < d′.

We saw in the previous theorems that the measures µt inherit some regularity (ab-
solute continuity or Lp summability) from µ exactly as it happens for homotheties of
ratio 1− t. This regularity degenerates as t → 1, but we saw two cases where this
degeneracy produced no problem: for proving absolute continuity, where the separate
absolute continuous behavior of almost all the µt was sufficient, and for Lp estimates,
provided the degeneracy stays integrable.

It is natural to try to exploit another strategy: suppose both µ and ν share some
regularity assumption (e.g., they belong to Lp). Then we can give estimate on µt for
t ≤ 1/2 starting from µ and for t ≥ 1/2 starting from ν . In this way we have no
degeneracy!

This strategy works quite well, but it has an extra difficulty: in our previous esti-
mates we didn’t know a priori that µt shared the same behavior of piecewise homoth-
eties of µ , we got it as a limit from discrete approximations. And, when we pass to
the limit, we do not know which optimal transport γ will be selected as a limit of the
optimal plans γn. This was not important in the previous section, since any optimal γ

induces the same transport density σ . But here we would like to glue together estimates
on µt for t ≤ 1/2 which have been obtained by approximating µ1, and estimates on µt
for t ≥ 1/2 which come from the approximation of µ0. Should the two approximations
converge to two different transport plans, we could not put together the two estimates
and deduce anything on σ .

Hence, the main technical issue that we need to consider is proving that one par-
ticular optimal transport plan, i.e. the ray-monotone one, can be approximated in both
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directions. Lemma 3.20 exactly does the job (and, indeed, it was proven in [273] ex-
actly for this purpose). Yet, the transport plans γε we build in the approximation are
not optimal for the cost |x−y| but for some costs |x−y|+ε|x−y|2. We need to do this
in order to force the selected limit optimal transport to be the monotone one (through a
secondary variational problem, say). Anyway, this will not be an issue: these approxi-
mating optimal transport plans will share the same geometric properties that will imply
disjointness for the sets Ωi(t). In particular, we can prove the following estimate.

Lemma 4.22. Let γ be an optimal transport plan between µ and an atomic measure ν

for a transport cost c(x,y) = h(y− x) where h : Rd → R is a strictly convex function.
Set as usual µt = (πt)#γ . Then we have ||µt ||Lp ≤ (1− t)−d/p′ ||µ||Lp .

Proof. The result is exactly the same as in Theorem 4.20, where the key tool is the fact
that µt coincides on every set Ωi(t) with a homothety of µ0. The only fact that must be
checked again is the disjointness of the sets Ωi(t).

To do so, take a point x ∈ Ωi(t)∩Ω j(t). Hence there exist xi, x j belonging to Ωi
and Ω j, respectively, so that x = (1− t)xi + tyi = (1− t)x j + ty j, being yi = T(xi) and
y j =T(x j) two atoms of ν . But this would mean that Tt :=(1−t)id+tT is not injective,
which is a contradiction to the following Lemma 4.23. Hence the sets Ωi(t) are disjoint
and this implies the bound on µt .

Lemma 4.23. Let γ be an optimal transport plan between µ and ν for a transport cost
c(x,y) = h(y−x) where h : Rd → R is a strictly convex function, and suppose that it is
induced by a transport map T. Choose a representative of T such that (x,T(x))∈ spt(γ)
for all x. Then the map x 7→ (1− t)x+ tT(x) is injective for t ∈]0,1[.

Proof. Suppose that there exist x 6= x′ such that

(1− t)x+ tT(x) = (1− t)x′+ tT(x′) = x0.

Set a = T(x)− x and b = T(x′)− x′. This also means x = x0− ta and x′ = x0− tb. In
particular, x 6= x′ implies a 6= b.

The c-cyclical monotonicity of the support of the optimal γ implies

h(a)+h(b)≤ h(T(x′)− x)+h(T(x)− x′) = h(tb+(1− t)a)+h(ta+(1− t)b).

Yet, a 6= b, and strict convexity imply

h(tb+(1− t)a)+h(ta+(1− t)b)< th(b)+(1− t)h(a)+th(a)+(1− t)h(b) = h(a)+h(b),

which is a contradiction.

Theorem 4.24. Suppose that µ and ν are probability measures on Ω, both belonging
to Lp(Ω), and σ the unique transport density associated to the transport of µ onto ν .
Then σ belongs to Lp(Ω) as well.

Proof. Let us consider the optimal transport plan γ from µ to ν defined by (3.4). We
know that this transport plan may be approximated by plans γε which are optimal for
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the cost |x− y|+ ε|x− y|2 from µ to some discrete atomic measures νε . The corre-
sponding interpolation measures µε

t satisfy the Lp estimate from Lemma 4.22 and, at
the limit, we have

||µt ||Lp ≤ liminf
ε→0

||µε
t ||Lp ≤ (1− t)−d/p′ ||µ||Lp .

The same estimate may be performed from the other direction, since the very same
transport plan γ may be approximated by optimal plans for the cost |x− y|+ ε|x− y|2
from atomic measures to ν . Putting together the two estimates we have

||µt ||Lp ≤min
{
(1− t)−d/p′ ||µ||Lp , t−d/p′ ||ν ||Lp

}
≤ 2d/p′max{||µ||Lp , ||ν ||Lp} .

Integrating these Lp norms we get the bound on ||σ ||Lp .

Remark 4.25. The same result could have been obtained in a strongly different way,
thanks to the displacement convexity of the functional µ 7→ ||µ||pLp . This functional is
actually convex along geodesics in the space Wq(Ω) for q > 1 (see Proposition 7.29
where, unfortunately, the notation for p and q is reversed). Then we pass to the limit as
q→ 1: this gives the result on the interpolating measures corresponding to the optimal
plan which is obtained as a limit of the Kq-optimal plans. This plan is, by the way,
γ again. And the integral estimate comes straightforward. Yet, this requires more
sophisticated tools than what developed so far.

Example 4.26. We can provide examples (in dimension higher than one) where the
summability of σ is no more than that of µ and ν . Take for instance µ = f ·L d

and ν = g ·L d with f (x1,x2, . . . ,xd) = f0(x2, . . .xd)1[0,1](x1) and g(x1,x2, . . . ,xd) =
f0(x2, . . .xd)1[4,5](x1). It is not difficult to check that the transport rays in this example
go in the direction of the first coordinate vector, and that the optimal σ is absolutely
continuous with density given by σ(x) = f0(x2, . . .xd)s(x1), where s : R→R+ is char-
acterized by s′ = 1[0,1] − 1[4,5], s(0) = s(5) = 0 (which comes from the fact that s
would be the transport density for the one-dimensional transport between 1[0,1] and
1[4,5]). Hence, from s = 1 on [1,4], one sees that the summability of σ is the same of
that of f0, which is also the same of those of f and g.

4.4 Discussion

4.4.1 Congested transport
As we saw in Section 4.2, Beckmann’s problem can admit an easy variant if we pre-
scribe a positive function k : Ω→ R+, where k(x) stands for the local cost at x per unit
length of a path passing through x. This models the possibility that the metric is non-
homogeneous, due to geographical obstacles given a priori. Yet, it happens in many
situations, in particular in urban traffic (as many readers probably note every day) that
this metric k is indeed non-homogeneous, but is not given a priori: it depends on the
traffic itself. In Beckmann’s language, we must look for a vector field w optimizing a
transport cost depending on w itself!
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The easiest model, chosen by Beckmann (see [28] and later [111]) is to consider
the same framework as (BP) but supposing that k(x) = g(|w(x)|) is a function of the
modulus of the vector field w. This is quite formal for the moment (for instance it is
not meaningful if w is a measure, but we will see that in this case we can use better
spaces than M d

div). In this case we would like to solve

min
{ˆ

H (w(x))dx : ∇ ·w = µ−ν

}
, (4.13)

where H (z) = H(|z|) and H(t) = g(t)t. Note that if H is superlinear (if g(t) tends to
∞ as t→∞, i.e. if the congestion effect becomes stronger and stronger when the traffic
increases) this problem is well posed in the class of vector fields w ∈ L1. For instance,
if g(t) = t, which is the easiest case one can imagine, we must minimize the L2 norm
under divergence constraints:

min
{ˆ
|w(x)|2 dx : w ∈ L2(Ω;Rd), ∇ ·w = µ−ν

}
.

This problem is easily solvable since one can see that the optimal w must be a gradient
(we will develop this computation in a more general framework later), and setting w =
∇u one gets ∆u = µ − ν . This is complemented with Neumann boundary conditions
and allows to find u, and then w.

We want now to discuss the meaning and pertinence of this model, keeping into
account the following natural questions:

• is it correct that the coefficient k depends on |w|, or should it rather depend on
other traffic quantities, such as iQ? (note that w can have cancellations);

• what is the connection with equilibrium issues? in traffic congestion, typically
every agent decides alone which path to choose, and the final traffic intensity
is rather the output of a collection of individual choices, and not the result of a
global optimization made by a single planner;

• is the example g(t) = t a good choice in the modeling ? this implies g(0) = 0,
i.e. no cost where there is not traffic.

To start our analysis we would like to present first an equilibrium model developed by
Wardrop, [295], on a discrete network.

Traffic equilibria on a finite network The main data of the model are a finite ori-
ented connected graph G = (N,E) modeling the network, and some travel times func-
tions ge : θ ∈ R+ 7→ ge(θ) giving, for each edge e ∈ E, the travel time on e when the
flow on e is θ . The functions ge are all nonnegative, continuous, nondecreasing and
they are meant to capture the congestion effects (which may be different on the differ-
ent edges, since some roads may be longer or wider and may have different responses
to congestion). The last ingredient of the problem is a transport plan on pairs of nodes
(x,y) ∈ N2 interpreted as pairs of origins/destinations. We denote by (γx,y)(x,y)∈N2 this
transport plan: γx,y represents the “mass” to be sent from x to y. We denote by Cx,y the
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set of simple paths on the graph G connecting x to y, so that C :=∪(x,y)∈N2Cx,y is the set
of all simple paths. A generic path will be denoted by ω and we will use the notation
e ∈ ω to indicate that the path ω uses the edge e.

The unknown of the problem is the flow configuration. The edge flows are denoted
by i = (ie)e∈E and the path flows are denoted by q = (qω)ω∈C: this means that ie is the
total flow on edge e and qω is the mass traveling on ω . Of course the values ie and qω

are nonnegative and constrained by the mass conservation conditions:

γx,y = ∑
ω∈Cx,y

qω , ∀(x,y) ∈ N2 (4.14)

and
ie = ∑

ω∈C : e∈ω

qω , ∀e ∈ E, (4.15)

which means that i is a function of q. Given the edge flows i = (ie)e∈E , the total cost
(to be interpreted as a sort of weighted length) of the path ω ∈C is

Li(ω) = ∑
e∈ω

ge(ie). (4.16)

In [295], Wardrop defined a notion of noncooperative equilibrium that has been
very popular since then among engineers working in the field of congested transport
and that may be described as follows. Roughly speaking, a Wardrop equilibrium is a
flow configuration such that every actually used path should be an optimal path for the
cost Li defined in (4.16). This leads to

Definition 4.27. A Wardrop equlibrium5 is a flow configuration q = (qω)ω∈C satisfy-
ing qω ≥ 0 and the mass conservation constraints (4.14), such that, when we compute
the values ie with (4.15), for every (x,y) ∈ N2 and every ω ∈Cx,y with qω > 0 we have

Li(ω) = min
ω ′∈Cx,y

Li(ω
′).

A few years after the introduction of this notion by Wardrop, Beckmann, McGuire
and Winsten [30] realized that Wardrop equilibria can be characterized by the following
variational principle:

Theorem 4.28. The flow configuration q = (qω)ω∈C is a Wardrop equilibrium if and
only if it solves the convex minimization problem

min

{
∑
e∈E

He(ie) : q≥ 0 satisfies (4.14)

}
(4.17)

where, for each e, we define He to be an antiderivative of ge: H ′e = ge.

5Note that this is just an example of Nash equilibrum with a continuum of players, as we will see in
Section 7.4.3 and, more particularly, in Box 7.3.
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Proof. Assume that q = (qω)ω∈C (with associated edge flows (ie)e∈E ) is optimal for
(4.17). Then, for every admissible η = (ηω)ω∈C with associated (through (4.15)) edge-
flows ( je)e∈E , one has

0≤ ∑
e∈E

H ′e(ie)( je− ie) = ∑
e∈E

ge(ie) ∑
ω∈C : e∈ω

(ηω −qω)

= ∑
ω∈C

(ηω −qω) ∑
e∈ω

ge(ie),

so that

∑
ω∈C

qω Li(ω)≤ ∑
ω∈C

ηω Li(ω). (4.18)

Minimizing the right-hand side thus yields

∑
(x,y)∈N2

∑
ω∈Cx,y

qω Li(ω) = ∑
(x,y)∈N2

γx,y min
ω ′∈Cx,y

Li(ω
′),

which exactly says that q is a Wardrop equilibrium. To prove the converse, it is enough
to see that problem (4.17) is convex so that the inequality (4.18) is indeed sufficient,
and not only necessary, for a global minimum.

The previous characterization allows to deduce for free existence results, but also
uniqueness for i (not for q) as soon as the functions ge are strictly increasing (so that
the He are strictly convex).

Remark 4.29. It would be very tempting to deduce from Theorem 4.28 that equilibria
are efficient since they are minimizers of (4.17).Yet, the quantity ∑e∈E He(ie) does not
represent the natural total social cost measured by the total time lost in commuting
which would rather be

∑
e∈E

iege(ie). (4.19)

In general, θge(θ) = He(θ) and ge = H ′e are very different conditions. The efficient
transport patterns are minimizers of (4.19) and thus are different from equilibria in
general. Efficient and equilibria configurations coincide in the special case of power
functions where He(θ) = aeθ p. Yet, we must note that this case is not realistic since,
for p > 1, it implies ge(0) = 0. This means that traveling times vanish if there is no
traffic, while one should expect a residual non-zero cost even without traffic. Moreover,
a famous counter-example due to Braess (see [77]) shows that it may be the case that
adding an extra road with very small cost on which the traveling time is aways zero
leads to an equilibrium where the total commuting time is increased! This illustrates
the striking difference between efficiency and equilibrium, a topic which is very well-
documented in the finite-dimensional network setting where it is frequently associated
to the literature on the so-called price of anarchy (see [266]).

Remark 4.30. In the problem presented in this paragraph, the transport plan γ is fixed.
This may be interpreted as a short-term problem. Instead, we could consider the long-
term problem where only the distribution of origins µ and of destinations ν are fixed.
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In this case, one also obtains as an optimality condition that γ is efficient, in the sense
that it minimizes among transport plans in Π(µ,ν), the total cost

∑γx,ydi(x,y) with di(x,y) := min
ω∈Cx,y

Li(ω).

In the long-term problem where one is allowed to change the assignment as well, equi-
libria still are characterized by a convex minimization problem, i.e. the same above,
where one also optimizes over γ .

Optimization and equilibrium in a continuous framework If we want to general-
ize the previous analysis to a continuous framework, we will formulate the whole path-
dependent transport pattern in terms of a probability measure Q on the set of paths
(this is the continuous analogue of the path flows (qω)ω of the previous paragraph).
Then, we will measure the traffic intensity generated by Q at every point x by using the
measure iQ of Section 4.2.3 (this is the continuous analogue of the arc flows (ie)e of
the previous paragraph). The last and main idea will be to model the congestion effects
through a metric that is monotone increasing in the traffic intensity (the analogue of
ge(ie)).

Avoiding technicalities and choosing an informal presentation (see [115] for more
details), we take Ω a domain in Rd (typically, d = 2) and

• either two probability measures µ and ν (distribution of sources and destina-
tions) on Ω in the case of the long-term problem,

• or a transport plan γ (joint distribution of sources and destinations, i.e. a joint
probability on Ω×Ω) in the short-term case,

• or more generally a convex and closed subset Γ ⊂ Π(µ,ν) and we accept any
γ ∈ Γ (this is just a common mathematical framework for the two previous cases,
where we can take Γ = {γ} or Γ = Π(µ,ν)).

We will use the notations of Section 4.2.3, and use probability measures Q on
C := AC(Ω), compatible with mass conservation, i.e. such that (e0,e1)#Q ∈ Γ. We
shall denote by Q(Γ) the set of admissible Q.

The traffic intensity associated to Q ∈Q(Γ) is by definition the measure iQ defined
in Section 4.2.3 and congestion effects are captured by the metric associated to Q:
suppose iQ�L d and set

kQ(x) := g(x, iQ(x))

for a given increasing function g(x, .) : R+ → R+. The fact that there exists at least
one Q ∈Q(Γ) such that iQ �L d is not always true and depends on Γ. We will see
later how to guarantee it6.

In order to define the notion of Wardrop equilibrium in this continuous case, let us
define

LkQ(ω) =

ˆ 1

0
g(ω(t), iQ(ω(t))|ω ′(t)|dt

6Note that, even for Γ = {γ} (which is the most restrictive case), assuming µ,ν ∈ L∞, considerations
from incompressible fluid mechanics in [84] allow to build a Q such that iQ ∈ L∞.



4.4. DISCUSSION 141

and
dkQ(x,y) := inf

ω∈C ,ω(0)=x,ω(1)=y
LkQ(ω).

Paths in C such that dkQ(ω(0),ω(1)) = LkQ(ω) are called geodesics (for the metric
induced by the congestion effect generated by Q).

We can define

Definition 4.31. A Wardrop equilbrium is a Q ∈Q(Γ) such that

Q({ω : LkQ(ω) = dkQ(ω(0),ω(1))}) = 1. (4.20)

Existence, and even well-posedness (what does it mean Lk(ω) if k is only measur-
able and ω is a Lipschitz curve?) of these equilibria are not straightforward. However,
it is possible to characterize equilibria as solutions of a minimal traffic problem.

The full proof is quite involved since it requires to take care of some regularity
issues in details. In particular, the use of the weighted length functional Lk̄ and thus
also the geodesic distance dk̄ require some attention when k̄ is not continuous or at least
l.s.c. In [115] a possible construction when k̄ is just Lq is given.

Problem 4.32. Let us consider the (convex) variational problem

(WP) min
{ˆ

Ω

H(x, iQ(x))dx : Q ∈Q(Γ)

}
(4.21)

where H ′(x, .) = g(x, .), H(x,0) = 0.

Under some technical assumptions that we do not reproduce here, the main result
of [115] is

Theorem 4.33. (WP) admits at least one minimizer. Moreover Q ∈Q(Γ) solves (WP)
if and only if it is a Wardrop equilibrium and γQ := (e0,e1)#Q solves the optimization
problem

min
{ˆ

Ω×Ω

dkQ(x,y) dγ(x,y) : γ ∈ Γ

}
.

In particular, if Γ is a singleton, this last condition does not play any role (there is only
one competitor) and we have existence of a Wardrop equilibrium corresponding to any
given transport plan γ . If, on the contrary, Γ = Π(µ,ν), then the second condition
means that γ solves a Monge-Kantorovich problem for a distance cost depending on Q
itself, which is a new equilibrium condition.

As in the finite-dimensional network case, Wardrop equilibria have a variational
characterization which is in principle easier to deal with than the definition. Unfortu-
nately, the convex problem (WP) may be difficult to solve since it involves measures
on sets of curves: it means two layers of infinite dimensions!

We finish this section by proposing two recent developments, with the aim of trans-
forming the problem into simpler ones. The first development, easier to present in the
short-term case, gives a dual formulation, and provides interesting numerical methods.
The second, only in the long-term case, gets rid of the formulation in terms of mea-
sures over curves and transforms the problem into a minimal flow problem in the spirit
of Beckmann.
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Duality and numerics for the short-term problem We want here to give a tractable
formulation of the variational problem for the short-term version of (WP). For every
x ∈Ω and k≥ 0, let us define H∗(x, ·) as the Legendre transform of H(x, ·). Let us now
define the functional

J(k) =
ˆ

Ω

H∗(x,k(x))dx−
ˆ

Ω×Ω

dk(x,y)dγ(x,y) (4.22)

where, again, dk is the geodesic distance associated to the metric k. Consider

sup{−J(k) : k ≥ 0} . (4.23)

The above maximization problem is important because of the following duality result.

Proposition 4.34.
min(4.21) = max(4.23) (4.24)

and k solves (4.23) if and only if k = kQ for some Q ∈Q(γ) solving (WP).

Moreover, the optimization problem in k is “dimensionally smaller” than that on Q
(in the purely continuous case we optimize among scalar functions instead of measures
over curves, and if we discretize in space and compute the dimensions we really have
a huge difference between the two formulations7).

Remark 4.35. Under reasonable assumptions, the dual problem (4.23) has a unique
solution. The equilibrium metric kQ and the equilibrium intensity of traffic iQ are
unique, although Wardrop equilibria Q might not be unique.

Starting from this duality result, in [44] and [45] a consistent numerical scheme
to approximate the equilibrium metric kQ was designed. The idea is to run a descent
method on the dual. Hence, one needs to know how to compute (i.e. approximate) the
values of dk, which can be done in an efficient way by the Fast Marching Algorithm,
but also to differentiate them according to k.

The functional J in (4.22) is considered by means of a discretization grid, and
the values of k are considered as defined at the nodes of the grid. The first integral
becomes a sum on all the points of the grid, while, for the second, one needs to replace
the transport plan γ with a discretized one defined on pairs of points (x,y) on the same
grid, and to define dk(x,y) consequently.

To define such a distance dk(x0, ·), for a fixed source x0, as a function of the second
variable, one uses the fact that it is the unique viscosity solution u of the Eikonal non-
linear PDE {

|∇u|= k,
u(x0) = 0,

(4.25)

Box 4.5. – Good to know! – Discretization of the Eikonal equation and FMM

7Note that the same duality trick is also used in the discrete problem over networks, where solving the
dual problem is much more convenient than the original one.
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To approximate the geodesic distance u = dk(x0, ·), we discretize both the (unknown)
values of u and of k on a square lattice with n points per side. Then we define

D1ui, j := max{(ui j−ui−1, j),(ui j−ui+1, j),0}/h,

D2ui, j := max{(ui j−ui, j−1),(ui j−ui, j+1),0}/h.

As proposed by Rouy and Tourin [267], the discrete geodesic distance u = (ui j)i, j is found
as the solution of the following system that discretizes (4.25)

Du = k where Dui, j =
√
(D1ui, j)2 +(D2ui, j)2. (4.26)

Rouy and Tourin [267] showed that this discrete geodesic distance u converges to uk when
h tends to 0. Then, we have to choose a clever way to solve the above non-linear system.
One of the most efficient way is the so-called Fast Marching Algorithm (see [283]): at
every step of the algorithm the values ui, j of a bunch of points of the grid have already been
computed and the corresponding points are colored in red, and all the other values are set
to +∞; then, a tentative computation for all the neighbors of the red point is done, using
Equation (4.26) for each of them separately (including the +∞ values of the other points);
then, only the smallest among the tentative values is validated, and the corresponding point
is colored in red, and the algorithm goes on. This solves the System (4.26) in O(N logN)

steps, where N = nd is the number of points in the grid.

Once we are able to compute the value of J(k) for every discrete metric k on the
grid, we want to differentiate it w.r.t. k, so as to to take advantage of a gradient descent
algorithm. Actually, one can see that J is not always differentiable in k, but, since all
the terms ck(x,y) may be proven to be concave in k, we face a convex optimization
problem, and we can look at the subdifferential of J. Differentiating the equations in
(4.26) (see [45]) one gets a new set of equations on the gradient ∇kck(x,y). The same
loop of the Fast Marching Algorithm allows to solve them in a quite efficient way, thus
giving an element of the subdifferential8

An example of Wardrop equilibria computed with this kind of approach is given in
the following Figure 4.4.

Beckmann reformulation of the long-term problem In the long-term problem (4.21),
we have one more degree of freedom since the transport plan is not fixed. This will en-
able us to reformulate the problem as a variational divergence constrained problem à la
Beckmann and ultimately to reduce the equilibrium problem to solving some nonlinear
PDE9.

As we already did in Section 4.2.3, for any Q ∈Q(Γ) we can take the vector-field
wQ. If we consider the scalar problem (WP), it is easy to see that its value is larger than

8This procedure is just a particular case of what is usually called forward automatic differentiation.
9We also observe that this reduction to a divergence-constrained convex minimization problem allows

to provide alternative numerical approaches, as it is done in [39], in the same spirit of the Benamou-Brenier
Augmented Lagrangian technique, see also Section 6.1
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Figure 4.4: Traffic intensity at equilibrium in a city with a river and a bridge, with two
sources S1 and S2, and two targets T1 and T2. Picture taken from [45] with permission.

that of the minimal flow problem à la Beckmann:

(BP− cong) min
{ˆ

Ω

H (w(x))dx : ∇ ·w = µ−ν

}
, (4.27)

where H (w) = H(|w|) and H is taken independent of x only for simplicity. The
inequality is justified by two facts: minimizing over all vector fields w with prescribed
divergence gives a smaller result than minimizing over the vector fields of the form wQ,
and then we use |wQ| ≤ iQ and the fact that H is increasing.

Actually, the two problems are equivalent. The main ingredient to prove it is Theo-
rem 4.10. If we take a minimizer w for this minimal flow problem, then we are able to
build a measure Q and, as we did in Theorem 4.13, the optimality of w gives w = wQ
and |wQ| = iQ, thus proving that the minimal values are the same. Also, we can build
a minimizer w from a minimizer Q (just take w = wQ) and conversely a minimizer Q
from w (use Theorem 4.10).

Moreover, we also know from the proof of Theorem 4.10 that the main tool to
construct the measure Q is the Dacorogna-Moser flow. If we want to use it to define
a unique and canonical flow connecting the two measures µ and ν , then we would
like to have some regularity of the vector field v defined as vt(x) = w(x)/ ft(x), where
ft = (1− t)µ + tν . If v was Lipschitz continuous, then the Cauchy problem{

y′x(t) = vt(yx(t))
yx(0) = x

,

would have a unique solution for every initial datum x, and would allow to find the
measure Q (which would be unique, by the way). Obviously, we can decide to add
some assumptions on µ and ν , which will be supposed to be absolutely continuous
with regular densities (at least Lipschitz continuous and bounded from below).

However, one needs to prove regularity for the optimal w, and for this one needs to
look at the optimality conditions satisfied by w as a minimizer of (4.27). By considering
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perturbations of the form w+εw̃ with ∇ ·w̃= 0, one gets that the optimal w must satisfy´
∇H (w) · w̃ = 0 for any divergence-free vector field w̃. This means that ∇H (w) is

a gradient (see Box 6.2 in Section 6.2, which has to be adapted to an Lp setting10.
We can call it ∇u, and, by inverting ∇H , we get that the minimizers of (4.27) satisfy
w = ∇H ∗(∇u) where H ∗ is the Legendre transform of H and u solves the PDE:{

∇ · (∇H ∗(∇u)) = µ−ν , in Ω,
∇H ∗(∇u) ·n = 0, on ∂Ω.

(4.28)

This equation turns out to be a standard Laplace equation if H is quadratic, or it
becomes a p-Laplace equation for other power functions. In these cases, regularity
results are well-known, under regularity assumptions on µ and ν .

Remark 4.36. Note that the above considerations allow to answer to the question
“Given µ,ν , when does a traffic plan Q with iQ ∈ Lp exists?”. The answer is yes if
and only if µ−ν ∈ (W 1,q)∗, and the proof is left as an exercise, see Ex(26).

As we already mentioned, the case of power-like functions H is not suitable for
modeling reasons. Recall that H ′ = g where g is the congestion function, so it is natural
to have g(0)> 0 : the metric should be positive even if there is no traffic! This means
that the radial function H cannot be differentiable at 0 and then its subdifferential at
0 contains a ball. By duality, this implies ∇H ∗ = 0 on this ball which makes (4.28)
very degenerate, even worse than the p-Laplacian. For instance, a reasonable model of
congestion is g(t) = 1+ t p−1 for t ≥ 0, with p > 1, so that

H (w) =
1
p
|w|p + |w|, H ∗(z) =

1
q
(|z|−1)q

+, with q = p′ =
p

p−1
(4.29)

so that the optimal w is

w =
(
|∇u|−1

)q−1

+

∇u
|∇u|

,

where u solves the very degenerate PDE:

∇ ·
((
|∇u|−1

)q−1

+

∇u
|∇u|

)
= µ−ν , (4.30)

with Neumann boundary condition(
|∇u|−1

)q−1

+

∇u
|∇u|

·n = 0.

Note that there is no uniqueness for u but there is for w.
For this degenerate equation we cannot expect regularity results which go beyond

Lipschitz continuity for u (indeed, since the diffusion coefficient identically vanishes in
the zone where |∇u| ≤ 1, every u∈ Lip1 is solution of the corresponding homogeneous
equation). On the other hand, we can expect better regularity for w (roughly speaking,
w is obtained by gluing two zones: the one where w= 0 and the one where the equation

10Observe that the same result can also be directly obtained from duality arguments, as it is done in
Theorem 2.1 in [82]
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is elliptic). However, we will not be able to obtain w itself to be Lipschitz. On the other
hand, Sobolev regularity of w and Lipschitz regularity results for u are proven in [82].
This enables one to build a flow à la DiPerna-Lions [157] and then to justify rigorously
the existence of a unique and well-defined flow for a.e. initial datum x. Interestingly,
recent continuity results are also available (see [279] in dimension 2, and then [127],
with a different technique in arbitrary dimension), obtained as a consequence of a fine
analysis of this degenerate elliptic PDE. Besides the interest for this regularity result
in itself, we also stress that continuity for w implies continuity for the optimal iQ, and
this exactly gives the regularity which is required in the proof of Theorem 4.33 (the
main difficulty being defining ck̄ for a non-continuous k̄, and this is the reason why our
previous arguments are only formal).

4.4.2 Branched transport

The goal of this second part of the discussion section is to present an opposite minimal
flow problem, where, contrary to what happens in traffic congestion, joint transporta-
tion on a common path is indeed encouraged. This is reasonable when we consider
“economy of scale” principles, and it is also something that we can observe in many
different phenomena. In many cases, when a single planner needs to organize a trans-
port (building a transportation network, for instance), the total cost happens to be sub-
additive (the cost for moving two objects cannot exceed the sum of the two costs), and
in many cases it has decreasing marginal costs (i.e. the cost for adding a unit to a given
background quantity is a decreasing function of the background, which means that the
cost is actually concave).

Note that we are considering here the transport cost as a function of the mass, and
not of the length. The silent assumption is that the cost will be linear in the length (as
it happens in all minimal flow problems of this chapter). But it will be concave in the
mass, opposite to what we saw in Section 3.3.2.

Many branching structures transporting different fluids, such as road systems, com-
munication networks, river basins, blood vessels, leaves, trees and so on. . . may be
easily thought of as coming from a variational principle for a cost of this kind.

Note that, exactly as it happened for traffic congestion, modeling this kind of ef-
fects requires, either in Lagrangian or Eulerian language, to look at the paths actually
followed by each particle. It could not be done with the only use of a transport plan
γ ∈Π(µ,ν). Yet, once we choose the good formulation via the tools developed in this
chapter, we can guess the shape of the optimal solution for this kind of problem: parti-
cles are collected at some points, move together as much as possible, and then branch
towards their different destinations. This is why this class of problems is nowadays
known as “branched transport”.

Recently these problems received a lot of attention by mathematicians, but in fact
the formalization of the discrete framework, which can be expressed in terms of Dirac
masses, is very classical in optimization and operational research. As we did for
congested transport, we start from the discrete framework, which was introduced by
Gilbert, [186]. We then move on to the continuous models, which are much more
recent and were partly developed and studied by Bernot, Caselles, Morel [50, 51] and
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Maddalena, Solimini [221, 222] for the Lagrangian model, and by Xia [297], who gave
an Eulerian continuous extension of the Gilbert Energy.

The discrete model Translating into our language the work by Gilbert [186], we
consider two atomic probability measures µ =∑

m
i=1 aiδxi and ν =∑

n
j=1 b jδy j supported

in some compact subset Ω ⊂ Rd , and we want to connect them through a weighted
oriented graph G. A weighted oriented graph in Rd is just a system G = (sk,θk)k
where sk is a pair of points sk = (pk,qk) representing an oriented segment in Rd and
θk ∈ R+ is a weight associated to the segment sk. We denote by ŝk the orientation
qk−pk
|qk−pk|

of sk (provided it is not trivial) and |sk| its length |qk− pk|. The points pk,qk are
called the vertices of the graph and the segments sk are its edges.

Given µ,ν , we say that G irrigates ν from µ if it satisfies the well-known Kirchhoff
Law for electric circuits: for each vertex x of the graph, one must have

incoming mass at x = outcoming mass at x.

We count as incoming the mass conveyed by the segments sk = (pk,qk) reaching x,
i.e. such that x = qk, increased by the mass given by µ , i.e. increased by ai if x = xi.
Similarly, the outcoming mass at x is the total weight of the segments sk = (pk,qk)
leaving x, i.e. such that pk = x, decreased by the mass taken out by ν , i.e. by b j if
x = y j. The set of graphs irrigating ν from µ is denoted by G(µ,ν).

For α ∈ [0,1], we define the cost of α-irrigation of a graph G, also called Gilbert
energy as

Eα(G) =
n

∑
k=1

θ
α
k |sk| ,

which means that the cost of moving a mass m along a segment of length l is mα l.
Given µ,ν atomic probabilities, we want to minimize this energy among all graphs

sending µ to ν , which reads

min {Eα(G) : G ∈ G(µ,ν)}.

This problem was introduced by Gilbert in [186, 187] as an extension of Steiner’s
minimal length problem which corresponds11 to the case α = 0, where one wants to

11To have an exact equivalence between the Steiner minimal connection problem and Gilbert problem
with α = 0, one needs to consider a measure µ composed of a unique Dirac mass, so that every point in
spt(ν) must be connected to it, hence getting connectedness of the graph.
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Figure 4.5: An example of a strong cycle (left) and of a cycle which is not strong (right)

minimize the total length of the network. The main applications that Gilbert referred
to were in the field of communication networks.

Note that for α ∈ [0,1] the function t 7→ tα is concave and subadditive; it is strictly
concave for α ∈]0,1[. In this way larger tubes bringing the mass from µ to ν are
preferred to several smaller ones transporting the same total mass.

It is not evident to see why this problem admits a minimizer. Indeed, we minimize
among finite objects, but we do not impose uniform bounds (on the number of edges,
of vertices. . . ). We need to give an important definition12

Definition 4.37. We call cycle (resp. strong cycle) of G any sequence of segments
(resp. oriented segments) which are adjacent.

As the function t 7→ tα is increasing, we can easily reduce the energy of a graph
by removing strong cycles. It is not difficult to check that the concavity of the same
function also ensures that one reduces the energy by removing any cycle. Therefore
one can take a minimizing sequence of graphs which have no cycles, i.e. which are
trees, and this implies a uniform bound on the number of edges (in terms of the total
number of atoms of µ and ν). This provides compactness and proves the existence of
a minimizer. Any minimizer will have no strong cycles, and no cycles if α ∈]0,1[.

Moreover, it is possible to prove an optimality condition on the free junctions in the
graph. This means that, at every node x of the graph which is not one of the points xi
or y j, a balance of the direction must hold: the condition is

∑
k:x=pk

θ
α
k ŝk− ∑

k:x=qk

θ
α
k ŝk = 0, (4.31)

which means that the sum of the unit vectors corresponding to all the segments touching
the point x, always taken as exiting from x independently of the true orientation ŝk, each
weighted with θ α

k , must vanish13.

A Relaxed Continuous Model (Xia) More recently Xia, in [297], has proposed a
new formalization leading to generalizations of this problem to arbitrary probability

12Unfortunately, to cope with the language usually adopted in branched transport, we cannot be com-
pletely coherent with the rest of the chapter, where we called “cycles” what we call here “strong cycles”.

13For triple junctions, which are the most common ones, this gives interesting results: when α = 0 we
get the well-known condition about Steiner trees, with three 120◦ angles, and for α = 0.5 we have a 90◦

angle (see Ex(30)); yet, in general, the angles depend on the masses θk
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measures µ and ν . The main idea was to translate the Kirchhoff law constraint into a
divergence constraint. To be precise, and since we will need this language later on, we
introduce some heavy notation.

If E ⊂ Ω is an 1-rectifiable set14, τ : E → Sd−1 is a measurable vector field, and
θ : E → R+ is H 1-integrable, we define the finite vector measure [E,τ,θ ] ∈M d(Ω)
through

〈[E,τ,θ ],ξ 〉=
ˆ

E
θ(x)ξ (x) · τ(x)dH 1(x),

for all ξ ∈C(Ω;Rd).
Given a finite graph G = (sk,θk)k, we associate to G the measure

wG := ∑
k
[sk, ŝk,θk] ∈M d(Ω).

We can express both the cost and the constraint in terms of wG only. First note that
G ∈ G(µ,ν) (i.e. it satisfies mass balance conditions for irrigating ν from µ) if and
only if ∇ ·wG = µ−ν . Then, we also write

Eα(G) =
n

∑
k=1

θ
α
k |sk|=

ˆ
K
|θ(x)|α dH 1(x),

where we called θ the density of wG w.r.t. the H 1 measure.
This suggests a continuous Eulerian formulation of Gilbert’s problem by general-

izing Gilbert’s energy, the minimization problem becoming

(XP) min {Mα(w) : w ∈M d
div(Ω), ∇ ·w = µ−ν}. (4.32)

Obviously, one needs to define the energy Mα (which is also called the “α-mass” of
w). The original idea by Xia is to define it by relaxation, i.e.

Mα(w) := inf
{

liminf
n

Eα(Gn) : Gn ∈ G(µn,νn),wGn ⇀ w in M d
div(Ω)

}
,

where the convergence in M d
div(Ω) means wGn ⇀ w and ∇ ·wGn = µn−νn ⇀ ∇ ·w as

measures.
As a consequence of a famous rectifiability theorem by B. White, [296], one can

prove that Mα(w)<+∞ implies that w is 1-rectifiable15 and, with a finer analysis, we
get

Mα(w) =

{´
E |θ(x)|

α dH 1(x) if w = [E,τ,θ ]
+∞ otherwise.

14We already met rectifiable sets when studying the differentiability of convex functions, in Chapter 1:
1-rectifiable sets are defined as those sets which are covered, H 1-a.e., by a countable union of Lipschitz
curves. Anyway, the reader can easily pretend that “1-rectifiable” is a synonym of “1-dimensional” and it
should be enough to follow the rest of the discussion.

15We define rectifiable vector measures as those which can be expressed in the form [E,τ,θ ] with E
rectifiable. This language is borrowed from that of rectifiable currents, but currents can be considered vector
measures. The reader can look at [162] for more details.
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It should be proven that, when µ and ν are both atomic measures, we retrieve the
problem by Gilbert (this is not trivial, as we admitted lots of new competitors).

Compared to the finitely atomic case, another difference is the finiteness of the
minimum in (XP). Indeed, it is always possible to connect two atomic measures with a
finite graph, and the cost of finite graphs is always finite. On the contrary, it is not clear
for general measures µ,ν that there exists a w with Mα(w)< ∞ and ∇ ·w = µ−ν .

Irrigability and Irrigation Distance For µ,ν ∈P(Ω), we set dα(µ,ν) :=min(XP)∈
[0,+∞] (which obviously depends on µ,ν). First of all we consider the question
whether this value is finite. Supposing 0 ∈ Ω, it is clear that, if dα(µ,δ0),dα(ν ,δ0)<
+∞, then dα(µ,ν) < +∞. Hence16 we will concentrate on the question whether
dα(µ,δ0)<+∞.

One of the main results of [297] is the following.

Proposition 4.38. If α > 1− 1/d and Ω = [−a,a]d , then dα(µ,δ0) < +∞ for every
µ ∈P(Ω). This implies dα(µ,ν) < +∞ for every pair (µ,ν). The same is true in
every compact domain, just by fitting it into a large cube.

Moreover, keeping the conditions α > 1− 1/d and Ω compact, dα is actually a
distance over P(Ω) and it metrizes the weak convergence of probabilities.

We just prove the very first part of this statement.

Proof. The idea to prove dα(µ,δ0)<+∞ is the following: take a dyadic approximation
of µ by partitioning the cube Ω into 2nd small cubes of edge 2−n and putting a Dirac
mass of the corresponding measure at the center of each small cube, thus getting an
atomic measure µn. Then connect µn to µn+1 through a finite graph Gn (to which
we associate a flow wn), which sends every Dirac mass of µn, corresponding to some
small cube D, to the 2d Dirac masses of µn+1 corresponding to the sub-cubes of D,
along straight lines. A simple calculation gives the estimate:

Mα(Gn)≤C
2nd

∑
k=1

amα
k 2−n,

where the masses mk are the masses contained in each of the cubes at the n-th subdivi-
sion. Then we use ∑

N
k=1 mα

k ≤ N1−α(∑N
k=1 mk)

α (which comes from Jensen’s inequal-
ity), and get Eα(Gn)≤ aC2−n(1−d(1−α)).

It is clear by construction that we only need ∑n Eα(Gn) < +∞, and this is true as
soon as 1−d(1−α)> 0.

Some counter-examples, that we do not develop here (but one can see Ex(29))
complement the previous result and show that the above statement is sharp in terms of
α . More generally, we can think that the irrigability of a measure starting from δ0 is a
matter of its dimension, but suitable notions of dimensions (which are not simply the
Hausdorff dimension of the support) have to be chosen. These matters are discussed in
[154, 155].

16Indeed, even if not completely evident, it can be proven that, at least in the case where spt(µ)∩spt(ν) =
/0, the condition dα (µ,ν)<+∞ is actually equivalent to dα (µ,δ0),dα (ν ,δ0)<+∞.
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Figure 4.6: Different steps of the construction of Proposition 4.38

It is interesting to note that the above distance dα may also be obtained by relax-
ation (see [221]) from the functional which associates to every pair of atomic probabil-
ity measures µ = ∑i aiδxi , ν = ∑ j b jδy j the quantity

dα(µ,ν) := min

{
∑
i j
|xi− y j|γ({(xi,y j)})α : γ ∈Π(µ,ν)

}
.

This quantity, which corresponds to a sort of non-linear version of the Kantorovich
problem, is only well-defined on atomic measures. Then, we can check that we have

dα = sup

d : P(Ω)×P(Ω)→ [0,+∞] :


d ≤ dα on atomic measures,
d is l.s.c. for ⇀,

d satisfies the triangle inequality.

 .

(4.33)

The Lagrangian Formulation We want now to provide an alternative formulation
of the branched transport problem, based on the use of measures on paths. This formu-
lation17 has been introduced in [222] and then deeply studied in [50].

As usual, we will be given two measures µ,ν ∈P(Ω) and look for a traffic plan18,
i.e. a measure Q ∈P(C ), where C := AC(Ω), with

´
C L(ω)dQ(ω)<+∞. As usual,

we will restrict our attention to those traffic plans satisfying (e0)#Q = µ,(e1)#Q = ν

(the case where we fix also the coupling (e0,e1)#Q = γ will not be considered, and, by
the way, the connection with the previous Eulerian model by Xia does not work if γ is
fixed).

To introduce the quantity that we want to minimize, we need to define

θQ(x) := Q({ω ∈ C : x ∈ ω([0,1])}), mQ(x) :=
ˆ

C
#({t ∈ [0,1] : ω(t)=x})dQ(ω).

17What we provide here is just a translation into the language of this chapter of the model proposed in
[222, 50], which uses “parametrized traffic plans” instead of measures on paths, but it is just a matter of
language.

18The terminology has been introduced for this very purpose by the authors of [50].



152 CHAPTER 4. MINIMAL FLOWS

Proposition 4.39. The following properties are satisfied.

1. We always have 0 ≤ θQ(x) ≤ mQ(x) ≤ 1, with equality θQ = mQ whenever Q is
concentrated on loop-free curves.

2. The function (x,Q) 7→ θQ(x) is u.s.c. w.r.t. the convergence of points x ∈ Ω and
the weak convergence of measures Q ∈P(C ).

3. The traffic intensity iQ is equal to mQ ·H 1 whenever there exists a set Γ, σ -finite
for the H 1 measure, with ω(t) ∈ Γ for Q-a.e. curve ω and a.e. time t.

Then, we define the energy Iα through

Iα(Q) :=
ˆ

C
ZQ(ω)dQ(ω),

where

ZQ(ω) := L
θ

α−1
Q

(ω) =

ˆ 1

0
θQ(ω(t))α−1|ω ′(t)|dt.

The problem that we consider is then

min{Iα(Q) : Q ∈P(C ), (e0)#Q = µ,(e1)#Q = ν}.

Note that the trivial estimate Iα(Q)≥
´
C L(ω)dQ(ω) provides compactness on a mini-

mizing sequence (indeed, the energy is invariant under reparametrization of each curve,
and hence length bounds turn into Lipschitz bounds, as we did in the rest of the chap-
ter). The existence of a minimizer is then obtained by proving semi-continuity. In-
deed, combining fact 2. with a simple Fatou Lemma, we obtain that the function
(Q,ω) 7→ ZQ(ω) is l.s.c. (for the weak convergence on Q and the uniform convergence
on ω). Finally we use the following.

Proposition 4.40. If f : P(C )×C → R is l.s.c., then F : Q 7→
´
C f (Q,ω)dQ(ω) is

l.s.c. on P(C ).

Then, we can prove the following facts

Proposition 4.41. 1. For every Q with Iα(Q)<+∞ the set Γ = {x : θQ(x)> 0} is
σ -finite for the measure H 1 and we have Iα(Q) =

´
Γ

θ
α−1
Q mQ dH 1.

2. If Q is optimal, then it is concentrated on loop-free curves and Iα(Q)=
´

Γ
θ α

Q dH 1.

3. If Q is optimal, then it is cycle-free19.

These property, and in the particular the expression of Iα as the integral of the
α-power of the multiplicity θQ, suggest the connection with the Eulerian model. A
precise equivalence can be proven, either via the tools in [50], or via Theorem 4.10.

19We can give a precise definition in the following way: for x,y ∈ Ω, define [x,y] = {ω ∈ C : ∃s <
t such that ω(s) = x and ω(t) = y}; we say that Q is cycle-free if there are not x1, . . . ,xn with x1 = xn such
that Q([xi,xi+1])> 0 or Q([xi+1,xi])> 0 for all i = 1, . . . ,n−1.
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The Single-Source Case It is interesting to see the special features of the problem
when we fix the source measure as a single Dirac mass δ0. This particular case is
already very rich. In this case, it is possible to study the problem with a different
definition of multiplicity: indeed, we can expect that whenever two curves pass at a
same point x they had traveled together on all the path from 0 to x. In this case, it is
better to change a little bit the framework, because parametrizing all the curves on a
fixed finite-length integral [0,1] could be too restrictive. Also, this gives the occasion
to observe the original framework presented in [222] (which can be checked to be
equivalent to the general one).

We consider now the space Λ = {ω ∈ Lip1(R+;Ω), ω(0) = 0}, endowed with the
topology of uniform convergence on compact sets (recall that this topology is metriz-
able by some distance d, and that this makes Λ a compact metric space thanks to the
Ascoli Arzelà Theorem).

If ω ∈ Λ, we define its stopping time by

Stop(ω) = inf{t ≥ 0 : ω is constant on [t,+∞[}.

We denote by Λstop the set of curves ω such that Stop(ω) < ∞. Then we define the
following subsets of Λstop : Λarc,Λinj,Λlf, respectively the set of curves which are
parameterized by arc length on [0,Stop(ω)], which are injective on [0,Stop(ω)[ and
which are injective on [0,Stop(ω)] (these curves are called loop-free).

We call traffic pattern any η ∈P(Λ) (we use the notation η to distinguish from
the case Q ∈P(C )) satisfying

ˆ
Λ

Stop(ω)dη(ω)<+∞.

We define the multiplicity and the energy according to the following variant of the
previous definitions: for the multiplicity, we first define

[ω]t := {ω̃ ∈ Λstop : ω(s) = ω̃(s) ∀s ∈ [0, t]},

the set of curves which coincide with ω up to time t, and for notational simplicity we
set |ω|t,η := η([ω]t). This last quantity will play the role of the multiplicity θ . Then
we define

Z̃η(ω) :=
ˆ Stop(ω)

0
|ω|α−1

t,η dt

and we call η-good any curve ω with Z̃η(ω)<+∞. Then, we use the energy

Ĩα(η) :=
ˆ

Λ

Z̃η(ω)dη(ω).

The problem becomes the minimization of Ĩα among probabilities η ∈P(Λ) satis-
fying (e∞)#η = ν , where e∞(ω) = ω(Stop(ω)). Note that e∞ is well-defined on Λstop,
but any finite energy traffic plan is necessarily concentrated on Λstop, hence the con-
dition makes sense; moreover, η 7→ (e∞)#η is continuous for the weak convergence
when restricted to any set {η ∈P(Λ) :

´
Λ

Stop(ω)dη(ω)≤C}.
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It is not difficult to prove the existence of a minimizer in this case, and it is also
possible to prove that minimizers are concentrated on Λarc∩Λinj and are even loop-free
(i.e. we can prove η(Λlf) = 1, even if it is less evident). Note that we withdrew from
the definition of the energy the term |ω ′| and this forces the minimizers to saturate the
constraint |ω ′| ≤ 1.

Remark 4.42. Other intermediate models may be introduced, all differing in the defi-
nition of the multiplicity of the curve ω at time t. See for instance [49] or [221].

The class of η-good curves is an explicitly defined set of curves which shares many
of the properties satisfied η-almost everywhere. For instance, if η is optimal and Q is
a measure on C representing η after a suitable reparametrization in time, we have
|ω|t,η = θQ(ω(t)) = mQ(ω(t)), and this is true for every ω which is η-good.

An important point is the following: if ω1, ω2 are η-good and η is optimal, if
(e∞)(ω1) = (e∞)(ω2), then Z̃η(ω1) = Z̃η(ω2) (see [272]). As a corollary, we get for
instance that any η-good curve ω is in fact loop-free, i.e. it is injective on [0,Stop(γ)].

Definition 4.43 (Landscape function). We define the landscape function zη associated
to the traffic pattern η through

zη(x) =

{
Zη(ω) if ω is an η-good curve and x = e∞(ω),

+∞ if there is no η-good curve ending at x.

The introduction of the landscape function ([272]) is justified by several different
considerations. On the one hand it plays the role of the first variation of the functional

Xα(ν) = dα(δ0,ν),

as we can prove (by concavity)

Xα(µ)≤ Xα(ν)+α

ˆ
Ω

zη d(µ−ν),

where η is any optimal traffic plan irrigating ν . Considering that we also have Xα(ν) =´
zη dν , it seems to play the same role as the Kantrovich potential plays for the classical

Monge transport cost20.
On the other hand, and this justifies its name, zη is a natural object studied by

geophysicists when dealing with river basins (see [263] for details and [272] for a brief
mathematical introduction to this theory): in their model, after a first evolution phase,
it is assumed that landscape erosion creates a stable configuration where the elevation
z(x) at each point is characterized by two properties: the river flows in the direction
of maximal slope, and the slope |∇z| is proportional to the discharge (i.e. multiplicity)
coefficient θ , raised to a power close to −1/2 (say α − 1, with α close to the two-
dimensional critical exponent 1/2).

It is possible to prove few properties of the landscape function.

20But it does not seem to come from a dual problem.
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Theorem 4.44. The landscape function z is lower semi-continuous. It is Hölder contin-
uous21 of exponent β = d(α − (1− 1

d )) whenever α > 1− 1
d , Ω has Lipschitz bound-

ary and ν ≥ cLΩ. Moreover, z has maximal slope in the direction of the irrigation
network in the following sense: if ω is an η-good curve, t0 ≤ Stop(ω), x0 = ω(t0) and
θ0 = |ω|t0,η , then for any x ∈Ω we have

z(x)≥ z(x0)−θ
α−1
0 |x− x0|−o(|x− x0|).

Regularity The regularity of the optimal networks in branched transport is a delicate
issue, which has been studied both in Eulerian and Lagrangian framework. One of the
first results concern what Xia called “interior regularity”: here interior means “far from
the supports of µ and ν”, which can be considered as the boundary of the transport net-
work. These results, proven in [298] with an Eulerian approach and in [51] with the
Lagrangian approach, state that, far from these supports, optimal networks are locally
finite graphs. In particular, they satisfy the angle law (4.31) at every branching point.
The question now becomes whether this angle law is satisfied at an infinitesimal level
(in the sense that the directions to be considered are tangent lines and not segments)
inside the support of µ and ν . [300] gives partial results in this direction (characteri-
zation of the limits up to subsequences), but a full solution is not yet available. On the
other hand, in the simpler case of a single source, [241] provides the following result:

Theorem 4.45. Let ω be an η-good curve, parametrized with constant speed, of an
optimal traffic pattern irrigating a measure ν with aLΩ≤ ν ≤ bLΩ, for 0< a< b<∞.
Suppose that Ω is a Lipschitz bounded domain. Consider t0 < Stop(ω). Let θi, i ∈ I
the masses of all trees branching from ω in the interval [0, t0]). Then ∑i θ α

i < ∞ and
ω ′ ∈BV ([0, t0]). In particular, ω has two half-tangents at all points and a tangent at all
points which are not branching points. Moreover, the tangent cone at every branching
point x is composed of a finite (and bounded by a constant depending on α and d)
number of segments whose directions and masses satisfy (4.31). More precisely, ω

satisfies in the sense of distributions on [0, t0] the elliptic equation

− (|ω|αt,η ω
′(t))′ = ∑

i∈I
θ

α
i δω(ti)ŝi (4.34)

where ŝi is the tangent of the branch stemming from ω at the point ω(ti) with mass θi.
The fact that this tangent vector exists, and that the right hand side is a vector measure
with finite mass, are guaranteed by the first parts of the statement.

Counterexamples to the existence of tangent directions can be built when the as-
sumption on ν fails (see, again, [241]). For an alternative approach to the existence of
tangent directions under slightly different assumptions, one can also see the last chapter
in [271].

Numerics From the point of view of the practical search of the solutions, branched
transport problems lie in between combinatorial optimization (they are similar to the

21Other Holder results exist under different assumptions, if ν admits different dimensional lower bounds,
i.e. it is Ahlfors regular of another exponent k < d, thus obtaining β = d(α− (1− 1

k )), see [79].
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Steiner minimal connection problem, which is, on a graph, known to be NP-hard)
and continuous minimal flow problems. The numerical methods for finding a solution
have to face at least two difficulties: concavity (and hence the high number of local
minimizers) and singularity (i.e. working with singular structures such as networks
instead of using Lp or smoother functions, as in the congested traffic case).

Some numerical results, based on local and non-local improvements of a suitably
chosen initial guess, are present in [297] and [299]. Yet, here we prefer to introduce a
completely different idea, based on a Γ-convergence approach.

Box 4.6. – Important notion – Γ-convergence

Γ-convergence is a theory, introduced by De Giorgi (see [139] and [134]), to provide
approximations of minimization problems. It is also known as epi-convergence.

Definition - On a metric space X let Fn : X → R∪{+∞} be a sequence of functions.
We define the two lower-semi-continuous functions F− and F+ (called Γ− liminf and
Γ− limsup of this sequence, respectively) by

F−(x) := inf{liminf
n→∞

Fn(xn) : xn→ x},

F+(x) := inf{limsup
n→∞

Fn(xn) : xn→ x}.

Should F− and F+ coincide, then we say that Fn actually Γ-converges to the common
value F = F− = F+. The definition of Γ-convergence for a continuous parameter ε → 0
obviously passes through the convergence to the same limit for any subsequence εn→ 0.

Among the properties of Γ-convergence we have the following:

• if there exists a compact set K ⊂ X such that infX Fn = infK Fn for any n, then F
attains its minimum and infFn→minF ;

• if (xn)n is a sequence of minimizers for Fn admitting a subsequence converging to x,
then x minimizes F ;

• if Fn is a sequence Γ-converging to F , then Fn +G will Γ-converge to F +G for any
continuous function G : X → R∪{+∞}.

One of the first applications of Γ-convergence was to provide elliptic approxima-
tions of free discontinuity problems, or, more generally, variational problems with
“singular energies”. We will only mention the following standard example (known
as “Modica-Mortola” approximation, see [237] and [134]) because of its simplicity.
Define the functional Fε on L1(Ω) through

Fε(u) =

{
1
ε

´
W (u(x))dx+ ε

´
|∇u(x)|2dx if u ∈ H1(Ω);

+∞ otherwise.

Then, if W (0) = W (1) = 0 and W (t) > 0 for any t 6= 0,1, we have Γ-convergence of
the functionals Fε towards the functional F given by

F(u) =

{
cPer(S) if u = 1S and S is a finite-perimeter set;
+∞ otherwise,



4.4. DISCUSSION 157

where the constant c is given by c = 2
´ 1

0

√
W (t)dt.

Inspired by this result, in [247] a similar result for branched transport has been
proven. Unfortunately, it has only been proved for the two dimensional case Ω ⊂ R2.
Consider, on the space M d

div(Ω) of vector measures on Ω with divergence which is
also a measure (endowed with the weak convergence of both the measures and their
divergences), the functionals

Mα
ε (w) = ε

α−1
ˆ

Ω

|w(x)|β dx+ ε
α+1

ˆ
Ω

|∇w(x)|2dx, (4.35)

defined on w ∈ H1(Ω;R2) and set to +∞ outside H1 ∩M d
div(Ω). The exponent β =

4α−2
α+1 is fixed from suitable scaling computations.

Compared to the Modica-Mortola case, here the double-well potential is replaced
with a concave power. Note that concave powers, in their minimization, if the average
value for u is fixed in a region (which is in some sense the meaning of weak conver-
gence), prefer either u = 0 or |u| being as large as possible, i.e. there is sort of a double
well at zero and infinity.

Theorem 4.46. Suppose d = 2 and α ∈] 1
2 ,1[: then we have Γ-convergence of the

functionals Mα
ε to cMα , with respect to the convergence in M d

div(Ω), as ε→ 0, where c
is a finite and positive constant (the value of c is actually c = α−1 (4c0α/(1−α))1−α ,
with c0 =

´ 1
0

√
tβ − tdt).

As a consequence of this approximation result, E. Oudet performed efficient nu-
merical simulations by minimizing the functionals Mα

ε (more precisely: first a large
value of ε is fixed, so that the problem is more or less convex, and a minimizer is found
by gradient descent, then, following a continuation method, the value of ε is reduced
and at every step the gradient descent starts from the previously found minimizer). In
the end we find a “well-chosen” local minimizer, quite satisfactory in practice.
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Figure 4.7: Branched transport computed via Γ-convergence between one point and
four points, two points and four points, and one point and the uniform distribution on a
circle, for different values of α (increasing from left to right). Pictures partially taken
from [247], with permission.



Chapter 5

Wasserstein distances and
curves in the Wasserstein spaces

In this chapter we will use the minimal value of transport problems between two prob-
abilities in order to define a distance on the space of probabilities. We mainly consider
costs of the form c(x,y) = |x−y|p in Ω⊂Rd , but the analysis can be adapted to a power
of the distance in a more general metric space X . The exponent p will always be taken
in [1,+∞[ (we will briefly address the case p =+∞ in the Discussion Section 5.5.1) in
order to take advantage of the properties of the Lp norms. When Ω is unbounded we
need to restrict our analysis to the following set of probabilities

Pp(Ω) :=
{

µ ∈P(Ω) :
ˆ

Ω

|x|p dµ <+∞

}
.

In a metric space, we fix an arbitrary point x0 ∈ X , and set Pp(X) := {µ ∈P(X) :´
d(x,x0)

p dµ(x)<+∞} (the finiteness of this integral does not depend on the choice
of x0).

Without entering into details for the moment, let us only mention that the distances
that we use are defined in the following way: for µ,ν ∈Pp(X), we set Wp(µ,ν) :=
Tc(µ,ν)

1/p, where Tc is the minimal transport cost for c(x,y) = d(x,y)p and d is the
distance on X .

The distance that we obtain in this way are called Wasserstein distances1. They are
very important in many fields of applications and they seem a natural way to describe
distances between equal amounts of mass distributed on a same space. To translate into
a language more meaningful for applications2, one could say that Wasserstein distances
are a way to take a distance onto a set X of objects (colors, words, points. . . ) and create
out of it a distance on the set of all possible histograms on X (see also Section 2.5.1).

1The name is highly debated, in particular in Russia, since L. Vaserstein (whose name is sometimes
spelled Wasserstein), a Russian scholar based in the United States, did not really play the key role that one
could imagine in the introduction of these distances. Yet, this is nowadays the standard name in Western
countries, probably due to the terminology used in [199, 246], and it seems impossible to change this con-
vention, even if other names have been often suggested, such as Monge-Kantorovich distances. . .

2In particular in image processing. Thanks to G. Peyré for pointing out this interpretation.

159
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f (x)

f (x)

g(x)

g(x)

x T(x) x T(x)

f
g

Figure 5.1: “Vertical” vs “horizontal” distances (the transport T is calculated in the
picture on the right as in the 1D case, by imposing equality between the blue and red
areas under the graphs of f and g, i.e. using the CFD functions as in Chapter 2).

It is interesting to compare these distances to Lp distances between densities (a
comparison which is meaningful when we consider absolutely measures on Rd , for
instance). A first observation is the very different behavior of these two classes of
distances. We could say that, if Lp distances can be considered “vertical”, Wasserstein
distances are instead “horizontal”. This consideration is very informal, but is quite
natural if one associates to every absolutely continuous measure the graph of its density.
To compute || f − g||Lp we need to look, for every point x, the distance between f (x)
and g(x), which corresponds to a vertical displacement between the two graphs, and
then integrate this quantity. On the contrary, to compute Wp( f ,g) we need to consider
the distance between a point x and a point T (x) (i.e. an horizontal displacement on
the graph) and then to integrate this, for a particular pairing between x and T (x) which
makes a coupling between f and g.

A first example where we can see the very different behavior of these two ways of
computing distances is the following: take two densities f and g supported on [0,1],
and define gh as gh(x) = g(x− h). As soon as |h| > 1, the Lp distance between f
and gh equals (|| f ||pLp + ||g||pLp)1/p, and does not depend on the “spatial” information
consisting in |h|. On the contrary, the Wp distance between f and gh is of the order of
|h| (for h→ ∞) and depends much more on the displacement than on the shapes of f
and g. As another example, consider the distance between a density g and its translation
gh, for |h| → 0. In this case we have Wp(g,gh) = |h|, while ||g− gh||Lp can be much
larger than |h|, and is of order |h| if and only if g is smooth enough.

In several applications, this robustness of the Wasserstein distances w.r.t. pertur-
bation of the densities make them preferable to other distances, and the fact that they
quantify spatial features of the measures is exactly what is required. Also, we will see
(in Section 5.4 and later 6.1 and 7.3), that the geodesics for these distances provide
useful interpolations between distributions of mass.
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5.1 Definition and triangle inequality
In this section we give the basic definitions of Wasserstein distances and spaces in
Ω ⊂ Rd . We will see how to adapt the analysis to the case of more general metric
spaces. As we said above, we restrict our analysis to the set

Pp(Ω) :=
{

µ ∈P(Ω) :
ˆ
|x|p dµ <+∞

}
.

Note that p < q imples Pp(Ω)⊂Pq(Ω) and that, whenever Ω is bounded, Pp(Ω) =
P(Ω).

For µ,ν ∈Pp(Ω), let us define

Wp(µ,ν) := min
{ˆ

Ω×Ω

|x− y|p dγ : γ ∈Π(µ,ν)

} 1
p

,

i.e. the p-th root of the minimal transport cost Tc for the cost c(x,y) = |x− y|p. The
assumption µ,ν ∈Pp(Ω) guarantees finiteness of this value since |x− y|p ≤C(|x|p +
|y|p), whence W p

p (µ,ν)≤C(
´
|x|p dµ +

´
|x|p dν).

Note that, due to Jensen inequality, since all γ ∈Π(µ,ν) are probability measures,
for p≤ q we have(ˆ

|x− y|p dγ

) 1
p

= ||x− y||Lp(γ) ≤ ||x− y||Lq(γ) =

(ˆ
|x− y|q dγ

)1/q

,

which implies Wp(µ,ν)≤Wq(µ,ν). In particular W1(µ,ν)≤Wp(µ,ν) for every p≥ 1.
We will not define here W∞, but we refer to Section 5.5.1 for a definition as a limit for
p→ ∞.

On the other hand, for bounded Ω an opposite inequality also holds, since(ˆ
|x− y|p dγ

) 1
p

≤ diam(Ω)
p−1

p

(ˆ
|x− y| dγ

) 1
p

.

This implies
Wp(µ,ν)≤CW1(µ,ν)

1
p , (5.1)

for C = diam(Ω)(p−1)/p.

Proposition 5.1. The quantity Wp defined above is a distance over Pp(Ω).

Proof. First, let us note that Wp ≥ 0. Then, we also remark that Wp(µ,ν) = 0 im-
plies that there exists γ ∈ Π(µ,ν) such that

´
|x− y|p dγ = 0. Such a γ ∈ Π(µ,ν) is

concentrated on {x = y}. This implies µ = ν since, for any test function φ we haveˆ
φ dµ =

ˆ
φ(x)dγ =

ˆ
φ(y)dγ =

ˆ
φ dν .

We need now to prove the triangle inequality. We give two different proofs of this
fact. The first (Lemma 5.3) is easier and uses transport maps and approximation; the
second (Lemma 5.4) is more general but requires a trickier tool, i.e. disintegrations of
measures.
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Lemma 5.2. Given µ,ν ∈Pp(Rd) and χε any even regularizing kernel in L1 with´
Rd χε(z)dz = 1 and χε(z) = ε−d χ1(z/ε), then we have

1. the inequality Wp(µ ∗χε ,ν ∗χε)≤Wp(µ,ν)

2. the limit limε→0 Wp(µ ∗χε ,ν ∗χε) =Wp(µ,ν).

Proof. Take an optimal transport plan γ ∈ Π(µ,ν) and define a transport plan γε ∈
Π(µ ∗χε ,ν ∗χε) through

ˆ
Rd×Rd

φ(x,y)dγε :=
ˆ
Rd×Rd

ˆ
Rd

φ(x+ z,y+ z)χε(z)dz dγ(x,y).

We need to check that its marginals are actually µ ∗χε and ν ∗χε . Just consider
ˆ
Rd×Rd

φ(x)dγε =

ˆ
Rd×Rd

ˆ
Rd

φ(x+ z)χε(z)dzdγ(x,y)

=

ˆ
Rd×Rd

(φ ∗χε)(x)dγ(x,y) =
ˆ
Rd
(φ ∗χε)(x)dµ(x)

=

ˆ
Rd

φ(x)d(µ ∗χε)(x)

(we use the fact that χε is even to pass the convolution from φ to µ). The computation
for the second marginal is the same. It is then easy to show that

´
|x− y|p dγε =

´
|x−

y|p dγ , since
ˆ
|x− y|p dγε =

ˆ
Rd×Rd

ˆ
Rd
|(x+ z)− (y+ z)|pχε(z)dz dγ(x,y) =

ˆ
|x− y|p dγ.

This shows the first part of the statement and also

limsup
ε→0

Wp(µ ∗χε ,ν ∗χε)
p ≤ limsup

ε→0

ˆ
|x− y|p dγε =

ˆ
|x− y|p dγ.

One cans also obtain the opposite inequality by a standard semi-continuity argu-
ment. Consider µε := µ ∗ χε and νε := ν ∗ χε , and use only the weak convergences
µε ⇀ µ and νε ⇀ ν . Call γε the optimal plans in Π(µε ,νε). This sequence of plans
is tight, since its marginals are tight (look at the proof of Theorem 1.7). First fix a
sequence εk → 0 such that limk Wp(µεk ,νεk) = liminfε→0 Wp(µε ,νε). Then extract a
subsequence εkj so as to guarantee that the optimal transport plans γεkj

have a weak
limit γ0. This weak limit must belong to Π(µ,ν) (the fact that the marginals of γ0 are µ

and ν follows by the properties of composition with continuous functions of the weak
convergence). Then we have

W p
p (µ,ν)≤

ˆ
|x− y|p dγ0 ≤ liminf

j

ˆ
|x− y|p dγεkj

= liminf
ε→0

Wp(µε ,νε),

where the first inequality follows from the fact that γ0 is not necessarily optimal but is
admissible and the second follows by semi-continuity (Lemma 1.6).
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Then, we can perform a proof of the triangle inequality based on the use of optimal
transport maps.

Lemma 5.3. The quantity Wp satisfies the triangle inequality (proof by transport maps
and approximation).

Proof. First consider the case where µ and ρ are absolutely continuous and ν is arbi-
trary. Let T be the optimal transport from µ to ρ and S the optimal one from ρ to ν .
Then S◦T is an admissible transport from µ to ν , since (S◦T)#µ = S#(T#µ) = S#ρ =
ν . We have

Wp(µ,ν)≤
(ˆ
|S(T(x))− x|p dµ(x)

) 1
p

= ||S◦T− id||Lp(µ)

≤ ||S◦T−T||Lp(µ)+ ||T− id||Lp(µ).

Moreover,

||S◦T−T||Lp(µ) =

(ˆ
|S(T(x))−T(x)|p dµ(x)

) 1
p

=

(ˆ
|S(y)− y|pdρ(y)

) 1
p

and this last quantity equals Wp(ρ,ν). Moreover, ||T− id||Lp(µ) =Wp(µ,ρ), whence

Wp(µ,ν)≤Wp(µ,ρ)+Wp(ρ,ν).

This gives the proof when µ,ρ � L d . For the general case, first write the triangle
inequality for µ ∗ χε , ρ ∗ χε and ν ∗ χε , then pass to the limit as ε → 0 using Lemma
5.2.

The proof above strongly uses the results about transport maps from Chapter 1,
and is somehow specific to Rd (in a general metric space the tricky part would be to
approximate arbitrary measures with measures such that the Wasserstein distance can
be computed with maps instead of plans3). To give a more general result, we provide
a different proof, which may happen to be more difficult for the reader who is not
accustomed to disintegrations of measures (see Chapter 2).

Lemma 5.4. The quantity Wp satisfies the triangle inequality (proof by disintegra-
tions).

Proof. Let us take µ,ρ and ν ∈Pp(Ω), γ+ ∈Π(µ,ρ) and γ− ∈Π(ρ,ν). We can also
choose γ± to be optimal. Let us use the Lemma 5.5 below to say that there exists a
measure σ ∈P(Ω×Ω×Ω) such that (πx,y)#σ = γ+ and (πy,z)#σ = γ−, where πx,y
and πy,z denote the projections on the two first and two last variables, respectively.
Let us take γ := (πx,z)#σ . By composition of the projections, it is easy to see that
(πx)#γ = (πx)#σ = (πx)#γ+ = µ and, analogously, (πz)#γ = ν . This means γ ∈Π(µ,ν)

3It is not strictly necessary to use absolutely continuous measures: we actually need atomless measures,
and then we can apply Theorem 1.33.
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and

Wp(µ,ν) ≤
(ˆ
|x− z|p dγ

) 1
p

=

(ˆ
|x− z|pdσ

) 1
p

= ||x− z||Lp(σ)

≤ ||x− y||Lp(σ)+ ||y− z||Lp(σ) =

(ˆ
|x− y|pdσ

) 1
p

+

(ˆ
|y− z|pdσ

) 1
p

=

(ˆ
|x− y|p dγ

+

) 1
p

+

(ˆ
|y− z|p dγ

−
) 1

p

=Wp(µ,ρ)+Wp(ρ,ν).

The proof is concluded.

The following lemma is usually known as “gluing lemma” and allows to produce a
sort of “composition” of two transport plans, as if they were maps.

Lemma 5.5. Given two measures γ+ ∈Π(µ,ρ) and γ− ∈Π(ρ,ν) there exists (at least)
a measure σ ∈P(Ω×Ω×Ω) such that (πx,y)#σ = γ+ and (πy,z)#σ = γ−, where πx,y
and πy,z denote the projections on the two first and two last variables, respectively.

Proof. Start by taking γ+ and disintegrate it w.r.t. the projection πy (see Box 2.2 in
Section 2.3). We get a family of measures γ+y ∈P(Ω) (as we pointed out in the same
box, we can think of them as measures over Ω, instead of viewing them as measures
over Ω×{y} ⊂Ω×Ω). They satisfy (and are actually defined by)

ˆ
Ω×Ω

φ(x,y)dγ
+(x,y) =

ˆ
Ω

dρ(y)
ˆ

Ω

φ(x,y) dγ
+
y (x),

for every measurable function φ of two variables. In the same way, one has a family of
measures γ−y ∈P(Ω) such that for every φ we have

ˆ
Ω×Ω

φ(y,z)dγ
−(y,z) =

ˆ
Ω

dρ(y)
ˆ

Ω

φ(y,z) dγ
−
y (z).

For every y take now γ+y ⊗ γ−y , which is a measure over Ω×Ω. Define σ through

ˆ
Ω×Ω×Ω

φ(x,y,z)dσ(x,y,z) :=
ˆ

Ω

dρ(y)
ˆ

Ω×Ω

φ(x,y,z)d
(
γ
+
y ⊗ γ

−
y
)
(x,z).

It is easy to check that, for φ depending only on x and y, we have
ˆ

Ω3
φ(x,y)dσ =

ˆ
Ω

dρ(y)
ˆ

Ω×Ω

φ(x,y)d
(
γ
+
y ⊗ γ

−
y
)
(x,z)

=

ˆ
Ω

dρ(y)
ˆ

Ω

φ(x,y) dγ
+
y (x) =

ˆ
φ dγ

+.

This proves (πx,y)#σ = γ+ and the proof of (πy,z)#σ = γ− is analogous.
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Remark 5.6. All the analysis of this section can be performed on a general Polish
space X instead of a subset Ω⊂ Rd . The only differences are the definition of Pp(X)
(we need to use Pp(X) := {µ ∈P(X) :

´
d(x,x0)

p dµ(x) < +∞}), and the fact that
the first proof of the triangle inequality was specific to Rd (but the second works in
general).

Definition 5.7. Given a Polish space X , for each p ∈ [1,+∞[ we define its Wasserstein
space of order p, Wp(X), as the space Pp(X), endowed with the distance Wp.

5.2 Topology induced by Wp

In this section we want to analyze the convergence in the space Wp, and compare it
to the notion of weak convergence. First of all, we recall what we mean by “weak
convergence”: as we pointed out in Box 1.3 in Chapter 1, we use this term to denote
the convergence in the duality with Cb, the space of bounded continuous functions
(which is often referred to as narrow convergence), and we write µn ⇀ µ to say that µn
converges in such a sense to µ .

We recall that another natural notion of convergence for measures is the one in
duality with the space of functions vanishing at infinity

C0(X) := {φ ∈C(X) : for all ε > 0 there is K ⊂ X compact s.t. |φ |< ε on X \K}.

It is useful to point out some facts

• When X is compact, the spaces C0(X), C(X) and Cb(X) coincide.

• The condition defining φ ∈C0(X) means that φ tends to 0 “out of the compact
subsets of X”: this means at infinity, for X = Rd , on ∂Ω when X = Ω ⊂ Rd is
open, and it means nothing if X is itself compact.

• For every x0 ∈ X , the existence of functions φ ∈C0(X) with φ(x0) 6= 0 implies
the existence of compact neighborhoods of x0. In particular, the space C0(X)
is interesting only for locally compact spaces X and it only consists of the zero
function whenever no point of X has compact neighborhoods (for instance, in in-
finite dimensional Banach spaces). Indeed, the duality result stating that M (X)
is the dual of C0(X) is only true for locally compact spaces (see Box 1.3 in Sec-
tion 1.1).

The following lemma (which is true in locally compact spaces, but we only state it
for subsets of Rd) gives a helpful criterion for weak convergence.

Lemma 5.8. When all measures µn and µ are probabilities over a subset Ω⊂ Rd , the
convergence µn ⇀ µ coincides with the convergence in the duality with C0(Ω).

Proof. We only need to show that if we take ψ ∈Cb(Ω), µn,µ ∈P(Ω) and we assume´
φ dµn →

´
φ dµ for every φ ∈ C0(Ω), then we also have

´
ψ dµn →

´
ψ dµ . If all

the measures are probability, then we may add “for free” a constant C to ψ and, since
ψ is bounded, we can choose C so that ψ +C ≥ 0. Hence ψ +C is the sup of an
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increasing family of functions φn ∈ C0 (take φn = (ψ +C)χn, χn being an increasing
family of cut-off functions4 with χn = 1 on B(0,n)). Hence by semi-continuity we
have

´
(ψ +C)dµ ≤ liminfn

´
(ψ +C)dµn, which implies

´
ψ dµ ≤ liminfn

´
ψ dµn.

If the same argument is performed with −ψ we obtain the desired convergence of the
integrals.

Once the weak convergence is understood, we can start from the following result.

Theorem 5.9. If Ω⊂ Rd is compact, then µn ⇀ µ if and only if W1(µn,µ)→ 0.

Proof. Let us recall the duality formula, which gives for arbitrary µ,ν ∈P(Ω)

W1(µ,ν) = max
{ˆ

Ω

ϕ d(µ−ν) : ϕ ∈ Lip1

}
.

Let us start from a sequence µn such that W1(µn,µ)→ 0. Thanks to the duality formula,
for every ϕ ∈ Lip1(Ω) we have

´
ϕ d(µn−µ)→ 0. By linearity, the same will be true

for any Lipschitz function. By density, it will hold for any function in C(Ω). This
shows that Wasserstein convergence implies weak convergence.

To prove the opposite implication, let us first fix a subsequence µnk such that
limk W1(µnk ,µ) = limsupn W1(µn,µ). For every k pick a function ϕnk ∈ Lip1(Ω) such
that

´
ϕnk d(µnk − µ) = W1(µnk ,µ). Up to adding a constant, which does not affect

the integral, we can assume that the ϕnk all vanish at a same point, and they are hence
uniformly bounded and equicontinuous. By the Ascoli Arzelà Theorem we can extract
a sub-subsequence uniformly converging to a certain ϕ ∈ Lip1(Ω). By replacing the
original subsequence with this new one we can avoid relabeling. We have now

W1(µnk ,µ) =

ˆ
ϕnk d(µnk −µ)→

ˆ
ϕ d(µ−µ) = 0,

where the convergence of the integral is justified by the weak convergence µnk ⇀ µ to-
gether with the strong convergence (in C(Ω)) ϕnk→ϕ . This shows that limsupn W1(µn,µ)≤
0 and concludes the proof.

Theorem 5.10. If Ω ⊂ Rd is compact and p ∈ [1,+∞[, in the space Wp(Ω) we have
µn ⇀ µ if and only if Wp(µn,µ)→ 0.

Proof. We have already proved this equivalence for p = 1. For the other values of p,
just use the inequalities

W1(µ,ν)≤Wp(µ,ν)≤CW1(µ,ν)
1
p ,

that give the equivalence between the convergence for Wp and for W1.

We can now pass to the case of unbounded domains. From the fact that the distance
Wp does not really depend on the ambient domain, we can simply consider the case
Ω = Rd .

4The existence of cut-off functions, i.e. a sequence of continuous compactly supported functions con-
verging pointwisely to 1, is indeed peculiar to the case of locally compact spaces.
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Theorem 5.11. In the space Wp(Rd), we have Wp(µn,µ)→ 0 if and only if µn ⇀ µ

and
´
|x|p dµn→

´
|x|p dµ .

Proof. Consider first a sequence µn which is converging to µ in Wp(Rd). It is still true
in this case that

sup
{ˆ

φ d(µn−µ) : φ ∈ Lip1

}
→ 0,

which gives the convergence when testing against arbitrary Lipschitz functions. Note
that Lipschitz functions are dense (for the uniform convergence) in the space C0(Ω)
(while it is not necessarily the case for Cb(Ω)). This is enough to prove µn→ µ , thanks
to Lemma 5.8.

To obtain the other condition, namely
´
|x|p dµn →

´
|x|p dµ (which is not a con-

sequence of the weak convergence, since |x|p is not bounded), it is sufficient to note
that ˆ

|x|p dµn =W p
p (µn,δ0)→W p

p (µ,δ0) =

ˆ
|x|p dµ.

We need now to prove the opposite implication. Consider a sequence a µn ⇀ µ

satisfying also
´
|x|p dµn →

´
|x|p dµ . Fix R > 0 and consider the function φ(x) :=

(|x|∧R)p, which is continuous and bounded. We have
ˆ

(|x|p− (|x|∧R)p) dµn =

ˆ
|x|p dµn−

ˆ
φ dµn

→
ˆ
|x|p dµ−

ˆ
φ dµ =

ˆ
(|x|p− (|x|∧R)p) dµ.

Since
´
(|x|p− (|x|∧R)p) dµ ≤

´
B(0,R)c |x|p dµ and

´
Rd |x|p dµ < ∞, it is possible to

choose R so that ˆ
(|x|p− (|x|∧R)p) dµ < ε/2

and hence one can also guarantee that
´
(|x|p− (|x|∧R)p) dµn < ε for all n large

enough.
We use now the inequality (|x|−R)p ≤ |x|p−Rp = |x|p− (|x|∧R)p which is valid

for |x| ≥ R (see Lemma 5.12 below) to get
ˆ
(|x|−R)p dµn < ε for n large enough, and

ˆ
(|x|−R)p dµ < ε.

Consider now πR : Rd → B(0,R) defined as the projection over B(0,R). This map
is well-defined and continuous and is the identity on B(0,R). Moreover, for every
x /∈ B(0,R) we have |x−πR(x)|= |x|−R. We can deduce

Wp(µ,(πR)#µ) ≤
(ˆ

(|x|−R)p dµ

) 1
p

≤ ε
1
p ,

Wp(µn,(πR)#µn) ≤
(ˆ

(|x|−R)p dµn

) 1
p

≤ ε
1
p .
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Note also that, due to the usual composition of the weak convergence with contin-
uous functions, from µn ⇀ µ we also infer (πR)#µn ⇀ (πR)#µ . Yet, these measures
are all concentrated on the compact set B(0,R) and here we can use the equivalence
between weak convergence and Wp convergence. Hence, we get

limsup
n

Wp(µn,µ)

≤ limsup
n

(Wp(µn,(πR)#µn)+Wp((πR)#µn,(πR)#µ)+Wp(µ,(πR)#µ))

≤ 2ε
1
p + lim

n
Wp((πR)#µn,(πR)#µ) = 2ε

1
p .

As the parameter ε > 0 is arbitrary, we get limsupn Wp(µn,µ) = 0 and the proof is
concluded.

Lemma 5.12. For a,b ∈ R+ and p≥ 1 we have ap +bp ≤ (a+b)p.

Proof. Suppose without loss of generality that a ≥ b. Then we can write (a+ b)p =
ap + pζ p−1b, for a point ζ ∈ [a,a+b]. Use now p≥ 1 and ζ ≥ a≥ b to get (a+b)p ≥
ap +bp.

Remark 5.13. How to handle more general metric spaces X instead of subsets of Rd?
First, we notice that Lemma 5.8 does not hold in general (for instance, it is trivially false
in infinite dimensional Banach spaces). Also, the problem of the density of Lipschitz
functions in the space of continuous functions (even if X is compact) appears. Indeed,
in Rd the fact that smooth functions are dense is easy to obtain by convolution, a tool
which is not available in general spaces. To overcome this difficulty, one can prove the
following statement, which is enough for our scopes: “if we have convergence testing
against arbitrary Lipschitz functions, than we also have convergence testing against
arbitrary functions in Cb” (this is left as an exercise, see Ex(31)). Hence, in what
concerns Theorems 5.9 and 5.10, everything can be translated into the framework of
Polish spaces (with no need of local compactness). On the other hand the proof that we
gave of Theorem 5.11 was somehow specific to Rd : the key point was the existence of
a continuous retraction πR from the whole space to a compact subset (the ball B(0,R)),
with a bound on the distance between x and πR(x). The proof could be adapted to more
general spaces, with ad-hoc assumptions, but we prefer to refer the reader to [17, 10]
for the general case.

5.3 Lipschitz curves in Wp and the continuity equation

In this section we analyze some properties of Lipschitz and absolutely continuous
curves in the space Wp. In order to do that, we need some simple elements from
analysis in metric spaces. The reader who wants to know more can have a look, for
instance, at [13].
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Box 5.1. – Good to know! – Curves and speed in metric spaces

Let us recall here some properties about Lipschitz curves in metric spaces.
A curve ω is a continuous function defined on a interval, say [0,1] and valued in a

metric space (X ,d). As it is a map between metric spaces, it is meaningful to say whether
it is Lipschitz or not, but its speed ω ′(t) has no meaning, unless X is a vector space.

Surprisingly, it is possible to give a meaning to the modulus of the velocity, |ω ′|(t).
Definition - If ω : [0,1]→ X is a curve valued in the metric space (X ,d) we define the

metric derivative of ω at time t, denoted by |ω ′|(t) through

|ω ′|(t) := lim
h→0

d(ω(t +h),ω(t))
|h|

,

provided this limit exists.
The following theorem, in the spirit of Rademacher Theorem (see Box 1.9 in Section

1.3) guarantees the existence of the metric derivative for Lipschitz curves.
Theorem - Suppose that ω : [0,1]→ X is Lipschitz continuous. Then the metric deriva-

tive |ω ′|(t) exists for a.e. t ∈ [0,1]. Moreover we have, for t < s,

d(ω(t),ω(s))≤
ˆ s

t
|ω ′|(τ)dτ.

The above theorem can be proved by using the fact that every compact metric space
(and ω([0,1]) is the image of a compact set through a continuous map, hence it is compact)
can be isometrically embedded in `∞, where one can work componentwise. For all the
notions and the proofs about metric derivatives, we refer for instance to [13], Chapter 4.

We also need to consider more general curves, not only Lipschitz continuous.
Definition - A curve ω : [0,1]→ X is defined absolutely continuous whenever there

exists g ∈ L1([0,1]) such that d(ω(t0),ω(t1)) ≤
´ t1

t0 g(s)ds for every t0 < t1. The set of
absolutely continuous curves defined on [0,1] and valued in X is denoted by AC(X).

It is well-known that every absolutely continuous curve can be reparametrized in time
(through a monotone-increasing reparametrization) and become Lipschitz continuous. A
possible way to achieve this goal is the following: let G(t) :=

´ t
0 g(s)ds, then set S(t) = εt+

G(t) (for any ε > 0), which is continuous and strictly increasing, and valued in an interval
[0,L]; for t ∈ [0,L], set ω̃(t) = ω(S−1(t)). It is easy to check that ω̃ ∈ Lip1. Also, if we let
ε → 0 we obtain a unit-speed reparametrization of ω . If we want to have parametrizations
defined on the same interval [0,1], we just need to rescale by a factor L.

In particular the above Rademacher Theorem is also true for ω ∈ AC(X) (since the
reparametrization that we defined is differentiable a.e.).

The goal of this section is to identify the absolutely continuous curves in the space
Wp(Ω) with solutions of the continuity equation ∂t µt +∇ · (vt µt) = 0 with Lp vector
fields vt . Moreover, we want to connect the Lp norm of vt with the metric derivative
|µ ′|(t).

We recall (see Section 4.1) that the continuity equation may be interpreted as the
equation ruling the evolution of the density µt of a family of particles initially dis-
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tributed according to µ0 and each of which follows the flow{
y′x(t) = vt(yx(t))
yx(0) = x.

We state below the main theorem (originally proven in [17]) relating absolutely con-
tinuous curves in Wp with solutions of the continuity equation. For simplicity, we will
only state it in the framework of a compact domain Ω⊂Rd . We will explain where we
use the compactness assumption and how to get rid of it.

Theorem 5.14. Let (µt)t∈[0,1] be an absolutely continuous curve in Wp(Ω) (for p > 1
and Ω⊂Rd compact). Then for a.e. t ∈ [0,1] there exists a vector field vt ∈ Lp(µt ;Rd)
such that

• the continuity equation ∂t µt +∇ · (vt µt) = 0 is satisfied in the weak sense (see
Section 4.1.2),

• for a.e. t we have ||vt ||Lp(µt )≤ |µ
′|(t) (where |µ ′|(t) denotes the metric derivative

at time t of the curve t 7→ µt , w.r.t. the distance Wp);

Conversely, if (µt)t∈[0,1] is a family of measures in Pp(Ω) and for each t we have

a vector field vt ∈ Lp(µt ;Rd) with
´ 1

0 ||vt ||Lp(µt ) dt < +∞ solving ∂t µt +∇ · (vt µt) =
0, then (µt)t is absolutely continuous in Wp(Ω) and for a.e. t we have |µ ′|(t) ≤
||vt ||Lp(µt ).

Remark 5.15. Note that, as a consequence of the second part of the statement, the
vector field vt introduced in the first one must a posteriori satisfy ||vt ||Lp(µt ) = |µ

′|(t).
We will split the proof of this theorem into two parts, dealing with the direct and

converse implications, respectively. We first introduce some tools that we need, and in
particular the following one will be needed in both parts of the statement of Theorem
5.14.

Remark 5.16. It is important to observe that, by reparametrizing in time, it is always
possible to assume that the absolutely continuous curve µt of the first part of the state-
ment is actually Lipschitz (and we obtain in this case a uniform bound on ||vt ||Lp(µt )),
and that the norm ||vt ||Lp(µt ) in the second part is bounded (and we obtain that µt is
Lipschitz). Hence, all the proofs will be done in this Lipschitz framework.

5.3.1 The Benamou-Brenier functional Bp

We need to start from an easy computation, which will be useful in the sequel. We
consider a pair of exponents p and q such that 1

p +
1
q = 1.

Lemma 5.17. Set Kq := {(a,b) ∈ R×Rd : a+ 1
q |b|

q ≤ 0}. Then, for (t,x) ∈ R×Rd

we have

sup
(a,b)∈Kq

(at +b · x) = fp(t,x) :=


1
p
|x|p
t p−1 if t > 0,

0 if t = 0,x = 0
+∞ if t = 0,x 6= 0, or t < 0.

(5.2)
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In particular fp is convex and l.s.c..

Proof. First of all, we establish (5.2). Suppose t > 0: then it is clear that one should
take the maximal possible value of a in the sup, and hence a =− 1

q |b|
q. This gives

sup
b

(
−1

q
t|b|q +b · x

)
= t

(
sup

b
−1

q
|b|q +b ·

(x
t

))
.

If we recall that the Legendre transform of p 7→ 1
q |p|

q is x 7→ 1
p |x|

p. This gives

sup
b
−1

q
|b|q +b · y = 1

p
|y|p for all y, (5.3)

and hence

sup
{

at +b · x : a ∈ R, b ∈ Rd , a+
1
q
|b|q ≤ 0

}
= t

1
p

∣∣∣x
t

∣∣∣p = 1
p
|x|p

t p−1 .

The case (t,x) = (0,0) is straightforward. If t = 0 and x 6= 0 then it is clear that any
vector b may be compensated by a sufficiently negative value of a, which gives

sup
{

at +b · x : a ∈ R, b ∈ Rd , a+
1
q
|b|q ≤ 0

}
= sup

b
b · x =+∞.

Finally, in the case t < 0 one can take a arbitrarily negative and b = 0 so that

sup
{

at +b · x : a ∈ R, b ∈ Rd , a+
1
q
|b|q ≤ 0

}
≥ sup

a<0
at =+∞.

The fact that fp is convex and l.s.c. is a consequence of the fact that it is expressed
as a supremum of linear functions.

We can note in the above result that we computed the Legendre transform of an
indicator function, and that we got, as expected, a 1-homogeneous convex function. We
want now to use this function fp to define a functional over measures. For ρ ∈M (X)
and E ∈M d(X) we set

Bp(ρ,E) := sup
{ˆ

X
a(x)dρ +

ˆ
X

b(x) ·dE : (a,b) ∈Cb(X ;Kq)

}
,

where the letter B is chosen because of the role that this functional has in the so-called
Benamou-Brenier formula (see Section 6.1).

We prove the following

Proposition 5.18. The functional Bp is convex and lower semi-continuous on the
space M (X)×M d(X) for the weak convergence. Moreover the following properties
hold

1. Bp(ρ,E)≥ 0,
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2. Bp(ρ,E) := sup{
´

a(x)dρ +
´

b(x) ·dE : (a,b) ∈ L∞(X ;Kq)},

3. if both ρ and E are absolutely continuous w.r.t. a same positive measure λ on
X, we can write Bp(ρ,E) =

´
X fp(ρ(x),E(x))dλ (x), where we identify ρ and E

with their densities w.r.t. λ ,

4. Bp(ρ,E)<+∞ only if ρ ≥ 0 and E� ρ ,

5. for ρ ≥ 0 and E� ρ , we have E = v ·ρ and Bp(ρ,E) =
´ 1

p |v|
p dρ ,

6. If X = Rd , ρε := ρ ∗ηε and Eε := E ∗ηε (for standard even mollifying kernel
ηε ), then we have Bp(ρ

ε ,Eε)≤Bp(ρ,E).

Proof. The convexity and lower semi-continuity of Bp are a direct consequence of
its definition as a supremum of linear functionals. The first property (positivity) is
straigthforward, as one can take a = 0 and b = 0 in the supremum.

In order to prove that the supremum can be taken over bounded functions instead of
continuous ones we just need to approximate every bounded function with continuous
ones (beware that, by abuse of notation, the space L∞(X ;Kq) denotes here the space of
bounded measurable functions valued in Kq, independently of the reference measure).
This can be done via Lusin’s Theorem (see the corresponding Box 1.6 in Section 1.1),
and every bounded pair (a,b) can be approximated by continuous pairs (ã, b̃), such
that (ρ + |E|)({(a,b) 6= (ã, b̃)}) < ε and sup |ã| ≤ sup |a| and sup |b̃| ≤ sup |b|. Then,
we can replace ã with min{ã,− 1

q |b̃|
q} so as to guarantee to have functions valued in

Kq. The difference
∣∣∣´ a(x)dρ +

´
b(x) ·dE−

´
ã(x)dρ +

´
b̃(x) ·dE

∣∣∣ is bounded by Cε

where C only depends on sup |a| and sup |b|.
Once we know that we can use measurable functions a,b with no need of continuity,

then Property 3. is a consequence of Lemma 5.2. As a consequence of Lemma 5.17
we can write

Bp(ρ,E) = sup
{ˆ

[a(x)ρ(x)+b(x) ·E(x)]dλ (x) : (a,b) ∈ L∞(X ;Kq)

}
=

ˆ
fp(ρ(x),E(x))dλ (x).

The fact that Bp is only finite if ρ ≥ 0 is easy: assume it to be false for con-
tradiction, and take a set A such that ρ(A) < 0, a = −n1A and b = 0. We have
Bp(ρ,E)≥ nρ(A) and, since n is arbitrary, Bp(ρ,E) =+∞. To prove the fact that Bp
is only finite if E� ρ , assume that there is a set A with ρ(A) = 0 and E(A) 6= 0. Take
any unit vector e and use a = − nq

q 1A and b = ne1A. We have Bp(ρ,E) ≥ ne ·E(A).
Since both e and n are arbitrary, we get Bp(ρ,E) = +∞.

When we restrict to the case ρ ≥ 0 and E = v ·ρ , property 5. is a consequence of
property 3. Indeed, just use λ = ρ , thus getting

Bp(ρ,v ·ρ) =
ˆ

fp(1,v(x))dρ(x) =
ˆ

1
p
|v|p dρ.
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Let us now prove property 6. Take arbitrary bounded functions a : Rd → R and
b : Rd → Rd satisfying a(x) + 1

q |b(x)|
q ≤ 0 for all x. From standard properties of

convolutions we haveˆ
adρ

ε +

ˆ
b ·dEε =

ˆ
aε dρ +

ˆ
bε · dE,

where aε := a∗ηε and bε := b∗ηε . Note that, by Jensen inequality

|bε(y)|q =
∣∣∣∣ˆ b(x)ηε(x− y)dx

∣∣∣∣q ≤ ˆ
|b(x)|qηε(x− y)dx

and hence

aε(y)+
1
q
|bε(y)|q ≤

ˆ
a(x)+

(
1
q
|b(x)|q

)
ηε(x− y)dx≤ 0.

This proves (aε ,bε) ∈C(Rd ;Kq) and hence we have
ˆ

adρ
ε +

ˆ
b ·dEε =

ˆ
aε dµ +

ˆ
bε ·dE ≤Bp(ρ,E).

Passing to the sup in a and b, one gets Bp(ρ
ε ,Eε)≤Bp(ρ,E).

Remark 5.19. As a convex and l.s.c. functional, Bp has admits a subdifferential, which
one could usefully compute for optimization purposes: this computation is developed
in [235] but we will not need it in this framework.

We are now ready to prove the first part of Theorem 5.14.

5.3.2 Proof of Theorem 5.14 - Part 1: µ is AC⇒ there exists v
Proof. First of all we note that it is not restrictive to assume that µ is a Lipschitz curve
(if not, we just reparametrize in time).

We will do our proof by approximation, i.e. we build a sequence µk
t of curves

which admit the existence of a suitable vector field vk
t , in such a way that µk

t ⇀ µt and
that we can find a limit for the vector fields also.

To define µk
t we proceed in the following way. For t = i/k, i = 0,1, . . . ,k, we define

µk
t = µt ∗ηk, where ηk is a smooth approximation of the identity, i.e. a smooth even

positive function supported on B(0,1/k) and with integral equal to 1. The only goal
of this smoothing is to guarantee that the measures are absolutely continuous. The
support of the measures is now contained in a slightly bigger domain Ω′ ⊃ Ω, that we
can choose convex. Then, for each i = 0,1, . . . ,k−1, we define Ti,k : Ω′→Ω′ to be the
optimal transport (for the cost c(x,y) = |x− y|p) from µk

i/k to µk
(i+1)/k. These optimal

transport maps exist since every µk
i/k is absolutely continuous. Then, for t ∈] i

k ,
i+1

k [, we
define

µ
k
t :=

(
(i+1− kt)id+(kt− i)Ti,k)

#µ
k
i/k,

which means that the particle located at x at time i/k goes to the position Ti,k(x) at time
(i+ 1)/k, moving with constant speed on the segment connecting these two positions
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in the interval ] i
k ,

i+1
k [. The velocity of this movement is given by vi,k := k(Ti,k(x)−x).

Set Ti,k
t := (i+ 1− kt)id+(kt− i)Ti,k; this map is injective (see Lemma 4.23). Thus,

we can set vk
t := vi,k ◦

(
Ti,k

t
)−1. This last vector field exactly represents the velocity that

each particle has during its movement at time t: first we detect which is the original
position of such a particle (at time i/k), then we associate to this particle the velocity
associated to this original position.

As a consequence of this construction and of the considerations in Section 4.1, the
pair (µk

t ,vk
t ) solves the continuity equation ∂t µ

k
t +∇ · (vk

t µk
t ) = 0.

The important point is the computation

||vk
t ||

p
Lp(µk

t )
=

ˆ
|vk

t |p dµ
k
t =

ˆ
|vi,k|p ◦

(
Ti,k

t
)−1 d

(
Ti,k

t
)

#µ
k
i/k =

ˆ
|vi,k|p dµ

k
i/k

= kpW p
p (µ

k
i/k,µ

k
(i+1)/k)≤ kpW p

p (µi/k,µ(i+1)/k)

≤ kp

(ˆ (i+1)/k

i/k
|µ ′|(s)ds

)p

≤ k
ˆ (i+1)/k

i/k
|µ ′|p(s)ds.

Here we used the fact that Wp(µi/k ∗ηε ,µ(i+1)/k ∗ηε)≤Wp(µi/k,µ(i+1)/k) (see Lemma
5.2) and, at the end, Jensen’s inequality. In particular, we also get a uniform bound on
||vk

t ||Lp(µk
t )

since k
´ (i+1)/k

i/k |µ ′|p(s)ds≤ Lip(µ).
This implies that, for arbitrary time 0≤ a < b≤ 1 (with ia/k ≤ a≤ (ia +1)/k and

ib/k ≤ b≤ (ib +1)/k), we have

ˆ b

a
||vk

t ||
p
Lp(µk

t )
dt ≤

ib

∑
i=ia

ˆ (i+1)/k

i/k
|µ ′|p(s)ds

=

ˆ (ib+1)/k

ia/k
|µ ′|p(s)ds≤

ˆ b

a
|µ ′|p(s)ds+

2Lip(µ)
k

. (5.4)

Now, define a vector measure Ek on Ω′× [0,1] via
ˆ

φ(t,x) · dEk :=
ˆ 1

0

(ˆ
φ(t,x) ·vk

t (x) dµ
k
t (x)

)
dt.

We can easily check that

||Ek||=
ˆ 1

0
||vk

t ||L1(µk
t )

dt ≤
ˆ 1

0
||vk

t ||Lp(µk
t )

dt ≤
(ˆ 1

0
||vk

t ||
p
Lp(µk

t )
dt
) 1

p

≤C.

Hence, up to a subsequence extraction, the sequence of vector measures Ek admits a
weak limit E. On the other hand, it is easy to check that µk converges in Wp, uniformly
in time, to µ . Indeed

Wp(µ
k
t ,µt)≤Wp(µ

k
t ,µ

k
i/k)+Wp(µ

k
i/k,µi/k)+Wp(µi/k,µt).

The first term may be estimated using

Wp(µ
k
t ,µ

k
i/k)≤ |t− i/k| ||vi,k||Lp(µk

i/k)
≤ C

k
;
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the second may be estimated by the size of the support of the kernel ηε (which allows
to obtain µk

i/k from µi/k), which is ε = 1/k; the third is estimated by the Lipschitz

constant of µ times, again, |t− i
k | ≤

1
k . Overall, we get

Wp(µ
k
t ,µt)≤

C
k
.

From ∂t µ
k +∇ ·Ek = 0, we can easily pass to the limit and get ∂t µ +∇ ·E = 0. We

want now to prove that Et = vt µt , with ||vt ||Lp(µt ) ≤ |µ
′|(t) a.e.

This is a consequence of Proposition 5.18 on the semi-continuity of Bp. Indeed,
using (5.4) with a = 0,b = 1, we have Bp(µ

k,Ek) ≤ C (where the functional Bp
is considered on the whole space-time domain [0,1]×Ω). This is enough to obtain
Bp(µ,E)<+∞ and E � µ , i.e. Et = vt µt . Then, if we apply the same lemma to the
measures µk and Ek restricted to a closed interval [a,b] we obtain

ˆ b

a
||vt ||pLp(µt )

dt ≤ liminf
k

ˆ b

a
||vk

t ||
p
Lp(µk

t )
dt ≤

ˆ b

a
|µ ′|p(t)dt.

Since this is true for arbitrary values of a and b, on every Lebesgue point t0 of t 7→
||vt ||pLp(µt )

and t 7→ |µ ′|p(t) we get the desired inequality.

We want now to prove the converse implication of Theorem 5.14. Again, to be able
to perform our computations rigorously, we need to regularize by convolution. The
construction that we do here will be useful many times, and it deserves to be detailed
and analyzed.

5.3.3 Regularization of solutions of the continuity equation.
Suppose that (µ,E) solves the continuity equation ∂t µt +∇ ·Et = 0, that the supports
of all measures µt and Et are contained in a same compact set Ω ⊂ Rd , and that Et is
bounded in the space of measure, i.e. ||Et || := |Et |(Rd)≤C. Take a C∞ strictly positive
kernel ηε (as a function of space only) and define µε

t := ηε ∗µt and Eε
t := ηε ∗Et , and

vε
t := Eε

t /µε
t . The choice is made so that ∂t µ

ε
t +∇ · (µε

t vε
t ) = 0.

Since we want to apply the characterization result of solutions of the continuity
equation (Theorem 4.4), we want to check uniform global bounds on vε . To do this,
we need to perform a particular choice of ηε , and in particular we take of the form
ηε(z) = ε−dη(|z|/ε), where η : R+→R+ is a smooth function such that η(t) =Ce−t

for t ≥ 1. In Lemma 5.20 below, we check that this guarantees that vε satisfies the
required global bounds, and we also state regularity for µε (that we will need in Section
5.3.5).

Lemma 5.20. With the above choice of the convolution kernel ηε , the function µε is
Lipschitz in (t,x) and vε is Lipschitz in x and bounded, uniformly in t (for fixed ε > 0),
provided Ω is bounded.

Proof. We can fix ε = 1 as the computations for other values of ε are similar. We
set η = ηε . From µε(t,x) =

´
η(|y− x|)µt(dx) we have a Lipschitz bound in x from
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standard convolution properties, but also

∂t µ
ε(t,x) =

d
dt

ˆ
η(y− x)dµt(x) =

ˆ
∇η(y− x) ·dEt(x),

which is bounded by Lip(η)|Et |(Rd).
As far as vε is concerned, computations are trickier since it is defined as Eε/µε .

From η > 0 we get µε > 0 which guarantees that vε is smooth as the ratio between two
smooth functions, with non-vanishing denominator. Yet, we want to compute explicit
and global bounds for large |x|. If R0 = diam(Ω) and 0 ∈ Ω we have for sure, for
|x| = R ≥ 1, µε(x) ≥ η(R+R0). On the other hand we have, for R ≥ 2R0∨1, |Eε | ≤
Cη(R−R0), |∇Eε | ≤C|η ′(R−R0)|, and, similarly, |∇µε | ≤C|η ′(R−R0)|. From

|vε |= |E
ε |

µε
, |∇vε | ≤ |∇Eε |

µε
+
|Eε | |∇µε |
(µε)2 ,

using η = η ′ = η ′′ on [1,+∞[ and η(R + R0) = e−2R0η(R− R0), we get uniform
bounds.

We will see that the application of the above Lemma 5.20 is the only point where
we needed Ω to be bounded. Without this assumption, we cannot apply the characteri-
zation result for the continuity equation that we presented in Theorem 4.4. On the other
hand, we already mentioned that more general uniqueness results exist (for instance in
[17]), and we simply chose not to present them for the sake of simplicity.

Thanks to our definitions, we have

∂t µ
ε
t +∇ · (vε

t µ
ε
t ) = 0.

Moreover, applying Theorem 4.4, we know that the only solution of ∂tρt +∇ ·(vε
t ρt) =

0 is given by the flow of vε . Hence, we get

µ
ε
t = (Yt)#µ

ε
0 , where Yt(x) = yx(t), and

{
y′x(t) = vε

t (yx(t)),
yx(0) = x.

(5.5)

We can summarize our construction in the following proposition.

Proposition 5.21. Consider a pair (µ,E) solving ∂t µt +∇ ·Et = 0, and suppose that
the supports of all measures µt and Et are contained in a same compact set Ω ⊂ Rd ,
and that Et is bounded in the space of measure, i.e. |Et |(Rd)≤C. Then, there exists a
family of approximating curves (µε

t )t with a velocity vector field vε
t such that

• µε is Lipschitz in (t,x) and vε is Lipschitz in x and bounded, uniformly in t;
moreover, µε > 0 everywhere;

• µε
t is obtained from µε

0 by following the flow of the vector field vε , in the sense
of (5.5);

• For every t we have µε
t ⇀ µt and for a.e. t we have Eε

t ⇀ Et .

• ||vε
t ||Lp(µε

t )
≤Bp(µt ,Et).
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Proof. We use the construction we described above. The first property is proven in
Lemma 5.20, the second has been discussed above, and the third is evident by con-
struction. The fourth is a consequence of Property 5. of Lemma 5.18. Note that this
means ||vε

t ||Lp(µε
t )
≤ ||vt ||Lp(µt ) whenever Et = vt ·µt .

We finish this paragraph by noting that the same construction could have been
performed on the torus.

Remark 5.22. If µt ∈P(Td), one can consider an arbitrary approximation kernel ηε ∈
C∞(Rd) of the form ηε(z) = ε−dη(z/ε) (strictly positive, but with no need of imposing
exponential behavior) and define the convolution on the torus. To be precise, let us
stress that the periodic convolution η∗µ between a measure µ on Td and a function
η on Rd is defined as follows. Consider at first µ as a measure on Q = [− 1

2 ,
1
2 ] ⊂ Rd ,

perform standard convolution on Rd , and then define

(η∗µ)(x) := ∑
k∈Zd

(η ∗µ)(x+ k).

Equivalently, this corresponds to a convolution on the torus with the convolution kernel
∑k∈Zd η(x+ k).

With this construction, the same conclusions as in Proposition 5.21 hold. Moreover,
every compact domain Ω can be seen as a subset of a cube Q identified with the torus,
and it can even fit an arbitrary small portion of Q. In this case, every optimal transport
problem for the costs |x− y|p between measures on Ω “does not see” the fact that Q is
identified with a torus (it is enough to have Ω⊂ 1

2 Q).

We stress that the uniform bounds in the case of the torus are easier to obtain, but we
found conceptually easier to deal with measures on Rd (and in particular with optimal
transport problems in Rd). This is why we prefer the Euclidean construction to this
one. Yet, we present both of them for the use that we will do in Section 5.3.5, where
compactness is crucial for our estimates.

5.3.4 Proof of Theorem 5.14 - Part 2: there exists v⇒ µ is AC

Proof. The starting point is a pair (µ,E) which solves the continuity equation, where
Et = vt · µt and vt ∈ Lp(µ − t) for a.e. t. Again, we apply a reparametrization: with
a change of variable in time we can replace (µt ,Et) with a new pair where Et is just
multiplied by a scalar constant dependng on t. By choosing our change of variable,
we can impose a uniform bound on ||vt ||Lp(µt ). This also implies a bound on ||Et || =
|Et |(Rd) = ||vt ||L1(µt )

.
Under this extra assumption (the uniform bound on ||Et ||), we can use the construc-

tion provided in the previous paragraph (using the construction on Rd for simplicity of
exposition). Thus, we can build an approximated curve µε

t which is driven by the flow
of the smooth (in space) vector field vε . This provides a useful transport plan between



178 CHAPTER 5. WASSERSTEIN SPACES

µε
t and µε

t+h, taking γ = (Tt ,Tt+h)#µε
0 ∈Π(µε

t ,µ
ε
t+h). We obtain

Wp(µ
ε
t ,µ

ε
t+h) ≤

(ˆ
Ω×Ω

|x− y|p dγ

) 1
p

=

(ˆ
Ω

|Tt(x)−Tt+h(x)|p dµ
ε
0

) 1
p

≤ |h|1/q

(ˆ
Ω

ˆ t+h

t

∣∣∣∣ d
ds

Ts(x)
∣∣∣∣p dsdµ

ε
0

) 1
p

= |h|1/q

(ˆ t+h

t
ds
ˆ

Ω

|vε
s (yx(s))|p dµ

ε
0

) 1
p

= |h|1/q

(ˆ t+h

t
ds
ˆ

Ω

|vε
s (y)|

p dµ
ε
s (y)

) 1
p

.

We proved in Lemma 5.17 that
´
|vε

s (y)|
p dµε

s (y)≤ ||vs||pLp(µs)
. From this, we get

Wp(µ
ε
t ,µ

ε
t+h)≤ |h|1/q

(ˆ t+h

t
||vs||pLp(µs)

ds

) 1
p

= |h|

(
1
|h|

ˆ t+h

t
||vs||pLp(µt )

ds

) 1
p

.

First we can pass to the limit ε → 0, thus obtaining

Wp(µt ,µt+h)

|h|
≤

(
1
|h|

ˆ t+h

t
||vs||pLp(µs)

ds

) 1
p

and then as h→ 0 at points t which are Lebesgue points of t 7→ ||vt ||pLp(µt )
, we obtain

|µ ′|(t)≤ ||vt ||Lp(µt ),

which provides the desired estimate.

We remark that Theorem 5.14 has been proven thanks to an extensive use of the
functional Bp: we needed its convexity in the second part and its semi-continuity in
the first part5.

Remark 5.23. We also note that we only defined the functional Bp for p > 1, and that
the only natural extension for p = 1 would be given by B1(ρ,E) = ||E||. It is easy
to understand that the first part of Theorem 5.14 cannot stay true in the case p = 1.
Indeed, the part of the statement which fails is the existence of a vector field vt , since
it is no more possible to deduce E � µ: it is not difficult to adapt the proof so as to
get the existence of a family Et of vector measures solving ∂t µt +∇ ·Et = 0, but Et

5The proof that we gave of the second part is standard, and based on the interpretation of the continuity
equation that we gave in Chapter 4. The approximations that we performed are the same as in [17], but we
tried to simplify them to make this exposition self-contained: in order to do that, we chose a very precise
convolution kernel. Concerning the first part, we stress that a different, and much more elegant, approach
can be found in [17] and does not use approximation. The approach that we presented here is more or less
inspired by a paper by Lisini, [213].
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will be no more of the form vt · µt . An example where absolute continuity fails is the
following: take µt := (1−t)δx0 +tδx1 , which is Lipschitz in W1 (but not in Wp, p> 1).
In this case one could take Et =

x1−x0
|x1−x0|

H 1 [x0,x1] (a uniform measure on the segment
joining the two points, oriented as the same segment), but no measure concentrated on
{x0,x1} can be such that its divergence is δx1 −δx0 .

5.3.5 Derivative of W p
p along curves of measures

We conclude this section with a useful computation that can be applied in many cases
in the study of evolution PDEs. The same result is efficiently proven in [17] but we
provide a different proof.

Theorem 5.24. Let (ρ(i)
t ,v(i)t ) for i = 1,2 be two solutions of the continuity equation

∂tρ
(i)
t +∇ ·(v(i)t ρ

(i)
t ) = 0 on a compact domain Ω (with homogeneous Neumann bound-

ary conditions) and suppose that ρ
(i)
t � L d for every t and that ρ(i) are absolutely

continuous curves in Wp(Ω). Then we have,

d
dt

(
1
p

W p
p (ρ

(1)
t ,ρ

(2)
t )

)
=

ˆ
∇ϕt ·v(1)t ρ

(1)
t dx +

ˆ
∇ψt ·v(2)t ρ

(2)
t dx

for a.e. t, where (ϕt ,ψt) is any pair of Kantorovich potentials in the transport between
ρ
(1)
t and ρ

(2)
t for the cost 1

p |x− y|p.

Proof. We first prove the result under the assumption that ρ(i) is Lipschitz continuous
in (t,x) and v(i) is Lipschitz in x, uniformly in t, for i = 1,2. In this case we write, for
arbitrary t, t0, the following inequality, justified by the duality formula (Theorem 1.39):

1
p

W p
p (ρ

(1)
t ,ρ

(2)
t )−

ˆ
ϕt0ρ

(1)
t −

ˆ
ψt0ρ

(2)
t ≥ 0, (5.6)

with equality when t = t0. Choose t0 such that t 7→W p
p (ρ

(1)
t ,ρ

(2)
t ) is differentiable at

t = t0 and ρ(i)(t,x) is differentiable in t at (t0,x) for a.e. x, and the derivative in time
equals −∇ · (ρ(i)(t,x)vi(t,x)). All these conditions are satisfied for a.e. t0 (we use
Proposition 4.3). Hence, the left-hand-side in (5.6) is differentiable at t = t0 and the
derivative must vanish, because of minimality at t = t0. This proves

d
dt

(
1
p

W p
p

(
ρ
(1)
t ,ρ

(2)
t

))
|t=t0

=

ˆ
ϕt0

(
∂tρ

(1)
)

t0
+

ˆ
ψt0

(
∂tρ

(2)
)

t0
,

and the desired formula is obtained by using ∂tρ
(i) =−∇ · (v(i)ρ(i)) and integrating by

parts6.

6One of the difficulties in this result is that the functions t 7→
´

ϕt0 ρ
(1)
t and t 7→

´
ψt0 ρ

(2)
t are differen-

tiable for a.e. t, but not necessarily at t = t0 (we know that for every integrand the integral is differentiable
for a.e. T , and not that for a.e. t differentiability occurrs for every integrand). We propose a way to overcome
this difficulty via Lipschitz solutions. As an alternative approach, one can try to find the precise set of times
t such that differentiability occurrs for every integrand, as in [156], based on ideas from [17].
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To deal with the general case, first we reduce to the case where the curves ρ(i) are
Lipschitz in Wp(Ω), by reparametrization in time. Then, we apply the regularization
procedure of Section 5.3.3. In order to preserve compactness, we choose to apply the
construction on the torus, and we suppose Ω⊂ 1

2 Q (which is possible up to rescaling).

Hence, we obtain two smoother families of curves ρ
(i,ε)
t with their velocity fields v(i,ε)t .

For t0 < t1, the first part of the proof implies

1
p

W p
p

(
ρ
(1,ε)
t1 ,ρ

(2,ε)
t1

)
− 1

p
W p

p

(
ρ
(1,ε)
t0 ,ρ

(2,ε)
t0

)
=

ˆ t1

t0
dt
ˆ
Td

∇ϕ
ε
t ·E

(1,ε)
t +∇ψ

ε
t ·E

(2,ε)
t ,

where E(i,ε)
t = ρ

(i,ε)
t v(i,ε)t (also set E(i)

t = ρ
(i)
t v(i)t ) and ϕε

t and ψε
t are Kantorovich po-

tentials in the transport from ρ
(1,ε)
t to ρ

(2,ε)
t .

We just need to pass to the limit in the above equality. The left-hand-side trivially
converges to the corresponding Wasserstein distances between the measures ρ(i) (note
that we are on a compact space and the convolutions weakly converge to the original
measure). Next, let us analyze the first part of the right-hand-side (i.e. for i = 1, the
other part being completely analogous).

For each t we have∣∣∣∣ˆ
Td

∇ϕ
ε
t ·E

(1,ε)
t

∣∣∣∣≤Lip(ϕε
t )
∥∥∥v(i,ε)t

∥∥∥
L1
(

ρ
(i,ε)
t

)≤C
∥∥∥v(i,ε)t

∥∥∥
Lp
(

ρ
(i,ε)
t

)≤C
∥∥∥v(i)t

∥∥∥
Lp
(

ρ
(i)
t

)≤C,

where we used Property 5 of Proposition 5.18 and the fact that all the functions ϕε are
equi-lipschitz (see Section 1.3.2).

It is now enough to look at the limit for fixed t, since as a function of t we can apply
dominated convergence. Let us set ϕεε

t := ηε ∗ϕε
t : we have

ˆ
Td

∇ϕ
ε
t ·E

(1,ε)
t =

ˆ
Td

∇ϕ
ε
t · (ηε ∗E(1)

t ) =

ˆ
∇ϕ

εε
t ·E

(1)
t ,

because of standard properties of convolutions. Thus, we only need to prove that
∇ϕεε

t → ∇ϕt a.e. The functions ϕεε
t are equi-lipschitz and equi-semi-concave (see

again Section 1.3.2) on a compact set and, up to translating their mean, we can ap-
ply the Ascoli Arzelà Theorem. Thus they converge up to subsequence to a function
ϕ̃ . Note that, because of semi-concavity, the convergence of the functions implies a.e.
convergence of the gradients (see, for instance, Theorem 3.3.3 in [103]). We just need
to prove ∇ϕ̃ = ∇ϕt (which would also imply that the convergence is true on the whole
sequence).

Note that by Theorem 1.52 the limit of ϕε
t must be a Kantorovich potential. More-

over, we have the general estimate

|(ηε ∗ f )(x)− f (x)| ≤
ˆ
| f (x)− f (x− y)|η

( y
ε

) dy
εd

≤ Lip( f )
ˆ
|y|η

( y
ε

) dy
εd = ε Lip( f )

ˆ
|z|η(z)dz,

(where we used the change of variable y = εz). The same estimate also works for
periodic convolution, and shows ||ϕεε

t −ϕε
t ||L∞ ≤C Lip(ϕε)ε ≤Cε → 0. This allows
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to conclude that the limit of ϕεε
t must be the same as that of ϕε

t , i.e. a Kantorovich
potential. Even if the Kantorovich potential is not necessarily unique, its gradient is
unique, and we deduce ∇ϕεε

t → ∇ϕt .

Note that in the above proof we intensively used the compactness of the domain
Ω (and of the torus: the same proof performed with regularization via measures on
Rd seems delicate because of the lack of bounds on ∇ϕεε

t ). The assumption that the
measures are absolutely continuous is used to take advantage of the a.e. convergence
of the gradients to a unique limit (the gradient of the limit potential). Without this, one
could have problems in recovering full convergence of the sequence.

As a corollary of the previous result we obtain the following useful formula.

Corollary 5.25. Under the same assumptions of Theorem 5.24, we have,

d
dt

(
1
p

W p
p (ρ

(1)
t ,ρ

(2)
t )

)
=

ˆ
Ω

(x−Tt(x)) ·
(

v(1)t (x)−v(2)t (Tt(x))
)

ρ
(1)
t (x)dx,

where Tt is the optimal transport map from ρ
(1)
t to ρ

(2)
t for the cost 1

p |x− y|p.

Proof. We just need to re-write the conclusion of Theorem 5.24, using ∇ϕt(x) = x−
Tt(x) and ∇ψt(y) = y−St(y), where St is the optimal transport from ρ

(2)
t to ρ

(1)
t . We

use ˆ
(y−St(y)) ·v(2)t (y)dρ

(2)
t (y) =

ˆ
(Tt(x)− x) ·v(2)t (Tt(x))dρ

(1)
t (x),

which is a consequence of (Tt)#ρ
(1)
t = ρ

(2)
t and St = T−1

t . Hence, the formula given by
Theorem 5.24 provides

d
dt

(
1
p

W p
p (ρ

(1)
t ,ρ

(2)
t )

)
=

ˆ
Ω

(x−Tt(x)) ·v(1)t (x)dρ
(1)
t (x)+

ˆ
Ω

(Tt(x)− x) ·v(2)t (Tt(x))dρ
(1)
t (x),

which gives the claim.

Some examples of application of the above computation to the uniqueness and the
properties of the solution to some evolution PDEs are presented in the Exercise section
(Ex(34),Ex(66),Ex(67),Ex(68),Ex(69)).

Here, we will only give an example of application to the uniqueness for the conti-
nuity equation with given vector field.

Proposition 5.26. Let vt : Ω→ Rd be a family of vector fields on a compact smooth
domain Ω, parametrized in time, satisfying a one-sided Lipschitz condition (vt(x)−
vt(y)) · (x− y)≤C|x− y|2 for a fixed constant C, not depending on x,y nor t. Suppose
also that vt ·n = 0 on ∂Ω and consider the equation ∂tρt +∇ · (ρtvt) = 0 with given
initial datum ρ0. Then there is at most one solution ρt among AC curves in W2(Ω)
which are absolutely continuous for a.e. t.
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Proof. Consider two solutions ρ
(1)
t ,ρ

(2)
t and compute the derivative in time of W 2

2 (ρ
(1)
t ,ρ

(2)
t ).

Using Corollary 5.25, we have

d
dt

(
1
2

W 2
2 (ρ

(1)
t ,ρ

(2)
t )

)
=

ˆ
Ω

(x−T(x)) · (vt(x)−vt(T(x))ρ
(1)
t dx

≤C
ˆ

Ω

|x−T(x)|2ρ
(1)
t dx =CW 2

2 (ρ
(1)
t ,ρ

(2)
t ).

This allows to apply Gronwall’s lemma and deduce W 2
2 (ρ

(1)
t ,ρ

(2)
t ) = 0 from the fact

that the same distance vanishes at t = 0.

Note that the above proof could also be used to prove uniqueness in the continuity
equation, and applied to Theorem 4.4.

5.4 Constant speed geodesics in Wp

We will see in this section how constant speed geodesics in Wp are related to optimal
transport maps. Before doing so, we recall the main facts about geodesics in metric
spaces.

Box 5.2. – Good to know! – Constant speed geodesics in general metric spaces

First of all, let us define the length of a curve ω in a general metric space (X ,d).
Definition - For a curve ω : [0,1]→ X , let us define

Length(ω) := sup

{
n−1

∑
k=0

d(ω(tk),ω(tk+1) : n≥ 1, 0 = t0 < t1 < · · ·< tn = 1

}
.

Note that the same definition could be given for functions defined on [0,1] and valued
in X , not necessarily continuous. The functions ω with Length(ω)<+∞ are exactly those
which have bounded variation in the sense of the BV functions 1D (see Box 4.4 in Section
4.2.4). It is easy to see that all curves ω ∈ AC(X) satisfy Length(ω)≤

´ 1
0 g(t)dt <+∞.

Proposition - For any curve ω ∈ AC(X) we have

Length(ω) =

ˆ 1

0
|ω ′|(t)dt.

We collect now some more definitions.
Definition - A curve ω : [0,1]→ X is said to be a geodesic between x0 and x1 ∈ X if it

minimizes the length among all curves such that ω(0) = x0 and ω(1) = x1.
A space (X ,d) is said to be a length space if it holds

d(x,y) = inf{Length(ω) : ω ∈ AC(X), ω(0) = x,ω(1) = y}.

A space (X ,d) is said to be a geodesic space if it holds

d(x,y) = min{Length(ω) : ω ∈ AC(X), ω(0) = x,ω(1) = y},



5.4. CONSTANT SPEED GEODESICS IN WP 183

i.e. if it is a length space and there exist geodesics between arbitrary points.
We will not enter into details here about the conditions for the existence of geodesics,

but the fact that Length(ω) is defined as a sup is crucial so to establish semi-continuity
results.

Definition - In a length space, a curve ω : [0,1]→ X is said to be a constant speed
geodesic between ω(0) and ω(1) ∈ X if it satisfies

d(ω(t),ω(s)) = |t− s|d(ω(0),ω(1)) for all t,s ∈ [0,1].

It is easy to check that a curve with this property is automatically a geodesic.
The following characterization is useful.
Proposition - Fix an exponent p > 1 and consider curves connecting x0 to x1. The three

following facts are equivalent

1. ω is a constant speed geodesic,

2. ω ∈ AC(X) and |ω ′|(t) = d(ω(0),ω(1)) a.e.,

3. ω solves min
{´ 1

0 |ω
′|(t)pdt : ω(0) = x0,ω(1) = x1

}
.

First, we prove that the space Wp(Ω) is a length space, provided Ω is convex.

Theorem 5.27. Suppose that Ω is convex, take µ,ν ∈Pp(Ω) and γ ∈ Π(µ,ν) an
optimal transport plan for the cost c(x,y) = |x− y|p (p ≥ 1). Define πt : Ω×Ω→
Ω through πt(x,y) = (1− t)x+ ty. Then the curve µt := (πt)#γ is a constant speed
geodesic in Wp connecting µ0 = µ to µ1 = ν .

In the particular case where µ is absolutely continuous, or in general if γ = γT,
then this very curve is obtained as ((1− t)id+ tT)#µ .

As a consequence, the space Wp(Ω) is a geodesic space.

Proof. It is sufficient to prove Wp(µt ,µs) ≤Wp(µ,ν)|t − s|. Indeed, suppose this is
proven for every s > t: then we would have

Wp(µ,ν)≤Wp(µ,µt)+Wp(µt ,µs)+Wp(µs,ν)≤Wp(µ,ν)(t+(s−t)+(1−s))=Wp(µ,ν),

which implies equality everywhere. To prove the claim, take γs
t :=(πt ,πs)#γ ∈Π(µt ,µs)

and compute

Wp(µt ,µs)≤
(ˆ
|x− y|p dγ

s
t

) 1
p

=

(ˆ
|πt(x,y)−πs(x,y)|p dγ

) 1
p

= |t− s|
(ˆ
|x− y|p dγ

) 1
p

= |t− s|Wp(µ,ν),

where we used that |(1− t)x+ ty− (1− s)x− sy|= |(t− s)(x− y)|.

Before analyzing the constant speed geodesics in Wp, we want to insist on an
important consequence of the fact that we have a geodesic space, and of Theorem 5.14.
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The idea behind this result, usually called Benamou-Brenier formula and considered
as a dynamical version of the Kantorovich problem, will be crucial in Section 6.1 to
provide a numerical characterization.

Theorem 5.28. On a convex and compact domain Ω, given µ,ν ∈P(Ω) we have

W p
p (µ,ν) = min{Bp(ρ,E) : ∂tρ +∇ ·E = 0, ρ0 = µ,ρ1 = ν},

where both ρ and E have to be considered as measures on the space-time Ω× [0,1].

Proof. From the fact that Wp is a length space we have

W p
p (µ,ν) =

(
min

{ˆ 1

0
|ρ ′|(t)dt, ρ0 = µ,ρ1 = ν

})p

.

The minimum can be restricted to constant-speed geodesics and, thanks to the charac-
terization that we gave in Box 5.2, we also have

W p
p (µ,ν) = min

{ˆ 1

0
|ρ ′|(t)pdt, ρ0 = µ,ρ1 = ν

}
.

Then we use Theorem 5.14 which allows to replace |ρ ′|(t) with ||vt ||Lp(ρt ), thus obtain-
ing

W p
p (µ,ν) = min

{ˆ 1

0
||vt ||pLp(ρt )

dt, ∂tρt +∇ · (ρtvt) = 0 ρ0 = µ,ρ1 = ν

}
.

Setting Et = ρtvt , the statement is just a re-writing of the above formula.

Coming back to the structure of geodesics in Wp, keeping in mind again the im-
portant result of Theorem 5.14, one can wonder what is the velocity field associated
to these geodesics. Indeed, the constant-speed geodesic curves µt are Lipschitz curves
and hence they must admit the existence of a velocity field vt (at least if p > 1) satisfy-
ing the continuity equation ∂t µt +∇ · (µtvt) = 0.

In rough terms this means: take y ∈ spt(µt) ⊂ Ω, for t ∈]0,1[, and try to find the
speed of the particle(s) passing at y at time t. This should be the value of vt(y). It
would be easier to answer this question if we had uniqueness of “the particle” passing
through y at time t. To provide this uniqueness, we use the following lemma.

Lemma 5.29. Let Ω be compact and γ be an optimal transport plan for a cost c(x,y) =
h(y− x) with h strictly convex, between two probabilities µ,ν ∈P(Ω) and take t ∈
]0,1[. Define µt = (πt)#γ with πt(x,y) = (1− t)x+ ty, and take y ∈ spt(µt). Then there
exists a unique pair (x,z) ∈ spt(γ) such that y = (1− t)x+ tz. These values of x and
z will be denoted by Xt(y) and Zt(y), respectively. The two maps Xt and Zt are also
continuous.

In particular, if γ = γT comes from a transport map, then the map Tt := (1− t)id+
tT is invertible and T−1

t = Xt .
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Proof. The claim is essentially the same as in Lemma 4.23, and the uniqueness of
(x,z) ∈ spt(γ) comes from c-cyclical monotonicity of spt(γ). The continuity of Xt
and Zt is obtained by compactness. Take yn → y and suppose (up to subsequences)
that (Xt(yn),Zt(yn))→ (X ,Z). Since spt(γ) is closed then (X ,Z) ∈ spt(γ). Moreover,
uniqueness implies (X ,Z)= (Xt(y),Zt(y)). Since any limit of converging subsequences
must coincide with the value at y, and we work in a compact space, this gives continuity.

We can now identify the velocity field of the geodesic µt : we know that every
particle initially located at x moves on a straight line with constant speed T(x)− x,
which implies vt(y) = (T− id)(T−1

t (y)). More generally, if γ is not induced by a map,
we have vt(y) = Zt(y)−Xt(y).

Proposition 5.30. Let µt = (πt)#γ be the geodesic connecting µ to ν introduced above.
Then the velocity field vt := Zt −Xt is well defined on spt(µt) for each t ∈]0,1[ and
satisfies

∂t µt +∇ · (µtvt) = 0, ||vt ||Lp(µt ) = |µ
′|(t) =Wp(µ,ν).

Proof. We already saw that Xt and Zt are well-defined, so we only need to check the
continuity equation and the Lp estimate. To prove the continuity equation, take φ ∈C1

and compute

d
dt

ˆ
φ dµt =

d
dt

ˆ
φ((1− t)x+ tz)dγ(x,z) =

ˆ
∇φ((1− t)x+ tz) · (z− x)dγ(x,z)

=

ˆ
∇φ(πt(x,z)·(Zt(πt(x,z))−Xt(πt(x,z))dγ(x,z)

=

ˆ
∇φ(y) · (Zt(y)−Xt(y))dµt(y).

To compute the Lp norm we have
ˆ
|vt |p dµt =

ˆ
|Zt(y)−Xt(y)|p dµt(y) =

ˆ
|z− x|p dγ(x,z) =W p

p (µ,ν),

and we used in both the computations the fact that Zt(πt(x,z))−Xt(πt(x,z) = z− x for
every (x,z) ∈ spt(γ).

We now want to prove that, at least for p > 1, all the geodesics for the distance Wp
have this form, i.e. they are given by µt = (πt)#γ for an optimal γ . Non-uniqueness
would stay true in case γ is not unique. The proof that we provide here is different
from that of [17] and is based on the following represenatation Theorem (in the spirit
of [213]). We use the set of AC(Ω) of absolutely continuous curves defined on [0,1]
and valued in Ω, and we denote by Kp : AC(Ω)→ R∪{+∞} the p-Kinetic energy,
given by Kp(ω) :=

´ 1
0 |ω

′(t)|pdt (which is only finite if ω belongs to the Sobolev space
W 1,p([0,1])⊂ AC(Ω)). As usual, we write C for AC(Ω), for short.

Proposition 5.31. For every Lipschitz curve (µt)t in Wp(Ω) there exists a measure
Q ∈P(C ) such that µt = (et)#Q and

´
C Kp(ω)dQ(ω)≤

´ 1
0 |µ

′|(t)p dt.
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Proof. First we note that for a.e. t there exists, thanks to Theorem 5.14, a vector
field vt ∈ Lp(µt) such that ∂t µt +∇ · (vt µt) = 0, and with ||vt ||Lp(µt ) ≤ |µ

′|(t). The
same approximation argument (with the same convolution kernels) as in Theorem 5.14
provides a regularized curve of measures µε

t and a regularized vector field vε
t , with

||vε
t ||Lp(µε

t )
≤ ||vt ||Lp(µt ). This vector field has a flow Y : Ω→ AC(Ω), where Y (x) is

the curve yx(·), and we know µε
t = (Yt)#µε

0 , where Yt(x) =Y (x)(t) = yx(t). Let us also
define the measure Qε := Y#µε

0 . We have µε
t = (et)#Qε .

Let us compute
´
C Kp dQε :

ˆ
C

Kp(ω)dQε(ω) =

ˆ
Ω

ˆ 1

0
|vε

t (yx(t))|p dt dµ
ε
0 (x) =

ˆ 1

0

ˆ
Ω

|vε
t |p dµ

ε
t

≤
ˆ 1

0

ˆ
Ω

|vt |p dµt =

ˆ 1

0
|µ ′|(t)p dt.

Now (as we saw many times in Chapter 4), this implies that the measures Qε are
tight, since there is a bound on

´
C Kp dQε and Kp is such that

{ω ∈ AC(Ω) : Kp(ω)≤ L}

is compact in C0([0,1]) (for the uniform convergence) for every L. Also, Kp is l.s.c. for
the same convergence. Hence, we can obtain the existence of a subsequence such that
Qε ⇀ Q and

´
C KpdQ ≤ liminfε

´
C KpdQε . From µε

t = (et)#Qε we get µt = (et)#Q
and we conclude.

Proposition 5.32. Let (µt)t be a constant speed geodesic in Wp(Ω) between µ and
ν and suppose p > 1. Then there exists an optimal γ ∈ Π(µ,ν) for the transport cost
c(x,y) = |x− y|p such that for every t ∈ [0,1] we have µt = (πt)#γ .

Proof. Since the curve is a constant speed geodesic, we have |µ ′|(t) = Wp(µ,ν) for
a.e. t (the metric derivative being computed according to Wp). Applying our previous
Proposition 5.31, we get the existence of a measure Q ∈P(C ) such that µt = (et)#Q
and

´
C Kp(ω)dQ(ω)≤

´ 1
0 |µ

′|(t)p dt.
From Jensen inequality we have |ω(0)−ω(1)|p ≤Kp(ω), with equality if and only

if ω is a segment parametrized with constant speed. Hence, we have

W p
p (µ,ν)≤

ˆ
C
|ω(0)−ω(1)|p dQ(ω)

≤
ˆ

C
Kp(ω)dQ(ω)≤

ˆ 1

0
|µ ′|(t)p dt ≤W p

p (µ,ν).

The first inequality comes from γ := (e0,e1)#Q ∈ Π(µ0,µ1); the second is a conse-
quence of the above inequality for Kp; the last comes from the properties of Q. Thus,
all inequalities are equalities. Hence Q is concentrated on curves which are constant
speed segments and γ is an optimal transport plan. This proves µt = (πt)#γ .

Note how the above proof is reminiscent of that of Theorem 4.13, with here a
dynamical framework, compared to the static framework in Chapter 4.
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It is not difficult to see that both Proposition 5.31 and 5.32 do not hold for p = 1.
The counter-example is, as usual, given by µt = (1− t)δx0 + tδx1 .

We finish this section insisting on the role that Wasserstein geodesics play in ap-
plications, as they allow to build an interesting interpolation between two distribution
of masses (or two histograms), moving slowly the particles from one distribution to
the other. For instance, Figure 5.2, shows the interpolation between the chrominance
histograms of Figure 2.4. These intermediate histograms could also be used to produce
intermediate images.

Figure 5.2: Nine time steps of the interpolation (top, left to right, then bottom, left to
right), obtained via a W2 geodesic curve, between the histograms on the 2D space of
chroma signals of the two images of Figure 2.4. Pictures kindly provided by G. Peyré.

5.5 Discussion

5.5.1 The W∞ distance

The case p = ∞ in the definition of Wp deserves special attention. It is easy to guess
how to define a W∞ distance on probability measures:

W∞(µ,ν) := inf
{
||x− y||L∞(γ) : γ ∈Π(µ,ν)

}
,

where the minimization problem in the right-hand side is exactly the one studied in
Section 3.2. As we did in the rest of this chapter, the difference here is that, instead of
paying attention to the optimal map, we mainly consider the optimal cost as a function
of the two measures, and use it as a distance on the space of probabilities.

In order to properly define W∞(µ,ν), one should restrict to P∞(Ω), which is the
space of measures with bounded support. Otherwise, there could be pairs of measures
such that no bounded-displacement plan γ exists. From the results in Section 3.2 we
know that, if µ �L d , then W∞(µ,ν) is also equal to

inf
{
||T(x)− x||L∞(µ) : T#µ = ν

}
.
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It is not difficult to check the expected property

W∞(µ,ν) = lim
p→∞

Wp(µ,ν),

where the right-hand-side is increasing in p (the proof is proposed as an exercise,
Ex(35)). The triangle inequality can be proved by passing to the limit in p in the
corresponding triangle inequality for Wp.

Note that, in dimension one, as a consequence of the results of Chapter 2, the
optimal way to displace particles is the monotone increasing map, for every cost |x−y|p
with p < ∞. Passing to the limit, this is also the optimal map for the L∞ problem.

In general, we have a new distance on probability measures on compact sets, and
it measures the minimal maximal displacement that should be done to move particles
from one distribution to the other. It is interesting to see that, though the modeling
which gives rise to this distance is the same as in the case p < ∞, the topology induced
by it is not at all the same.

Indeed, if one takes two different points x,y∈Ω and two different values s, t ∈ [0,1],
one can easily check W∞((1− t)δx + tδy,(1− s)δx + sδy) = |x− y|. In particular, the
probabilities (1− t)δx + tδy do not tend to δx as t→ 0, even if there is convergence for
all the distances Wp, and even for the strong convergence of measures. As a matter of
fact, even if Ω is compact, the space (P(Ω),W∞) is neither compact, nor separable, as
soon as the cardinality of Ω is larger than 1.

On the other hand, the characterization of Lipschitz curves via the existence of a
velocity field vt , satisfying ||vt ||L∞(µt ) ≤ |µ

′|W∞
(t) stays true, and can be easily deduced

from Theorem 5.14 as a limit p→ ∞. This fact, together with an extended use of
Lipschitz curves for W∞, has been used in [80] in order to analyze an alternative model
for branched transport. If the role of this model is very limited, some examples and
considerations in the paper are useful to understand the structure of Wasserstein spaces.

However, the distance W∞ appears naturally in many modeling issues, and happens
to be very useful to analyze very different phenomena. One of the first papers using
such a distance was [232], devoted to the shape of rotating stars. In such a paper, the
choice of W∞ was motivated by the following observation (that we will develop better
in Section 7.4.3): a measure µ is a local minimizer in W∞ of some functional F if and
only if every point x ∈ spt(µ) satisfies a local minimality condition for a function f
(equal to the first variation of F , see Section 7.2). This equivalence fails if we replace
W∞ with Wp.

Finally, it is interesting to mention a reverse inequality between W∞ and Wp (which
could not be deduced from Equation (5.1)), of the form

W∞(µ,ν)≤CW
p

p+d
p (µ,ν),

where the constant C depends on p, on the dimension d, on the domain Ω, and on a
lower bound on the density of µ . This inequality is a consequence of a stronger result
proved in [75]: if µ = f ·L d , f ≥ a > 0 and T is the optimal transport map from µ to
another measure ν , then we have

||T− id||p+d
L∞ ≤C(Ω, p,d)

ˆ
Ω

|T(x)− x|p dx≤ C(Ω, p,d)
a

ˆ
Ω

|T(x)− x|p dµ(x).
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This is proven by using the c-cyclical monotonicity condition on T so as to guarantee
that, whenever we fix a point x with |T(x)− x| > 0, there exists a certain region R
around x, with volume proportional to |T(x)−x|d , such that for every y∈ R the distance
|T(y)− y| is not smaller than a certain fraction of |T(x)− x|.

5.5.2 Wasserstein and negative Sobolev distances
We already noted that the distance W1 is induced by a norm, which is the dual of
the Lipschitz seminorm. Indeed, if we consider the space X of Lipschitz function
with zero mean, endowed with the norm || f || := Lip( f ), the distance W1 on P1(Ω) is
exactly the distance associated to the norm of the topological dual X ′. It is interesting
to note that the space of probability measures with this distance is complete, but the
space of finite measures endowed with the same norm is not. More precisely, one can
consider zero-mean finite scalar measures endowed with the norm ||ρ|| := sup{

´
f dρ :

f ∈ Lip1(Ω)} and look at its completion. Note that the sequence ρn := ∑
n
i=1 δ1/2i−

δ1/(2i−1) is Cauchy for this norm, but its limit is an infinite sum of Dirac masses, which
is not a finite scalar measure. The completion of the set of measures for this norm has
been studied in [73], where the authors prove that it amounts to the set of distributions
which are the divergence of an L1 vector field. This nice result makes an interesting
link with the L1-Beckmann problem studied in Chapter 4.

Anyway, once the role of the distance W1 in the duality with W 1,∞ functions is
clear, one could wonder whether other distances Wp are in duality with Sobolev spaces
of the form W 1,q (for instance, with q = p′ = p/(p− 1)). The answer is obviously
“not”, since not all probability measures belong to the dual space W−1,p (in particular,
Dirac masses only belong to the dual of W 1,q when functions in W 1,q are continuous,
i.e. when q > d). Yet, some partial answers and some analogies exist. For instance the
following lemma was both proven in [215] and later in [224] for different purposes.

Lemma 5.33. Assume that µ and ν are absolutely continuous measures on a convex
domain Ω, whose densities are bounded by the same constant C. Then, for all function
φ ∈ H1(Ω), we have the following inequality:ˆ

Ω

φ d(µ−ν) ≤
√

C ||∇φ ||L2(Ω)W2(µ,ν)

Proof. Let µt be the constant speed geodesic between µ and ν , and let vt be the velocity
field associated to this curve by Theorem 5.14. Then (µ,v) satisfies the continuity
equation, and ||vt ||L2(µt )

= W2(µ,ν). We use the fact that µt is absolutely continuous
for all t, and its density is bounded by the same constant C, which will be proven in
Chapter 7 (Prop 7.29). Therefore:

ˆ
Ω

φ d(µ−ν) =

ˆ 1

0

d
dt

(ˆ
Ω

φ(x)dµt(x)
)

dt =

ˆ 1

0

ˆ
Ω

∇φ ·vt dµt dt

≤
(ˆ 1

0

ˆ
Ω

|∇φ |2 dµt dt
)1/2(ˆ 1

0

ˆ
Ω

|vt |2 dµt dt
)1/2

≤
√

C ||∇φ ||L2(Ω)W2(µ,ν),
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and the proof is completed.

We do not develop here the case of different exponents than p = p′ = 2, since the
quadratic case seems to be the most interesting (see Ex(38) for the general case). The
exact negative Sobolev norm appearing in the quadratic case is the Ḣ−1 norm, which
deserves some remarks. First let us define

||µ−ν ||Ḣ−1(Ω) = sup
{ˆ

φ d(µ−ν) : ||∇φ ||L2 ≤ 1
}
.

Note that we also have ||µ−ν ||Ḣ−1(Ω) = ||∇u||L2 , where u is the solution of the Neu-
mann problem {

−∆u = µ−ν , in Ω,
∂u
∂n = 0 on ∂Ω.

Indeed, for this choice of u we have
´

φ d(µ−ν) =
´

∇φ ·∇u≤ ||∇φ ||L2 ||∇u||L2 , with
equality for φ = u/||∇u||L2 . We can also see that we have

||µ−ν ||Ḣ−1(Ω) = min{||w||L2 : ∇ ·w = µ−ν} ,

since the optimal w in this minimization problem is a gradient (see Section 4.4.1 and
the considerations on Problem (4.27)), and we have w =−∇ψ .

The interest for the relation between the distances W2 and Ḣ−1 (where Ḣ−1 de-
notes the dual of the space X of zero-mean H1 functions on a connected domain,
endowed with the L2 norm of its gradient) is now very lively because these two dis-
tances are asymptotically equivalent when the involved densities are close to the value
ρ = 1, which is the relevant case when dealing with evolution problems where conges-
tion imposes an L∞ constraint ρ ≤ 1, as in Crowd Motion (see Section 8.4.2). These
asymptotical equivalence can be made precise through some general estimates. We
cite a short note by R. Peyre ([251]) where some universal estimates are proven, and
a funny equality in dimension 1 (see Ex(64)). Moreover, we also prove the following
result.

Theorem 5.34. Assume that µ and ν are absolutely continuous measures on a convex
domain Ω, with densities bounded from below and from above by two (same) constants
a,b with 0 < a < b <+∞. Then, we have

b−1/2||µ−ν ||Ḣ−1(Ω) ≤W2(µ,ν)≤ a−1/2||µ−ν ||Ḣ−1(Ω).

Proof. The inequality b−1/2||µ − ν ||Ḣ−1(Ω) ≤W2(µ,ν) is a consequence of Lemma
5.33 and of the definition of the Ḣ−1 norm.

To prove the opposite inequality can be obtained through the Benamou-Brenier
formula of Theorem 5.28: consider any vector field E ∈M d

div(Ω) with ∇ ·E = µ −ν

and ρt := (1− t)µ + tν . The pair (ρt ,Et), where Et = E is taken independent of time,
is admissible in the Benamou-Brenier formula. If E ∈ L2(Ω;Rd), we have

W 2
2 (µ,ν)≤B2(ρ,E) =

ˆ 1

0

ˆ
Ω

|E|2

ρt
≤ 1

a

ˆ
Ω

|E|2,
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where the last inequality is justified by ρt = (1− t)µ + tν ≥ (1− t)a+ ta = a. Since E
is arbitrary with the only constraint ∇ ·E = µ−ν , we obtain

W 2
2 (µ,ν)≤

1
a

min
{
||w||2L2 : ∇ ·w = µ−ν

}
=

1
a
||µ−ν ||2Ḣ−1(Ω),

which gives the second part of the statement.

5.5.3 Wasserstein and branched transport distances
Another class of distances which has been compared to the Wasserstein distances is
that induced by branched transport. We recall that dα(µ,ν) is defined as the minimal
value of the branched transport cost (see Section 4.4.2) between two measures µ,ν , as
soon as α > 1− 1

d . In this case it is a distance, and it metrizes the weak convergence
of probabilities on a bounded domain.

In branched transport the cost per unit length to move a mass m is given by mα , and
we can assume m≤ 1 (because there are no cycles in the optimal networks). Hence, one
immediately remarks mα ≥ m, which implies dα ≥ d1, and the distance d1 is nothing
but W1.

Since the two distances dα and W1 satisfy an inequality, and they induce the same
topology, it was a question raised by C. Villani whether the two distances are metrically
equivalent, i.e. we can bound above dα with W1. Inequalities of the form dα ≤ CW1
are necessarily false, since they do not scale in the correct way w.r.t. masses. Indeed,
even if we stick to probability measures, we can consider the following situation: take
µ,ν ∈P(Ω1) and a third measure ρ concentrated on another domain Ω2, disjoint from
Ω1. Then take µε = (1−ε)ρ +εµ and νε = (1−ε)ρ +εν . Since both W1 and dα only
depend on the difference between the two measures (which is false for Wp, with p > 1),
by a scaling argument it is clear that we have W1(µε ,νε) = c1ε and dα(µε ,νε) = cα εα .
This rules out the possibility of a linear bound, but leaves the possibility of an inequality
of the form dα ≤CW β

1 for β ≤ α .
This question has been analyzed in [240], where the sharp exponent has been found,

β = d(α− (1− 1
d )). Indeed, a simple example shows that it cannot be improved.

Example 5.35 (Optimal exponent for dα ≤W β

1 )). Divide the cube [0,1]d into nd small
cubes of edge 1/n and set µn =∑

nd

i=1
1

nd δxi and νn =∑
nd

i=1
1

nd δyi , where each xi is a vertex
of one of the nd cubes (let us say the vertex with minimal sum of the d coordinates)
and the corresponding yi is the center of the same cube. In this way the point y j closest
to xi is exactly yi. Thus the optimal configuration both for dα and W1 is obtained by
linking any xi directly to the corresponding yi, and we have

dα(µn,νn) = nd
(

1
nd

)α c
n
= cn−d(α−(1−1/d))

W1(µn,νn) = nd 1
nd

c
n
= cn−1

Tthe proof of the inequality dα ≤CW d(α−(1−1/d))
1 is a bit technical. Yet, in order to

give an idea, we just sketch an alternative proof (from [81]), which provides a slightly
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weaker inequality, namely dα ≤CW d(α−(1−1/d))
p for p = 1/α . This inequality is also

optimal in some sense, as it is also possible to strengthen the lower bound dα ≥W1
turning it dα ≥W1/α (this has been first remarked in [221] and then in [81]). The
choice of the exponent p is very natural because of scaling reasons. Indeed, Wp scales

as m
1
p w.r.t. the mass (in the example above, if Ω1 and Ω2 are far enough so that the

measure ρ becomes useless, then we have Wp(µε ,νε) = cε
1
p ), which makes the choice

p = 1/α the good one.

Proposition 5.36. Let µ,ν be two probabilities on [0,1]d and α > 1− 1
d , p = 1/α .

Then
Wp ≤ dα ≤CW d(α−(1−1/d))

p .

Proof. First we prove the inequality Wp ≤ dα . This is a consequence of (4.33). Indeed,
Wp is a distance, it is l.s.c. for ⇀, and we have

∑
i j
|xi− y j|γ({(xi,y j)})α ≥

(
∑
i j
|xi− y j|pγ({(xi,y j)})

)α

.

This inequality is due to the choice p= 1/α and to the sub-additivity of t 7→ tα . Passing
to the minimum over γ ∈Π(µ,ν), we get d̄α(µ,ν)≥Wp(µ,ν), whenever µ and ν are
atomic. This implies dα ≥Wp.

In order to prove the other inequality, we divide the cube into nd small disjoint
cubes Qi of edge 1/n and set

µn =
nd

∑
i=1

1
nd µ(Qi)δyi and νn =

nd

∑
i=1

ν(Qi)δyi ,

where each point yi is the center of the cube Qi. Since the branched transport from
µ Qi to µ(Qi)δyi costs no more than Cµ(Qi)

α 1
n (see Proposition 4.38), we can esti-

mate

dα(µ,ν)≤ dα(µ,µn)+dα(µn,νn)+dα(νn,ν)

≤ C
n

(
∑

i
µ(Qi)

α +∑
i

ν(Qi)
α

)
+dα(µn,νn)≤

C
n

nd(1−α)+dα(µn,νn),

where we used the inequality ∑
k
j=1 aα

j ≤ k( 1
k )

α , which is valid whenever ∑
k
j=1 a j = 1

and α ∈]0,1[ (it is just a version of Jensen inequality).
Then, let γ ∈ Π(µn,νn) be an optimal transport plan for the cost |x− y|p. We

have γ = ∑i, j γi jδ(xi,x j) and we can decide to use segments connecting each point xi to
each point x j with mass γi j as a (non-optimal) branched transport network. Its cost is
∑i, j γα

i j |xi− x j|. We denote by K the number of pairs (i, j) such that γi j > 0. Since γ is
optimal in a linear programming problem, it may be taken extremal in the polyhedron
of matrices {(ηi j)i, j : ηi j ≥ 0,∑i ηi j = ν(Q j), ∑ j ηi j = µ(Qi)}. For these matrices,
it is well-known that the number of non-zero entries does not exceed the sum of the
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number of rows and columns (left as an exercise, Ex(41)), here 2nd . Hence we have

dα(µn,νn)≤∑
i, j

γ
α
i j |xi− x j| ≤

(
∑
i, j

γi j|xi− x j|p
) 1

p

(2nd)1− 1
p

=CWp(µn,νn)nd(1−α) ≤C
(

Wp(µ,ν)+
2
n

)
nd(1−α),

where we used the triangle inequality on Wp together with Wp(µ,µn),Wp(ν ,νn)≤ 1/n.
By putting together the estimates one gets

dα(µ,ν)≤Cnd(1−α)−1 +Cnd(1−α)Wp(µ,ν)

and we can conclude by taking n≈Wp(µ,ν)
−1.

5.5.4 The Sliced Wasserstein distance
Starting from the considerations of Section 2.5.2 it is possible, and convenient in many
cases, to define a distance, which is alternative to the usual W2 distance, based on the
behavior of the measures “direction by direction”.

The idea is the following, and is detailed in [256]: given two measures µ,ν ∈
P2(Rd), we define

SW2(µ,ν) :=
( 

Sd−1
W 2

2 ((πe)#µ,(πe)#ν)dH d−1(e)
)1/2

,

where πe : Rd → R is the projection on the axis directed according to the unit vec-
tor e, namely πe(x) = x · e, and H d−1 is the surface measure on Sd−1. This quantity
could have been called “projected Wasserstein distance” (as it is based on the behavior
through projections), but since in [256] it is rather called “sliced Wasserstein distance”,
we prefer to keep the same terminology.

The fact that SW2 is a distance comes from W2 being a distance. The triangle
inequality may be proven using the triangle inequality for W2 (see Section 5.1) and for
the L2 norm. Positivity and symmetry are evident. The equality SW2(µ,ν) = 0 implies
W 2

2 ((πe)#µ,(πe)#ν) for all e ∈ Sd−1. This means (πe)#µ = (πe)#ν) for all e and it
suffices (see Box 2.4 in Section 2.5.2 on Radon and X-ray transforms) to prove µ = ν .

It is evident from its definition, and from the fact that the maps πe are 1-Lipschitz
(hence W 2

2 ((πe)#µ,(πe)#ν) ≤W 2
2 (µ,ν)) that we have SW2(µ,ν) ≤W2(µ,ν). More-

over, the two distances also induce the same topology, at least on compact sets. Indeed,
the identity map from W2 to (P(Ω),SW2) is continuous (from SW2 ≤W2) and bijec-
tive. Since the space where it is defined is compact, it is also a homeomorphism.

One can also prove more, i.e. an inequality of the form W2 ≤CSW β

2 for a suitable
exponent β ∈]0,1[. Chapter 5 in [66] proves this inequality7 with β = (2(d +1))−1.

7Indeed, one can define Sliced Wasserstein distances associated to other exponents p, and [66] proves
W1 ≤CSW 1/(d+1)

1 ; then, one can compose with W2 ≤CW 1/2
1 to obtain the result for p = 2.
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The interest in the use of this distance is the fact that one has a distance on P(Ω)
with very similar qualitative properties as W2, but much easier to compute, since it only
depends one one-dimensional computations (obviously, the integral over e ∈ Sd−1 is
discretized in practice, and becomes an average over a large number of directions). For
instance it is useful when the Wasserstein distance is used to evaluate distances between
mass distributions (or images, where each image is associated to a measure on R5 by
associating to each pixel its two spatial coordinates and its three color components), or
when one look at the “horizontal” barycenter of several distributions, as in Section 5.5.5
here below (in the Euclidean space, the barycenter of x1, . . . ,xN is the point x which
minimizes ∑i |x−xi|2; in the Wasserstein space, the measure minimizing ∑i W 2

2 (ρ,ρi)
2

is the one which is located “at the middle” of ρ1, . . . ,ρN). In both cases, replacing W2
with SW2 simplifies a lot the computations. We remark anyway an important difference
between W2 and SW2: the latter is not a geodesic distance. On the contrary, the geodesic
distance associated to SW2 (i.e. the minimal lenght to connect two measures) is exactly
W2.

We will also see in Section 8.4.2 that the gradient flow of SW 2
2 has an interest in

itself and in the very next Section 5.5.5 we see the applications of SW 2
2 to barycenter

computations.

5.5.5 Barycenters in W2

An interesting problem in applications, and in particular in image processing, is that of
finding a reasonable notion of barycenter between two or more probability measures.
Suppose that we have two B&W images, representing similar objects, but one being
very dark (almost black) and one very pale (almost white). We denote by ρ0 and ρ1

their color histograms (see Section 2.5.1): what is the middle point between these two
histograms? if we answer (ρ0 +ρ1)/2, then we obtain an image with some black and
some white, while we could prefer to have an intermediate grey image. Also, we would
like to provide a definition of middle point such that the middle point of δx0 and δx1 is
δx1/2 , with x1/2 = (x0 + x1)/2.

The notion of geodesic in Wasserstein spaces provides what we look for: just define
the middle point as ρ1/2, where ρt is the constant-speed geodesic between ρ0 and
ρ1, according to what we saw in Section 5.4. Also, we could look for a weighted
barycenter, with weights (1− t) and t, and the geodesic provides the correct answer.
Some non-uniqueness issues subsist: geodesics are not always unique, and moreover
they depend on the exponent p. We will soon fix the exponent issue by choosing p = 2,
as we are going to see in a while.

What about a barycenter between three or more measures? if we want to make use
of geodesics, we could define the barycenter of (ρ0,ρ1,ρ2), with weights (1/3,1/3,1/3),
as the barycenter with weights (1/3,2/3) between ρ2 and the middle-point of ρ0 and
ρ1. Unfortunately, in the space W2 in dimension larger than 1, there is no associativity
and this definition gives different results if we interchange the order of the measures
ρ i.

Hence, it is better to switch to another characterization of the barycenter in Eu-
clidean spaces, which we will translate into the framework of Wasserstein spaces. We
note that the barycenter with weights λi ≥ 0 between points xi ∈Rd is the unique point
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y minimizing ∑i λi|y− xi|2. Hence, we could define the barycenter between ρ i with
weights λi as any measure solving

min

{
N

∑
i=1

λiW 2
2 (ρ,ρ

i)2 : ρ ∈P(Ω)

}
. (5.7)

Note that the same approach could be applied to general Riemannian manifolds, as the
barycenter is otherwise not well-defined on non-linear structures. This explains also
the choice of the exponent p = 2: using powers p of the distances we do not recover
the usual barycenter in the Euclidean space (for p = 1 we have a notion of median),
and using the square of a Wp distance is not very convenient. The uniqueness of the
barycenter will be true as soon as one of the measures ρ i is absolutely continuous (see,
Proposition 7.19).

As an interesting example, it is not difficult to analyze the one-dimensional case.
In this case, one can find the barycenter of some measures ρ i with weights λi in the
following way: pick one of these measures, say ρ1, define the optimal transport maps
Ti sending ρ1 onto ρ i (i.e. the monotone maps, note that this would work for any
exponent p), and set ρ := (∑i λiTi)#ρ1, where we set T1 = id (see also Ex(63)).

The minimization problem (5.7) has been first introduced in [1], where the authors
also propose an interpretation in terms of a multi-marginal optimal transport problem.
Indeed, one can choose as a variable, instead of ρ ∈P(Ω), a multi-marginal transport
plan γ ∈P(ΩN+1), with (πi)#γ = ρ i for i = 1, . . .N and (π0)#γ = ρ (the latter ρ being
part of the unknown). The problem becomes

min
ˆ
(

N

∑
i=1

λi|xi− x0|2)dγ,

under the constraint that the marginals of γ for i= 1, . . .N are the ρ i. The other marginal
being arbitrary, one could decide to choose x0 as a function of the points (x1, . . . ,xN),
in an optimal way, i.e. x0 = ∑i λixi (suppose ∑i λi = 1). In this way we need to solve

min
{ˆ

c(x1, . . . ,xN)dγ : γ ∈Π(ρ1, . . . ,ρN)

}
,

with c(x1, . . . ,xN) := ∑
N
i=1 λi|xi− x̄|2 and x̄ = ∑

N
i=1 λixi. Note that, in the standard case

λi = 1/N, we have

c(x1, . . . ,xN) =
1
N

N

∑
i=1
|xi− x̄|2 =−|x̄|2 + 1

N

N

∑
i=1
|xi|2 =

1
2N2 ∑

i, j
|xi− x j|2

(to be convinced of the last equality, just expand the squares). This shows that the
problem is equivalent to the very first multi-marginal problem studied by Gangbo and
Świȩch in [178].

For the applications of barycenters in image processing we refer to [256], where,
for the sake of numerical computations, the distance W2 is replaced with SW2 (see
Section 5.5.4). An example is given in Figure 5.3. More recent numerical algorithms
have also allowed to directly treat the W2 distance, as is shown in Figure 5.4.
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Figure 5.3: Interpolation between a point distribution on an annulus and on a duck.
On the first line, an assignment is computed as in Figure 2.5.2, and then points move
interpolating starting and arrival positions with constant speed. On the third line, the
same is done with the optimal assignement, realizing the distance W2 (hence we have
a geodesic in W2). On the second line, the interpolations are computed as barycenters
for SW2, minimizing the sum of the squared distances. Pictures kindly provided by J.
Rabin, and adapted from [256].
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Figure 5.4: Interpolation between three different shapes (a five-pointed star, a four-
pointed one, and the union of two small disks). Every image represents a barycenter
between the three shapes, computed in W2. Pictures kindly provided by G. Peyré.
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Chapter 6

Benamou-Brenier and other
continuous numerical methods

In this chapter we present some numerical methods to solve optimal transport prob-
lems. The search for efficient numerical strategies is a very lively domain in current
days, after a period where optimal transport was mainly investigated from the theoret-
ical point of view. It would be impossible to list all the recent developments in the
field and, because of the taste for Calculus of Variations and PDEs which haunts all
the book, the choice has been done to prefer those methods which can be classified
as “continuous”. This means that they are especially suitable to tackle the problem of
the optimal transport between two given densities. They are opposite to some more
discrete methods, that will be briefly presented in the discussion section 6.4, and are
concerned with the case of two finitely atomic measures or one atomic vs one density.
The most famous method is for sure the one due to J.-D. Benamou and Y. Brenier,
which transforms the problem into a tractable convex variational problem in dimension
d+1. This method gives the title to the chapter, and justifies the position of this chapter
after Chapter 5. Indeed, we will describe it strongly using the theory about Wasserstein
geodesics (rather than finding the map, this method finds the geodesic curve µt ).

Two other classical continuous methods are presented: the Angenent-Haker-Tannenbaum
method based on the fact that the optimal maps should be a gradient, and that removing
non-gradient parts decreases the energy, and the Loeper-Rapetti method based on the
resolution of the Monge-Ampère equation. Both require smooth and non-vanishing
densities, and special domains to handle boundary data (a rectangle or, better, a torus).
The problem of the resolution of the Monge Ampère equation on more general domains
is much more delicate and has been addressed more recently (see the end of Section
6.3).

In this chapter we will neither be exhaustive, nor present the most recent methods
or compare the efficiency and advantages of all of them. It would be impossible, be-
cause of the huge progresses which are occurring on this topic. The goal is mainly to
provide the reader an overview of the most natural ideas which could be translated into
numerical tools.

199
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6.1 The Benamou-Brenier formula and its numerical
applications

The results of Sections 5.3 and 5.4 allow to rewrite the optimization problem corre-
sponding to the cost |x− y|p in a smart way, so as to transform it into a convex opti-
mization problem. Indeed

• looking for an optimal transport for the cost c(x,y) = |x− y|p is equivalent to
looking for constant speed geodesic in Wp because from optimal plans we can
reconstruct geodesics and from geodesics (via their velocity field) it is possible
to reconstruct the optimal transport;

• constant speed geodesics may be found by minimizing
´ 1

0 |µ
′|(t)pdt ;

• in the case of the Wasserstein spaces, we have |µ ′|(t)p =
´

Ω
|vt |p dµt , where v is

a velocity field solving the continuity equation together with µ (this field is not
unique, but the metric derivative |µ ′|(t) equals the minimal value of the Lp norm
of all possible fields).

As a consequence of these last considerations, for p > 1, solving the kinetic energy
minimization problem

min
{ˆ 1

0

ˆ
Ω

|vt |pdρt dt : ∂tρt +∇ · (vtρt) = 0, ρ0 = µ, ρ1 = ν

}
selects constant speed geodesics connecting µ to ν , and hence allows to find the opti-
mal transport between these two measures1.

On the other hand, this minimization problem in the variables (ρt ,vt) has non-
linear constraints (due to the product vtρt ) and the functional is non-convex (since
(t,x) 7→ t|x|p is not convex). Yet, we saw with the tools of Section 5.3.1 that it is
possible to transform it into a convex problem.

For this, it is sufficient to switch variables, from (ρt ,vt) into (ρt ,Et) where Et = vtρt
and use the functional Bp in space-time. Remember Bp(ρ,E) :=

´
fp(ρ,E) with

fp : R×Rd → R∪ {+∞} defined in Lemma 5.17. We recall its definition for the
reader’s convenience:

fp(t,x) := sup
(a,b)∈Kq

(at +b · x) =


1
p
|x|p
t p−1 if t > 0,

0 if t = 0,x = 0
+∞ if t = 0,x 6= 0, or t < 0,

where Kq := {(a,b) ∈ R×Rd : a+ 1
q |b|

q ≤ 0}. The problem becomes:

Problem 6.1. Solve

(BpP) min
{
Bp(ρ,E) : ∂tρt +∇ ·Et = 0, ρ0 = µ, ρ1 = ν

}
.

1We choose to denote by ρ the interpolating measures, in order to stress the “continuous” flavor of this
method (typically, ρ is a density, and µ a generic measure)
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Note that we can write Bp(ρ,E) =
´ 1

0 Bp(ρt ,Et)dt =
´ 1

0

´
Ω

fp(ρt(x),Et(x))dxdt,
where this third expression of the functional implicitly assumes ρt ,Et �L d . Indeed,
as we saw in Proposition 5.18, the functional Bp has an integral representation of this
form as soon as ρt and Et are absolutely continuous w.r.t. a same positive measure2.

We also want to stress that the constraints given by ∂tρt +∇ ·Et = 0, ρ0 = µ, ρ1 = ν

are indeed a divergence constraint in space-time (consider the vector (ρ,E) : [0,1]×
Ω→ Rd+1). The space boundary constraints are already of homogeneous Neumann
type, while the initial and final value of ρ provide non-homogeneous Neumann data
on the boundaries {0}×Ω and {1}×Ω. Indeed, the whole constraint can be read as
∇t,x · (ρ,E) = δ0⊗ µ − δ1⊗ ν (notice that this point of view which uses derivatives
in (t,x) will appear again in the section). The functional that we minimize is a 1-
homogeneous functional, and in this way (BpP) becomes a dynamical version (in space-
time) of the Beckmann probelm that we saw in Section 4.2. It is by the way the problem
that we obtain if we apply to the cost |x− y|p the reduction suggested in [197], which
transforms it into a one-homogeneous transport cost in space-time.

The constraints are now linear, and the functional convex. Yet, the functional
(and the function fp as well) is convex, but not so much, since, as we said, it is 1-
homogeneous. In particular, it is not strictly convex, and not differentiable. This re-
duces the efficiency of any gradient descent algorithm in order to solve the problem,
but some improved methods can be used.

In [36], the authors propose a numerical method, based on this convex change of
varibales, on duality, and on what is called “augmented Lagrangian”.

Box 6.1. – Memo – Saddle points, Uzawa and Augmented Lagrangian

Suppose that we need to minimize a convex function f : RN → R, subject to k linear
equality constraints Ax = b (with b ∈ Rk and A ∈Mk×N ). This problem is equivalent to

min
x∈RN

f (x)+ sup
λ∈Rk

λ · (Ax−b).

This gives a min-max problem with a Lagrangian function L(x,λ ) := f (x)+λ · (Ax−b). If
we believe in duality, finding a minimizer for f under the constraints is the same of finding
a maximizer for g(λ ) := infx∈RN f (x)+λ · (Ax−b). And it is the same as finding a saddle
point for L (a point (x̄, λ̄ ) where L(x, λ̄ )≥ L(x̄, λ̄ )≥ L(x̄,λ ) for every x and every λ , i.e. a
point which minimizes in x and maximizes in λ ).

The maximization in λ is easier, since the problem is unconstrained: it is possible to
apply a gradient algorithm (see Box 6.8). We only need to compute ∇g(λ ), but this is
easily given via ∇g(λ ) = Ax(λ )− b, where x(λ ) is the (hopefully unique) minimizer of
x 7→ f (x)+λ · (Ax−b).

The algorithm that we obtain from this idea, called Uzawa algorithm3, reads as follows:
given (xk,λk), set xk+1 := x(λk) and λk+1 = λk + τ∇g(λk) = λk + τ(Axk+1 − b), for a
given small τ . The sequence of points xk converges, under reasonable assumptions, to the
minimizer of the original problem.

2This is typical of 1-homogeneous functionals (the fact that the result is independent of the reference
measure).
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An alternative idea, which makes the computation of the point x(λ ) easier and accel-
erates the convergence is the following: instead of using the Lagrangian L(x,λ ), use the
following variant: L̃(x,λ ) := L(x,λ )+ τ̃

2 |Ax− b|2, for a given value of τ̃ . The conditions
for being a saddle point of L̃ and L are, respectively,

for L̃ :

{
∇ f (x)+Atλ + τ̃(Ax−b) = 0,
Ax−b = 0,

for L :

{
∇ f (x)+Atλ = 0,
Ax−b = 0.

Hence, the saddle points of L̃ and L are the same, but using L̃ makes the problem more
convex and tractable in x. Then, one uses the same gradient algorithm on g̃(λ ) :=
infx f (x)+ λ · (Ax− b)+ τ̃

2 |Ax− b|2, using a step τ . It is possible to take τ = τ̃ and it-
erate the following algorithm:{

xk+1 = argmin f (x)+λk · (Ax−b)+ τ

2 |Ax−b|2

λk+1 = λk + τ(Axk+1−b)
.

For more details and convergence result, we refer for instance to [171].

Here are the main steps to conceive the algorithm.
First of all, we will write the constraint in a weak form (actually, in the sense of

distributions), thanks to (4.3). This means that we actually want to solve

min
ρ,E

Bp(ρ,E)+ sup
φ

(
−
ˆ 1

0

ˆ
Ω

((∂tφ)ρt +∇φ ·Et)+G(φ)

)
,

where we set
G(φ) :=

ˆ
Ω

φ(1,x) dν(x)−
ˆ

Ω

φ(0,x)dµ(x),

and the sup is computed over all functions defined on [0,1]×Ω (we do not care here
about their regularity, since they will be anyway represented by functions defined on
the points on a grid in [0,1]×Rd).

Remark 6.2. It is interesting to make a small digression to see the connection between
the above problem and a Hamilton-Jacobi equation. We will consider the easiest case,
p = 2. In this case we can write the problem as

min
(E,ρ) :ρ≥0

ˆ 1

0

ˆ
Ω

|E|2

2ρ
+ sup

φ

−
ˆ 1

0

ˆ
Ω

((∂tφ)ρ +∇φ ·E)+G(φ),

where we expressed the functional B2 with its integral expression, valid in the case
of absolutely continuous measures, with ρ ≥ 0 (where ρ = 0, we must have E = 0 in
order to have finite energy).

If we formally interchange inf and sup, we get the following problem

sup
φ

G(φ)+ inf
(E,ρ) :ρ≥0

ˆ 1

0

ˆ
Ω

(
|E|2

2ρ
− (∂tφ)ρ−∇φ ·E

)
.
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We can first compute the optimal E, for fixed ρ and φ , thus getting E = ρ∇φ . The
problem becomes

sup
φ

G(φ) + inf
ρ≥0

ˆ 1

0

ˆ
Ω

(
−(∂tφ)ρ−

1
2
|∇φ |2ρ

)
.

The condition for the infimum to be finite (and hence to vanish) is ∂tφ + 1
2 |∇φ |2 ≤ 0,

and at the optimum we must have equality on {ρ > 0}. This gives the Hamilton-Jacobi
equation

∂tφ +
1
2
|∇φ |2 = 0 ρ-a.e.

By the way, from the optimal φ we can recover the Kantorovich potentials using
ψ(x) := φ(1,x) and ϕ(x) :=−φ(0,x).

The quantity Bp in this variational problem may be expressed as a sup and hence
we get

min
ρ,E

sup
(a,b)∈Kq,φ

ˆ 1

0

ˆ
Ω

(a(t,x)dρ +b(t,x) ·dE−∂tφ dρ−∇φ ·dE)+G(φ).

Denote m= (ρ,E). Here m : [0,1]×Ω→Rd+1 is a (d+1)-dimensional vector field
defined on a (d + 1)-dimensional space. Again, we do not care here about m being a
measure or a true function, since anyway we will work in a discretized setting, and
m will be a function defined on every point of a grid in [0,1]×Rd . Analogously, we
denote ξ = (a,b). We also denote by ∇t,xφ the space-time gradient of φ , i.e. ∇t,xφ =
(∂tφ ,∇φ).

The problem may be re-written as

min
m

sup
ξ ,φ :ξ∈Kq

〈ξ −∇t,xφ ,m〉+G(φ).

Here comes the idea of using an augmented lagrangian method. Indeed, the above
problem recalls a Lagrangian, but in a reversed way. We must think that the dual
variable should be m, and the primal one is the pair (ξ ,φ). The function f (ξ ,φ) in-
cludes the term G(φ) and the constraint ξ ∈ Kq, and there is an equality constraint
ξ = ∇t,xφ . We do not care actually at the original constrained problem giving rise to
this Lagrangian, bur we just decide to add in the optimization a term τ

2 |ξ −∇t,xφ |2 (for
a small step size τ).

Hence, we look for a solution of

min
m

sup
ξ ,φ :ξ∈Kq

〈ξ −∇t,xφ ,m〉+G(φ)− τ

2
|ξ −∇t,xφ |2.

The algorithm that one can consider to find the optimal m shpuld do the following:
produce a sequence mk and find, for each of them, the optimal (ξk,φk). Yet, instead of
finding exactly the optimal (ξk,φk) we will optimize in two steps (first the optimal φ

for fixed ξ , then the optimal ξ for this φ ).
The algorithm will work in three iterates steps. Suppose we have a triplet (mk,ξk,φk)
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• Given mk and ξk, find the optimal φk+1, by solving

max
φ

−〈∇t,xφ ,mk〉+G(φ)− τ

2
||ξk−∇t,xφ ||2,

which amounts to minimizing a quadratic problem in ∇t,xφ . The solution can
be found as the solution of a Laplace equation τ∆t,xφ = ∇ · (τξk−mk), with a
space-time Laplacian, with Neumann boundary conditions. These conditions are
homogeneous in space, and non-homogeneous, due to the role of G, on t = 0 and
t = 1. Most Laplace solvers can find this solution in time O(N logN), where N
is the number of points in the discretization.

• Given mk and φk+1, find the optimal ξk+1, by solving

max
ξ∈Kq

〈ξ ,mk〉−
τ

2
|ξ −∇t,xφk+1|2.

By expanding the square, we see that this problem is equivalent to the projection
of ∇t,xφk+1+

1
τ

mk, and no gradient appears in the minimization. This means that
the minimization may be performed pointwisely, by selecting for each (t,x) the
point ξ = (a,b) which is the closest to ∇t,xφk+1(t,x)+ 1

τ
mk(t,x) in the convex

set Kq. If we have a method for this projection in Rn+1, requiring a constant
number of operations, then the cost for this pointwise step is O(N).

• Finally we update m by setting mk+1 = mk− τ(ξk+1−∇t,xφk+1).

This algorithm globally requires O(N logN) operations at each iterations (warning:
N is given by the discretization in space-time). It can be proven to converge, even
if, for convergence issues, the reader should rather refer to the works by K Guittet
and Benamou-Brenier-Guittet, [189, 37, 190], as the original paper by Benamou and
Brenier does not insist on this aspect. Also see the recent paper [195] which fixes some
points in the proof by Guittet.

Compared to other algorithms, both those that we will present in the rest of the
chapter and other more recent ones, the Benamou-Brenier method has some important
advantages:

1. it is almost the only one for the moment which takes care with no difficulties of
vanishing densities, and does not require special assumptions on their supports;

2. It is not specific to the quadratic cost: we presented it for power costs c(x,y) =
|x− y|p but can be adapted to other convex costs h(x− y) and to all costs is-
sued from a Lagrangian action (see Chapter 7 in [293]); it can incorporate costs
depending on the position and of time, and is suitable for Riemaniann manifolds;

3. it can be possibly adapted to take into account convex constraints on the density
ρ (for instance lower or upper bounds);

4. it can handle different “dynamical” problems, where penalization on the density
or on the velocity are added, as it happens in the case of mean-field games (see
Section 8.4.4) and has been exploited, for instance, in [39];
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5. it can handle multiple populations, with possibly interacting behaviors.

We refer for instance to [97, 248] for numerical treatments of the variants of the
points 2. and 3. above, and to [38] for an implementation of the multi-population
case. Here we present a simple picture (Figure 6.1), obtained in the easiest case via the
Benamou-Brenier method on a torus.

Figure 6.1: Geodesics between a gaussian on a 2D torus, and the same gaussian dis-
placed of a vector (1/2,1/2). Notice that, to avoid the cutlocus (see Section 1.3.2), the
initial density breaks into four pieces. Picture taken from [36] with permission.

6.2 Angenent-Haker-Tannenbaum

The algorithm that we see in this section comes from an interesting minimizing flow
proposed and studied in [20]. The main idea is to start from an admissible transport
map T between a given density f (that we will suppose smooth and strictly positive
on a nice compact domain Ω) and a target measure ν (we do not impose any kind of
regularity on ν for the moment), and then to rearrange the values of T slowly in time,
by composing it with the flow of a vector field v, i.e. considering T◦ (Yt)

−1 instead of
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T(x), where Yt(x) := yx(t) is, as usual, the solution of{
y′x(t) = vt(yx(t)),
yx(0) = x.

The vector fields vt have to be chosen so that the map Yt , defined via Yt(x) := yx(t)
preserves the measure f , and also so as to reduce the value of the Monge cost

M(T) =
ˆ

c(x,T(x)) f (x)dx.

The cost c is taken smooth (say, C1, we will see later the particular case of the quadratic
cost).

The first computation to do is the derivative of the cost function: set Tt(x) :=
T (yx(−t)) where y is defined as the flow of an autonomous vector field v. The condition
for v to preserve the measure f is that the solution of

∂tρt +∇ · (ρtv) = 0 with ρ0 = f

is the constant (in-time) density ρt = f . This requires ∇ · ( f v) = 0. We will set w = f v
for simplicity. By choosing v satisfying this condition we can write

d
dt

(ˆ
Ω

c(x,T(yx(−t)) f (x)dx
)
=

d
dt

(ˆ
Ω

c(yx(t),T(x)) f (x)dx
)

=

ˆ
Ω

∇xc(yx(t),T(x)) · y′x(t) f (x)dx =
ˆ

Ω

∇xc(yx(t),T(x)) ·v(yx(t)) f (x)dx,

and, at t = 0, this gives a derivative equal to
´

Ω
∇xc(x,T(x)) ·v(x) f (x)dx. In the com-

putation above, we used the fact that Y−t preserves the measure f , and that its inverse
is Yt (which is true for vector fields v independent of time).

We recover here an important part of the theory of optimal transport: if T is optimal,
then the vector field ∇xc(x,T(x)) must be orthogonal to all divergence-free vector fields
w, and hence it is a gradient (see Proposition 1.15). In the particular case c(x,y) =
1
2 |x− y|2, this gives x−T(x) = ∇ϕ(x) and hence T itself is a gradient. The fact that T
is the gradient of a convex function, and not of any function, comes from second-order
optimality conditions, at least when one has sufficient regularity (see Ex(44)).

On the other hand, the goal here is not to study the structure of an optimal T, but
to start from a non-optimal T and to improve it. In order to do this, we must choose a
suitable vector field v. This will be done by producing a flow Tt , and the vector field v
will be chosen in some clever way at every instant t of time. Hence, it will be no more
autonomous. Several choices for v are possible, but we start from the simplest one: we
saw that the derivative of the cost M is given by

´
Ω

ξ ·w, where ξ (x) = ∇xc(x,T(x))
and w = f v. Since

´
Ω

ξ ·w is a scalar product in L2, this identifies the gradient of M for
the L2 structure, when restricted to the set of infinitesimal displacements preserving the
measure (i.e. we impose the constraint ∇ ·w = 0). The optimal choice of w (if we want
to have a bound on ||w||L2 ) is to take as w the projection of−ξ onto the vector space of
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divergence-free vector fields. Concerning the boundary conditions to associate to this
divergence constraint, we choose as usual the Neumann conditions w ·n = 0, which are
also those required to preserve the measure without letting any mass exit Ω.

Box 6.2. – Memo – Helmholtz decomposition

Given a vector field ξ ∈ L2(Ω;Rd) it is always possible to write it as the sum of a
gradient and of a divergence-free vector field ξ = ∇u+w with u ∈H1(Ω) and ∇ ·w = 0 (in
the distributional see). The decomposition is unique if one imposes u∈H1

0 (Ω), or w ·n = 0
(in the weak sense, which, together with the zero-divergence condition, means

´
w ·∇φ = 0

for all φ ∈C1(Ω)).
These decompositions have a variational origin: indeed one can solve

min
{ˆ
|ξ −∇u|2 : u ∈ H1

0 (Ω)

}
and get the first one, or

min
{ˆ
|ξ −∇u|2 : u ∈ H1(Ω),

ˆ
u = 0

}
and get the second one (if Ω is connected). In both cases, the zero-divergence condition on
w comes from the optimality conditions on u.

Note that ∇u is the projection of ξ on the set of L2 gradients (of H1
0 functions, in the

first case) and hence w is the projection onto the set of divergence-free vector fields (with
Neumann conditions, in the second case).

The projection w = P[ξ ] can be computed by writing ∇ · ξ = ∇ ·w+∆u, i.e. w =

ξ −∇(∆−1(∇ ·ξ )).

Hence, we look for a family of transport maps Tt , a flow Yt , a vector field wt
satifying the following conditions:

• Tt is defined as Tt = T◦ (Yt)
−1 at every instant t

• the map Yt is the flow of the time-dependent vector field vt , defined through
f vt = wt

• the vector field wt = P[−ξt ], where P is the projection onto divergence-free vec-
tor fields with w ·n = 0 and ξt = ∇xc(x,Tt(x))

We can write the PDE satisfied by Tt , which is the transport equation ∂tTt +vt ·∇Tt = 0.

Box 6.3. – Memo – Linear transport equation

Given a smooth vector field vt its flow Yt(x) = yx(t) (with, as usual, y′x(t) = vt(yx(t))
and yx(0) = x), and a smooth function g, we define gt = g◦Y−1

t . Then, we have

∂tgt +vt ·∇gt = 0.



208 CHAPTER 6. NUMERICAL METHODS

Indeed, we can write gt(yx(t)) = g(x) and differentiate in time, thus getting the above equa-
tion. As soon as vt stays Lipschitz continuous, its weak formulation is valid for arbitrary
g ∈ L1 since we can take a sequence of smooth approximating functions gn → g, write´´

gn ◦Y−1
t (∂tϕ +vt ·∇ϕ) , use the change-of-variable y = Y−1

t (x), and pass to the limit.
This equation is called Transport equation. It is similar to the continuity equation, but

it is not in conservative form, and the mass of g is not conserved in time. On the contrary,
L∞ bounds on g are conserved, since the values of gt are the same as those of g = g0. The
two equations, transport and continuity equations, are somehow dual: if a vector field v is
fixed, and we take smooth solutions ρt of ∂tρt +∇ · (ρtvt) = 0 and gt of ∂tgt +vt ·∇gt = 0,
then we have

d
dt

(ˆ
gt dρt

)
=

ˆ
(∂tgt)ρt +

ˆ
gt(∂tρt) =−

ˆ
ρtvt ·∇gt −

ˆ
gt∇ · (ρtvt) = 0.

We now compute formally the derivative in time of M(Tt) with the above choices

d
dt

M(Tt) =
d
dt

(ˆ
c(x,Tt) f

)
=

ˆ
∇yc(x,Tt)(∂tTt) f =−

ˆ
∇yc(x,Tt) ·∇Tt ·wt .

We go on using ∇[c(x,Tt(x))] = ∇xc(x,Tt(x)) + ∇yc(x,Tt(x))∇Tt(x), together with´
∇[c(x,Tt(x))] ·wt(x)dx = 0, which comes from ∇ ·wt = 0. Hence we get

d
dt

M(Tt) =

ˆ
∇xc(x,Tt) ·wt(x) =

ˆ
ξt ·wt =−

ˆ
ξtP[ξt ] =−||P[ξt ]||2 ≤ 0.

This shows that the proposed flow makes M(Tt) decrease in time, and that the value
of M(Tt) is stationary if and only if P[ξt ] = 0, i.e. if ξt is a gradient.

[20] proves the local existence of the above flow, i.e.
∂tTt +vt ·∇Tt = 0,
∇ · ( f vt) = 0, vt ·n = 0,
−∇xc(x,Tt) = f vt +∇ut ,

T0 given,

(the second and third line can be replaced by vt = ξt−∇(∆−1(∇ ·ξt)), for ξt =∇xc(x,Tt),
which avoids inserting a new variable ut , but introduces nonlocal terms in the equation)
is proven. Also, it is proven that the only limits of Tt for t→∞ can be those rearrange-
ments T of T0 such that ∇xc(x,T) is a gradient. The same is studied also in the more
general case of transport plans instead of transport maps, but we avoid presenting this
advanced case for the sake of simplicity. However, we note that for costs c which do
not satisfy the twist condition, the framework of transport plans cannot be avoided.
Indeed, in general it is not possible to converge to an optimal transport map as t → ∞,
simply because such a map could not exist.

In the very same paper [20] alternative choices of the vector field v are proposed,
in particular “regularized” flows (i.e. applying regularization kernels to the above wt ,
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and in this case global existence is proven). There is also a possibility of a local choice
for the flow: in coordinates, we can take w j = ξ i

i j− ξ
j

ii (superscripts are components
and subscripts are derivations). It can be checked that this choice as well guarantees
that M(Tt) decreases in time.

Even if, as we noted, the method is general for any cost, it is in the case of the
quadratic cost that it has been mainly employed. The idea in this case can be roughly
summarized as “start from an admissible transport map, and then gradientize it” (i.e.
transform it slowly into a gradient).

The equation becomes, for ξt = x−Tt ,
∂tξt −vt +vt ·∇ξt = 0,
vt =

1
f

(
ξt −∇(∆−1(∇ ·ξt))

)
,

ξ0(x) = x−T0(x) given,

From an implementation point of view (see [21]), the above system has been dis-
cretized and solved using an upwind scheme for the transport equation (roughly speak-
ing, a finite difference method where the choice of the left or right-centered derivatives
are made according to the sign of the components of the advecting vector field v), and
standard solvers for the solution of the Laplacian (such as Matlab Poisson solver). The
complexity of each time iteration is of the order of N logN, N being the number of
pixels in the space discretization.

The AHT flow has been used for numerical purposes, with some advantages and
disadvantages. Even if it has been mainly used for the quadratic case, it could be
used for many smooth costs, which makes it a very general approach. Yet, from the
numerical point of view the implementation involves some difficulties, and it has also
the disadvantage of requiring strictly positive densities. Also, its convergence to the
optimal map is not at all proven. This question can be easily understood in the quadratic
case. Beware that we do not mean here rigorous convergence results: the problem is
that the flow is meant to converge to a critical point for the cost M, which means (for
the quadratic case) a transport T which is a gradient map. Nothing guarantees that it is
the gradient of a convex map!

A priori, even the gradient of a concave function (i.e. the worst possible map for
the quadratic cost, see Ex(2)) could be recovered. Since the flow has the property that
M(Tt) is strictly decreasing in time as long as one does not meet a critical point, this
case can be easily excluded (the only possibility is starting from T0 being the gradient
of a concave function, which is easy to avoid). But any other gradient could be found
at the limit.

These issues have been discussed in [87]. It happens that a good idea to improve
the results and enhance the chances of converging to the good transport map, following
[20, 21], is to select a good initial guess T0. Several choices (specific for the quadratic
case) are proposed (including the Dacorogna-Moser transport map, see Box 4.3 in Sec-
tion 4.2.3), but, at least at a first sight, the most suitable one is the Knothe transport (see
Section 2.3). Indeed, with this choice, the initial transport map has triangular Jacobian
matrix, with positive eigenvalues. Let us assume (extra than the previous assumptions)
that ν is absolutely continuous with density g(x) bounded from above and below by
positive constants. As we know that the map Tt satisfies (Tt)# f = g for every t, the
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value of |det(DTt)| can never be 0 (is is bounded from below by inf f/supg). If ev-
erything is smooth, this means that the sign of the determinant is preserved and that
no eigenvalue can ever be zero (this is also underlined in [87]). Unfortunately, the
eigenvalues of DTt are real at t = 0 (if we choose the Knothe map), are real at t = ∞

(since, as a gradient, the Jacobian is symmetric) but nothing prevents the eigenvalues
to become complex and to pass from ]0,+∞[ to ]−∞,0[ without passing through 0
during the evolution! (even if this does not seem likely to happen, because the choice
of v exactly forces Tt to become closer to the set of gradients, and gradients do not like
complex eigenvalues).

A simple case, where there is no ambiguity if everything is smooth, is the 2D case.
We can give a straightforward proposition.

Proposition 6.3. Suppose that (ξt ,vt) is a smooth solution of the AHT system in
the quadratic case, with Tt(x) = x− ξt(x) being a transport map between two given
smooth densities f ,g ∈P(Ω)), where Ω ⊂ R2 is a two-dimensional smooth convex
and bounded domain. Suppose that det(DT0(x)) is positive for every x. Also suppose
that Tt → T∞ in C1(Ω) as t→ ∞ and that the evolution is non-trivial (i.e. there exists t
such that Tt 6= T0). Then T∞ is the gradient of a convex function and is thus optimal.

Proof. From the above considerations we have

M(T0)−M(Tt) =

ˆ t

0
||P[ξt ]||2L2dt. (6.1)

This implies that
´

∞

0 ||P[ξt |]||2L2dt < ∞ and, at least on a sequence tn → ∞, we have
P[ξtn ]→ 0 in L2(Ω). Hence P[ξ∞] = 0 since ξtn → ξ∞ := x−T∞(x) in C1, and hence
ξ∞ and T∞ are gradients. We need to prove that T∞ is the gradient of a convex function,
i.e. that the eigenvalues of DT∞, which is now a symmetric matrix, are both positive
(remember that we are in R2).

We know that t 7→ det(DTt(x)) is continuous in time, positive at t = 0, and cannot
vanish. From C1 convergence, this implies det(DT∞(x)) > 0 for every x. Hence, the
eigenvalues of DT∞(x) have the same sign (for each fixed x).

Let us look now at Tr(DT∞(x)). This is a continuous function of x, and it cannot be
zero. Indeed, if it vanished somewhere, at such a point the two eigenvalues would have
different sign. Hence, the sign of this trace is constant in x. Note that this only works
for t = ∞, as for t ∈]0,∞[ one could a priori have complex eigenvalues.

If we exclude the case where Tr(DT∞(x)) < 0 everywhere we have concluded.
Yet, this case corresponds to T∞ being the gradient of a concave function (remember
again that in dimension two, positive determinant and negative trace imply negative-
definite). And concave function are the worse possible transports for the quadratic case
(see Ex(2)). This is impossible since M(T∞)< M(T0) (except if the curve t 7→ Tt were
constant), from (6.1).

Note that the assumptions on the initial condition of the above theorem are satisfied
both by the Knothe transport and by the Dacorogna-Moser transport map.

Unfortunately, the above proof is really two-dimensional as we characterized pos-
itive symmetric matrices as those which have positive trace and positive determinant.
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Also, in practice it is almost impossible to guarantee the assumptions of the Theorem
above and convergence can only be observed empirically.

Open Problem (convergence of AHT): justify, even assuming smoothness and
very strong convergence, that the AHT flow converges to the optimal map, if initialized
at Knothe and/or Dacorogna-Moser, in dimension higher than two, and prove a rigorous
result with minimal assumption in 2D.

6.3 Numerical solution of Monge-Ampère
As we saw in last section, we can use for numerical purposes the fact that solving the
quadratic optimal transport problem is equivalent to finding a transport map which is
the gradient of a convex function. In the last section, an iterated method was produced
where a sequence of transport maps Tn (it was a continuous flow, but in practice it
is discretized), with the same image measure, were considered, and they were forced
to converge to a gradient. Here the approach is somehow opposite: a sequence of
gradient maps is considered, and the corresponding measures are forced to converge to
the desired target.

More precisely, the idea contained in [218] is the following: consider the simplified
case where the domain Ω =Td is a d-dimensional torus, the source measure ρ is a C0,α

density bounded from below and from above, and the target measure is the uniform
measure with constant density 1; we look for a smooth function ϕ such that D2ϕ ≤ I
(which is the condition for ϕ to be c-concave, with c(x,y) = |[x− y]|2 on the torus, see
Section 1.3.2) and

det(I−D2
ϕ) = ρ.

We stress the fact that, in this periodic setting, it is not possible to look for a convex
function u satisfying det(D2u) = ρ . Actually, periodic convex functions do not exist
(except constant ones)! The only possibility is to stick to the framework of c-concave
functions, without passing to the convexity of x 7→ 1

2 |x|
2−ϕ(x).

If we find such a function ϕ , then T(x) = x−∇ϕ(x) (in the periodic sense) will be
the optimal map between ρ and L d . Note that the choice of a uniform target measure
gives a non-negligible simplification: the correct equation with a generic target measure
would involve a function of x−∇ϕ(x) at the denominator in the right-hand side. This
would make the following analysis much more involved.

The idea of Loeper and Rapetti in [218] is to solve the equation through an iterative
scheme, based on a Newton method.

Box 6.4. – Memo – Newton’s method to solve F(x) = 0

Suppose we seek solutions of the equation F = 0, where F : X→X is a smooth function
from a vector space X into itself. Suppose a solution x̄ exists, with DF(x̄) which is an
invertible linear operator. Given an initial point x0, we can define a recursive sequence in
this way: xk+1 is the only solution of the linearized equation F(xk)+DF(xk)(x−xk)= 0. In
other words, xk+1 = xk−DF(xk)

−1 ·F(xk). This amounts at iterating the map x 7→G(x) :=
x−DF(x)−1 ·F(x). This map is well-defined, and it is a contraction in a neighborhood of
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x̄. The iterations converge to x̄ if the initial point belongs to such a suitable neighborhood.
The order of convergence is quadratic, i.e. |xk+1− x̄| ≤C|xk− x̄|2. This is a consequence
of the fact that the Lipschitz constant of G in a ball B(x̄,R) is proportional to max{|F(x)| :
x ∈ B(x̄,R)} and hence decreases as O(R). To see this fact, just compute

DG = I−DF−1 ·DF +DF−1 ·D2F ·DF−1 ·F = DF−1 ·D2F ·DF−1 ·F.

An alternative, and less “aggressive” method can make use of a step parameter τ > 0,
defining xk+1 = xk− τDF(xk)

−1 ·F(xk). In this case the map G(x) = x− τDF(x)−1 ·F(x)
is a contraction but its contraction factor is of the order of 1− τ , which only gives slower
convergence (but could converge under weaker assumptions).

Here, if we have a guess ϕ and look for a solution ϕ +ψ , the linearization of the
equation reads

det(I−D2
ϕ)−Tr[cof(I−D2

ϕ)D2
ψ] = ρ,

where cof(A) denotes the cofactors matrix of a given square matrix A, satisfying cof(A)·
A = det(A)I.

Box 6.5. – Memo – Linearization of the determinant

It is well-known that det(I+ εB) = 1+ εTr[B]+O(ε2) (this can be easily checked by
expanding the determinant of I+ εB and looking at the terms which are first-order in ε).
This gives the linearization of the determinant in a neighborhood of the identity matrix. If
we look for the linearization of the determinant around another matrix A, and we suppose
A invertible, we have

det(A+ εB) = det(A)det(I+ εA−1B) = det(A)(1+ εTr[A−1B]+O(ε2))

= det(A)+ εTr[cof(A)B]+O(ε2).

By continuity, the determinant and the map A 7→ cof(A) being C∞ functions, this last ex-
pression (avoiding the use of A−1) is also valid for A non-invertible.

The iterative steps of the algorithm proposed in [218] are thus:

• Start with an arbitrary smooth function ϕ0 such that I−D2ϕ0 > 0 and fix a small
value of τ > 0. Typically, one takes ϕ0 = 0.

• At every step n, compute ρn := det(I−D2ϕn).

• Define the matrix Mn(x) := cof(I−D2ϕn). Suppose that we can guarantee that
Mn is positive-definite.
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• Solve Tr[MnD2ψ] = ρn−ρ , which is a second-order linear elliptic equation in
ϕ , on the torus (i.e. with periodic boundary conditions). The solution is unique
up to an additive constant (choose for instance the zero-mean solution) provided
Mn > 0. Call ψn the solution.

• Define ϕn+1 = ϕn + τψn and start again.

From the implementation point of view, the elliptic equation defining ψ , i.e. Tr[MnD2ψ] =
ρn−ρ is solved in [218] via a finite-difference discretization of the second order deriva-
tives. It is worthwhile mentioning that this kind of equation, i.e. Tr[MD2ψ] = f , where
M is the cofactor matrix of an Hessian, can also be expressed in divergence form. In-
deed, they read ∑i, j Mi jψi j = f , but ∑i, j Mi jψi j = ∑i

(
Mi jψ j

)
i since ∑i Mi j

i = 0 for
all j (see Ex(43)). This allows to give a variational structure to this elliptic equa-
tion and solve it via finite-element methods. On the other hand, the condition ρn :=
det(I−D2ϕn) is more naturally interpreted in terms of second-order finite differences.
Let us stress that one of the main difficulties of these equations is exactly the discretiza-
tion of a non-linear operator such as the Monge-Ampère operator (i.e. the determinat
of the Hessian).

The convergence of the algorithm is guaranteed by the following theorem, under
regularity assumptions

Theorem 6.4. Suppose ρ ∈C0,α(Td) is a strictly positive density and that τ is smaller
than a constant c0 depending on || logρ||L∞ and ||ρ||C0,α . Then the above algorithm
provides a sequence ϕn converging in C2 to the solution ϕ of det(I−D2ϕ) = ρ

Proof. The proof is based on a priori bounds derived from both elliptic regularity the-
ory (see [185], for instance) and Caffarelli’s regularity for Monge-Ampère (see Section
1.7.6; for the periodic boundary conditions, see also [128]).

Choosing τ small enough and suitable constants c1 > 0 and C1,C2,C3 large enough,
one can prove by induction the following statement: at every step n, we have I−D2ϕn >
c1I, || log(ρn/ρ)||L∞ ≤ C1, ||ρn− ρ||C0,α ≤ C2 and ||ϕn||C2,α ≤ C3. To do that, note
that we have ||ψn||C2,α ≤ C||ρ − ρn||C0,α from standard elliptic regularity theory (see
Schauder Estimates in Chapter 6 in [185]). We can compute

ρn+1 = det(I−D2
ϕn− τD2

ψn) = ρn− τTr[cof(I−D2
ϕn)D2

ψn]+ rn

= (1− τ)ρn + τρ + rn,

where rn is the second-order rest in the linearization of the determinant, i.e. it in-
volves second derivatives of ϕn and second derivatives of ψn, but is of order 2 in
τD2ψn. Hence, from the algebra properties of the C0,α norm, we have ||rn||C0,α ≤
Cτ2||D2ψn||2C0,α ≤Cτ2||ρn−ρ||2C0,α . Then, from ρn+1−ρ = (1− τ)(ρn−ρ)+ rn we
get

||ρn+1−ρ||C0,α ≤ (1− τ)||ρn−ρ||C0,α +Cτ
2||ρn−ρ||2C0,α ≤ ||ρn−ρ||C0,α (1− τ +Cτ

2).

It is enough to chose τ small enough so that 1− τ +Cτ2 < 1, to go on with the bound
on ||ρn+1−ρ||C0,α . For the L∞ bound, we use again

ρn+1 = (1− τ)ρn + τρ + rn ≤ ((1− τ)eC1 + τ +Cτ
2)ρ.
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Again, for τ small enough and C1 > 0, one can guarantee (1− τ)eC1 + τ +Cτ2 ≤ eC1 .
The lower bound works in the same way.

In order to study the bound on ϕn+1, we write ϕn+1 = ϕn + τψn. Note that, from
I−D2ϕn ≥ c1I and |D2ψn| ≤ C, a suitable choice of τ allows to guarantee the con-
vexity condition I−D2ϕn+1 > 0. Hence, the uniform bound ||ϕn+1||C2,α ≤C3 simply
follows from Caffarelli’s theory, and from the bounds on ρn+1. And, finally, an upper
bound on the Hessian of ϕn+1 also implies a lower bound on I−D2ϕn+1 because of the
determinant condition.

This shows that the bounds are preserved in the iterations, and the convergence
comes from ||ψn||C2,α ≤C||ρ −ρn||C0,α , where the norm ||ρ −ρn||C0,α goes exponen-
tially to 0.

We finish this section by mentioning that, after this first work by Loper and Rapetti,
which indeed provided interesting numerical results, many improvement have occurred.
First, we underline that [280] extended to the case of a non-constant target density (but
still, Lipschitz regularity of the target density was needed). Then, we remark that an-
other strong limitation of [218] is given by its periodic boundary conditions. When
working on different domains than Td the situation is much trickier. It has been suc-
cessfully studied by Benamou, Froese and Oberman in [42, 43], by using a monotone
discretization of the Monge-Ampère operator. Monotonocity allows to prove the exis-
tence of a solution of the discretized problem, and to prove convergence towards the
viscosity solution of the limit Monge-Ampère equation. Finally, [42, 43], also attacked
the problem of the boundary conditions, and of the shape of the domain. With the
approach by viscosity solutions, the authors are able to consider non convex and even
non-connected source domains (hence allowing vanishing densities). They handle the
second boundary value problem writing the target domain as the level set of a convex
function. Yet, we prefer not to enter into details of these recent results, because of their
technical difficulty and of the notions about viscosity solutions that we did not develop
here.

6.4 Discussion

6.4.1 Discrete numerical methods
We strongly used in Chapter 1 the linear and convex structure of the Kantorovich prob-
lem, which is indeed a linear programming problem in infinite dimension. It is natural
to look for methods which exploit this fact, after discretization. Here discretization
simply means replacing µ and ν with two finitely atomic measures µ = ∑

N
i=1 aiδxi and

ν = ∑
M
j=1 b jδy j . For fixed N and M, the choice of “optimal” points xi and y j and of

weights ai,b j so that the approximation is as precise as possible is a delicate matter
that we do not want to discuss here. It is linked to quantization problems for the mea-
sures µ and ν (see [188] for a survey of the theory from a signal processing point of
view, and [74] for a variational asymptotical approach). We note anyway that the diffi-
cult issue is the choice of the points, since once the points are fixed, the natural choice
for the weights is ai = µ(Vi), b j = ν(Wj), where V and W represent the Voronoi cells
of the points (xi)i and (y j) j, respectively (see below).
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Box 6.6. – Good to know! – Voronoi cells

Given a finite family of distinct points (xi)i ⊂ Rd , we define their Voronoi cells as
follows:

Vi = {x ∈ Rd : |x− xi| ≤ |x− x j| for all j}.
These cells are essentially disjoint (only the boundary can be in common: Vi ∩Vi′ = ∂Vi ∩
∂Vi′ ). They are convex polyhedra, possibly unbounded, and the boundary ∂Vi ∩ ∂Vi′ is
orthogonal to the vector xi− xi′ . Each point xi obviously belongs to the corresponding Vi.

Given a finite measure ρ which does not give mass to (d−1)-dimensional sets, a
Voronoi partition is said to be a Centroidal Voronoi Tesselation (CVT) if every point xi is the
barycenter (according to µ) of its cell Vi: xi =

1
µ(Vi)

´
Vi

xdρ(x). Note that, if µ = ∑
N
i=1 aiδxi

is a solution of min{W2(µ,ρ) : #(spt(µ)) ≤ N} (the so-called location problem), then the
points xi are a Centroidal Voronoi Tesselation (see Ex(39)). There is an efficiennt algorith,
called Lloyd Algorithm which finds a CVT and a local minimier of this optimal quantization
problem by iterating a simple construction: “once we have the cells, we move each point to
their barycenter” (see [214]).

Anyway, after discretization, the problem becomes finite-dimensional, and the only
ingredients are a family of costs ci j (real numbers), and some mass constraints ai and
b j. The problem becomes

min

{
∑
i, j

ci jγi j : γi j ≥ 0, ∑
i

γi j = b j, ∑
j

γi j = ai

}
. (6.2)

This is a classical linear problem in the standard form min{c ·x : x≥ 0,Cx = b} (where
x≥ 0 means xi≥ 0 for every i). It can be solved for instance with the simplex algorithm.

Box 6.7. – Good to know! – Simplex algorithm

If c ∈ Rd ,b ∈ Rk,C ∈ Mk×n(R) are given, the minimum in min{c · x : x ∈ Rd , x ≥
0,Cx = b}, if it exists, is realized by a vertex of the polyhedron K = {x ∈ (R+)

N ,Cx = b}.
A vertex is defined as an extremal point of K (i.e. a point x which cannot be written as
x = (y+ z)/2 with y,z ∈ K and y 6= z. In the case of polyhedra, vertices are characterized by
the property that the columns Ci of the matrix C corresponding to the indices i with xi > 0
are linearly independent. Every polyhedron has a finite number of vertices.

The simplex algorithm, invented by G. B Dantzig in 1947, considers all possible basis
of Rk (or of the range of C) composed of columns Ci. In this way all vertices are taken into
account (one vertex x can correspond to several bases: if the columns Ci with xi > 0 are
less than k, then they can be completed at will). The algorithms moves from one basis to
another, choosing the next one in a clever way. The choice of the order is based on local
improvements of the objective function c · x. In this way it can find the optimal vertex (or
find that the problem has no solution, if K is unbounded and c ·x is not bounded from below
on K) without visiting all the vertices.
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See [136] and [137] for an interesting history of how linear programming began. Cu-
riously, the example provided by Dantzig to explain how linear programming opened new
horizons in optimization is exactly a transport problem (maximal productivity assignment).

Among the good news with this kind of approach there is the fact that, at least in
the assignment problem (i.e. the case N = M and ai = b j = 1/N), one can prove that
the vertices of the convex set Π(µ,ν) are exactly those γ induced by a transport map
(which is, in this case, a permutation of {1, . . . ,N}; see Ex(40)).

Among the bad news, there is the computational time of the algorithm. Even it
if is much cheaper than visiting all the vertices of Π(µ,ν), it has in general a huge
computational cost4.

To overcome this difficulty, one possibility is to exploit the particular form of this
linear programming problem, due to the particular features of the matrix C, which only
has entries with values 0 and 1. For matrices of this kind there is an interpretation in
terms of optimization problems on graphs or networks. And in this specific case this is
quite easy to understand: the optimal transport from N atoms to M atoms (even when
N 6= M and their weights are different) may be seen as a network with N +M nodes
(the source and target points) and NM edges (a complete bipartite graph, hence), and
the unknown is the flow on each edge, satisfying compatibility with the mass which is
imposed at every node. The optimization involves a linear function of these flows. For
linear programming problems of this form, an alternative to the simplex algorithm is
the so-called network simplex, for which we refer to [2] and to its historical reference,
[170]. These methods are widely used, even if they also lack worst-case polynomial
bounds on their complexity.

Other methods have also been found, also specific to the transport problem and
based on duality. Among the most well-known there is the so-called Hungarian Algo-
rithm ([205]), which is polynomial in time, and the Auction algorithm that we describe
below.

Auction algorithm This algorithm is also connected with the dual problem, but is
not based on a sequence of improvements of the dual objective function, but on a seek
for the equilibrium. Due to its connections with the economic considerations of Section
1.7.3, we give a quite detailed description of it (see also [55]).

We specialize to the assignment problem, i.e. the case where the weights ai and b j
are all equal. We can imagine that we have N buyers, denoted by the index i, and N
goods to be bought, denoted by j. We look for an assignment j = σ(i),σ ∈ SN which
maximizes5

∑i uiσ(i). The values ui j are the utilities of buyer i when he buys item j.
As in Section 1.7.3, we look at a price system p = (p j) j. Given a price system p and

4We sometimes hear that the simplex method is exponentia: this is a worst-case estimate. Also, other
solvers for linear programming problems exist, for instance interior point methods, and their computational
cost can be way better than exponential. However, in practice they are all too expensive.

5We switch back to the language, of economists, who prefer to maximize utility rather than minimizing
costs.
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an assignment σ , we say that it is an equilibrium if for every i we have uiσ(i)− pi =
max j ui j− p j. The buyers i satisfying this condition are said to be “happy”. This only
corresponds to writing the equilibrium condition that we presented in Section 1.7.3 in
terms of a coupling γ induced by a permutation. It is well-known that if (p,σ) is an
equilibrium, then σ is an optimal assignment (and p is optimal in the dual problem).

Let us start from an arbitrary pair (p0,σ0).
At every step, we have a pair (pn,σn). If it is an equilibrium then we stop the

algorithm. Otherwise, pick any i∗ among those i such that uiσ(i)− pi < max j ui j− p j.
The selected buyer i∗ implements two actions:

1. he chooses one good j∗ realizing the maximum in max j ui∗ j− p j and exchanges
his own good σn(i) with the buyer σ−1

n ( j∗) who was originally assigned to j∗

2. he increases the price of j∗ to a new value which is such that he is indifferent
between j∗ and the second best object in max j ui∗ j− p j.

Thus, the new price of j∗ is P = pn
j∗ +max j(ui∗ j− pn

j)−max j 6= j∗(ui∗ j− pn
j)≥ p j∗ .

The new price system pn+1 is defined by setting pn+1
j = pn

j for j 6= j∗ and pn+1
j∗ =P.

The new permutation σn+1 is obtained by composing with the transposition which
exchanges j∗ and σn(i∗).

Unfortunately, the above algorithm can loop forever, because of possible ex-aequo
in max j ui∗ j − p j. Indeed, in such a case the prices can stay constant, and a certain
subset of buyers could go on exchanging among them the same set of goods. To bypass
this problem, it is useful to introduce a tolerance parameter ε > 0. We define a buyer i
to be ε-happy whenever uiσ(i)− pi > max j(ui j− p j)−ε . We look now for a pair (p,σ)
where all buyers are ε-happy. The algorithm evolves as before, selecting a buyer i∗ who
is not ε-happy, letting him exchange a good with σ−1

n ( j∗), but the rule for price increase
changes. Indeed, we can now set P = pn

j∗ +max j(ui∗ j− pn
j)−max j 6= j∗(ui∗ j− pn

j) ≥
p j∗ + ε . This price is the maximal one that we can give to item j∗ so that buyer i∗

is ε-happy if he purchases j∗ at such a price. The advantage is that we have now
P≥ pn( j∗)+ ε and there is a minimal increment.

It is easy to see an analogy with auction systems, and that this ε-system imposes a
minimal bid.

Now, we can see that every time that an item is chosen by a buyer and receives a
bid, then, from that moment on, whoever owns such an item will be ε-happy. Indeed,
at the very moment when a buyer gets an object by a bid, he is ε-happy, and the price of
such an object cannot increase as long as he owns it, as well as the prices of the others
cannot decrease. Hence, the algorithm will stop as soon as all items will have received
at least a bid each. Now, suppose that there is an item which has received no bids: his
price is constant, while the prices of the other increase. It is not difficult to prove that
the number of possible iterations going on in the presence of an object which has never
received a bid must be bounded (as soon as there is one unbidded good, all the others
become too expensive after a certain number of received bids, and when they become
too expensive they receive no more bids). This means that the algorithm stops after a
finite number of steps.

Once we have a pair (p,σ) which is a equilibrium in the sense that every buyer is
ε-happy, than we can prove that the cost ∑i uiσ(i) is almost optimal among permutations
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σ̃ . Indeed, take any other permutation σ̃ . We have

uiσ(i)− pi ≥max
j
(ui j− p j)− ε ≥ uiσ̃(i)− pσ̃(i)− ε.

Summing over i, and using ∑i pi = ∑i pσ̃(i), we get

∑
i

uiσ(i) ≥∑
i

uiσ̃(i)−Nε.

This proves that σ is optimal, up to an error of Nε . By the way, if the utilities ui j are
integer numbers and Nε < 1, then σ must actually be optimal, with no error.

A rough estimate of the number of iterations which are necessary to conclude the
algorithm is obtained in the following way: set C = max |ui j| and start with p0 = 0.
Till there is at least an unbidded good, no other good can receive more than C/ε bids.
This means that the number of iterations is at most of the order of NC/ε . In the case of
integer utilities, an exact solution is found in O(CN2) iterations6.

We remark that this cost can be indeed very high because of the presence of the
factor C. Indeed, if the costs are rational numbers between 0 and 1 with k digits, if
we want to make them integers we could be lead to multiply up to C = 10k. A way
to circumvent this problem is to make an iterative ε-scaling procedure. We first find
an assignement which is Nε-optimal for a certain value of ε , then we divide ε by two,
and we go on. This procedure, introduced in [57], is also detailed in [234]. We refer
to these notes, and to [56] for considerations about possible accelerated variants and
computational costs of this method, very efficient in many cases. We also mention
that in Section 8.4.4 we will briefly describe a cosmological model which has been
numerically attacked thanks to the auction algorithm.

Entropic regularization and iterated projections We would like to discuss another,
very recent, but simple to explain, approach to the discrete linear programming version
of the optimal transport problem. The starting point is the following variant of the
linear problem (6.2): fix ε > 0 and look at

min

{
∑
i, j
(ci jγi j + εγi j log(γi j)) : γi j ≥ 0, ∑

i
γi j = b j, ∑

j
γi j = ai

}
. (6.3)

It is clear that, for ε → 0, the above minimization problem converges (in the sense of
Γ-convergence, see Box 4.6) to the minimization in (6.2). We try to describe now why
this approximated problem is easier to handle.

First, we rewrite the objective function using

ci jγi j + εγi j log(γi j) = εγi j log
(

γi j

ηi j

)
∑
i, j
(ci jγi j + εγi j log(γi j)) = εKL(γ|η),

6Observe that this assumptionon the values ui j being integer, corresponding to integer costs on each
edge in the network interpretation, appears quite often and simplifies the complexity of other algorithms as
well. For instance, in [245] a polynomial bound on the cost of a network simplex algorithm is given under
this assumption, obtaining O(min(kh log(kC),kh2 logk) for a network with k nodes, h edges, and maximal
cost equal to C.
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where ηi j = e−ci j/ε and KL denotes the so-called Kullback-Leibler divergence. This is
not at all a divergence in the sense of differential calculus, but rather a sort of distance
based on the relative entropy:

KL(γ|η) := ∑
i, j

f
(

γi j

ηi j

)
ηi j for f (t) =

{
t log t if t ≥ 0,
+∞ if t < 0.

Hence, the above minimization problem reads as the projection, for the Kullback-
Leibler divergence, of the point η ∈RN×N on the set of constraints C =Cx∩Cy, where
Cx = {γ ∈ RN×N : ∑ j γi j = ai} and Cy = {γ ∈ RN×N : ∑i γi j = b j}. It is important to
notice that the positivity constraint on γ has disappeared, because it is included in the
definition of the entropy function f , which acts as a sort of barrier for this constraint (it
is not a true barrier in the usual sense because it does not tend to infinity as the variable
tends to 0; yet, it is set to infinity on negative numbers, and the derivative tends to
infinity at 0).

The Kullback-Leibler divergence is not a distance, but shares some of the properties
of distances. In particular it can be proven that the projection onto the intersection of
two linear subspaces such as Cx and Cy can be obtained by alternate projections, i.e.
defining γ2k+1 = Pro jCx(γ2k) and γ2k+2 = Pro jCy(γ2k+1), with γ0 = η , and looking at
the limit as k→ ∞.

The problem becomes that of the projection on one on the two subspaces, but this
happens to be doable explicitly. Given a certain γ , we want to solve (for instance), the
minimization problem

min

{
∑
i, j

γi j log

(
γi j

γ i j

)
: ∑

j
γi j = ai

}
.

It can be seen that the problem is separable according to the variable i (i.e. that every
i can be treated separately, and the optimality condition gives log(γi j) = log(γ i j)+λi,
i.e. γi j = piγ i j, for some constants pi which are determined thanks to the constraint
(i.e. pi = ai/(∑ j γ i j)).

Analogously, it can be proven that the projection onto Cy has the form γi j = q jγ i j,
for q j = b j/(∑i γ i j)).

As a consequence, one can solve the approximated problem by means of a sequence
of iterations of the following algorithm: start from γ0 = η , define γ

2k+1
i j = piγ

2k
i j with

pi = ai/(∑ j γ2k
i j ), and then γ

2k+2
i j = q jγ

2k+1
i j with q j = b j/(∑i γ

2k+1
i j ). The limit as k→∞

provides the desired solution of the “regularized” problem (the regularization being
given by the addition of the entropy).

This idea, called iterative proportional fitting procedure (IPFP), can be traced back
to [143] and even [282], and it has been recently applied to many optimal transport
problems in [40]. It shows that the choice of the entropic regularization has several
advantages:

• it allows to get rid of the positivity constraint (which would not be the case for a
quadratic regularization);
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Figure 6.2: The optimal γ in a 1D transport problem (the starting measure is a centered
Gaussian, the arrival measure is composed of two bumps), via IPFP methods with
decreasing values of ε . The image on the right gives a quite precise description of the
optimal (monotone) map. Pictures kindly provided by L. Nenna.

• it allows to compute explicitly the projection at every step, as soon as we only
project on one subspace Cx or Cy only;

• it is not too costly in terms of memory storage, since at every step the current γ2k

is of the form γ2k
i j = ηi j piq j (cumulating the product of the coefficients pi and q j

appearing at every step), which allows to stock 2N data instead of N2;

• it is not too costly at every step, as it only requires O(N) operations;

• it can be easily parallelized, due to the separable structure of each step;

• it can be adapted to multi-marginal problems and other linear problems.

It is also possible to deduce, from the limit value of the coefficients p and q, the Kan-
torovich potentials ϕ and ψ , but we leave it as an exercise (see Ex(42)).

6.4.2 Semidiscrete numerical methods
After the study of two discrete measures, the case of one discrete measure and one
continuous deserve a short discussion. We are speaking of the case where µ = f (x)dx
has a density and ν = ∑

N
j=1 b jδy j is finitely atomic.

The main ideas behind the methods that are used rely on the dual problem, in the
following formulation

max

{
F(ψ) = ∑

j
ψ jb j +

ˆ
Ω

ψ
c(x) f (x)dx

}
,

where the numbers ψ j represent the values of the function ψ at the points y j and ψc is
the c-transform of ψ . The considerations in Chapter 1 explain why solving this problem
gives information on the primal problem min{

´
cdγ : γ ∈Π(µ,ν)}. In particular, once

we find the optimal function ψ , the set of points x satisfying ψ j +ψc(x) = c(x,y j) will
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provide the set of points transported onto the target point y j. We note that ψc(x) =
c(x,y j)−ψ j exactly means that c(x,y j)−ψ j ≤ c(x,y j′)−ψ j′ for all j′. This gives
rise to the study of some sorts of Voronoi cells, whose definition also involves some
scalar coefficients ψ j. We will analyze these cells in the simpler case where c(x,y) =
1
2 |x− y|2. In this case we define

Vψ( j) =
{

x :
1
2
|x− y j|2−ψ j ≤

1
2
|x− y j′ |2−ψ j′ for all j′

}
.

By expanding the squares we see that each Vψ( j) is defined by N−1 linear inequalities
of the form x · (y j′ − y j)≤ a( j, j′) := ψ j−ψ j′ +

1
2 |y j′ |2− 1

2 |y j|2 and is hence a convex
polyhedron. These cells are called power cells. They coincide with the Voronoi cells
of the points y j whenever all the values ψ j are equal.

The problem consists in finding values ψ j such that the masses
´

Vψ ( j) f (x)dx equal
the prescribed values b j. This is indeed equivalent to maximizing the quantity F(ψ).
The maximization of F is a finite-dimensional issue, since (thanks to ν being finitely
atomic) the only values of ψ which are relevant are those taken at the points y j. Hence,
we can consider ψ ∈ RN , and look at the derivatives of F .

First, we note that F is concave in ψ . Indeed, the first part of F is linear: ψ 7→
∑ j ψ jb j. Then, we take the values ψc(x) = inf j c(x,y j)−ψ j; these values are infima of
linear functions of ψ , and thus are concave. They are weighted with a positive density f
and then integrated, the result is a concave function of ψ . Let us compute the derivative
of F with respect to one variable ψ j: from

∂ψc(x)
∂ψ j

=


−1 if c(x,y j)−ψ j < c(x,y j′)−ψ j′ for all j′ 6= j,
0 if c(x,y j)−ψ j > ψc(x),
not defined if c(x,y j)−ψ j = ψc(x) = c(x,y j′)−ψ j′ for some j′ 6= j,

and from the fact that the last of these three cases is negligible (at least in the case
c(x,y) = |x− y|2 where the equality case reduces to a subset of an hyperplane), we
deduce that F is indeed differentiable everywhere, and7

∂F
∂ψ j

= b j−
ˆ

Vψ ( j)
f (x)dx.

This shows that the maximization of F is equivalent to b j =
´

Vψ ( j) f (x)dx, and also
allows to look for the maximum of F via gradient methods. To this aim, it is also useful
to check upper bounds on the second derivatives of F . We restrict again our attention
to the case c(x,y) = 1

2 |x− y|2. We note that moving the value of the coordinates of ψ

from ψ j to ψ j+h j makes all the cells Vψ( j′) change, but only by changing the constants
a( j, j′) of a value h j′ − h j. This means that the hyperplanes defining their boundaries
move of a distance of the order of |h|

|y j−y j′ |
. If the points y j are fixed and distinct, the

7The computation of the gradient, and its continuity, could have been simplified by looking at the sub-
differential, see [25]
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measure of the symmetric difference Vψ( j′)∆Wψ+h( j′) is bounded by C|h|. If f is L∞,
then one obtains ∣∣∣∣ ∂F

∂ψ j
(ψ)− ∂F

∂ψ j
(ψ +h)

∣∣∣∣≤C|h|, (6.4)

and F ∈C1,1.

Box 6.8. – Memo – Gradient algorithm

If F : RN → R is a differentiable convex function, an easy algorithm to look for the
minimum of F is the following: take x0 ∈ RN and τ > 0 a fixed size, and define

xk+1 = xk− τ∇F(xk).

If F is such that αI≤D2F(x)≤ LI for every x and some α,L > 0, then the above algo-
rithm converges exponentially whenever τ < 2α/L2. More precisely, F is strictly convex
and has a unique minimizer x̄, and we have |xk− x̄| ≤Cβ k, where β depends on τ,α,L and
β < 1 if τ ∈]0,2α/L2[. The convergence F(xk)−minF is also exponential.

If D2F is bounded from above but not from below (i.e. F is smooth but not enough
convex), but admits a minimizer x̄, then the rate of convergence is much worse: indeed, one
can only prove F(xk)−F(x̄)≤C/k, as soon as τM < 1.

Many texts present a wide introduction to gradient methods in convex optimization,
see for instance [65] for more details. Variants where the step size τ varies with k, both in
prescribed and optimized manners, also exist.

As a final point, note that the above algorithm also corresponds to an explicit Euler
scheme in the discretization of the gradient flow of F (see the Memo Box 8.1).

Then, the practical implementation of a gradient algorithm of this kind depends on
how one can practically compute the power cells Vψ( j) and the integral of the density
f on them. This is a matter of the so-called computational geometry. We do not spend
word on this very delicate issue, but refer for instance to the recent papers [233, 210]
for a detailed discussion. The original implementation of these methods is proposed
in [233], and the implementation has been improved in [210], where and spectacular
numerical simulations 8 of optimal transport between geometric shapes are also pre-
sented. Some pictures are presented here below in Figures 6.4.2 and 6.4.2.

Due to the very good numerical results, that we present through figures 6.4.2 and
6.4.2, we prefer to spend some extra words on the most efficient methods to be used in
this semi-discrete setting.

Indeed, even if the description of the algorithm was easier in the case of a gradient
algorithm, the convergence is much quicker if one uses instead a Newton approach.
Newton’s method (see Box 6.4 in Section 6.3) is suitable to find zeros of a vector
function from RN to RN , which is in this case the function associating to a dual potential
ψ = (ψi)i ∈ RN the values bi−

´
Vψ (i) f (x)dx = ∂F/∂ψi. In order to be able to use the

Newton method, one needs to be able to compute their derivatives, which are indeed
the entries of the Hessian matrix of F . One also needs to justify that this Hessian

8The pictures in the next pages have been kindly provided by B. Lévy and are produced with the same
algorithms as in [210].
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Figure 6.3: W2 geodesic between two different stars in 3D, computed via semi-discrete
optimal transport on a simplex triangulation. Once obtained the images of every vertex
xi of the triangulation, linear interpolation between each xi and T(xi) is computed. Note
the topology change and the singularities of the optimal map on every branch of the
star.

matrix is non-singular, and provide lower bounds on its eigenvalues. This corresponds
to uniform convexity of F .

Moreover, we know that the Newton method is only efficient when we are able to
choose a suitable inizialisation for the algorithm, since it only converges starting from
a certain neighborhood. This is efficiently adressed in [233], where the problem is
considered with a multi-resolution point of view. We associate to the family of points y j
a number of smaller families, each obtained from the previous one via a Lloyd algorith
and dividing the number of points by a fixed ratio. In this way there is a correspondence
such that every point in a family has a unique image in the next one (which is smaller).
We start from the computation of a potential ψ for the smallest family, which is easy to
do. Then, at every step, the potential ψ computed for the i-th family is used to build an
initialisation for the Newton method of the next step, the one for the (i−1)-th family
of points. This guarantees that we are always sufficiently close to the minimizer that
we look for, and that the algorithm coverges in a very small number of iterations. In
practice, the implementations of [210] can handle one million points in some minutes.

We come back now to the justification of uniform convexity, which is required to
apply the Newton procedure. Actually, the function F is far from being strictly convex:
indeed, it does not change if one adds a same constant to all the ψi. Yet, up to this
invariance, we can expect it to be strictly convex. In order to do that, one needs to fix a
value ψi0 = 0, and to look at the behavior w.r.t. ψi for i 6= i0.

How to compute the second derivatives of F? by improving the computations lead-
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Figure 6.4: W2 geodesic between the uniform measure on the shapes of an “armadillo”
and of a sphere (discretized with up to a million of Dirac masses).

ing to (6.4), if f is a continuous density, then one obtains

∂ 2F
∂ψ j∂ψ j

(ψ) =− 1
|yi− y j|

ˆ
Γi j

f (x)dH d−1(x), for i 6= j,

where Γi j = ∂Vψ(i)∩∂Vψ( j) is the common boundary (if any) of the two cells corre-
sponding to the indices i and j (which is (d−1)-dimensional polyhedron). For the pure
derivatives, one has

∂ 2F
∂ 2ψi

(ψ) = ∑
j 6=i

1
|yi− y j|

ˆ
Γi j

f (x)dH d−1(x) =−∑
j 6=i

∂ 2F
∂ψ j∂ψ j

(ψ).

Note that in these sums we also keep the index i0. This allows to write a Hessian in
N variables which is singular since the sum of every line is 0. Then, we withdraw the
line and column corresponding to the index i0, and we have a square (N−1)× (N−1)
matrix M. In order to check inversibility of M, we use the following lemma.

Lemma 6.5. Any matrix M ∈Mk×k satisfying the following properties is invertible.

(H1) for all i, we have Mi,i ≥ ∑ j 6=i |Mi, j|,

(H2) there exists i such that Mi,i > ∑ j 6=i |Mi, j|,

(H3) for any pair (i, j) there is a sequence i1, i2, . . . , ik with i1 = i, ik = j satisfying
Mih,ih+1 6= 0.
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Proof. Let x∈Ker(M) and let i0 be an index such that |xi| is maximal. We may suppose
for simplicity that xi0 is positive. Then we have

0 = Mi0,i0xi0−∑
j 6=i0

Mi0, jx j ≥Mi0,i0xi0−∑
j 6=i0

|Mi0, j|xi0 = xi0

(
Mi0,i0−∑

j 6=i0

|Mi0, j|

)
≥ 0.

This implies that all inequalities are equalities and in particular x j = xi0 whenever
Mi0, j 6= 0. Hence, the entries of x on all the indices which are “neighbors” of i0 equal
xi0 (and they are maximal as well). This allows to repeat the argument replacing i0 with
another maximizing index j and so on. . . since any index is connected by a chain of
neighbors to i0, we get that all the entries are equal. But this implies that the vector that
we selected in the kernel must be a multiple of the vector (1,1, . . . ,1). Yet, this vector
is not in the kernel since the sum of the elements on each line is not zero for all lines,
by assumption (H2). This proves that M is invertible.

The above lemma can be applied to the Hessian of F under some reasonable as-
sumptions (for instance, we should require that the support of the density f is arcwise
connected).

This guarantees that the Hessian of F is a strictly positive definite matrix (on the
space RN−1 of potentials with fixed ψi0 = 0) at every point. In order to apply a New-
ton’s method one should also bound from below its eigenvalues. This is more delicate,
and we refer to [114] both for a counterexample under the three assumptions of the
above Lemma, which are not enough for such a bound, and for a proof in the specific
case where the matrix M comes from a partition into power cells.

Moreover, as we are dealing with the arguments of [114], let us underline another
semi-discrete method, described in the same paper. The idea of the method comes from
the considerations of our Section 2.4 about Knothe transport. Indeed, as we proved
that the Knothe map is the limit of the optimal transport maps for degenerate quadratic
costs corresponding to a matrix diag(1,ε,ε2 . . . ,εd−1), we can start from such a map
(Knothe) and then let ε vary. The Knothe map is easy to compute, and one can find
the cells corresponding to it9. Since for the Knothe map the most important coordinate
is the last one, these cells are horizontal strips with prescribed volume. Note that
we need to suppose that they have different xd components for the method to work.
After the computation of the initial condition, one runs an ODE in dimension N−1 (N
being the number of atoms at the arrival), and finds the evolution of the Kantorovich
potential ψ(ε). The computation to prove that the ODE is well-posed are similar to
the ones above and allow to conclude that the evolution fits into the standard existence,
uniqueness, stability and approximation theory for Cauchy problems with Lipschitz

9This is the semidiscrete method coming from this idea, implemented in [114]. There is also a continu-
ous counterpart, i.e. a PDE on the Kantorovich potentials ψε . It has been studied from the theoretical point
of view in [67], where Bonnotte proved a non-trivial well-posedness result, based on the application of the
Nash-Moser implicit function theorem around ε = 0 (once we are on ε > 0 the equation is more regular).
Later, the same author also started numerical implementations of the time-discretization of this equation in
[66]. Note that his continuous method recalls in some aspects both the AHT flow described in Section 6.2
(as it starts from the Knothe map, is continuous in time but discretized for numerical purposes, and evolves
by imposing prescribed image measure at every time) and the LR Newton’s iterations of Section 6.3 (as the
underlying PDE is based on a linearization of the Monge-Ampère equation).
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Figure 6.5: Ten sample points: evolution of the tesselation for ε = 0 to ε = 1 (from top
left to bottom right). Picture taken from the preliminary studies leading to [114].

vector fields. Hence, one can apply a time-discretization in the form of an explicit
Euler scheme to approximate the solution. Observing the evolution of the potentials
ψε as ε runs from 0 to 1 we can also compute the corresponding cells, which move
from rectangular strips to convex polyhedral power cells.

We show in Figure 6.5 a simple sequence of cells obtained with the above method.



Chapter 7

Functionals on the space of
probabilities

We consider in this chapter various classes of functionals on the space P(Ω), which
can be of interest in many variational problems, and are natural in many modeling
issues. Indeed, in several applied models, we can face minimization problems where
the unknown to be determined is the distribution of a certain amount of mass, and the
criteria involve one or more of the following functionals.

• The integral of a given function (potential energy)

V (µ) :=
ˆ

Ω

V dµ.

• The double integral of a function on Ω×Ω according to the tensor product µ⊗µ

(interaction energy)

W (µ) :=
ˆ

Ω×Ω

W (x,y)dµ(x) dµ(y).

• The Wasserstein distance Wp (or a function of it) from a fixed measure ν ; for
simplicity, we consider rather the p-th power of Wp:

µ 7→W p
p (µ,ν).

More generally, we will also consider transport cost Tc(µ,ν) defined as usual as
min{

´
c(x,y) dγ, ,γ ∈Π(µ,ν)}, for general costs c(x,y).

• The norm in a dual functional space: given a Banach space of functions on Ω,
we take

||µ||X ′ := sup
ϕ∈X ,||ϕ||≤1

ˆ
ϕ dµ = sup

ϕ∈X \{0}

´
ϕ dµ

||ϕ||
.

227
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• The integral of a function of the density

F (µ) :=

{´
Ω

f (ρ(x))dx if µ = ρ · dx,
+∞ otherwise .

• The sum of a function of the masses of the atoms

G (µ) :=

{
∑i g(ai) if µ = ∑i aiδxi ,

+∞ if µ is not purely atomic.

The scope of this chapter is to study some properties of these functionals. The
first questions that we analyze are classical variational issues (semi-continuity, convex-
ity, first variation. . . ). Then, we also introduce and analyze a new notion, the notion
of geodesic convexity. This is a natural concept in the analysis on metric spaces: is
a certain functional convex along geodesics of the metric space? In the case of the
Wasserstein spaces, and in particular of W2, this concept, introduced by McCann in
[229], is called displacement convexity. It turns out to be quite different than usual
convexity, but very useful in many cases.

7.1 semi-continuity
Since the main goal is to use these functionals in variational models, in order to be
able to minimize them, we first give some semi-continuity criteria. We will consider
semi-continuity or continuity of these functionals with respect to weak convergence
(meaning as usual the duality with Cb functions). We start from the most simple func-
tionals.

7.1.1 Potential & interaction energies, transport costs, dual norms
We start this review from the easiest case: the potential energy.

Proposition 7.1. If V ∈Cb(Ω) then V is continuous for the weak convergence of prob-
ability measures. If V is l.s.c. and bounded from below than V is semi-continuous.
Moreover, semi-continuity of V (respectively, continuity) is necessary for the semi-
continuity (continuity) of V .

Proof. The continuity of µ 7→
´

V dµ for V ∈ Cb is straightforward by definition of
weak convergence. If V is l.s.c. and bounded from below, we know that there is
a sequence of Lipschitz and bounded functions Vk increasingly converging to V (see
Box 1.5). Then, by monotone convergence, we infer that V (µ) = limk

´
Vk dµ =

supk
´

Vk dµ . This allows to see V as a supremum of continuous functionals, and hence
it is l.s.c.

The necessity part is straightforward if one considers sequences of points xk → x
and the associated Dirac masses. Since δxk ⇀ δx then continuity of V implies V (xk)→
V (x) and semi-continuity implies liminfk V (xk)≥V (x).
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We pass now to the case of the interaction functional W .

Proposition 7.2. If W ∈Cb(Ω) then W is continuous for the weak convergence of prob-
ability measures. If W is l.s.c. and bounded from below than W is semi-continuous.

This result is an easy consequence of the following lemma (that we prove for sub-
sets of Rd but could be adapted to general locally compact spaces).

Lemma 7.3. Let Ω be a closed subset of Rd , µk,µ ∈P(Ω) and µk ⇀ µ then

µk⊗µk ⇀ µ⊗µ

as probabilities on Ω×Ω.

Proof. We want to prove that for any function φ ∈Cb(Ω×Ω) we have the convergence´
φ dµk⊗µk→

´
φ dµ⊗µ . First consider the case φ(x,y) = χ(x)ζ (y). In this case

ˆ
Ω×Ω

φ dµk⊗µk =

ˆ
Ω

χ dµk ·
ˆ

Ω

ζ dµk→
ˆ

Ω

χ dµ ·
ˆ

Ω

ζ dµ =

ˆ
Ω×Ω

φ dµ⊗µ.

This proves that the desired convergence is true for all functions φ ∈A (Ω), where the
class A (Ω) is given by

A (Ω) =

{
φ(x,y) =

N

∑
i=1

χi(x)ζi(y), N ∈ N, χi,ζi ∈Cb(Ω)

}
.

The class A is an algebra of functions which contains the constants and separates
the points of Ω×Ω. Hence, by Stone-Weierstrass theorem (see Box 2.3 in Section
3.1), if Ω×Ω is compact (i.e. if Ω is compact), it is dense in C(Ω×Ω). It is a general
fact that weak-* convergence in a dual space may be tested on a dense set, provided
that the sequence we are considering is bounded. Here weak convergence corresponds
in the compact case to the weak-* convergence in the duality with C(Ω×Ω) and we
are considering a sequence of probability measures, which is bounded. This proves
µk⊗µk ⇀ µ⊗µ in the compact case.

If Ω is not compact, one can use Stone-Weierstrass theorem to prove that the con-
vergence holds against any compactly supported function. The conclusion follows if
we recall that a sequence of probability measures weakly converges (in the duality
with Cb) if and only if it weakly-* converges in the duality with Cc. This was proven
in Lemma 5.8.

It is worthwhile to note that besides these two classes of functionals one could
consider higher order interaction energies defined through

µ 7→
ˆ

Ω

ˆ
Ω

. . .

ˆ
Ω

W (x1,x2, . . . ,xn)dµ(x1)dµ(x2) . . . dµ(xn).

In particular the set of all these functional could be considered as “polynomials” on the
space P(Ω) and some analysis of the space of functions over measures are based on
this very class of functionals1.

We pass now to some different functionals.
1This is an approach used by P.-L. Lions in his lectures at Collège de France, see [212].
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Proposition 7.4. For any p <+∞, the Wasserstein distance Wp(·,ν) to any fixed mea-
sure ν ∈P(Ω) is continuous w.r.t. weak convergence provided Ω is compact. If Ω

is not compact and ν ∈Pp(Ω), then Wp(·,ν) is well-defined and finite-valued over
Pp(Ω) and it is only l.s.c.

More generally, for any continuous cost c : Ω×Ω→ R the functional Tc(·,ν) is
continuous if Ω is compact. Without compactness on Ω, if c is l.s.c. and bounded from
below, then Tc(·,ν) is l.s.c.

Proof. We start from the compact case. For Wasserstein distances, continuity is straight-
forward since the convergence for the distance Wp exactly metrizes the weak conver-
gence and every distance is continuous w.r.t. itself (as a consequence of triangle in-
equality). For general transport costs Tc, just apply Theorem 1.51.

For the non-compact case, we give a unified proof. Consider a sequence µk ⇀ µ

and a sequence of optimal transport plans γk ∈Π(µk,ν) for a cost c, l.s.c. and bounded
from below (which includes the case c(x,y) = |x− y|p). Since µk is tight, γk is also
tight. First extract a subsequence such that limh Tc(µkh ,ν) = liminfk Tc(µk,ν) and
then extract once more so as to guarantee γkh ⇀ γ for some γ . We know that image
measures through continuous functions pass to the limit, so that we obtain γ ∈Π(µ,ν).
Hence,

Tc(µ,ν)≤
ˆ

c(x,y)dγ ≤ liminf
h

ˆ
c(x,y)dγkh = lim

h
Tc(µkh ,ν) = liminf

k
Tc(µk,ν).

Here the first inequality comes from the fact that γ is admissible but maybe not optimal.
The second from semi-continuity of the integral of c (Proposition 7.1).

Finally, here is another class of functionals with some interesting examples.

Proposition 7.5. Let X be a Banach space of functions over Ω such that X ∩Cb(Ω)
is dense in X . Then

µ 7→ ||µ||X ′ := sup
ϕ∈X ,||ϕ||≤1

ˆ
ϕ dµ = sup

ϕ∈X \{0}

´
ϕ dµ

||ϕ||

(a functional which is set to +∞ if µ /∈X ′) is l.s.c. for the weak convergence.

Proof. This fact is straightforward if one notes that we can write

||µ||X ′ = sup
ϕ∈Cb(Ω)∩X ,||ϕ||≤1

ˆ
ϕ dµ,

which expresses ||µ||X ′ as a supremum of linear functionals, continuous for the weak
convergence.

It is interesting to see two examples.

Proposition 7.6. Suppose X = H1
0 (Ω) (where Ω⊂ Rd is a smooth compact domain,

and we endow this space with the L2 norm of the gradient) and let, for every µ ∈
H−1(Ω), ϕµ be the solution of {

−∆ϕ = µ in Ω,

ϕ = 0 on ∂Ω
.
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Then ||µ||2H−1 =
´

ϕµ dµ =
´ ´

G(x,y)dµ(x)dµ(y), where G(x, ·) is the Green function
of the Dirichlet Laplacian, defined as the solution of{

−∆ϕ = δx in Ω,

ϕ = 0 on ∂Ω
.

In particular, if Ω = (−1,1)⊂ R, then

G(x,y) =
1
2
((1+ x)∧ (1+ y))((1− x)∧ (1− y)).

Suppose, instead, X = H1(Ω) (endowed with the full H1 norm) and let, for every
µ ∈ (H1(Ω))′ = X ′, ϕµ be the solution of{

−∆ϕ +ϕ = µ in Ω,
∂ϕ

∂n = 0 on ∂Ω
.

Then ||µ||2X ′ =
´

ϕµ dµ =
´ ´

G(x,y)dµ(x)dµ(y), where G(x, ·) is defined as the so-
lution of {

−∆ϕ +ϕ = δx in Ω,
∂ϕ

∂n = 0 on ∂Ω
.

In particular, if Ω = (−1,1)⊂ R, then

G(x,y) = cosh((1+ x)∧ (1+ y))cosh((1− x)∧ (1− y))/sinh(2).

Proof. We first prove that ||µ||2X ′ =
´

ϕµ dµ in the two cases.
First case : H1

0 . Note that, for every function ψ ∈ H1
0 , one hasˆ

ψ dµ =

ˆ
∇ψ ·∇ϕµ ≤ ||ψ||X ||ϕµ ||X

and equality holds for ψ = ϕµ (we use the homogeneous norm ||ψ||X := ||∇ψ||L2 ).
This shows that the supremum is realized by a multiple of ϕµ and that

´
ϕµ dµ =

||ϕµ ||2X . As a consequence, we have

||µ||2X ′ =

(´
ϕµ dµ

||ϕµ ||X

)2

=

ˆ
ϕµ dµ.

The case of H1 is similar, with the only exception of the first computationˆ
ψ dµ =

ˆ
∇ψ ·∇ϕµ +ψϕµ ≤ ||ψ||X ||ϕµ ||X

and, again, equality holds for ψ = ϕµ .
Finally, expressing

´
ϕµ dµ as a double integral

´´
G(x,y)dµ(x)dµ(y) is only a

matter of expressing ϕµ(x) as
´

G(x,y)dµ(y). This is possible by using the theory of
Green functions and, for the one dimensional case Ω= (−1,1), it is enough to compute
that

´
G(x,y)dµ(y) is a solution of the desired equation.

In this way we have seen that, thanks to Green functions, we have expressed these
dual norms functionals as interaction functionals.
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7.1.2 Local Functionals
Local functionals over measures are defined as those functionals F : M (Ω)→ R such
that F(µ +ν) = F(µ)+F(ν) whenever µ and ν are mutually singular (i.e. there exists
A,B⊂Ω with A∪B=Ω, µ(A) = 0 and ν(B) = 0). This obviously does not make much
sense for probability measures, since, if µ and ν are probabilities, then µ +ν is not a
probability. Yet, we will see in this section some functionals that can be defined over
probability measures but could be also seen as the restriction to probabilities of func-
tionals defined on more general measures. All our proofs could be easily generalized
to finite positive measures; on the contrary, for simplicity we will not consider at all
the case of signed or vector measures. We refer to [68] for the general theory of these
functionals.

First, let us consider functionals of the form

µ = ρ ·λ 7→
ˆ

f (ρ(x))λ (dx),

where λ is a given positive measure over Ω (for instance the Lebesgue measure).
Let us first see which are the natural conditions on f so as to ensure lower semi-

continuity. Then, we will give a precise result.
As a first point, consider a sequence ρn of densities, taking values a and b on two

sets An and Bn chosen in the following way: we fix a partition of Ω into small cubes of
diameter εn → 0 and then we select set An and Bn such that, for every cube Q of this
partition, we have λ (An ∩Q) = (1− t)λ (Q) and λ (Bn ∩Q) = tλ (Q). We can check
that ρn weakly converges to a uniform density ρ = (1− t)a+ tb. semi-continuity of the
functional would imply

f ((1− t)a+ tb)≤ (1− t) f (a)+ t f (b),

i.e. convexity of f . Hence it is clear that one needs to require f to be convex.
Another requirement concerns the growth of f . For simplicity it is always possible

to assume f (0) = 0 (up to adding a constant to f ). Suppose that f satisfies f (t) ≤Ct
for all t ≥ 0. Consider the functional defined through

F (µ) :

{´
f (ρ(x))dλ (x) if µ = ρ ·λ ,

+∞ otherwise .

Take a sequence µn of absolutely continuous probability measures weakly converging
to a singular measure µ: we get F (µn) ≤ C while F (µ) = +∞, thus violating the
semi-continuity. This suggests that one should have C = +∞, i.e. f superlinear. The
following theorem gives a general result which also includes compensation for non-
superlinearity.

Proposition 7.7. Let f :R+→R be a convex l.s.c. function, and set L := limt→∞ f (t)/t =
supt>0 f (t)/t ∈ R∪{+∞}. Let λ be a fixed finite positive measure on Ω. For every
measure µ write µ = ρ ·λ +µs, where ρ ·λ is the absolutely continuous part of µ and
µs be the singular one (w.r.t. λ ). Then, the functional defined through

F (µ) =

ˆ
Ω

f (ρ(x))dλ (x)+Lµ
s(Ω)
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(note that, if L =+∞, then F(µ) = +∞ whenever µ has a singular part) is l.s.c.

Proof. We will try to use the equality

f (t) = sup
a∈R

at− f ∗(a).

This equality is a consequence of f ∗∗ = f , which is itself due to the fact f is convex and
lower semi-continuous. Moreover, it is easy to see that for a > L we have f ∗(a) =+∞:
indeed, f ∗(a) = supt at− f (t)≥ limt→+∞ t(a− f (t)/t). Hence, we can write

f (t) = sup
a≤L

at− f ∗(a) = sup
a<L

at− f ∗(a)

(the last equality is justified by the fact that f ∗ is continuous on the set where it is
finite).

Let us consider the following functional

F̃ (µ) := sup
a∈Cb(Ω),supa<L

ˆ
a(x)dµ(x)−

ˆ
f ∗(a(x))dλ (x).

F̃ is obviously l.s.c. since it is the supremum of a family of affine functionals, contin-
uous w.r.t. the weak convergence. We want to prove F̃ = F .

In order to do so, first note that, thanks to Lusin’s theorem (see Box 1.6 in Section
1.1), applied here to the measure λ +µ , it is not difficult to replace bounded and con-
tinuous functions with measurable bounded functions. By abuse of notation, we denote
measurable bounded functions by L∞(Ω) (even if we do not mean functions which are
essentially bounded w.r.t. a given measure, but really bounded) and we get

F̃ (µ) := sup
a∈L∞(Ω),supa<L

ˆ
a(x)dµ(x)−

ˆ
f ∗(a(x))dλ (x).

Then take a set A such that µs(Ω\A) = λ (A) = 0: this allows to write

F̃ (µ) := sup
a∈L∞(Ω),supa<L

ˆ
Ω\A

[a(x)ρ(x)− f ∗(a(x))] dλ (x)+
ˆ

A
a(x)dµ

s(x).

The values of a(x) may be chosen independently on A and Ω\A and we can check that

sup
a∈L∞(Ω),supa<L

ˆ
Ω\A

[a(x)ρ(x)− f ∗(a(x))] dλ (x) =
ˆ

f (ρ(x))dλ (x),

sup
a∈L∞(Ω),supa<L

ˆ
A

a(x)dµ
s(x) = Lµ

s(A) = Lµ
s(Ω),

which allows to conclude F̃ = F .

Remark 7.8. The assumption that λ is a finite measure is necessary to avoid integrabil-
ity issues for the term

´
f ∗(a(x))dλ . A typical case where this term could give trou-

bles is the entropy f (t) = t log t, where f ∗(s) = es−1. Suppose that λ is the Lebesgue
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measure on the whole Rd ; it is easy to see that, for any L∞ function a, the integral´
Rd ea(x)−1 dx does not converge, and this provides F̃ (µ) = −∞ for every µ . How-

ever, if λ is σ -finite (which is the case of the Lebesgue measure on Rd) and f ≥ 0,
it is possible to prove the semi-continuity by approximating λ from below with finite
measures2.
Remark 7.9. The reader could be shocked by the fact that in Proposition 7.7 we did
not require lower bounds on f . In particular, the same result is true for f (t) = t and
f (t) =−t, which implies continuity of the mass with respect to the weak convergence
of measures! Indeed, the weak convergence that we are using is the one in duality with
Cb, and it is perfectly normal that the mass (i.e. the integral against the function 1) is
continuous in this convergence. If we used, instead, the weak-∗ convergence in duality
with Cc on a non-compact space, the situation would be different. In order to perform
the same proof, one would need at least L > 0 (otherwise, the functions a ∈Cc do not
satisfy a > L), or L = 0 and f ∗(0)<+∞).

If we come back to the interpretation of F , it is not difficult to check that F
“favors” dispersed measure: first it is only finite for absolutely continuous measures,
second, due to the Jensen inequality, the value of F is minimal for the constant density.

If we look for functionals having an opposite behavior and favoring the concen-
trated part of the measure, there are at least two different choices. We can look at an
interaction functional such as µ 7→

´ ´
|x−y|2dµ(x)dµ(y) (where the square of the dis-

tance could be replaced by any increasing function of it). This is a global and spatially
dependent functional, and has a different flavour than F . Indeed, we can find in the
same class of local functionals some functionals which favor concentration, by looking
in particular at the atomic part of µ . It is the case of the functional

G (µ) :=

{
∑i g(ai) if µ = ∑i aiδxi , xi 6= x j for i 6= j,
+∞ if µ is not purely atomic.

As before, let us first understand which are the basic properties of g so as to guarantee
semi-continuity.

We also assume g(0) = 0 (which is by the way necessary if we want to avoid
ambiguities due to zero-mass atoms). Suppose that g satisfies g(t)≤Ct for all t > 0 and
take, similar to what we did before, a sequence µn ⇀ µ where µn is purely atomic but
µ is not (take for instance the sequence in Proposition 4.38). Then we have G (µn)≤C
but G (µ) = +∞. This is a contradiction with semi-continuity and suggests that we
should consider functions g such that limt→0 g(t)/t =+∞.

Second consideration, take µn = aδxn + bδyn +ν (with ν finitely atomic: we only
use ν so as to come back to a total mass of 1). Suppose xn → x and yn → x and
x /∈ spt(ν). Then µn ⇀ µ = (a+b)δx +ν . In this case semi-continuity would imply

g(a+b)≤ g(a)+g(b),

i.e. we need g to be subadditive.
It is useful to establish the following.
2For the case of the entropy, the lower semi-continuity on the whole Rd is false, but it is true under

stronger convergence assumptions, see Ex(45). This is the usual strategy to study on the whole space the
variational problems that we will present in bounded domains in Section 8.3 for the Fokker-Planck equation.
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Lemma 7.10. Suppose that g(0) = 0 and that g is subadditive. Suppose that µn =

∑
N
i=1 ai,nδxi,n is a sequence of atomic probability measures with bounded number of

atoms. Then, up to a subsequence, we have µn ⇀ µ where µ is also atomic with at
most N atoms and G (µ)≤ liminfG (µn).

Proof. Let us precise that we impose to the points xi,n to be distinct. If a measure µn
has less than N atoms then we chose points xi,n at random to complete the list of atoms
and set ai,n = 0 for those extra indices.

Now extract a subsequence (not relabeled) such that for each i = 1, . . . ,N one has
ai,n→ ai and xi,n→ xi. For this subsequence one has µn ⇀ µ :=∑

N
i=1 aiδxi . It is possible

that the points xi are not distinct. If they are distinct we have G (µ) = ∑
n
i=1 g(ai),

otherwise we have (thanks to subadditivity) G (µ)≤ ∑
n
i=1 g(ai). Anyway we have

G (µ)≤
n

∑
i=1

g(ai) = lim
n

n

∑
i=1

g(ai,n) = lim
n

G (µn),

which proves the desired result (one can choose the subsequence so that it realizes the
liminf of the whole sequence).

It is now possible to prove the following

Lemma 7.11. Suppose that g(0) = 0, that g(t)≥ 0, that g is subadditive and l.s.c. and
that limt→0 g(t)/t =+∞. Then G is l.s.c. on P(Ω).

Proof. Assume without loss of generality that all the µn are purely atomic. Fix a num-
ber M > 0 and use limt→0 g(t)/t = +∞: this implies that there exists ε0 such that for
all t < ε0 we have g(t)> Mt. Consider a sequence µn ⇀ µ , assume G (µn)≤C <+∞

and decompose it into µn = µs
n +µb

n , where µb
n = ∑

N
i=1 ainδxi,n is the sum of the atoms

of µn with mass at least ε0. In particular, these atoms are no more than N := ε
−1
0 . The

other part µs
n (the “small” part, µb

n being the “big” one) is just defined as the remaining
atoms (every µn is purely atomic since G (µn)<+∞).

If we write

C ≥ G (µn)≥ G (µs
n) = ∑

i
g(ai,n)≥M∑

i
ai,n = Mµ

s
n(Ω)

we get an estimate on the mass of the “small” part. Hence it is possible to get, up to
subsequences,

µ
b
n ⇀ µ

b and µ
s
n ⇀ µ

s, µ
s(Ω)≤ C

M
.

We can now apply lemma 7.10 to prove that µb is purely atomic and that G (µb)≤
liminfn G (µb

n )≤ liminfn G (µn).
This proves that µ must be purely atomic, since the possible atomless part of µ

must be contained in µs, but µs(Ω)≤C/M. Hence the mass of the non-atomic part of
µ must be smaller than C/M for every M > 0, i.e. it must be zero.

We have now proven that µ is purely atomic and we have an estimate of G (µb),
where µb is a part of µ depending on M. If we write (ai)i for the masses of µ and (aM

i )i
for those of µb we have

∑
i

g(aM
i )≤ liminf

n
G (µn) := `.
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We want to prove ∑i g(ai) ≤ ` and, to this aim, it is enough to let M→ ∞. Actually,
µs(Ω) = ∑i(ai−aM

i )≤C/M→ 0 implies that for each i we have ai−aM
i → 0 and thus

aM
i → ai. Using the semi-continuity of g we have g(ai)≤ liminfM→∞ g(aM

i ). If we fiw
an arbitrary number N we get

N

∑
i=1

g(ai)≤ liminf
M→∞

N

∑
i=1

g(aM
i )≤ `.

By passing to the supremum over N we finally get
∞

∑
i=1

g(ai)≤ `,

which is the claim.

As a particular example for the functionals of type F we can consider the Lp norms
to the power p, i.e.

F (µ) = ||µ||pLp =

{´
ρ(x)p dx if µ = ρ · dx,

+∞ otherwise .

For the functionals of type G , we can instead consider the cardinality of the support,
obtained for g(t) = 1 if t > 0 and g(0) = 0:

G (µ) = #(spt(µ)).

Box 7.1. – Good to know! – Characterization of local l.s.c. functionals on M d(Ω)

It is also useful to note that functionals of the form F and G could be mixed, obtaining
local functionals accepting both absolutely continuous and atomic parts. There is a general
lower semi-continuity result that comes from the general theory developed in [68, 69, 70],
which also characterizes the semi-continuity. It also covers the case of vector-valued mea-
sures and can be expressed as follows.

Theorem - Let f : Rd → R∪{+∞} be convex and l.s.c. and g : Rd → R∪{+∞} be
subadditive and l.s.c. For every vector v ∈ Rd define

f ∞(v) := lim
t→+∞

f (tv)
t

and g0(v) := lim
t→0

g(tv)
t

,

and suppose f ∞ = g0. Given a finite positive measure λ , decompose every vector measure
µ ∈M d(Ω) as µ = ρ ·λ +µc+µ#, where µc+µ# is the singular part of µ w.r.t. λ , which
is also decomposed into a purely atomic part µ# = ∑i aiδxi and the remainder, usually
refereed to as the Cantor part; ρ : Ω→Rd is a vector density and the ai = µ({xi})∈Rd are
also vectors; we also denote by w : Ω→ Sd−1 the density of µc w.r.t. its own total variation
measure |µc|. Then the functional

µ 7→
ˆ

f (ρ(x)) dλ (x)+
ˆ

f ∞(w(x))d|µc|(x)+∑
i

g(ai)

is local and lower semi-continuous for the weak convergence of measures.
Conversely, every local and lower semi-continuous functional on M d(Ω) can be writ-

ten in the form above, for suitable choices of f , g and λ .
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7.2 Convexity, first variations and subdifferentials
We pass in this section to another important notion concerning these functionals. If
lower semi-continuity is crucial to establish existence results for minimization prob-
lems, convexity properties (in particular, strict convexity) are crucial for uniqueness.
Also, with convexity comes the notion of subdifferential, thus we come to another
very natural question in calculus of variations: how to compute first variations of these
functionals?

We start from the very first question: which among these functionals are convex?

Convexity and strict convexity

• V is linear and hence convex but not strictly convex.

• W is quadratic, but not always convex. Take for instance W (x,y) = |x− y|2 and
compute

ˆ
Ω

ˆ
Ω

|x− y|2 dµ(x)dµ(y)

=

ˆ
Ω

ˆ
Ω

|x|2 dµ(x)dµ(y)+
ˆ

Ω

ˆ
Ω

|y|2 dµ(x)dµ(y)−2
ˆ

Ω

ˆ
Ω

x · ydµ(x)dµ(y)

= 2
ˆ

Ω

|x|2 dµ(x)−2
(ˆ

Ω

xdµ(x)
)2

.

This shows that W has (in this case) a linear part to which we subtract the square
of another linear one; it is then concave rather than convex.

• All transport costs can be expressed by duality formula as a supremum of linear
functionals

Tc(µ,ν) = sup
ϕ(x)+ψ(y)≤c(x,y)

ˆ
ϕ dµ +

ˆ
ψ dν

and it is hence convex (but Wp is in general not). Strict convexity is discussed
later (it is true for c(x,y) = |x− y|p, p > 1 and ν �L d).

• The norm in a dual functional space is always convex since it is a norm, but is
never strictly convex because it is 1-homogeneous. Note that also the square of a
norm could be non-strictly convex (as it is the case for the L∞ or the L1 norms).

• The functionals F that we considered above are actually convex due to the as-
sumptions on f . Strict convexity is true if f is strictly convex and L = +∞ (for
instance if one takes f (t) =

√
1+ t2−1, which is strictly convex, then F is not

strictly convex because it is finite and linear on singular measures).

• On the contrary, the functionals G that we considered above are typically not
convex since the typical examples of sub-additive functions are concave.
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First variations We now pass to the computation of first variations of these func-
tionals. Since many of them are only considered in the convex set P(Ω), which is a
proper (but convex) subset of the Banach space M (Ω), we prefer to give an ad-hoc,
and pragmatic, definition.

Definition 7.12. Given a functional F : P(Ω)→ R∪{+∞} we say that ρ ∈P(Ω) is
regular for F if F((1− ε)ρ + ερ̃) < +∞ for every ε ∈ [0,1] and every ρ̃ ∈P(Ω)∩
L∞

c (Ω) (absolutely continuous probabilities with L∞ density and compact support), i.e.
if the convex envelop of {ρ} and L∞

c (Ω)∩P(Ω) is contained in {F <+∞}.
If ρ is regular for F , we call δF

δρ
(ρ), if it exists, any measurable function such that

d
dε

F(ρ + εχ)|ε=0 =

ˆ
δF
δρ

(ρ)dχ

for every perturbation χ = ρ̃−ρ with ρ̃ ∈ L∞
c (Ω)∩P(Ω).

Remark 7.13. From the fact that we necessarily have
´

dχ = 0, it is clear that δF
δρ

(ρ)

is defined up to additive constants. On the other hand, up to this invariance, we have
uniqueness.

• From V (µ + εχ) = V (µ)+ ε
´

V dχ we infer δV
δρ

(ρ) =V .

• As W is quadratic, the computation is easy:

W (µ + εχ)−W (µ) =

ε

ˆ ˆ
W (x,y)dµ(x)dχ(y)+ ε

ˆ ˆ
W (x,y)dµ(y)dχ(x)

+ ε
2
ˆ ˆ

W (x,y)dχ(x)dχ(y).

This provides

δW

δρ
(ρ)(y) =

ˆ
W (x,y)dµ(x)+

ˆ
W (y,y′)dµ(y′).

The formula becomes simpler when W is symmetric (since the two terms are
equal) and even simpler when W (x,y) = h(x−y) for an even function h, in which
case it takes the form of a convolution δW

δρ
(ρ) = 2h∗µ .

• For µ 7→ Tc(µ,ν), the first variation is given by the Kantorovich potential ϕ , in
the transport from µ to ν , provided it is unique; this will be discussed later.

• Analogously, the first variation of µ 7→ ||µ||X ′ is given by the function ϕ re-
alizing the maximum in max{

´
ϕ dµ : ||ϕ||X ≤ 1}, provided it exists and is

unique.

• If f ∈ C1 and f ′ satisfies suitable bounds (typically we need f and f ′ to have
polynomial growth), one can see that δF

δρ
(ρ) = f ′(ρ). Indeed, we can take χ =
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θ · λ , write F (ρ + εχ) =
´

f (ρ(x)+ εθ(x))dλ (x) and differentiate under the
integral sign (this requires some growth conditions): we get

d
dε

F (ρ + εχ)|ε=0 =

ˆ
f ′(ρ(x))θ(x)dλ =

ˆ
f ′(ρ)dχ.

The bounds on f ′ are only needed to allow derivation under the integral sign.

• Note that in general the functionals G are not differentiable along this kind of
perturbations and that in general no measure is regular for G . Indeed, from
g′(0) = +∞ we can infer that G(µ + εχ) is usually differentiable only if χ is
concentrated on the same atoms as µ , even if for χ finitely atomic one would
have G (µ + εχ)<+∞.

Remark 7.14. We stress the fact that the special role given to L∞
c functions in the def-

inition of first variation is completely arbitrary. However, they represent a class of
densities which is at the same time dense enough in the class of probabilities and regu-
lar enough to guarantee finiteness of most interesting functionals. In particular, we can
observe that, for all the functionals above except G , a probability ρ is regular if and
only if the value of the functional is finite.

7.2.1 Dual norms

We start from the non-trivial issues above, i.e. the case of the transport costs and of the
dual norms. Both are characterized by the their definition as sup of linear functionals.
Since they are convex functionals, we start from a general fact in convex analysis,
which allows us to provide not only the first variation, but also the subdifferential.

Lemma 7.15. Let X be a Banach space and H : X →R∪{+∞} be convex and l.s.c.
Set H∗(y) = sup〈x,y〉−H(x) for y ∈X ′, where 〈x,y〉 denotes the duality between X
and X ′. Then ∂H∗(y0) = argmaxx{〈x,y0〉−H(x)}.

Proof. We know x0 ∈ ∂H∗(y0) ⇐⇒ y0 ∈ ∂H(x0) (see Box 1.12 in Section 1.6). This
is equivalent to the fact that 0 belongs to the subdifferential of x 7→H(x)−〈x,y0〉 at x0,
but this is also equivalent to the fact that x0 minimizes the same expression.

Proposition 7.16. Suppose that X is a reflexive separable Banach space of functions
on Ω such that X ∩Cb(Ω) is dense in X . Let F(µ) := ||µ||X ′ = sup{

´
ϕ dµ :

||ϕ||X ≤ 1}. Suppose that, for a given µ , the function ϕµ ∈X realizing the maximum
in the definition of F(µ) exists and is unique. Then we have δF

δρ
(µ) = ϕµ . Moreover,

the subdifferential ∂F(µ) (where we consider F to be a functional on the Banach space
M (Ω), set to +∞ outside P(Ω)∩X ′) is always equal to the set (not necessarily a
singleton) of maximizers.

Proof. The second part of the statement is an easy consequence of Lemma 7.15, ap-
plied to the functional F defined as F(ϕ) = 0 for ||ϕ|| ≤ 1 and F(ϕ) = +∞ for ||ϕ||>
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1.For the first part, take a perturbation χ such that µ + εχ belongs to X ′ for small ε .
This implies that both µ and χ belong to X ′. From the definition of F , we can write

ˆ
ϕµ dχ ≤ F(µ + εχ)−F(µ)

ε
≤
ˆ

ϕµ+εχ dχ.

In order to pass to the limit, we just need to show that the right hand side tends to´
ϕµ dχ as ε → 0. First, note that the functions ϕµ+εχ belong to the unit ball of

a reflexive separable Banach space. This means that, up to subsequences, we have
ϕµ+εχ ⇀ ϕ , for a function ϕ with ||ϕ|| ≤ 1. We just need to prove ϕ = ϕµ . From the
uniqueness of the optimizer ϕµ , we just need to show that ϕ is also an optimizer for µ ,
i.e.

´
ϕ dµ = F(µ).

To do this, note that µ + εχ converges strongly in X ′ to µ , and hence we have

lim
ε→0

F(µ + εχ) = lim
ε→0

ˆ
ϕµ+εχ d(µ + εχ)→

ˆ
ϕ dµ ≤ F(µ) = lim

ε→0
F(µ + εχ),

where the last equality comes from the continuity of F for strong convergence in X ′.
Hence the inequality

´
ϕ dµ ≤ F(µ) is indeed an equality and ϕ = ϕµ .

7.2.2 Transport costs
We consider here the case of Wasserstein distances to a fixed measure (in particular
functionals of the form µ 7→W p

p (µ,ν)) and, more generally, transport costs Tc(µ,ν) :=
min{

´
c(x,y) dγ : γ ∈Π(µ,ν)}, i.e. minimal transport costs between measures and a

fixed one. Note that for continuity issues it was useful to take advantage of the distance
structure of Wp, but for convexity and first variation this will not be the good approach.

For the sake of simplicity, the following result will only be given in the case of a
compact domain Ω⊂ Rd .

Proposition 7.17. Let Ω⊂Rd be compact and c : Ω×Ω→R be continuous. Then the
functional µ 7→ Tc(µ,ν) is convex, and its subdifferential at µ0 coincides with the set
of Kantorovich potentials {ϕ ∈C0(Ω) :

´
ϕ dµ0 +

´
ϕc dν = Tc(µ,ν)}. Moreover, if

there is a unique c-concave Kantorovich potential from µ0 to ν up to additive constants,
i.e. if the c-concave functions in the above set are all given by the same function ϕµ

plus arbitrary additive constants, then we also have δTc(·,ν)
δρ

(µ) = ϕµ .

Proof. Let us come back to the expression

Tc(µ,ν) = sup
{ˆ

ϕ dµ +

ˆ
ϕ

c dν : ϕ ∈C0(Ω)

}
,

which allows to see Tc(·,ν) as a supremum of affine functionals of µ . Here ν is a
fixed probability. Note that the very same supremum gives +∞ if we take µ ∈M (Ω)\
P(Ω), i.e.

sup
{ˆ

ϕ dµ +

ˆ
ϕ

c dν : ϕ ∈C0(Ω)

}
=

{
Tc(µ,ν) if µ ∈P(Ω),

+∞ if µ ∈M (Ω)\P(Ω).
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Indeed, if µ is not a positive measure then there exists a function ϕ ∈ C0(Ω), with
ϕ ≤ 0 and

´
ϕ dµ > 0. Since ϕc(y) = infy c(x,y)−ϕ(x) ≥ infc (suppose c bounded

from below), then
´

ϕ dµ +
´

ϕc dν ≥
´

ϕ dµ + infc. By replacing ϕ with λϕ and
letting λ →+∞ we see that the supremum is +∞.

On the other hand, if µ ≥ 0 but µ(Ω) 6= 1 = ν(Ω), we also find +∞ in the sup.
Indeed, we can always add a constant λ to any ϕ , and (ϕ +λ )c = ϕc−λ . Taking for
instance ϕ = 0 we get

sup
{ˆ

ϕ dµ +

ˆ
ϕ

c dν : ϕ ∈C0(Ω)

}
≥
ˆ

0c(y) dν(y)+λ
(
µ(Ω)−ν(Ω)

)
,

which can be made as large as we want if µ(Ω)− ν(Ω) 6= 0 (here 0c is a bounded
function whose precise expression depends on c).

In order to identify the subdifferential, we apply Lemma 7.15, with X = C0(Ω)
(endowed with the sup norm) and H : X → R given by H(ϕ) := −

´
ϕc dν . We just

need to see that this functional is convex and semi-continuous (indeed, it is continuous).
Note that if we take ϕ0,ϕ1 ∈C0(Ω) we have

ϕ
c
1(y) = inf

x
c(x,y)−ϕ1(x)≤ inf

x
c(x,y)−ϕ0(x)+ ||ϕ1−ϕ0||∞ = ϕ

c
0(y)+ ||ϕ1−ϕ0||∞.

By interchanging the roles of ϕ0 and ϕ1 and using the arbitrariness of y we get ||ϕc
1 −

ϕc
0 ||∞ ≤ ||ϕ1−ϕ0||∞, which implies

∣∣´ ϕc
1 dν−

´
ϕc

0 dν
∣∣ ≤ ||ϕ1−ϕ0||∞ and hence the

continuity of the functional. As far as convexity is concerned, set ϕt = (1− t)ϕ0 + tϕ1;
we have

ϕ
c
t (y) = inf

x
c(x,y)− (1− t)ϕ0(x)− tϕ1(x)≥ (1− t)ϕc

0(y)+ tϕc
1(y).

This implies the concavity
´

ϕc
t dν ≥ (1−t)

´
ϕc

0 dν+t
´

ϕc
1 dν and hence H is convex.

In order to get the first variation in the situation described in the statement (unique-
ness of the c-concave Kantorovich potential), we take µε = µ + εχ with χ = µ̃ − µ

and we estimate the ratio (Tc(µε ,ν)−Tc(µ,ν))/ε . First, by using that (ϕµ ,ϕ
c
µ) is

optimal in the dual formulation for µ , but not necessarily for µε , we have

Tc(µε ,ν)−Tc(µ,ν)

ε
≥

´
ϕµ dµε +

´
ϕc

µ dν−
´

ϕµ dµ−
´

ϕc
µ dν

ε
=

ˆ
ϕµ dχ,

which gives the lower bound liminfε→0(Tc(µε ,ν)−Tc(µ,ν))/ε ≥
´

ϕµ dχ .
To look at the limsup, first fix a sequence of values of εk realizing the limsup, i.e.

limk(Tc(µεk ,ν)−Tc(µ,ν))/εk = limsupε→0(Tc(µε ,ν)−Tc(µ,ν))/ε . Then we can
estimate the same ratio using the optimality of a pair (ϕk,ϕ

c
k ), Kantorovich potentials

in the transport from µεk to ν (we can assume them to be c-concave functions and such
that ϕk(x0) = 0 for a fixed point x0 ∈Ω). Now we may write

Tc(µεk ,ν)−Tc(µ,ν)

εk
≤

´
ϕk dµεk +

´
ϕc

k dν−
´

ϕk dµ−
´

ϕc
k dν

εk
=

ˆ
ϕk dχ. (7.1)

As in Proposition 7.16, we need to pass to the limit in k. Theorem 1.52 shows that we
have uniform convergence (up to extracting another subsequence) (ϕk,ϕ

c
k )→ (ϕ,ϕc)
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and that (ϕ,ϕc) must be optimal in the duality formula for the transport between µ and
ν . This implies ϕ = ϕµ by uniqueness. Finally, passing to the limit in (7.1) we get also
limsupε→0(Tc(µε ,ν)−Tc(µ,ν))/ε ≤

´
ϕµ dχ.

As Proposition 7.17 requires uniqueness of the Kantorovich potential in order to
efficiently compute the first variation, we also give here a sufficient condition

Proposition 7.18. If Ω is the closure of a bounded connected open set, c is C1, and
at least one of the measures µ or ν is supported on the whole Ω, then the c-concave
Kantorovich potential in the transport from µ to ν is unique up to additive constants.

Proof. Suppose that spt(µ) = Ω. First note that c ∈C1 implies that c is Lipschitz on
Ω×Ω, and hence all Kantorovich potentials, which are c-concave, are Lipschitz as
well, and are differentiable a.e. Consider two different Kantorovich potentials ϕ0 and
ϕ1. We use Proposition 1.15, which guarantees that their gradients must agree a.e.
on Ω. Since Ω is the closure of a connected open set, this means that the difference
ϕ0−ϕ1 is constant and provides the desired result. If the measure with full support is
ν , just apply the same procedure to the transport from ν to µ and get the uniqueness
of the potential ψ . Then, from ϕ = ψc (here we use c-concavity) one also recovers the
uniqueness of ϕ .

Note that in order to apply the above result to Proposition 7.17, the uniqueness
µ-a.e. would not be enough (since one integrates it also against other measures µε ),
and, anyway, without connectedness assumptions on spt(µ) it would be impossible to
deduce the uniqueness of ϕ .

We finish this section with a remark on strict convexity. We come back for simplic-
ity to the case c(x,y) = |x− y|p, i.e. to the functional W p

p (·,ν), but the reader will see
that everything works the same under the twist condition (or if c(x,y) = h(x− y) with
h strictly convex). Also, the assumption ν �L d is not sharp, at least for p = 2 (see
Section 1.3.1).

Proposition 7.19. If ν �L d and p > 1 the functional W p
p (·,ν) is strictly convex.

Proof. Suppose by contradiction that µ0 6= µ1 and t ∈]0,1[ are such that W p
p (µt ,ν) =

(1− t)W p
p (µ0,ν) + tW p

p (µ1,ν), where µt = (1− t)µ0 + tµ1. Let γ0 be the optimal
transport plan in the transport from ν to µ0 (pay attention to the direction: it is a
transport map if we see it backward: from ν to µ0, since ν � L d); we write γ0 =
(T0, id)#ν . Analogously, take γ1 = (T1, id)#ν optimal from ν to µ1. Set γt := (1−
t)γ0 + tγ1 ∈Π(µt ,ν). We have

(1− t)W p
p (µ0,ν)+ tW p

p (µ1,ν) =W p
p (µt ,ν)≤

ˆ
|x− y|p dγt

= (1− t)W p
p (µ0,ν)+ tW p

p (µ1,ν),

which implies that γt is actually optimal in the transport from ν to µt . Yet γt is not
induced from a transport map, unless T0 = T1. This is a contradiction with µ0 6= µ1
and proves strict convexity.
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7.2.3 Optimality conditions
We finish this part of the chapter devoted to first variations with an important compu-
tation, which leads to optimality conditions in the space P(Ω). We do not claim this
result to be sharp, but it is enough in most situations, and the reader can easily see how
to adapt it to other cases.

Proposition 7.20. Suppose that ρ0 minimizes a functional F : P(Ω)→ R∪{+∞},
that ρ0 is regular for F (see Definition 7.12) and that there exists δF

δρ
(ρ0). Call this

function g and set `= ess infg, the essential infimum of g.

First case : Suppose that g ∈C0(Ω). Then spt(ρ0)⊂ argming = {g = `}, and we have
everywhere the inequality g≥ `, with equality g = ` on spt(ρ0).

Second case : Suppose that g is only measurable, but ρ0�L d . Then we have a.e. the
inequality g≥ `, with g = ` a.e. on {ρ0 > 0}.

Proof. Consider a competitor ρ̃ ∈ L∞
c (Ω). Take ρε := (1− ε)ρ + ερ̃ = ρ + εχ , with

χ = ρ̃ −ρ . The measure ρε is an admissible competitor in the minimization problem
as soon as ε ∈ [0,1]. We deduce that

d
dε

(F(ρε))|ε=0 ≥ 0.

This means ˆ
gdχ ≥ 0, i.e.

ˆ
gdρ̃ ≥

ˆ
gdρ0.

We now use the arbitrariness of ρ̃ . Take any `′ > `. By definition of essential infimum
the set {g < `′} has positive Lebesgue measure, and we can choose an L∞ density ρ̃

concentrated on it. We get `′ >
´

gdρ0. Letting `′→ `, we get `≥
´

gdρ0.
In the first case, the essential infimum coincides with the infimum, and hence we

have g≥ ` everywhere. But integrating this inequality against ρ0 we have the opposite
inequality, which implies g = ` ρ0-a.e. This equality extends to the support of ρ0 since
g is continuous.

In the second case, we have g ≥ ` a.e. Since ρ0 is supposed to be absolutely con-
tinuous, the same is true ρ0-a.e., and hence we have g = ` ρ0-a.e., which means a.e. on
{ρ0 > 0}.

We will see for instance in Sections 7.4.1 and 8.3 some applications of this criterion.
We also stress that, when F is convex, alternative arguments using subdifferentials

could be used, but the above strategy is the only possible one when we do not have
convexity. We can see how it works in some examples.

Example 7.21. Consider

min
{

F(ρ) :=W 2
2 (ρ,ν)+

ˆ
V (x)dρ(x) : ρ ∈P(Ω)

}
,

where Ω⊂ Rd is compact and V continuous. In such a case it is clear that a minimizer
ρ0 exists and that it is regular for F since F is finite on the whole space P(Ω). If the
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Kantorovich potential ϕ (for the cost c(x,y) = |x− y|2) in the transport from ρ0 to ν is
unique up to additive constants, then the first variation of F at ρ0 is given by ϕ +V ,
and we can apply Proposition 7.20 to obtain the existence of a constant C such that

ϕ +V ≥C on Ω, ϕ +V =C on spt(ρ0).

This is the case if spt(ν) = Ω, for instance.
Another way to obtain the optimality conditions is the following: the second term

of F is a continuous and linear functional on M (Ω), and the first is a convex func-
tional defined on M (Ω), with subdifferential given by the set of Kantorovich poten-
tials. Hence, we can prove

∂F(ρ0) = {V +ϕ : ϕ Kantorovich potential from ρ0 to ν} .

From standard optimality conditions in convex analysis we obtain the existence of a
potential ϕ such that V +ϕ = 0. In this case the result that we get is much stronger
with this convex procedure, since we get rid of the inequality case. Note, however, that
the function ϕ that we get is not necessarily c-concave: since we know ϕ = ϕcc on
spt(ρ0), this means that it has been modified out of spt(ρ0) in order to guarantee the
equality.

Example 7.22. Consider

min
{

F(ρ) :=W 2
2 (ρ,ν)+

ˆ
Ω

1
p

ρ
p(x)dx : ρ ∈P(Ω),ρ �L d

}
,

where Ω ⊂ Rd is compact and p > 1. Again, a minimizer ρ0 ∈ Lp(Ω) exists and is
is regular (in the sense of Definition 7.12), since F is finite on Lp(Ω)∩P(Ω) which
includes for sure all convex combinations of ρ0 and L∞ functions. Computing the first
variation and using Proposition 7.20, we obtain the existence of a constant C such that

ϕ +ρ
p−1 ≥C on Ω, ϕ +ρ

p−1 =C on spt(ρ0).

This, by the way, can be re-written as ρ p−1 = (C−ϕ)+.
On the other hand, even if the functional is still convex, it is not easy to compute the

subdifferential of F , viewed as a functional on M (Ω) (set to +∞ outside Lp probabili-
ties). Indeed, the subdifferential of a sum is not always the sum of the subdifferentials
(see for instance [158] for convex analysis issues in infinite dimension; however, this
requires continuity of at least one of the two functionals, while here both are finite on
a small subset of M (Ω)). Moreover the first variation of the second term, i.e. ρ p−1,
does not belong in general to the space C(Ω), i.e. to the space M (Ω) is in duality with.
A way of circumventing this difficulty would be to view F as a functional on Lp(Ω).
Here, the second term becomes a continuous convex functional. The first one must
be re-written as sup{

´
φ dρ +

´
φ c dν : φ ∈ Lp′(Ω)} (with a proper definition of the

c-transform in terms of essential infima instead of infima). This would provide the op-
timality condition: there exists an Lp′ Kantorovich potential ϕ such that ϕ +ρ p−1 = 0.
Again, ϕ = ϕcc ρ0-a.e., and ϕ ≤ ϕcc elsewhere. This gives again

ϕ
cc +ρ

p−1 ≥C on Ω, ϕ
cc +ρ

p−1 =C on spt(ρ0).
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7.3 Displacement convexity
In all the considerations of the previous section about convexity, we always considered
the standard convex interpolations [0,1] 3 t 7→ (1− t)µ0 + tµ1. Yet, another notion of
convexity, more linked to the metric structure of the space Wp(Ω), may be useful.

Let us start from this general definition.

Definition 7.23. In a geodesic metric space X , we define F : X → R∪{+∞} to be
geodesically convex if for every two points x0,x1 ∈ X there exists a constant speed
geodesic ω connecting ω(0)= x0 to ω(1)= x1 such that [0,1]3 t 7→F(ω(t)) is convex.

This obviously reduces to usual convexity in Rd or in any other normed vector
space where segments are the unique geodesics (note that in any normed vector space
segments are geodesics but they may not be the unique ones, as it is the case in L1 or L∞

or any non-strictly convex space). By the way, in spaces where there is not uniqueness
of the geodesics the definition we gave could be discussed, since one could also choose
to define as geodesically convex those functionals that satisfy the geodesic inequality
on every geodesic ω . . . But the one we gave is the definition that is usually chosen, as
it satisfies some extra stability results that would not be true with the more restrictive
one requiring convexity for every geodesic.

The notion of geodesic convexity in the space Wp(Ω) has been introduced by
McCann in [229], and is particularly interesting since we know how to characterize
geodesics in such a space. This notion of convexity is usually referred to as displace-
ment convexity. Note that it could a priori depend on the exponent p.

7.3.1 Displacement convexity of V and W

We recall that the geodesics for the Wp distance are of the form µt = (πt)#γ where γ is
an optimal transport for c(x,y) = |x− y|p and πt(x,y) = (1− t)x+ ty.

Proposition 7.24. The functional V is displacement convex if and only if V is convex.
The functional W is displacement convex if W is convex.

Proof. First consider V and suppose that V is convex. Let us evaluate V (µt):

V (µt) =

ˆ
V d(πt)#γ =

ˆ
V ((1− t)x+ ty)dγ.

It is clear from this formula that t 7→ V (µt) is convex if V is convex.
On the other hand, the convexity of V is a necessary condition for V being convex

as one can easily check by considering geodesics of the form µt = δ(1−t)x+ty since
V (µt) =V ((1− t)x+ ty).

The proof for the convexity of W is similar: consider

W (µt) =

ˆ
W (x,x′)d(πt)#γ(x)d(πt)#γ(x′)

=

ˆ
W ((1− t)x+ ty,(1− t)x′+ ty′) dγ(x,y) dγ(x′,y′),

which easily gives the condition for the convexity.
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Note that we did not state that convexity of W is a necessary condition for W , since
it is not true in general. Consider for instance the following 1D case.

Proposition 7.25. Let Ω = (a,b), ∆+ = {(x,y) ∈ Ω×Ω, y ≥ x} and ∆− = {(x,y) ∈
Ω×Ω, y≤ x}. Then it is sufficient that W is convex when restricted to ∆+ and ∆−, in
order to have displacement convexity of W .

Proof. Just consider the proof of Proposition 7.24 and check that all the segments
t 7→ ((1− t)x+ ty,(1− t)x′+ ty′) for (x,y),(x′,y′) ∈ spt(γ) are contained either in ∆+

or in ∆−. This is true thanks to the monotonicity properties of spt(γ) that we showed
in Section 2.2. Actually, we showed that, for every strictly convex cost, the (unique)
optimal transport plan γ satisfies

(x,y),(x′,y′) ∈ spt(γ), x < x′ ⇒ y≤ y′.

This means that if x < x′ then we have (x,x′) ∈ ∆+ and (y,y′) ∈ ∆+ and, by convexity,
((1− t)x+ ty,(1− t)x′+ ty′) ∈ ∆+. Analogously, for x > x′ we get that the segment is
contained in ∆−. If x = x′ it is enough to look at the transport plan from the point of
view of y, thus getting the implication y < y′ ⇒ x≤ x′ and concluding in the same
way. The only case that stays apart is x = x′ and y = y′ but in this case the segment
reduces to a point.

This proves convexity of W along the geodesics in Wp for p > 1. It also works for
W1 if we choose the same γ as an optimal transport plan (in this case it will not be the
unique one, but this will be enough to build a geodesic where there is convexity).

An interesting consequence of this criterion is the fact that the squared dual norm
µ 7→ ||µ||2X ′ for X = H1([−1,1]) is actually displacement convex, as a corollary of
the characterization of Proposition 7.6 (but it does not work for X = H1

0 ). This has
been pointed out and used in [111].

This is an example of displacement convex functional which involves, somehow,
derivatives. We could say that, as an H−1 norm, it is a functional of order −1. Dis-
placement convex functionals of order different than 0 are not so common to find. For
the first-order case, the only known example is contained in [116] and it is, again, only
available in 1D. Nothing is known in the multidimensional case.

7.3.2 Displacement convexity of F

The most interesting displacement convexity result is the one for functionals depending
on the density.

To consider these functionals, we need some technical facts.
The starting point is the computation of the density of an image measure, via stan-

dard change-of-variable techniques, as we saw in the Memo Box 1.14.
Then, we underline an interesting computation:

Lemma 7.26. Let A be a d× d matrix such that its eigenvalues λi are all real and
larger than −1 (for instance this is the case when A is symmetric and I+A≥ 0). Then
[0,1] 3 t 7→ g(t) := det(I+ tA)1/d is concave.
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Proof. We can write A in a suitable basis so that it is triangular, and we get

g(t)d =
d

∏
i=1

(1+ tλi).

Differentiating,

dg(t)d−1g′(t) =
d

∑
j=1

λ j

d

∏
i=1, i6= j

(1+ tλi) = g(t)d
d

∑
j=1

λ j

1+ tλ j
,

i.e. dg′(t) = g(t)∑
d
j=1

λ j
1+tλ j

. If we differentiate once more we get

dg′′(t) = g′(t)
d

∑
j=1

λ j

1+ tλ j
−g(t)

d

∑
j=1

λ 2
j

(1+ tλ j)2 .

Here we use the quadratic-arithmetic mean inequality which gives

d

∑
j=1

λ 2
j

(1+ tλ j)2 ≥
1
d

(
d

∑
j=1

λ j

1+ tλ j

)2

= d
(

g′(t)
g(t)

)2

and hence

dg′′(t)≤ d
g′(t)2

g(t)
−d

g′(t)2

g(t)
= 0,

which proves the concavity of g.

Remark 7.27. We observe that in dimension d = 1 the above Lemma is straightforward,
and that g is actually affine.

We can now state the main theorem.

Theorem 7.28. Suppose that f is convex and superlinear, f (0) = 0 and that s 7→
s−d f (sd) is convex and decreasing. Suppose that Ω is convex and take 1 < p < ∞.
Then F is geodesically convex in Wp.

Proof. Let us consider two measures µ0, µ1 with F (µ0),F (µ1) < +∞. They are
absolutely continuous and hence there is a unique constant speed geodesic µt between
them (see Theorem 5.27 and Proposition 5.32), which has the form µt =(Tt)#µ0, where
Tt = id+ t(T− id). Note that Tt is injective because of Lemma 4.23.

We first look at the case p = 2, which is easier. In this case we have Tt(x) = x−
t∇ϕ(x), where ϕ is such that x2

2 −ϕ is convex. This implies, by Theorem 3.16, that ∇ϕ

is countably Lipschitz, and so is Tt . Hence they are approximately differentiable a.e.3.
The Hessian D2ϕ (or, equivalently, the approximate gradient of ∇φ ), is symmetric and
D2ϕ ≤ I. Let us define A(x) = −D2ϕ(x). From the formula for the density of the

3Actually, it is also known that D2ϕ exists a.e.: indeed, convex functions are twice differentiable a.e.
(see for instance [161], the original result being stated in [6]).
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image measure, we know that µt is absolutely continuous and we can write its density
ρt as ρt(y) = ρ(T−1

t (y))/det(I+ tA(T−1
t (y))) and hence

F (µt) =

ˆ
f
(

ρ(T−1
t (y)))

det(I+ tA(T−1
t (y)))

)
dy =

ˆ
f
(

ρ(x)
det(I+ tA(x)

)
det(I+ tA(x))dx,

where we used the change of variable x = T−1
t (y), which gives y = Tt(x) and dy =

detDTt(x)dx = det(I+ tA(x))dx.
From Lemma 7.26 we know that det(I+ tA(x)) = g(t,x)d for a function g : [0,1]×

Ω which is concave in t. It is a general fact that the composition of a convex and
decreasing function with a concave one gives a convex function. This implies that

t 7→ f
(

ρ(x)
g(t,x)d

)
g(t,x)d

is convex (if ρ(x) 6= 0 this uses the assumption on f and the fact that t 7→ g(t,x)/ρ(x)
1
d

is concave; if ρ(x) = 0 then this function is simply zero). Finally, we proved convexity
of t 7→F (µt).

We now have to adapt to the case p 6= 2. In this case, setting h(z) = 1
p |z|

p, we
have Tt(x) = x− t∇h∗(∇ϕ(x)). Note that both h and h∗ are C2(Rd \ {0}). First, we
note that we can decompose, up to negligible sets, Ω into two measurable parts: the
set Ω′ where ∇ϕ = 0 and the set Ω′′ where ∇ϕ 6= 0. The analysis that we do is very
much similar to what we did in Section 3.3.2. Ω′ is the set where T is the identity,
and so is Tt . Since Tt is injective, the density is preserved on this set, and we can
apply Lemma 7.26 with A = 0. The set Ω′′, on the contrary, can be decomposed into
a countable union of sets Ωi j where x ∈ Bi, T(x) ∈ B j, (Bi)i is a countable family of
balls generating the topology of Rd , and we only take pairs such that Bi∩B j = /0. On
this sets ϕ = ψc also coincides with ϕi j defined as the restriction to Bi of the function
x 7→ infy∈B j h(x−y)−ψ(y), which is λ -concave for λ = sup{||D2h(z)|| : z ∈ B j−Bi}.
This proves that ϕi j has the same regularity of concave functions, and that ∇ϕ and
∇h∗(∇ϕ) are countably Lipschitz on Ω′′. In particular, D2ϕ exists a.e.

If we fix a point x0 ∈ Ω′′ where ∇ϕ(x0) and D2ϕ(x0) exist, then we can write
ϕ(x)≤ h(x−T (x0))−ψ(T (x0)), an inequality which is true for every x, with equality
at x = x0. In particular we get D2ϕ(x0) ≤ D2h(x0 − T (x0)) = D2h(∇h∗(∇ϕ(x0))).
From general properties of Legendre transforms, we have

D2h(∇h∗(z)) = [D2h∗(z)]−1

(just differentiate the relation ∇h(∇h∗(z)) = z). Hence, we can apply Lemma 7.26 with
A(x)=−D2h∗(∇ϕ(x))D2ϕ(x), which is diagonalizable and has eigenvalues larger than
−1 (see Box 7.2 below).

Box 7.2. – Memo – Diagonalizing products of symmetric matrices
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It is well known that symmetric matrices can be diagonalized on R. A trickier result is
the following:

Theorem - If A,B are symmetric d× d matrices, and A is positive-definite, then AB is
diagonalizable.

We do not prove it, but we just prove the following weaker result.
Proposition - If A,B are symmetric d× d matrices, and A is positive definite, then AB

has real eigenvalues.
Proof - suppose that λ ∈ C is an eigenvalue of AB, i.e. ABv = λv for a vector v ∈

Cn \{0}. Take the Hermitian product with A−1v, i.e. v̄tBv = λ v̄tA−1v, where the symbol
t denotes transposition in the sense of matrices. Note that, by diagonalizing independently
B and A−1, both the terms v̄tBv and v̄tA−1v are real, and v̄tA−1v > 0. Hence, λ ∈ R.

Another important point that we need is the following.
Proposition - If B≤ A−1 (in the sense of symmetric matrices, i.e. vt(A−1−B)v≥ 0 for

all v), then all the eigenvalues λi of AB satisfy λi ≤ 1
Proof - again, write ABv = λv and deduce v̄tBv = λ v̄tA−1v. This implies v̄tA−1v ≥

v̄tBv = λ v̄tA−1v, which implies λ ≤ 1.

Let us see some easy example of convex functions satisfying the assumptions of
Theorem 7.28. For instance

• for any q> 1, the function f (t)= tq satisfies these assumptions, since sd f (s−d)=
s−d(q−1) is convex and decreasing;

• the entropy function f (t) = t log t also satisfies the assumptions since sd f (s−d) =
−d logs is convex and decreasing;

• if 1− 1
d ≤m< 1 the function f (t)=−tm is convex, and if we compute sd f (s−d)=

−tm(1−d) we get a convex and decreasing function since m(1−d)< 1; yet these
functions lack the superlinearity assumption, but this does not prevent us from
applying the same proof of Theorem 7.28 to the case where µ0 and µ1 are sup-
posed to be a priori absolutely continuous.

Let us see some consequences of Theorem 7.28 in the case f (t) = tq,q > 1.

Proposition 7.29. Consider an exponent 1 < q ≤ +∞ and two probability measures
µ0,µ1 ∈ Lq(Ω) (in the sense that they are absolutely continuous and their densities
are Lq). Take the (unique) geodesic µt connecting them in Wp (for p > 1). Then the
measures µt are also Lq and ||µt ||Lq ≤max{||µ0||Lq , ||µ1||Lq}. When q <+∞, we also
have ||µt ||qLq ≤ (1− t)||µ0||qLq + t||µ1||qLq .

Proof. The case q <+∞ is an easy consequence of Theorem 7.28. Actually, if we use
f (t) = tq we have F (µ) = ||µ||qLq . Hence

||µt ||qLq ≤ (1− t)||µ0||qLq + t||µ1||qLq ≤ (max{||µ0||Lq , ||µ1||Lq})q .

This allows to get the desired Lq estimate.
The case q = +∞ is just obtained by taking the q-th root and passing to the limit

q→+∞.
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We finish this section observing that in 1D we can say something more.

Proposition 7.30. Suppose d = 1, Ω = [a,b]⊂ R and take q > 0. Then the functional
F defined through F(ρ) =

´ b
a ρ(x)−qdx for ρ�L 1 is displacement convex in Wp(Ω).

In particular, if ρ0,ρ1 ≥ c > 0, then we also have ρt(x) ≥ c for every t ∈ [0,1], where
ρt is the geodesic connecting ρ0 to ρ1.

Proof. Notice the the function f (s) = s−q is convex for s > 0 and that s 7→ sd f (s−d) =
sq+1 is convex but increasing. Yet, if we re-read the proof of Theoem 7.28 we observe
that we only needed it to be decreasing to ensure that the composition with g was
convex, but in this case g is affine, and convexity of s 7→ sd f (s−d) is enough. Moreover,
if we assume F(ρ)<+∞ then we have ρ > 0 a.e., which shows that it is not necessary
to assume f (0) = 0. This proves the desired displacement convexity. To get the lower
bound on geodesics, we just need to act as in proposition 7.29, letting q→ ∞.

7.3.3 Convexity on generalized geodesics
It is quite disappointing to note that the functional µ 7→W 2

2 (µ,ν) is not, in general,
displacement convex. This seems contrary to the intuition because usually squared dis-
tances are nice convex functions. However, we can see that this fails from the following
easy example. Take ν = 1

2 δ(1,0)+
1
2 δ(−1,0) and µt =

1
2 δ(t,a)+

1
2 δ(−t,−a). The curve µt ,

if a > 1 is the geodesic between µ−1 and µ1 (because the optimal transport between
these measures sends (a,−1) to (a,1) and (−a,1) to (−a,−1). Yet, if we compute
W 2

2 (µt ,ν) we have
W 2

2 (µt ,ν) = a2 +(1− t)2∧ (1+ t)2.

But this function is not convex! (see Figure 7.1)

•ν•ν

•µ1

•µ1

•µ−1

•µ−1

•
µt

•
µt

−1 1
t

a2 +min{(t−1)2,(t +1)2}

Figure 7.1: The distance W 2
2 (µt ,ν).

The lack of geodesic convexity of this easy functional4 is a problem for many issues
(in particular for some metric approaches to gradient flows through the EVI condition,

4By the way, this functional can even be prove to be somehow geodetically concave, as it is shown in
[17], Theorem 7.3.2.
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see Section 8.4.1) and an alternate notion has been proposed, namely that of convexity
along generalized geodesics.

Definition 7.31. If we fix an absolutely continuous probability ρ ∈P(Ω), for every
pair µ0,µ1 ∈P(Ω) we call generalized geodesic between µ0 and µ1 with base ρ in
W2(Ω) the curve µt = ((1− t)T0 + tT1)#ρ , where T0 is the optimal transport map (for
the cost |x− y|2) from ρ to µ0, and T1 from ρ to µ1.

It is clear that t 7→W 2
2 (µt ,ρ) satisfies

W 2
2 (µt ,ρ)≤

ˆ
|((1− t)T0(x)+ tT1(x))− x|2dρ(x)

≤ (1− t)
ˆ
|T0(x)− x|2dρ(x)+ t

ˆ
|T1(x)− x|2dρ(x)

= (1− t)W 2
2 (µ0,ρ)+ tW 2

2 (µ1,ρ)

and hence we have the desired convexity along this curve. Moreover, similar consid-
erations to those we developed in this section show that all the functionals that we
proved to be geodesically convex are also convex along generalized geodesics. We do
not develop these proofs here, and we refer to [17] for more details (for the case of
the functional F , Lemma 7.26 has to be changed into “t 7→ det((1− t)A+ tB)1/d is
concave, whenever A and B are symmetric and positive-definite” (the proof is similar).

7.4 Discussion

7.4.1 A case study: minF(ρ)+W 2
2 (ρ,ν)

Among variational problems involving optimal transportation and Wasserstein dis-
tances, a very recurrent one is the following

min
ρ∈P2(Ω)

1
2

W 2
2 (ρ,ν)+ τF(ρ) , (7.2)

where F is a given functional on probability measures, τ > 0 a parameter which can
possibly be small, and ν is a given probability in P2(Ω) (the space of probability
measures on Ω with finite second moment

´
|x|2dρ(x) < +∞). This very instance of

the problem is exactly the one we face in the time-discretization of the gradient flow of
F in W2(Ω) (see Section 8.2).

But the same problem also appears, for fixed τ > 0, in other frameworks as well.
For instance in image processing, if F is a smoothing functional, this is a model to
find a better (smoother) image ρ which is not so far from the original density ν (and
the choice of the distance W2 is justified by robustness arguments), see [209, 93]. In
urban planning (see [94, 270]) ν can represent the distribution of some resources and
ρ that of population, who wants to be close to ν but also to guarantee enough space
to each individual. In this case the functional F favors diffuse measures (for instance
using the functional F (ρ) =

´
f (ρ(x))dx for a convex and superlinear function f
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with f (0) = 0, which gives a higher cost to high densities of ρ and is minimized, on
bounded domains, by the uniform measure). Reciprocally, ν could instead represent
the distribution of population, and ρ that of services, to be chosen so that they are close
enough to ν but more concentrated. In this case F will favor concentrated measures.
When F penalizes the number of points in the support of ρ , then ρ becomes finitely
atomic and we face the so-called location problem (finding where to place a finite
number of points so as to approximate a given continuous distribution), useful both in
logistics and in quantization issues in signal processing. See for instance [74, 76] for a
transport-based analysis of the asymptotics of this problem.

Note that, when F only takes value 0 and +∞, the above problem becomes a projec-
tion problem. In particular (see Section 8.4.2), the projection onto the set of densities
bounded above by the constant 1 has received lot of attention because of its applications
in the time-discretization of evolution problems with density constraints, in particular
for crowd motion (see [265, 224]), where a crowd is described as a population of par-
ticles which cannot overlap, and cannot go beyond a certain threshold density).

In this section we would like to briefly discuss the characterization and regularity
of the optimizer, at least in the case where F (ρ) =

´
f (ρ) for a nice convex integrand

f : R+ → R, superlinear at infinity (i.e. one of the main functionals studied in this
chapter).

We are interested in the estimates that one can give on the minimizer ρ̂ . They can
be roughly divided into two categories: those which are independent of ν but depend
on τ , and those which are uniform in τ but refer to similar bounds on ν .

For instance, let us write down the optimality conditions for (7.2) in the case
F (ρ) =

´
f (ρ), using Proposition 7.20. First we suppose that f ∈ C2, that we have

0< c≤ f ′′≤C, and that spt(ν)=Ω. This allows to differentiate both terms in the func-
tional (the assumption on ν is needed to have uniqueness of the c-concave Kantorovich
potential) and we get {

ϕ + τ f ′(ρ̂) =C ρ̂− a.e.,
ϕ + τ f ′(ρ̂)≥C on {ρ̂ = 0},

(7.3)

where ϕ is a suitable Kantorovich potential in the transport from ρ̂ to ν . We can write
the above condition as

ρ̂ = (τ f ′)−1 ((C−ϕ)∨ f ′(0)
)
. (7.4)

This provides a uniform Lipschitz bound on ρ , which only depends on the Lipschitz
constant of ϕ (which depends on diam(Ω)) and of ( f ′)−1 (which is bounded by c−1). In
particular, if we let f and ν vary, keeping the condition f ′′≥ c> 0,we can apply Ascoli-
Arzelà Theorem to ρ and pass to the limit (from the uniqueness of the minimizers,
which is guaranteed by the strict convexity of f , the minimizers pass to the limit).
Hence, we can guarantee that (7.4) holds under the only assumption f ′′ ≥ c > 0. Notice
that in the case f ′(0) = −∞ we get ρ̂ = (τ f ′)−1(C−ϕ), that we prefer to re-write as
τ f ′(ρ̂) =C−ϕ .

These considerations allow to get continuity for ρ̂ , but the bounds obviously de-
generate as τ → 0. On the other hand, they do not really depend on ν .

A different type of bound that one can prove is the following one
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Proposition 7.32. If g ∈ L∞ is a given probability density on a compact convex and
smooth domain Ω, and ρ̂ solves

min
ρ∈P(Ω)

1
2

W 2
2 (ρ,g)+

ˆ
f (ρ(x))dx,

where f is convex and superlinear, then ||ρ̂||L∞ ≤ ||g||L∞

This bound, which, on the contrary, is independent of τ , is proven in [111, 270].
We can provide a sketch of proof.

Proof. We start from the case where g is smooth and strictly positive, and f is smooth
on ]0,+∞[, continuous on R+, with f ′′ ≥ c > 0 and f ′(0) = −∞. From the above
considerations (with τ = 1), we know that the density of the optimal ρ̂ is a continu-
ous function, given by ρ̂ = ( f ′)−1(C−ϕ). Note that ( f ′)−1 is Lipschitz continuous,
as a consequence of the lower bound on f ′′, and that ρ̂ > 0 since ρ̂ = 0 would imply
−ϕ = −∞. From its continuity, ρ̂ admits a maximal value, ρ̂(x0). Note that a maxi-
mum point for ρ̂ corresponds to a minimum point for ϕ . Using Caffarelli’s regularity
theory (see Section 1.7.6) we can provide enough regularity for ϕ so as to justify all
the following considerations (indeed, since g is smooth and ρ̂ is Lipschitz, and both
are strictly positive, and hence bounded from below, on a convex set, one has at least
ϕ ∈C2,α ). First, suppose that x0 /∈ ∂Ω. In this case we should have D2ϕ(x0)≥ 0. But
the Monge-Ampère equation gives us

ρ̂(x0) = det(I−D2
ϕ(x0))g(T(x0)),

where T = id−∇ϕ is the optimal transport from ρ̂ to g. From D2ϕ(x0) ≥ 0 we get
det(I−D2ϕ(x0))≤ 1, and hence

||ρ̂||L∞ = ρ̂(x0)≤ g(T(x0))≤ ||g||L∞ .

It remains to consider the case x0 ∈ ∂Ω. Since T(x0) = x0−∇ϕ(x0) ∈ Ω and Ω is
convex, we have ∇ϕ(x0) · n ≥ 0. By the optimality property of x0 (which is a mini-
mum point for ϕ), we also have the opposite inequality, and hence we obtain anyway
∇ϕ(x0) ·n = 0. This allows to conclude that also in this case we have D2ϕ(x0) ≥ 0
(indeed, second order minimality conditions are also satisfied on the boundary if we al-
ready know that the gradient vanish; since the tangential part always vanish at extremal
points, only the normal one has to be considered).

Finally, one can get rid of the assumptions on g and f by approximation (since
we know that the minimizer of the original problem with g ∈ L∞ and f which is only
convex and superlinear is unique).

As a final remark, we stress that some limited higher-order similar estimates can
also be obtained, and are the object of very recent papers. We mention a BV estimate,
namely ||ρ̂||BV ≤ ||g||BV , presented in [152], and based on some integration-by-parts
techniques. We also mention a Lipschitz estimate which, together with some semi-
concavity bounds, is proved in [208] in the case where f (t) = t log t, thanks to some
Pogorelov-type methods. Both estimates can be adapted to the case where a potential
energy V is added to the functional. However, we do not develop details here.
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7.4.2 Brunn-Minkowski inequality
Another interesting consequence of the displacement convexity in W2 is a transport-
based proof of a well-known geometric inequality called Brunn-Minkowski inequality.
This inequality states that for every two sets E,F ⊂ Rd (we ignore here measurability
issues) we have

|E +F |1/d ≥ |E|1/d + |F |1/d , where E +F = {x+ y : x ∈ E, y ∈ F}.

This inequality can be proven in the following way. Consider the measures µ with
constant density 1

|E| on E and ν with constant density 1
|F | on F . Then, take the measure

µ1/2 obtained at time t = 1/2 on the constant speed geodesic between them. Since
µ1/2 = ( 1

2 id+ 1
2 T)#µ0 we know that µ1/2 is concentrated on A := 1

2 E + 1
2 F . Moreover,

µ1/2 is absolutely continuous and we call ρ its density (we know ρ ∈ L∞ because
µ,ν ∈ L∞, thanks to Proposition 7.29). Note that, for convex f , we have

1
|A|

ˆ
A

f (ρ(x))dx≥ f
(´

A ρ(x)dx
|A|

)
= f

(
|A|−1

)
.

Geodesic convexity of F for f (t) =−t1−1/d implies

− 1
2
|E|1/d− 1

2
|F |1/d =

1
2
F (µ)+

1
2
F (ν)≥F (µ1/2)

=

ˆ
A

f (ρ(x))dx≥ |A| f
(
|A|−1

)
=−|A|1/d .

If we multiply this inequality by −2 on each side, using the scaling properties of
the Lebesgue measure, we exactly obtain the Brunn-Minkowski inequality.

7.4.3 Displacement convexity, game theory and spatial economics:
urban equilibria

As optimal transport describes the cost of moving masses (or individuals) when their
density is known, it is a very natural tool to analyze problems in spatial economics,
where densities of agents and of activities are involved, and one wants to take into
account geographical effects. Often, it is important to associate to this densities some
“performances”’, which let the functionals that we analyzed in this chapter appear.
Among the objects studied in spatial economics, one of the most intriguing, as we can
see in our everyday life, is urban structure.

Many models exist in the economic literature and most of them have nothing to
do with optimal transport. An interesting treatise of some spatial problems involving
some notions of optimal transform (more under the form of flow-minimization, such
as in Chapter 4, then under the form of a Monge-Kantorovich problem) is contained
in the book [29], which inspired by the way some of the works on congested transport
contained in Section 4.4.1.

Yet, the goal of this section is not to give a comprehensive literature review on the
subject, but to point out some recent problems in urban economics where the analysis
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we did in this chapter is particularly relevant. Indeed, we will see that displacement
convexity can play a role in proving uniqueness of equilibria, and their characterization
as the minimizers of a global energy.

In particular, we will not spend words on the models for urban planning contained
in [94, 95], where the goal is to find the optimal shapes of the distribution µ of the
population and of the distribution ν of “services” in order to minimize a global quantity
F (µ) +Tc(µ,ν) + G (ν). They are problems involving a social planner where no
equilibrium issue is addressed, and optimal transport appears directly in the modeling
and not as a tool. We will not spend word neither on the equilibrium model contained
in [107, 108], where one looks at a distribution µ of residents, a distribution ν of jobs,
a pairing γ between them, a function ϕ giving the price of the land and a function
ψ giving wages and at other related quantities. Here an equilibrium may be found by
considering ϕ and ψ as Kantorovich potentials for an appropriate cost, but the model is
quite long to describe (see also [277] for a short summary of this and other models) and
it uses optimal transport ideas to prove existence, and not to characterize the equilibria.

We want rather to concentrate on another, simple, class of models: suppose that a
population ρ is distributed in a region Ω and that every individual wants to choose his
own position in order to minimize the sum of two costs:

• a residential cost, which is an increasing function of the density of population at
the place where he lives; the individuals living at x “pay” a function of the form
h(ρ(x)), for h : R+→ R+ increasing; this takes into account the fact that where
more people live, the price of land is higher (or that, for the same price, they
have less space);

• an interaction cost, depending on the distances with all the other individuals;
people living at x “pay” a cost of the form

´
W (x−y)ρ(y)dy where W is usually

an increasing function of the distance (i.e. W (z) depends increasingly on |z|).

This means that the cost that every individual pays depends on his location x and on
the whole distribution ρ of everybody. We look for an equilibrium configuration, i.e. a
density ρ such that, for every x0, there is no reason for people at x0 to move to another
location, since the function fρ(x) := h(ρ(x))+

´
W (x− y)ρ(y)dy is minimal at x0, in

the spirit of Nash equilibria.

Box 7.3. – Important notion – Nash equilibria

Definition - Consider a game where several players i = 1, . . . ,n must choose a strat-
egy among a set of possibilities Si and suppose that the pay-off of each player (i.e. how
much he gains out of the game) depends on what everybody chooses, i.e. it is given
by a function pi : S1 × ·· · × Sn → R. We say that a configuration (s1, . . . ,sn) (where
si ∈ Si) is an equilibrium (a Nash equilibrium) if, for every i, the choice si optimizes
Si 3 s 7→ fi(s1, . . . ,si−1,s,si+1, . . . ,sn) (i.e. si is optimal for player i under the assumption
that the other players freeze their choice).

Note that Nash equilibria need not exist in all situations, but the strength of Nash ap-
proach was exactly to prove (via convex analysis arguments) that they always exist when
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we consider the so-called mixed strategies. This means that we accept that every player
instead of choosing an element si ∈ Si, only chooses a probability on Si and then randomly
picks a strategy according to the law he has chosen. This allows to convexify the game in a
way which is similar to what we do when we pass from Monge to Kantorovich problems.

This notion, first introduced by J. Nash in [243, 244] in the case of a finite number
of players, can be easily extended to a continuum of players where each one is negligible
compared to the others (non-atomic games). Considering for simplicity the case of identical
players, we have a common space S of possible strategies and we look for a measure ρ ∈
P(S). This measure induces a payoff function fρ : S→ R and we want the following
condition to be satisfied: there exists C ∈ R such that fρ (x) = C ρ-a.e. and fρ (x) ≤ C
everywhere (if the players want to maximize the playoff, otherwise, if it is a cost to be
minimized, fρ (x)≥C), i.e. fρ must be optimal ρ-a.e.

It is easy to see that the equilibrium condition, namely that

h(ρ(x))+
ˆ

W (x− y)ρ(y)dy

must be minimal ρ-a.e. is indeed the first-order optimality condition for the minimiza-
tion of

ρ 7→ F(ρ) :=
ˆ

H(ρ(x))dx+
1
2

ˆ ˆ
W (x− y)ρ(y)dyρ(x)dx

among probabilities ρ ∈P(Ω), where H ′ = h (just compute the first variation with
respect to perturbation of the form ρε = (1− ε)ρ + ερ̃). We can wonder whether this
optimality condition, which is necessary for minimality, is also sufficient, and if all
equilibria are minimizers. This would allow to say that we face a potential game (i.e. a
game where equilibria can be found by minimizing a global energy, see [238]). Note by
the way that the energy that we minimize is not the total cost for residents, which would
be given by

´
fρ(x)ρ(x)dx (compare to the notion of price of anarchy in Remark 4.29).

This last quantity differs from what we consider both in the 1
2 factor in the interaction

part, and in the fact that H(t) 6= th(t) in general (as we already saw in Section 4.4.1
concerning traffic congestion).

The answer to the above question would be affirmative if the functional F was
convex. Yet, the first part is convex as H is convex (as it is the antiderivative of an
increasing function), but the interaction energy is not, as we saw in this chapter. On
the other hand, if H satisfies McCann’s assumptions for displacement convexity and W
is convex (which is the case for the interaction costs |x− y| or |x− y|2, for instance),
then F is displacement convex. An interesting observation in [61] is exactly the fact
that displacement convexity is also enough, as usual convexity would do, in order to
guarantee that equilibria are all minimizers of F . To prove this fact it is enough to
compute the derivative of F(ρε) at ε = 0, when we take ρε = ((1−ε)id+εT )#ρ , there
T is the optimal transport map between ρ and any other admissible ρ̃ . By the way, it
is not a problem to add to the equilibrium condition a geographical heterogeneity (i.e.
a potential function), taking fρ(x) = h(ρ(x))+

´
W (x− y)ρ(y)dy+V (x), and in this
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case we add to F(ρ) a term in
´

V (x)ρ(x)dx. The convexity of V would be the good
assumption to the perform the same analysis.

Since we are evoking McCann’s condition on the convex function H, it is worth-
while to spend some words on its meaning in economic terms. To do that, we need to
check how h and H depend on the density through the formation of the price of land.
This comes form an easy consideration: suppose that at every point, the agents have a
certain budget to be divided into land consumption and money consumption, and that
they have a concave and increasing utility function U for land. This means they solve
a problem of the form

max{U(L)+m : pL+m≤ 0},

where p represents the price for land, L is the land consumption, m is the left-over of
the money, and the budget constraint has been set to 0 for simplicity. The optimal land
consumption will saturate the constraint, and be such that U ′(L) = p. This allows to
compute the optimal utility, which is U(L)−U ′(L)L and this gives a relation between L
and utility. Yet, the land consumption is the reciprocal of the density, hence L = 1

ρ
, and

the residential cost h(ρ), which is a cost and not a utility, can be taken to be opposite
as this utility. Hence, we take

h(ρ) =
1
ρ

U ′
(

1
ρ

)
−U

(
1
ρ

)
.

Since the function t 7→ 1
t U ′( 1

t )−U( 1
t ) is the derivative of −tU( 1

t ), the correct choice
for H is indeed H(t) = −tU( 1

t ). This makes the verification of McCann’s condition
for displacement convexity very easy, since t 7→ tdH(t−d) becomes t 7→−U(td) and we
just need t 7→U(td) to be concave and increasing. Monotonicity is guaranteed since U
is monotone, while the fact that it stays concave when composed with the d-th power
is indeed an extra assumption5.

We also stress that, in order to use displacement convexity, one needs a convex
domain Ω and that [61] also presents examples of multiple equilibria when the convex
domain is replaced by a one-dimensional circle (equilibria with multiple sub-cities are
found, i.e. spt(ρ) can be disconnected, and the multiplicity of the equilibria is not only
due to rotational invariance, but equilibria with different shapes and different number of
components are found). Curiously enough, the model described in [61] strongly recalls
a model by R. McCann for rotating stars, described in [232]. In such a paper, the author
introduces a notion of W∞-local minimizers which can be translated into a notion of
local equilibrium: each agent only compares his cost to that of nearby agents; should
the support of ρ be disconnected (which is the case in [61] and [232]), then the constant
value of their utility could change from one connected component to the others. Note
the early use of the W∞ distance, and the fact that this is the only distance allowing for
this kind of local phenomena. Indeed, local minimality for integral distances such as
Wp, if translated via optimality conditions into the expression of an equilibrium, would
not provide local minimality for each agent, but automatically global minimality. This

5Thanks to an observation by R. McCann himself, this corresponds to the fact that the utility is a concave
function not only of land “volume” but also of land “linear size”, which seems reasonable since it has to be
compared to “linear” quantities such as distances in the interaction term.
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can be observed in the example of the circle in [61]: in this example many equilibria
exist, and each agent is globally satisfied, not only locally, but most of them are not
global minimizers of the global energy.

An even more interesting situation is presented in [58], in the framework of the
so-called Cournot-Nash equilibria. This name is used to denote nonatomic games with
agents which are not indistinguishable. The situation is similar to the one described
above, but with an extra variable, which makes the distinction between agents: suppose
that a population of agents µ distributed over a space Z must choose, each, a location
x ∈ Ω, and that the payoff of each agent z is given by c(z,x)+ fρ(x), where ρ is the
distribution of their choices on Ω. More precisely, we look for a measure γ ∈P(Z×Ω)
such that (πZ)#γ = µ , and we denote (πΩ)#γ by ρ . The goal is to find γ such that no
agent z want to change his choice, i.e. there is a function ϕ : Z → R with c(z,x)+
fρ(x) ≥ ϕ(z) for all (z,x) and c(z,x)+ fρ(x) = ϕ(z) γ-a.e. Note that the variable z
represents the type of the agent, which cannot be modified by the agent itself: this is
why the minimality of c(z,x)+ fρ(x) is tested only on x, and gives a minimal value
depending on z.

It is not difficult to prove the following facts (see [58]): a measure γ is an equilib-
rium if and only if it is optimal for the cost c in Π(µ,ν), the pair (ϕ,− fρ) is a pair of
Kantorovich potentials for the same transport problems, and the c-transform ϕc satis-
fies ϕc(x)+ fρ(x)≥ 0 for all x and ϕc(x)+ fρ(x) = 0 ρ-a.e. This leads to a condition
on ρ only: find ρ such that ψ + fρ is minimal ρ-a.e., where ψ = ϕc is the Kantorovich
potential in the transport from ρ to the given measure µ , for the cost c.

The same considerations of this chapter allow to view this as the optimality con-
dition for the minimization of ρ 7→ Tc(µ,ρ) + F(ρ) and the same questions about
displacement convexity hold. As we saw in Section 7.3.3, the functional Tc(µ, ·) is
not in general displacement convex, and one needs to use convexity on generalized
geodesics. But the computations and the result are similar, as one can see in [58].

Finally, it is interesting to see that the same kind of models would appear if, instead
of defining an equilibrium on agent types z who must choose x, one directly sets an
equilibrium problem on x: agents have to choose where to locate, facing both a resi-
dential cost and an interaction cost, but also need to access a commodity z, distributed
according to a distribution µ , and their access cost is c(x,z). Since the distribution
of the commodity is fixed, the agents cannot simply choose the z that they prefer (i.e.
minimizing z 7→ c(x,z)): a matching problem will appear, and a price ϕ(z) for each
commodity. At equilibrium, according to the theory that we saw in Section 1.7.3, the
commodity cost for the agents will be given by ϕ(z)+c(x,z) = ϕc(y). This means that
the agents add to their cost a new term, given by the Kantorovich potential ϕc, exactly
as above.



Chapter 8

Gradient Flows

In this chapter we present one of the most spectacular application of optimal transport
and Wasserstein distances to PDEs. We will see that several evolution PDEs can be
interpreted as a steepest descent movement in the space W2. As we already developed
in the previous chapters many of the technical tools that we need, a large part of this
chapter will be devoted to an informal description of the general framework.

Hence, no need to let the reader wait any more, let us immediately enter into the
subject!

8.1 Gradient flows in Rd and in metric spaces
First of all, let us present what a gradient flow is in the simplest situation. Suppose
you have a function F : Rd → R and a point x0 ∈ Rd . A gradient flow is an evolution
stemming from x0 and always moving in the direction where F decreases the most,
thus “gradually minimizing” F , starting from x0. More precisely, it is just the solution
of the Cauchy problem {

x′(t) =−∇F(x(t)) for t > 0,
x(0) = x0.

This is a standard Cauchy problem which has a unique solution if ∇F is Lipschitz
continuous, i.e. if F ∈ C1,1. We will see that existence and uniqueness can also hold
without this strong assumption, thanks to the variational structure of the equation.

A first interesting property is the following, concerning uniqueness and estimates.

Proposition 8.1. Suppose that F is convex and let x1 and x2 be two solutions of x′(t) =
−∇F(x(t)) (if F is not differentiable we can consider x′(t) ∈ ∂F(x(t))). Then we have
|x1(t)− x2(t)| ≤ |x1(0)− x2(0)| for every t. In particular this gives uniqueness of the
solution of the Cauchy problem.

Proof. Let us consider g(t) = 1
2 |x1(t)− x2(t)|2 and differentiate it. We have

g′(t) = (x1(t)− x2(t)) · (x′1(t)− x′2(t)) =−(x1(t)− x2(t)) · (∇F(x1(t))−∇F(x2(t))).

259
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Here we use the basic property of gradient of convex functions, i.e. that for every x1
and x2 we have

(x1− x2) · (∇F(x1)−∇F(x2))≥ 0.

More generally, it is also true that for every x1,x2 and every p1 ∈ ∂F(x1), p2 ∈ ∂F(x2),
we have

(x1− x2) · (p1− p2)≥ 0.

From these considerations, we obtain g′(t) ≤ 0 and g(t) ≤ g(0). This gives the first
part of the claim.

Then, if we take two different solutions of the same Cauchy problem, we have
x1(0) = x2(0), and this implies x1(t) = x2(t) for any t > 0.

Remark 8.2. From the same proof, one can also deduce uniqueness and stability esti-
mates in the case where F is only semi-convex. We recall that semi-convex means that
it is λ -convex for some λ ∈ R i.e. x 7→ F(x)− λ

2 |x|
2 is convex. Indeed, in this case we

obtain |x1(t)− x2(t)| ≤ |x1(0)− x2(0)|e−λ t , which also proves, if λ > 0, exponential
convergence to the unique minimizer of F . The key point is that, if F is λ -convex it is
easy, by applying the monotonicity inequalities above to x 7→ F(x)− λ

2 |x|
2, to get

(x1− x2) · (∇F(x1)−∇F(x2))≥ λ |x1(t)− x2(t)|2.

This implies g′(t) ≤ −2λg(t) and allows to conclude, by Gronwall’s lemma, g(t) ≤
g(0)e−2λ t . For the exponential convergence, if λ > 0 then F is coercive and admits a
minimizer, which is unique by strict convexity. Let us call it x̄. Take a solution x(t) and
compare it to the constant curve x̄, which is a solution since 0 ∈ ∂F(x̄). Then we get
|x1(t)− x̄| ≤ e−λ t |x1(0)− x̄|.

Another interesting feature of those particular Cauchy problems which are gradient
flows is their discretization in time. Actually, one can fix a small time step parameter
τ > 0 and look for a sequence of points (xτ

k)k defined through

xτ
k+1 ∈ argminx F(x)+

|x− xτ
k |2

2τ
.

We can forget now the convexity assumptions on F , which are not necessary for this
part of the analysis. Indeed, very mild assumptions on F (l.s.c. and some lower bounds,
for instance F(x) ≥C1−C2|x|2) are sufficient to guarantee that these problems admit
a solution for small τ . The case where F is λ -convex is covered by these assumptions,
and also provides uniqueness of the minimizers. This is evident if λ > 0 since we have
strict convexity for every τ , and if λ is negative the sum will be strictly convex for
small τ .

We can interpret this sequence of points as the values of the curve x(t) at times
t = 0,τ,2τ, . . . ,kτ, . . . . It happens that the optimality conditions of the recursive mini-
mization exactly give a connection between these minimization problems and the equa-
tion, since we have

xτ
k+1 ∈ argminF(x)+

|x− xτ
k |2

2τ
⇒ ∇F(xτ

k+1)+
xτ

k+1− xτ
k

τ
= 0,
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i.e.
xτ

k+1− xτ
k

τ
=−∇F(xτ

k+1).

This expression is exactly the discrete-time implicit Euler scheme for x′ =−∇F(x)!

Box 8.1. – Memo – Explicit and Implicit Euler schemes

Given an ODE x′(t) = v(x(t)) (that we take autonomous for simplicity), with given ini-
tial datum x(0) = x0, Euler schemes are time-discretization where derivatives are replaced
by finite differences. We fix a time step τ > 0 and define a sequence xτ

k . The explicit scheme
is given by

xτ
k+1 = xτ

k + τv(xτ
k ), xτ

0 = x0.

The implicit scheme, on the contrary, is given by

xτ
k+1 = xτ

k + τv(xτ
k+1), xτ

0 = x0.

This means that xτ
k+1 is selected as a solution of an equation involving xτ

k , instead of being
explicitly computable from xτ

k . The explicit scheme is obviously easier to implement, but
enjoys less stability and qualitative properties than the implicit one. Suppose for instance
v =−∇F : then the quantity F(x(t)) decreases in t in the continuous solution, which is also
the case for the implicit scheme, but not for the explicit one (which represents the iteration
of the gradient method for the minimization of F).

Note that the same can be done for evolution PDEs, and that solving the Heat equation
∂tρ = ∆ρt by an explicit scheme is very dangerous: at every step, ρτ

k+1 would have two
degrees of regularity less than ρτ

k , since it is obtained through ρτ
k+1 = ρτ

k −∆ρτ
k .

It is possible to prove that, for τ→ 0, the sequence we found, suitably interpolated,
converges to the solution of the problem. It even suggests how to define solutions for
functions F which are only l.s.c., with no gradient at all!

But a huge advantage of this discretized formulation is also that it can easily be
adapted to metric spaces. Actually, if one has a metric space (X ,d) and a l.s.c. function
F : X → R∪{+∞} bounded from below, one can define

xτ
k+1 ∈ argminx F(x)+

d(x,xτ
k)

2

2τ
(8.1)

and study the limit as τ→ 0. Obviously the assumptions on F have to be adapted, since
we need existence of the minimizers and hence a little bit of compactness. But if X is
compact then everything works for F only l.s.c.

We can consider two different interpolations of the points xτ
k , given respectively by:

xτ(t) = xτ
k , x̃τ(t) = ωxτ

k−1,x
τ
k

(
t− (k−1)τ

τ

)
for t ∈](k−1),τ,kτ],

where ωx,y(s) denotes any constant speed geodesic connecting a point x to a point y,
parametrized on the unit interval [0,1]. The interpolation x̃τ only makes sense in spaces
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where geodesics exist, obviously. It is in this case a continuous (locally Lipschitz)
curve, which coincides with the piecewise constant interpolation xτ at times t = kτ .

De Giorgi, in [138], defined1 the notion of Minimizing Movements (see also [7]):

Definition 8.3. A curve x : [0,T ]→ X is said to be a Minimizing Movement if there
exists a sequence of time steps τ j → 0 such that the the piecewise constant interpola-
tions xτ j , built from a sequence of solutions of the iterated minimization scheme (8.1),
uniformly converge to x on [0,T ].

Compactness results guaranteeing the existence of Minimizing Movements are de-
rived from a simple property giving a Hölder behaviour for the curves xτ : for every τ

and every k, the optimality of xτ
k+1 provides

F(xτ
k+1)+

d(xτ
k+1,x

τ
k)

2

2τ
≤ F(xτ

k), (8.2)

which implies
d(xτ

k+1,x
τ
k)

2 ≤ 2τ
(
F(xτ

k)−F(xτ
k+1)

)
.

If F(x0) is finite and F is bounded from below, taking the sum over k, we have

l

∑
k=0

d(xτ
k+1,x

τ
k)

2 ≤ 2τ
(
F(xτ

0)−F(xτ
l+1)

)
≤Cτ.

Given t ∈ [0,T ], denote by `(t) the unique integer such that t ∈](`(t)−1)τ, `(t)τ]. For
t < s apply the Cauchy-Schwartz inequality to the sum between the indices `(t) and
`(s) (note that we have |`(t)− `(s)| ≤ |t−s|

τ
+1)

d(xτ(t),xτ(s))≤
`(s)−1

∑
k=`(t)

d(xτ
k+1,x

τ
k)≤

(
`(s)−1

∑
k=`(t)

d(xτ
k+1,x

τ
k)

2

) 1
2

|`(s)− `(t)|
1
2

≤C
√

τ
(|t− s|+ τ)

1
2

√
τ

≤C
(
|t− s|1/2+

√
τ

)
.

This means that the curves xτ - if we forget for a while that they are actually discon-
tinuous - are morally equi-Hölder continuous of exponent 1/2. The situation is even
clearer for x̃τ . Indeed, we have

τ

(
d(xτ

k−1,x
τ
k)

τ

)2

=

ˆ kτ

(k−1)τ
|(x̃τ)′|2(t)dt,

which implies, by summing up
ˆ T

0
|(x̃τ)′|2(t)dt ≤C.

1We avoid here the distinction between Minimizing Movements and Generalized Minimizing Move-
ments, which is not crucial in our analysis.
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This means that the curves x̃τ are bounded in H1([0,T ];X) (the space of absolutely
continuous curves with square-integrable metric derivative), which also implies a C0, 1

2

bound by usual Sobolev embedding.
If the space X , the distance d, and the functional F are explicitly known, in some

cases it is already possible to pass to the limit in the optimality conditions of each
optimization problem in the time-discrete setting, and to characterize the limit curve
x(t). It will be possible to do so in the space of probability measures, which is the topic
of this chapter, but not in many other cases. Indeed, without a little bit of (differential)
structure on X , it is almost impossible. If we want to develop a general theory of
gradient flows in metric spaces, we need to exploit finer tools, able to characterize,
with the only help of metric quantities, the fact that a curve x(t) is a gradient flow.

We present here an inequality which is satisfied by gradient flows in the smooth
Euclidean case, and which can be used as a definition of gradient flow in the metric
case, since all the quantities which are involved have their metric counterpart. Another
inequality, called EVI, will be presented in the discussion section (8.4.1).

The first observation is the following: thanks to the Cauchy-Schwartz inequality,
for every curve x(t) we have

F(x(s))−F(x(t)) =
ˆ t

s
−∇F(x(r)) · x′(r) dr ≤

ˆ t

s
|∇F(x(r))||x′(r)| dr

≤
ˆ t

s

(
1
2
|x′(r)|2 + 1

2
|∇F(x(r))|2

)
dr.

Here, the first inequality is an equality if and only if x′(r) and ∇F(x(r)) are vectors
with opposite directions for a.e. r, and the second is an equality if and only if their
norms are equal. Hence, the condition, called EDE (Energy Dissipation Equality)

F(x(s))−F(x(t)) =
ˆ t

s

(
1
2
|x′(r)|2 + 1

2
|∇F(x(r))|2

)
dr, for all s < t

(or even the simple inequality F(x(s))−F(x(t))≥
´ t

s

( 1
2 |x
′(r)|2 + 1

2 |∇F(x(r))|2
)

dr) is
equivalent to x′ =−∇F(x) a.e., and could be taken as a definition of gradient flow. This
is what is done in a series of works by Ambrosio, Gigli and Savaré, and in particular
in their book [17]. Developing this (huge) theory is not among the scopes of this book.
The reader who is curious about this abstract approach but wants to find a synthesis of
their work from the point of view of the author can have a look at [275]. The role of
the different parts of the theory with respect to the possible applications is clarified as
far as possible2 (we also discuss in short some of these issues in Section 8.4.1).

8.2 Gradient flows in W2, derivation of the PDE
In this section we give a short and sketchy presentation of what can be done when we
consider the gradient flow of a functional F : P(Ω)→R∪{+∞}. The functional will

2Unfortunately, some knowledge of French is required (even if not forbidden, English is unusual in the
Bourbaki seminar, since “Nicolas Bourbaki a une préférence pour le français”).
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be supposed l.s.c. for the weak convergence of probabilities and Ω compact (which
implies that F admits a minimizer, and is bounded from below). In particular, we will
give an heuristic on how to derive a PDE from the optimality conditions at each time
step. This is obviously something that we can only do in this particular metric space
and does not work in the general case of an abstract metric space.

Indeed, we exploit the fact that we know, from Chapter 5, that all absolutely con-
tinuous curves in the space W2(Ω) are solution of the continuity equation ∂tρt +∇ ·
(ρtvt) = 0, for a suitable vector field v. The goal is to identify the vector field vt , which
will depend on the measure ρt , in a way which is ruled by the functional F .

We consider the iterated minimization scheme

ρ
τ

(k+1) ∈ argminρ F(ρ)+
W 2

2 (ρ,ρ
τ

(k))

2τ
. (8.3)

Each of these problems has a solution, by compactness of P(Ω) and semi-continuity
of the objective function. Exactly as we did for the Euclidean case (F defined on Rd),
we want to study the optimality conditions of these problems so as to guess the limit
equation.

We recall the notation δG
δρ

(ρ) for the first variation of a functional G : P(Ω)→
R∪{+∞}. We will suppose that δF

δρ
is known and try to write the limit equation in

terms of this operator.
Now, take an optimal measure ρ̂ for the minimization problem at step k and com-

pute variations with respect to perturbations of the form ρε := (1− ε)ρ̂ + ερ̃ , where ρ̃

is any other probability measure. Using Proposition 7.20 we obtain

δF
δρ

(ρ)+
ϕ

τ
= constant,

whre ϕ is a Kantorovich potential for the transport with cost 1
2 |x− y|2 from ρ̂ to ρτ

(k).
Actually, the above equality holds ρ̂-a.e., and requires uniqueness of ϕ . For both these
points proving ρε > 0 will be enough, but we will fix this when doing the rigorous
proof.

If we combine the fact that the above sum is constant, and that we have T(x) =
x−∇ϕ(x) for the optimal T, we get

T(x)− x
τ

=−∇ϕ(x)
τ

= ∇
(δF

δρ
(ρ)
)
(x). (8.4)

We will denote by −v the ratio T(x)−x
τ

. Why? Because, as a ratio between a displace-
ment and a time step, it has the meaning of a velocity, but since it is the displacement
associated to the transport from ρτ

(k+1) to ρτ

(k), it is better to view it rather as a backward
velocity (which justifies the minus sign).

Since here we have v = −∇
(

δF
δρ

(ρ)
)
, this suggests that at the limit τ → 0 we will

find a solution of

∂tρ−∇ ·
(
ρ ∇
(δF

δρ
(ρ)
))

= 0,
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with homogeneous Neumann boundary conditions on ∂Ω.
Before entering into the details making the above approach rigorous (next section),

we want to present some examples of this kind of equations. We will consider two
functionals that we already analyzed in Chapter 7, and more precisely

F (ρ) =

ˆ
f (ρ(x))dx, and V (ρ) =

ˆ
V (x)dρ.

In this case we already saw that we have

δF

δρ
(ρ) = f ′(ρ),

δV

δρ
(ρ) =V.

An interesting example is the case f (t) = t log t. In such a case we have f ′(t) =
log t +1 and ∇( f ′(ρ)) = ∇ρ

ρ
: this means that the gradient flow equation associated to

the functional F would be the Heat Equation

∂tρ−∆ρ = 0,

and that for F +V we would have the Fokker-Planck Equation

∂tρ−∆ρ−∇ · (ρ∇V ) = 0.

We will see a list of other Gradient Flow equations in the Discussion section, including
the so-called Porous Media Equation, obtained for other choices of f .

Remark 8.4. One could wonder how the usual stochastic diffusion intepretation of
the Heat and Fokker-Planck Equations is compatible with the completely determin-
istic framework that we present here, where the velocity of each particle is given by
−∇ρ/ρ−∇V (take V = 0 to get the Heat Equation). Indeed, the Fokker-Planck Equa-
tion is also the PDE solved by the density of a bunch of particle following a stochastic
equation dXt = −∇V (Xt)dt + dBt , where B is a standard Brownian motion (indepent
for each particle). The answer, as it is well pointed out in [89], is based on the idea
that in this optimal transport interpretation we rearrange (i.e., relabel) the particles.
This fact is quite clear n the 1D case: if at every time step particles move from x to
x− τ∇V (x)+Bτ (i.e. the follow the drift −∇V and they diffuse with a Gaussian law),
and then we reorder them (we always call particle 1 the one which is the most at the
left, particle 2 the next one. . . and particle N the one which is the most at the right),
then we have a discrete family of trajectories which converge, when τ goes to 0 and
the number N to infinity, to a solution of Fokker-Planck where the velocity is exactly
given by −∇ρ/ρ−∇V . Similar considerations can be done in higher dimension with
suitable notions of rearrangement.

Note that all these PDEs come accompanied by Neumann boundary conditions
ρ

∂

∂n (
δF
δρ

(ρ)) = 0 on ∂Ω, as a consequence of the Neumann boundary conditions for
the continuity equation of Section 5.3. We will see in Section 8.4.3 a case of extension
to Dirichlet boundary conditions.

We finish this section with some philosophical thoughts. Why study some PDEs
considering them as gradient flows for the distance W2? There are at least three reasons.
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The first one is that it allows to give an existence result (of a weak solution of such a
PDE), with the technique that we will see in the next section. This is obviously useless
when the equation is already well-known, as it is the case for the Heat equation, or its
Fokker-Planck variant. But the same strategy could be applied to variants of the same
equations (or to similar equations in stranger spaces, as it is nowadays done for the Heat
flow in metric measure spaces, see [184, 18]). It is also very useful when the equation
is of new type (we will see the case of the crowd motion models in Section 8.4.2). The
second goal could be to derive properties of the flow and of the solution, once we know
that it is a gradient flow. A simple one is the fact that t 7→ F(ρt) must be decreasing
in time. However, this can be often deduced from the PDE in different ways and does
not require in general to have a gradient flow. The third goal concerns numerics: the
discretized scheme to get a gradient flow is itself a sort of algorithm to approximate the
solution. If the minimization problems at each time step are discretized and attacked in
a suitable way, this can provide efficient numerical tools (see, for instance, [41]).

Finally, all the procedure we presented is related to the study and the existence
of weak solutions. What about uniqueness? We stress that in PDE applications the
important point is to prove uniqueness for weak solutions of the continuity equation
with v = −∇

δF
δρ

(i.e. we do not care at the metric structure, and at the definitions of
EVI and EDE). In some cases, this uniqueness could be studied independently of the
gradient-flow structure (this is the case for the Heat equation, for instance). Anyway,
should we use PDE approaches for weak solutions, or abstract approaches in metric
spaces, it turns out that usually uniqueness is linked to some kind of convexity, or λ -
convexity, and in particular to displacement convexity. This is why a large part of the
theory has been developed for λ -geodesically convex functionals.

8.3 Analysis of the Fokker-Planck case
We consider here the case study of the Fokker-Planck equation, which is the gradient
flow of the functional

J(ρ) =
ˆ

Ω

ρ logρ +

ˆ
Ω

V dρ,

where V is a Lipschitz function on the compact domain Ω. The initial measure ρ0 ∈
P(Ω) is taken such that J(ρ0)<+∞.

We stress that the first term of the functional is defined as

F (ρ) :=

{´
Ω

ρ(x) logρ(x)dx if ρ �L d ,

+∞ otherwise,

where we identify the measure ρ with its density, when it is absolutely continuous.
This functional is l.s.c. thanks to Proposition 7.7 (which can be applied since we are
on a domain with finite measure, otherwise the situation is trickier, and we refer to
Ex(45)).

semi-continuity allows to establish the following

Proposition 8.5. The functional J has a unique minimum over P(Ω). In particular J is
bounded from below. Moreover, for each τ > 0 the following sequence of optimization
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problems recursively defined is well-posed

ρ
τ

(k+1) ∈ argminρ J(ρ)+
W 2

2 (ρ,ρ
τ

(k))

2τ
, (8.5)

which means that there is a minimizer at every step, and this minimizer is unique.

Proof. Just apply the direct method, noting that P(Ω) is compact for the weak con-
vergence, which is the same as the convergence for the W2 distance (again, because Ω

is compact), and for this convergence F is l.s.c. and the other terms are continuous.
This gives at the same time the existence of a minimizer for J and of a solution to each
of the above minimization problems (8.5). Uniqueness comes from the fact that all the
functionals are convex (in the usual sense) and F is strictly convex.

Optimality conditions at each time step We will use Propositions 7.17, 7.20 and
7.18, and to do so we first need to prove the following result.

Lemma 8.6. Any minimizer ρ̂ in (8.5) must satisfy ρ̂ > 0 a.e. and log ρ̂ ∈ L1.

Proof. Consider the measure ρ̃ with constant positive density c in Ω (i.e. c = |Ω|−1).
Let us define ρε as (1− ε)ρ̂ + ερ̃ and compare ρ̂ to ρε .

By optimality of ρ̂ , we may write

F (ρ̂)−F (ρε)≤
ˆ

Ω

V dρε −
ˆ

Ω

V dρ̂ +
W 2

2 (ρε ,ρ
τ

(k))

2τ
−

W 2
2 (ρ̂,ρ

τ

(k))

2τ
. (8.6)

The Wasserstein term in the right hand side may be estimated by convexity:

W 2
2 (ρε ,ρ

τ

(k))

2τ
≤ (1− ε)

W 2
2 (ρ̂,ρ

τ

(k))

2τ
+ ε

W 2
2 (ρ̃,ρ

τ

(k))

2τ
.

The potential term is of order ε as well:
ˆ

Ω

V dρε −
ˆ

Ω

V dρ̂ = ε

ˆ
Ω

V d(ρ̃− ρ̂)≤Cε.

This shows that the whole right hand side of (8.6) is estimated by Cε and we get
ˆ

Ω

f (ρ̂)− f (ρε)≤Cε

where f (t) = t log t (set to 0 in t = 0). Write

A = {x ∈Ω : ρ̂(x)> 0}, B = {x ∈Ω : ρ̂(x) = 0}.

Since f is convex we write, for x∈ A, f (ρ̂(x))− f (ρε(x))≥ (ρ̂(x)−ρε(x)) f ′(ρε(x)) =
ε(ρ̂(x)− ρ̃(x))(1+logρε(x)). For x∈B we simply write f (ρ̂(x))− f (ρε(x))=−εc log(εc).
This allows to write

−εc log(εc)|B|+ ε

ˆ
A
(ρ̂(x)− c)(1+ logρε(x))dx≤Cε
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and, dividing by ε ,

− c log(εc)|B|+
ˆ

A
(ρ̂(x)− c)(1+ logρε(x))dx≤C (8.7)

Note that the always have

(ρ̂(x)− c)(1+ logρε(x))≥ (ρ̂(x)− c)(1+ logc)

(just distinguish between the case ρ̂(x)≥ c and ρ̂(x)≤ c). Thus, we may write

−c log(εc)|B|+
ˆ

A
(ρ̂(x)− c)(1+ logc)dx≤C.

Letting ε → 0 provides a contradiction, unless |B|= 0.
This proves ρ̂ > 0 a.e. We now come back to (8.7), which is an upper bound on

the integral of the functions (ρ̂(x)− c)(1+ logρε(x)). We already noted that these
functions are bounded from below by (ρ̂(x)− c)(1+ logc), which is L1 because c is a
constant and ρ̂ ∈ L1. Hence, we can apply Fatou’s lemma and obtain, at the limit as
ε → 0, ˆ

Ω

(ρ̂(x)− c)(1+ log ρ̂(x))dx≤C

(the integral on A has been replaced by the integral on Ω, since B is negligble). Since
we already know that (ρ̂−c)(1+ log ρ̂) is bounded from below by an L1 function, and
its integral is finite, then it is L1. But we already know that ρ̂, ρ̂ log ρ̂ ∈ L1, we deduce
log ρ̂ ∈ L1.

We can now compute the first variation and give optimality conditions on the opti-
mal ρτ

(k+1).

Proposition 8.7. The optimal measure ρτ

(k+1) in (8.5) satisfies

log(ρτ

(k+1))+V +
ϕ̄

τ
= constant a.e. (8.8)

where ϕ̄ is the (unique) Kantorovich potential from ρτ

(k+1) to ρτ

(k). In particular, logρτ

(k+1)
is Lipschitz continuous. If Tτ

k is the optimal transport from ρτ

(k+1) to ρτ

(k), then it satis-
fies

vτ

(k) :=
id−Tτ

k
τ

=−∇

(
log(ρτ

(k+1))+V
)

a.e. (8.9)

Proof. Take the optimal measure ρ̂ := ρτ

(k+1). We can say that it is regular (see Defini-
tion 7.12) for the functional J, since the only term which is not finite on all probabilities
in P(Ω) is the entropy term, but it is convex and finite both on the optimum ρ̂ and on
L∞ densities. We can check that J admits a first variation at ρ̂ . For the linear term it
is straightforward, and for the Wasserstein term we can apply Proposition 7.17. The
uniqueness of the Kantorovich potential is guaranteed by Proposition 7.18 together
with Lemma 8.6. For the entropy term, consider ρε := (1− ε)ρ̂ + ερ̃ , for ρ̃ ∈ L∞.
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Set M = ||ρ̃||L∞ and look at ε 7→
´

ρε logρε . The integrand can be differentiated in ε

pointwisely, thus getting (1+ logρε)(ρ̃ − ρ̂). For ε < 1/2, we can check that these
functions are dominated by (ρ̂ +M)(| log ρ̂|+ logM+1), which is L1 thanks to ρ̂ ∈ L1

and log ρ̂ ∈ L1 (from Lemma 8.6). This allows to differentiate under the integral sign
and proves that the first variation of this term is 1+ log ρ̂ .

The first variation of J is hence

δJ
δρ

= f ′(ρ)+V = log(ρ)+1+V.

Applying Proposition 7.20 we obtain Equation (8.8), which is valid a.e. since ρ̂ > 0.
In particular, this implies that ρτ

(k+1) is Lipschitz continuous, since we have

ρ
τ

(k+1)(x) = exp
(

C−V (x)− ϕ̄(x)
τ

)
.

Then, one differentiates and gets the equality

∇ϕ̄ =
id−Tτ

k
τ

=−∇

(
log(ρτ

(k+1))+V
)

a.e.

and this allows to conclude.

Interpolation between time steps and uniform estimates Let us collect some other
tools

Proposition 8.8. For any τ > 0, the sequence of minimizers satisfies

∑
k

W 2
2 (ρ

τ

(k+1),ρ
τ

(k))

τ
≤C := 2(J(ρ0)− infJ).

Proof. This is obtained by comparing the optimizer ρτ

(k+1) to the previous measure
ρτ

(k). We get

J(ρτ

(k+1))+
W 2

2 (ρ
τ

(k+1),ρ
τ

(k))

2τ
≤ J(ρτ

k ), (8.10)

which implies

∑
k

W 2
2 (ρ

τ

(k+1),ρ
τ

(k))

τ
≤∑

k
2(J(ρτ

k )− J(ρτ

(k+1))).

This last sum is telescopic and gives the claim.

Let us define two interpolations between the measures ρτ

(k).
With this time-discretized method, we have obtained, for each τ > 0, a sequence

(ρτ

(k))k. We can use it to build at least two interesting curves in the space of measures:
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• first we can define some piecewise constant curves, i.e. ρτ
t := ρτ

(k+1) for t ∈
]kτ,(k+ 1)τ]; associated to this curve we also define the velocities vτ

t = vτ

(k+1)
for t ∈]kτ,(k+1)τ], where vτ

(k) is defined as in (8.9): vτ

(k) = (id−Tτ
k)/τ , taking

as Tτ
k the optimal transport from ρτ

(k+1) to ρτ

(k); we also define the momentum
variable Eτ = ρτ vτ ;

• then, we can also consider the densities ρ̃τ
t that interpolate the discrete values

(ρτ

(k))k along geodesics:

ρ̃
τ
t =

(
kτ− t

τ
vτ

(k)+ id
)

#
ρ

τ

(k), for t ∈](k−1)τ,kτ[; (8.11)

the velocities ṽτ
t are defined so that (ρ̃τ , ṽτ) satisfy the continuity equation and

||ṽτ
t ||L2(ρ̃τ

t )
= |(ρ̃τ)′|(t). To do so, we take

ṽτ
t = vτ

t ◦
(
(kτ− t)vτ

(k)+ id
)−1

;

as before, we define a momentum variable: Ẽτ = ρ̃τ ṽτ .

After these definitions we consider some a priori bounds on the curves and the
velocities that we defined. We start from some estimates which are standard in the
framework of Minimizing Movements.

Note that the velocity (i.e. metric derivative) of ρ̃τ is constant on each interval
]kτ,(k+1)τ[ and equal to

W2(ρ
τ

(k+1),ρ
τ

(k))

τ
=

1
τ

(ˆ
|id−Tτ

k |2dρ
τ

(k+1)

)1/2

= ||vτ
k+1||L2(ρτ

(k+1))
,

which gives

||ṽτ
t ||L2(ρ̃τ

t )
= |(ρ̃τ)′|(t) =

W2(ρ
τ

(k+1),ρ
τ

(k))

τ
= ||vτ

t ||L2(ρτ
t )
,

where we used the fact that the velocity field ṽτ has been chosen so that its L2 norm
equals the metric derivative of the curve ρ̃τ .

In particular we can obtain

|Eτ |([0,T ]×Ω) =

ˆ T

0
dt
ˆ

Ω

|vτ
t |dρ

τ
t =

ˆ T

0
||vτ

t ||L1(ρτ
t )

dt ≤
ˆ T

0
||vτ

t ||L2(ρτ
t )

dt

≤ T 1/2
ˆ T

0
||vτ

t ||2L2(ρτ
t )

dt = T 1/2
∑
k

τ

(
W2(ρ

τ

(k+1),ρ
τ

(k))

τ

)2

≤C.

The estimate on Ẽτ is completely analogous

|Ẽτ |([0,T ]×Ω) =

ˆ T

0
dt
ˆ

Ω

|ṽτ
t |dρ̃

τ
t ≤ T 1/2

ˆ T

0
||ṽτ

t ||2L2(ρ̃τ
t )

= T 1/2
∑
k

τ

(
W2(ρ

τ

(k+1),ρ
τ

(k))

τ

)2

≤C.
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This gives compactness of Eτ and Ẽτ in the space of vector measures on space-time,
for the weak convergence. As far as ρ̃τ is concerned, we can obtain more than that.
Consider the following estimate, for s < t

W2(ρ̃
τ
t , ρ̃

τ
s )≤

ˆ t

s
|(ρ̃τ)′|(r)dr ≤ (t− s)1/2

(ˆ t

s
|(ρ̃τ)′|(r)2dr

)1/2

.

From the previous computations, we have again

ˆ T

0
|(ρ̃τ)′|(r)2dr = ∑

k
τ

(
W2(ρ

τ

(k+1),ρ
τ

(k))

τ

)2

≤C,

and this implies
W2(ρ̃

τ
t , ρ̃

τ
s )≤C(t− s)1/2, (8.12)

which means that the curves ρ̃τ are uniformly Hölder continuous. Since they are de-
fined on [0,T ] and valued in W2(Ω) which is compact, we can apply the Ascoli Arzelà
Theorem. This implies that, up to subsequences, we have

Eτ ⇀ E in M d([0,T ]×Ω), Ẽτ ⇀ Ẽ in M d([0,T ]×Ω);
ρ̃

τ → ρ uniformly for the W2 distance.

The limit curve ρ , from the uniform bounds on ρ̃τ , is both 1
2 -Hölder continuous and

absolutely continuous in W2.
As far as the curves ρτ are concerned, they also converge uniformly to the same

curve ρ , since W2(ρ
τ
t , ρ̃

τ
t )≤C

√
τ (a consequence of (8.12), of the fact that ρ̃τ = ρτ on

the points of the form kτ and of the fact that ρτ is constant on each interval ]kτ,(k+
1)τ]).

Let us now prove that Ẽ = E.

Lemma 8.9. Suppose that we have two families of vector measures Eτ and Ẽτ such
that

• Ẽτ = ρ̃τ ṽτ ; Eτ = ρτ vτ ;

• ṽτ
t = vτ

t ◦
(
(kτ− t)vτ

(k)+ id
)−1

; ρ̃τ =
(
(kτ− t)vτ

(k)+ id
)

#
ρτ ;

•
´´
|vτ |2dρτ ≤C (with C independent of τ);

• Eτ ⇀ E and Ẽτ ⇀ Ẽ as τ → 0

Then Ẽ = E.

Proof. It is sufficient to fix a Lipschitz function f : [0,T ]×Ω→ Rd and to prove
´

f ·
dE =

´
f ·dẼ. To do that, we write

ˆ
f ·dẼτ =

ˆ T

0
dt
ˆ

Ω

f · ṽτ
t dρ̃

τ =

ˆ T

0
dt
ˆ

Ω

f ◦ ((kτ− t)vτ + id) ·vτ
t dρ

τ ,
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which implies∣∣∣∣ˆ f ·dẼτ −
ˆ

f ·dEτ

∣∣∣∣≤ ˆ T

0
dt
ˆ

Ω

| f ◦ ((kτ− t)vτ+id)− f | |vτ
t |dρ

τ

≤ Lip( f )τ
ˆ T

0

ˆ
Ω

|vτ
t |2dρ

τ ≤Cτ.

This estimate proves that the limit of
´

f · dẼτ and
´

f · dEτ is the same, i.e. E =

Ẽ.

Relation between ρ and E We can obtain the following:

Proposition 8.10. The pair (ρ,E) satisfies, in distributional sense

∂tρ +∇ ·E = 0, E =−∇ρ−ρ∇V,

with homogeneous Neumann boundary conditions on ∂Ω. In particular we have found
a solution to {

∂tρ−∆ρ +∇ · (ρ∇V ) = 0,
ρ(0) = ρ0,

where the initial datum is to be intended in the following sense: the curve t 7→ ρt is
(absolutely) continuous in W2, and its initial value is ρ0.

Proof. First, consider the weak convergence (ρ̃τ , Ẽτ) ⇀ (ρ,E) (which is a conse-
quence of Ẽ = E). The continuity equation ∂t ρ̃

τ +∇ · Ẽτ = 0 is satisfied (as in Section
4.1.2) in the sense of distributions by (ρ̃τ , Ẽτ) (we test the equations against C1

c func-
tion on ]0,T [×Ω, which means in particular that we do not require the test functions to
vanish on ∂Ω) and this passes to the limit.

Hence, ∂tρ +∇ ·E = 0.
The continuity in W2 and the initial datum pass to the limit because of the uniform

C0,1/2 bound in (8.12).
Then, use the convergence (ρτ ,Eτ)⇀ (ρ,E). Actually, using the optimality con-

ditions of Proposition 8.7 and the definition of Eτ = vτ ρτ , we have, for each τ > 0,
Eτ =−∇ρτ−ρτ ∇V (again, in the sense of distributions: the term ρτ ∇V is the product
of an L1 and an L∞ functions). It is not difficult to pass this condition to the limit either.
Take f ∈C1

c (]0,T [×Ω;Rd) and test:
ˆ

f ·dEτ =−
ˆ

f ·∇ρ
τ −

ˆ
f ·∇V ρ

τ =

ˆ
∇ · f dρ

τ −
ˆ

f ·∇V ρ
τ .

These terms pass to the limit as ρτ ⇀ ρ , at least if V ∈C1, since all the test functions
above are continuous. This would give

´
f ·dE =

´
(∇ · f )dρ−

´
f ·∇V dρ, which im-

plies E =−∇ρ−ρ∇V (once more, ∇ρ is to be intended in the sense of distributions).
To handle the case where V is only Lipschitz continuous, let us note that for every

τ, t we have J(ρτ
t )≤ J(ρ0) (this is a consequence of (8.10), which iterated over k, gives
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J(ρτ

(k))≤ J(ρ0)). This gives a uniform bound on F (ρτ
t ) and the Dunford-Pettis Theo-

rem below turns the weak convergence ρτ
t ⇀ ρt as measures into a weak convergence

in L1. Look at the term

ˆ
f ·∇V ρ

τ :=
ˆ T

0
dt
ˆ

Ω

f (t,x) ·∇V (x)ρτ
t (x)dx.

The integrand in t is uniformly bounded by || f ||L∞ ||∇V ||L∞ . Hence, we can compute
its limit as τ→ 0 looking at the limit for each fixed t because it is dominated. And, for
fixed t, we have weak convergence in L1 of ρτ

t to ρt , which, multiplied times a fixed
L∞ function, i.e. f ·∇V , gives the desired limit of the integral.

Box 8.2. – Memo – Equi-integrability and Dunford-Pettis Theorem

Definition - A sequence of function ρn is said to be equi-integrable if for every ε > 0
there exists δ > 0 such that on every set A with |A| ≤ δ we have

´
A ρn(x)dx≤ ε for any n.

We can check that equi-integrability is equivalent to a bound
´

f (ρn(x))dx≤C <+∞

for any superlinear function f . Let us only prove that such a bound implies equi-
integrability. Indeed, fix ε > 0 and take M such that for all t with t > M we have
f (t)/t > 2C/ε (this is possible thanks to the superlinearity of f ). Then we estimate

ˆ
A

ρn =

ˆ
A∩{ρn≤M}

ρn +

ˆ
A∩{ρn>M}

ρn

f (ρn)
f (ρn)dx≤M|A|+ ε

2C
C.

It is now enough to take δ = ε

2M and we get
´

A ρn(x)dx < ε .
Theorem - Suppose that ρn is a sequence of probability densities weakly converging as

measures to ρ ∈P(Ω). Suppose that
´

f (ρn) is bounded for some superlinear function f .
Then ρ is also absolutely continuous and the weak convergence also holds in L1 (i.e. in
duality with L∞ functions, and not only with continuous ones).

Proof - The absolute continuity of ρ is a consequence of the lower semi-continuity of
F defined as F (ρ) =

´
Ω

f (ρ(x))dx if ρ �L d (+∞ otherwise).
Moreover, the bound on

´
f (ρn(x))dx implies equi-integrability. Fix a test function

ϕ ∈ L∞ and use the fact that for every ε > 0 there is a δ > 0 with |A| ≤ δ ⇒
´

A ρn(x)dx≤
ε and that, by Lusin Theorem, for this δ > 0 there exists a continuous function ϕ̃ with
||ϕ̃||L∞ ≤ ||ϕ||L∞ and {ϕ 6= ϕ̃} ⊂ A, where A is open with |A|< δ . We have∣∣∣∣ˆ ϕ(ρn−ρ)

∣∣∣∣≤ ∣∣∣∣ˆ ϕ̃(ρn−ρ)

∣∣∣∣+2||ϕ||L∞

ˆ
A
(ρn +ρ).

Since A is open and ρn ⇀ ρ we have
´

A ρ(x)dx≤ liminf
´

A ρn(x)dx≤ ε , hence

limsup
∣∣∣∣ˆ ϕ(x)ρn(x)dx−

ˆ
ϕ(x)ρ(x)dx

∣∣∣∣≤ 0+2||ϕ||L∞ ε,

which implies, ε being arbitrary,
´

ϕ(x)ρn(x)dx→
´

ϕ(x)ρ(x)dx.
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8.4 Discussion

8.4.1 EVI, uniqueness and geodesic convexity
In the general theory of Gradient Flows ([17]) in metric spaces, another characteriza-
tion, different from the EDE, is proposed in order to cope with uniqueness and stability
results. It is based on the following observation: if F : Rd → R is convex, then the
inequality

F(y)≥ F(x)+ p · (y− x) for all y ∈ Rd

characterizes (by definition) the vectors p ∈ ∂F(x) and, if F ∈ C1, it is only satisfied
for p = ∇F(x). Analogously, if F is λ -convex, the inequality that characterizes the
gradient is

F(y)≥ F(x)+
λ

2
|x− y|2 + p · (y− x) for all y ∈ Rd .

Hence, we can pick a curve x(t) and a point y and compute

d
dt

1
2
|x(t)− y|2 = (y− x(t)) · (−x′(t)).

Consequently, imposing

d
dt

1
2
|x(t)− y|2 ≤ F(y)−F(x(t))− λ

2
|x(t)− y|2,

for all y, will be equivalent to −x′(t) = ∇F(x(t)). This will provide a second charac-
terization (called EVI, Evolution Variational Inequality) of gradient flows in a metric
environment. Indeed, all the terms appearing in the above inequality have a metric
counterpart (only squared distances and derivatives w.r.t. time appear). Even if we
often forget the dependance on λ , it should be noted that the condition EVI should
actually be written as EVIλ , since it involves a parameter λ , which is a priori arbitrary.
Actually, λ -convexity of F is not necessary to define the EVIλ property, but it will be
necessary in order to guarantee the existence of curves which satisfy such a condition.
The notion of λ -convexity will hence be crucial also in metric spaces, where it will be
rather “λ -geodesic-convexity”.

The role of the EVI condition in the uniqueness and stability of gradient flows is
quite easy to guess. Take two curves, that we call x(t) and y(s), and compute

d
dt

1
2

d(x(t),y(s))2 ≤ F(y(s))−F(x(t))− λ

2
d(x(t),y(s))2, (8.13)

d
ds

1
2

d(x(t),y(s))2 ≤ F(x(t))−F(y(s))− λ

2
d(x(t),y(s))2. (8.14)

If one wants to estimate E(t) = 1
2 d(x(t),y(t))2, summing up the two above inequali-

ties, after a chain-rule argument for the composition of the function of two variables3

(t,s) 7→ 1
2 d(x(t),y(s))2 and of the curve t 7→ (t, t), gives

d
dt

E(t)≤−2λE(t).

3Note that a similar argument, based on doubling the variables, is also often performed for the differen-
tiation of W 2

2 along curves in W2, which we did differently in Section 5.3.5.
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By Gronwall Lemma, this provides uniqueness (when x(0) = y(0)) and stability.
The situation concerning these two different notions of gradient flows (EVI and

EDE) in abstract metric spaces has been clarified by Savaré (in an unpublished note,
but the proof can also be found in [10]), who showed that

• All curves which are gradient flows in the EVI sense also satisfy the EDE condi-
tion.

• The EDE condition is not in general enough to guarantee uniqueness of the gra-
dient flow. A simple example: take X = R2 with the `∞ distance

d((x1,x2),(y1,y2)) = |x1− y1|∨ |x2− y2|,

and take F(x1,x2) = x1; we can check that any curve (x1(t),x2(t)) with x′1(t) =
−1 and |x′2(t)| ≤ 1 satisfies EDE.

• On the other hand, existence of a gradient flow in the EDE sense is quite easy to
get, and provable under very mild assumption.

• The EVI condition is in general too strong in order to get existence (in the ex-
ample above of the `∞ norm, no EVI gradient flow would exist), but always
guarantees uniqueness and stability (w.r.t. initial data).

Also, the existence of EVI gradient flows is itself very restricting on the function
F : indeed, it is proven in [135] that, if F is such that from every starting point x0 there
is an EVIλ gradient flow, then F is necessarily λ -geodesically-convex.

We need to stress that all these abstract considerations on EDE and EVI are manda-
tory when dealing with a general metric framework, but can often be skipped when
dealing with precise applications. For the sake of the applications to PDE that are at
the core of this chapter, the point of view which seems to be more concrete is the fol-
lowing: there is an evolution model translated into a PDE, and we want to study this
equation (existence; uniqueness and stability; qualitative, regularity and asymptotical
properties; numerical simulations). If this PDE happens to be the gradient flow of a
certain functional for the W2 distance, then much information can be obtained by the
gradient flow approach (more specifically, the minimizing movement approach via dis-
cretized variational problems). But the notion of solution that one should use is a priori
the one which came with the PDE in the modeling of the problem (in general, the no-
tion of weak solution of a continuity equation). This is why, even if (non-trivial) results
exist proving equivalence between some abstract (EVI or EDE) notions in the metric
space W2 and weak solutions of evolution equations (see [17]), we preferred not to
enter into these details here in this book.

On the other hand, we will see in a while (next section) that, as a last remark in favor
of the general theory developed in [17], it is not always easy to prove existence via the
Minimizing Movement method when we face non-linear terms and that exploiting the
characterization of the gradient flows in W2 developed in [17] could be sometimes
easier.
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8.4.2 Other gradient-flow PDEs
We saw in Section 8.3 the example, and a detailed analysis, of the Fokker-Planck equa-
tion. The main reason to choose such example is its simplicity, because it is a linear
equation. This allows easily to pass to the limit all the terms in the relation between E
and ρ . Yet, many other important equations can be obtained as gradient flows in W2,
choosing other functionals. We will see some of them here, without entering into de-
tails of the proof. We stress that handling non-linear terms is often difficult and requires
ad-hoc estimates. We will discuss some of the ideas that one should apply. Note on
the other hand that, if one uses the abstract theory of [17], there is no need to produce
these ad-hoc estimates: after developing a general (and hard) theory for general metric
spaces, the second part of [17] explains which are the curves that one finds as gradient
flows in W2, with the relation between the velocity field v and the derivatives (with
an ad-hoc notion of subdifferential in the Wasserstein space) of the functional F . This
automatically gives the desired result as a part of a larger theory.

We will discuss six classes of PDEs in this section: the porous media equation,
the Keller-Segel equation, more general aggregation models and more involved equa-
tions with diffusion, advection and aggregation, a model for crowd motion with density
constraints, and the flow of the squared distance SW 2

2 .

Porous Media Equation This equation models the diffusion of a substance into a
material whose properties are different than the void, and which slows down the diffu-
sion. If one consider the case of particles which are advected by a potential and subject
to this kind of diffusion, the PDE reads

∂tρ−∆(ρm)−∇ · (ρ∇V ) = 0,

for an exponent m > 1. One can formally check that this is the equation of the gradient
flow of the energy

F(ρ) =
1

m−1

ˆ
ρ

m(x)dx+
ˆ

V (x)ρ(x)dx

(set to +∞ for ρ /∈ Lm). Indeed, the first variation of the first part of the functional is
m

m−1 ρm−1, and ρ∇
( m

m−1 ρm−1
)
= mρ ·ρm−2∇ρ = ∇(ρm).

Note that, in the discrete step minρ F(ρ)+
W 2

2 (ρ,ρ0)
2τ

, the solution ρ satisfies{
m

m−1 ρm−1 +V + ϕ

τ
=C ρ− a.e.

m
m−1 ρm−1 +V + ϕ

τ
≥C on {ρ = 0}.

This allows to express ρm−1 = m−1
m (C−V −ϕ/τ)+ (see Section 7.2.3). This implies

that ρ is compactly supported if ρ0 is compactly supported, as soon as V has some
growth conditions (see Ex(52)). This fact contradicts the usual infinite propagation
speed that one finds in linear diffusion models (Heat and Fokker-Planck equation).

The above analysis works in the case m > 1: the fact that the usual Fokker-Planck
equation can be obtained for m→ 1 can be seen in the following way: nothing changes
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if we define F via F(ρ) = 1
m−1

´
(ρm(x)− ρ(x))dx+

´
V (x)ρ(x)dx, since the mass´

ρ(x)dx = 1 is a given constant. Yet, then it is is easy to guess the limit, since

lim
m→1

ρm−ρ

m−1
= ρ logρ,

which provides the entropy that we already used in Section 8.3.
It is also interesting to consider the case m < 1: the function ρm−ρ is no longer

convex, but it is concave and the negative coefficient 1/(m− 1) makes it a convex
function. Unfortunately, it is not superlinear at infinity, which makes it more difficult
to handle. But for m≥ 1−1/d the functional F is still displacement convex. The PDE
that we get as a gradient flow is called Fast diffusion equation, and it has different (and
opposite) properties in terms of diffusion rate than the porous media one.

From a technical point of view, proving compactness of the minimizing movement
scheme for these equations is not very easy, since one needs to pass to the limit the
non-linear term ∆(ρm), which means, proving strong convergence on ρ instead of weak
convergence. The main ingredient is a sort of H1 bound in space, which comes from
the fact that we have

ˆ T

0

ˆ
Ω

|∇(ρm−1)|2 dxdt ≈
ˆ T

0

ˆ
Ω

|∇ϕ|2

τ2 dxdt =
ˆ T

0
|ρ ′|(t)2dt ≤C (8.15)

(but one has to deal with the fact that this is not a full H1 bound, and the behavior in
time has to be controlled).

Keller-Segel An interesting model in mathematical biology (see [202, 203] for the
original modeling) is the following: a population ρ of bacteria evolves in time, follow-
ing diffusion and advection by a potential. The potential is given by the concentration
u of a chemo-attractant nutrient substance, produced by the bacteria themselves. This
kind of phenomenon is also known under the name of chemotaxis. More precisely,
bacteria move (with diffusion) in the direction where they find more nutrient, i.e. in
the direction of ∇u, where the distribution of u depends on their density ρ . The easiest
model uses linear diffusion and supposes that the distribution of u is related to ρ by the
condition −∆u = ρ , with Dirichlet boundary conditions u = 0 on ∂Ω. This gives the
system 

∂tρ +α∇ · (ρ∇u)−∆ρ = 0,
−∆u = ρ,

u = 0 on ∂Ω, ρ(0, ·) = ρ0, ρ(∂nρ−∂nu) = 0 on ∂Ω.

The parameter α stands for the attraction intensity of bacteria towards the chemo-
attractant. By scaling, instead of using probability measures ρ ∈P(Ω) one can set
α = 1 and play on the mass of ρ (indeed, the non-linearity is only in the term ρ∇u,
which is quadratic in ρ).

Alternative equations can be considered for u, such as−∆u+u = ρ with Neumann
boundary conditions. On the contrary, the boundary conditions on ρ must be of Neu-
mann type, to guarantee conservation of the mass (see next Section 8.4.3). This system
can also be set in the whole space, with suitable decay conditions at infinity. Note
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also that often the PDE condition defining u as the solution of a Poisson equation is
replaced, when Ω = R2, by the explicit formula

u(x) =− 1
2π

ˆ
R2

log(|x− y|)ρ(y)dy. (8.16)

There is some confusion in higher dimension, as the very same formula does not hold
for the Poisson equation (the logarithmic kernel should indeed be replaced by the corre-
sponding Green function), and there two alternatives: either keep the fact that u solves
−∆u = ρ , or the fact that it derives from ρ through (8.16). We prefer keeping the PDE
definition, which sounds more justified.

One can see that this equation is the gradient flow of the functional

F(ρ) =

ˆ
Ω

ρ logρ− 1
2

ˆ
Ω

|∇uρ |2, where uρ ∈ H1
0 (Ω) solves −∆uρ = ρ.

Indeed, the only non-standard computation is that of the first variation of the Dirichlet
term − 1

2

´
|∇uρ |2. Suppose ρε = ρ + εχ and set uρ+εχ = uρ + εuχ . Then

d
dε

(
−1

2

ˆ
|∇uρ+εχ |2

)
|ε=0

=−
ˆ

∇uρ ·∇uχ =

ˆ
uρ ∆uχ =−

ˆ
uρ χ.

It is interesting to note that this Dirichlet term is indeed (up to the coefficient −1/2)
the square of the H−1 norm of ρ , since ||u||H1

0
= ||∇u||L2 = ||ρ||H−1 . We will call it the

H−1 term.
It is also possible to replace linear diffusion with non-linear diffusion of porous

media type, replacing the entropy
´

ρ logρ with a power-like energy
´

ρm.

Note that the variational problem minF(ρ)+
W 2

2 (ρ,ρ0)
2τ

requires some assumption to
admit existence of minimizers, as unfortunately the Dirichlet term has the wrong sign.
In particular, it would be possible that the infimum is−∞, or that the energy is not l.s.c.
(the H1 part being u.s.c. because of the negative sign).

When we use non-linear diffusion with m > 2 the existence of a solution is quite
easy (see Ex(53)). Sophisticated functional inequalities allow to handle smaller expo-
nents, and even the linear diffusion case in dimension 2, provided α ≤ 8π . We refer
to [59] and to the references therein for details on the analysis of this equation. Some
of the technical difficulties are similar to those of the porous media equation, when
passing to the limit non-linear terms. In [59], the H−1 term is treated in terms of its
logarithmic kernel, and ad-hoc variables symmetrization tricks are used. Note however
that the nonlinear diffusion case is easier, as Lm bounds on ρ translate into W 2,m bounds
on u, and hence strong compactness for ∇u.

We also remark that the above model, coupling a parabolic equation on ρ and
an elliptic one on u, implicitly assumes that the configuration of the chemoattractant
instantaneously follows that of ρ . More sophisticated models can be expressed in terms
of the so-called parabolic-parabolic Keller-Segel equation, in the form

∂tρ +α∇ · (ρ∇u)−∆ρ = 0,
∂tu−∆u = ρ,

u = 0 on ∂Ω, ρ(0, ·) = ρ0, ρ(∂nρ−∂nu) = 0 on ∂Ω.
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or other variants with different boundary conditions. This equation can also be studied
as a gradient flow in two variables, using distance W2 on ρ and L2 on u; see [60].

Aggregation models Consider a more general case where the movement is advected
by a potential determined by the superposition of many potentials, each created by one
particle. For instance, given a function W : Rd → R, the particle located at x produces
a potential W (· − x) and, globally, the potential is given by V (y) =

´
W (y− x)dρ(x),

i.e. V =W ∗ρ . The equation, if every particles follows −∇V is

∂tρ−∇ · (ρ ((∇W )∗ρ)) = 0,

where we used ∇(W ∗ρ) = (∇W )∗ρ . If W is even (i.e. the interaction between x and
y is the same as between y and x), then this is the gradient flow of the functional

F(ρ) =
1
2

ˆ ˆ
W (x− y)dρ(x)dρ(y).

When W is convex, for instance in the quadratic case
´´
|x− y|2dρ(x)dρ(y), this

gives raise to a general aggregation behavior of the particle, and as t→ ∞ one expects
ρt ⇀ δx0 (the point x0 depending on the initial datum ρ0: in the quadratic example
above it is the barycenter of ρ0, see Ex(51)). If W is not smooth enough, the aggrega-
tion into a unique point can also occur in finite time, see [117].

Obviously, more general interaction terms can be considered, of the form W (x,y).
As we saw in Chapter 7, some other energies (as the H−1 term in Keller-Segel) can also
be expressed in this way, using their Green function (but in general they lose convexity
of the kernel). Note that these equations are both non-linear (the term in the divergence
is quadratic in ρ) and non-local. It is rare to see these non-local aggregation terms alone
in the equation, as they are often coupled with diffusion or other terms. This is why we
do not provide specific references except [117]. We also note that from the technical
point of view this kind of nonlinearity is much more compact than the previous ones,
since the convolution operator transforms weak convergence into strong one, provided
W is regular enough (the difficulties with the kernel in Keller-Segel exactly come from
its singularity).

Diffusion, advection and aggregation: the full picture The aggregation energy of
the previous paragraph are often studied together with an internal energy and a confin-
ing potential energy, using the functional

F(ρ) =

ˆ
f (ρ(x))dx+

ˆ
V (x)dρ(x)+

1
2

ˆ ˆ
W (x− y)dρ(x)dρ(y).

This gives the equation

∂tρ−∇ ·
(
ρ
[
∇( f ′(ρ))+∇V +(∇W )∗ρ

])
= 0.

Among the mathematical interest for this family of equations, we stress that they are
those where more results (in termes of stability, and convergence to equilibrium) can
be proven, due to the fact that conditions to guarantee that F is displacement convex
are well-known (Section 7.3). See in particular [118, 119] for physical considerations
and convergence results on this equation.
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Crowd motion The theory of Wasserstein gradient flows has interestingly been ap-
plied to the study of a continuous model of crowd movement under density constraints.

Let us explain the modeling, starting from the discrete case. Suppose that we have
a population of particles such that each of them, if alone, would follow its own velocity
u (which could a priori depend on time, position, on the particle itself. . . ). Yet, these
particles are modeled by rigid disks that cannot overlap, hence, it is not the actual
velocity cannot always be u, in particular if u tends to concentrate the masses. We will
call v the actual velocity of each particle, and the main assumption of the model is that
v = Padm(q)(u), where q is the particle configuration, adm(q) is the set of velocities that
do not induce (for an infinitesimal time) overlapping starting from the configuration q,
and Padm(q) is the projection on this set.

The simplest example is the one where every particle is a disk with the same radius
R and center located at qi. In this case we define the admissible set of configurations K
through

K := {q = (qi)i ∈Ω
N : |qi−q j| ≥ 2R for all i 6= j}.

In this way the set of admissible velocities is easily seen to be

adm(q) = {v = (vi)i : (vi−v j) · (qi−q j)≥ 0 for all (i, j) with |qi−q j|= 2R}.

The evolution equation which has to be solved to follow the motion of q is then

q′(t) = Padm(q(t))u(t) (8.17)

(with q(0) given). Equation (8.17), not easy from a mathematical point of view, was
studied by Maury and Venel in [227, 225].

We are now interested in the simplest continuous counterpart of this microscopic
model (without pretending that it is any kind of homogenized limit of the discrete case,
but only an easy re-formulation in a density setting). In this case the particles popu-
lation will be described by a probability density ρ ∈P(Ω), the constraint becomes
a density constraint ρ ≤ 1 (we define the set K = {ρ ∈P(Ω) : ρ ≤ 1}), the set of
admissible velocities will be described by the sign of the divergence on the saturated
region {ρ = 1}: adm(ρ) =

{
v : Ω→ Rd : ∇ · v ≥ 0 on {ρ = 1}

}
; we will consider

a projection P, which will be either the projection in L2(L d) or in L2(ρ) (this will
turn out to be the same, since the only relevant zone is {ρ = 1}). Finally, we solve the
equation

∂tρt +∇ ·
(
ρt
(
Padm(ρt )ut

))
= 0. (8.18)

The main difficulty is the fact that the vector field v = Padm(ρt )ut is neither regular
(since it is obtained as an L2 projection, and may only be expected to be L2 a priori), nor
it depends regularly on ρ (it is very sensitive to small changes in the values of ρ: for
instance passing from a density 1 to a density 1− ε completely modifies the saturated
zone, and hence the admissible set of velocities and the projection onto it).

In [224] these difficulties have been overpassed in the case u = −∇D (where D :
Ω→ R is a given Lipschitz function) and the existence of a solution (with numerical
simulations) is proven via a gradient flow method. Indeed, (8.18) turns out to be the
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gradient flow in W2 of the energy

F(ρ) =

{´
Ddρ if ρ ∈ K;

+∞ if ρ /∈ K.

We do not enter into the details of the study of this equation, but we just make a little
bit more precise the definitions above. Actually, instead of considering the divergence
of vector fields which are only supposed to be L2, it is more convenient to give a better
description of adm(ρ) by duality :

adm(ρ) =

{
v ∈ L2(ρ) :

ˆ
v ·∇p≤ 0 ∀p ∈ H1(Ω) : p≥ 0, p(1−ρ) = 0

}
.

In this way we characterize v = Padm(ρ)(u) through

u = v+∇p, v ∈ adm(ρ),

ˆ
v ·∇p = 0,

p ∈ press(ρ) := {p ∈ H1(Ω), p≥ 0, p(1−ρ) = 0},

where press(ρ) is the space of functions p used as test functions in the dual definition
of adm(ρ), which play the role of a pressure affecting the movement. The two cones
∇press(ρ) (defined as the set of gradients of elements of press(ρ)) and adm(ρ) are
in duality for the L2 scalar product (i.e. one is defined as the set of vectors which
make a negative scalar product with all the elements of the other). This allows for
an orthogonal decomposition ut = vt +∇pt , and gives the alternative expression of
Equation (8.18), i.e. {

∂tρt +∇ ·
(
ρt(ut −∇pt)

)
= 0,

0≤ ρ ≤ 1, p≥ 0, p(1−ρ) = 0.
(8.19)

More details can be found in [224, 265, 226]. In particular, in [224] it is explained
how to handle the nonlinearities when passing to the limit. Two sources of nonlinearity
are observed: the term ρ∇p is easy to consider, since it is actually equal to ∇p (from
p = 0 on {ρ 6= 1}); on the other hand, we need to deal with the equality p(1−ρ) = 0
and pass it to the limit. This is done by obtaining strong compactness on p, from a
bound on

´ T
0

´
Ω
|∇p|2, obtained similarly to (8.15).

Sliced Wasserstein distance We already mentioned in Section 2.5.2 the idea by
M. Bernot which consisted in moving every particle following the vector field v ob-
tained in the following way: given two measures ρ,ν ∈P(Rd), we project them onto
any one-dimensional direction e ∈ Sd−1 via the map πe : Rd → R given by πe(x) =
x · e; call Te : R→ R the monotone optimal transport between the two image mea-
sures (πe)#ρ and (πe)#ν . Then we define ve(x) := (Te(πe(x))− πe(x))e and v(x) =ffl

Sd−1 ve(x)dH d−1(e), where H d−1 is the uniform measure on the sphere.
For numerical approaches, Bernot proposed to iterate a construction with a time

step τ > 0, but a natural continuous counterpart exists: simply define, for every abso-
lutely continuous measure ρ ∈P(Rd), the vector field v(ρ) defined above (absolute
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continuity is just required to avoid atoms in the projections). Then, we solve the equa-
tion

∂tρt +∇ · (ρtv(ρt )) = 0.
It happens that this equation has a gradient flow structure: it is indeed the gradient

flow in W2 (i.e. for the distance W2) of the functional

F(ρ) := SW 2
2 (ρ,ν).

Existence and estimates on the solution of this equation are proven in [66], and the
nonlinearity of v(ρ) is quite easy to deal with. On the other hand, many, natural and
useful, questions are still open: is it true that ρt ⇀ ν as t → ∞? Can we define (at
least under regularity assumptions on the initial data) the flow of the vector field v(ρt ),
and what is the limit of this flow as t → ∞? The idea is that it should be a transport
map between ρ0 and ν and, if not the optimal transport map, at least a “good” one.
This has been tested in the discrete case (where both ρ0 and ν are a finite number of
equal Dirac masses) with satisfactory numerical results, which we presented briefly in
Section 2.5.2.

8.4.3 Dirichlet boundary conditions
For sure, the attentive reader has already noted that all the equations that have been
identified as gradient flows for the distance W2 on a bounded domain Ω are always ac-
companied by Neumann boundary conditions. This should not be surprising. Wasser-
stein distances express the movement of masses when passing from a configuration to
another, and the equation represents the conservation of mass. It means that we are
describing the movement of a collection ρ of particles, bound to stay inside a given
domain Ω, and selecting their individual velocity v in way which is linked to the global
value of a certain functional F(ρ). It is natural in this case to have boundary conditions
which write down the fact that particles do not exit the domain. The pointwise value
of the density ρ at the points of the boundary ∂Ω is not particularly relevantl in this
analysis. Note that “do not exit” does not mean “those on the boundary stay on the
boundary”, which is what happens when solutions are smooth and the velocity field v
satisfies v · n = 0. Yet, the correct Neumann condition here is rather ρv · n = 0 a.e.,
which means that particles could enter from ∂Ω into the interior

◦
Ω, but immediately

after it happens there will be (locally) no mass on the boundary, and the condition is
not violated, hence. On the contrary, should some mass go from

◦
Ω to outside Ω, then

we would have a violation of the Neumann condition, since there would be (intuitively)
some mass ρ > 0 on the boundary with velocity directed outwards.

Anyway, we see that Dirichlet conditions do not find their translation into W2 gra-
dient flows!

To cope with Dirichlet boundary conditions, Figalli and Gigli defined in [166] a
sort of modified Wasserstein distance, with a special role played by the boundary ∂Ω,
in order to study the Heat equation ∂tρ = ∆ρ with Dirichlet b.c. ρ = 1 on ∂Ω.

Their definition is as follows: given two finite positive measures µ,ν ∈M+(
◦
Ω)

(not necessarily probabilities, not necessarily with the same mass), we define

Πb(µ,ν) = {γ ∈M+(Ω×Ω) : (πx)#γ
◦
Ω = µ, (πy)#γ

◦
Ω = ν}.
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Then, we define

Wb2(µ,ν) :=

√
inf
{ˆ

Ω×Ω

|x− y|2 dγ, γ ∈Πb(µ,ν)
}
.

The index b stands for the special role played by the boundary. Informally, this means
that the transport from µ to ν may be done usually (with a part of γ concentrated on
◦
Ω×

◦
Ω), or by moving some mass from µ to ∂Ω (using γ (

◦
Ω× ∂Ω)), then moving

from one point of the boundary to another point of the boundary (this should be done
by using γ (∂Ω×∂Ω), but since this part of γ does not appear in the constraints, then
we can forget about it, and the transport is finally free on ∂Ω), and finally from ∂Ω to
ν (using γ (∂Ω×

◦
Ω)).

In [166] the authors prove that Wb2 is a distance, that the space M+(
◦
Ω) is always

a geodesic space, independently of convexity or connectedness properties of Ω (differ-
ently from what happens with Ω, since here the transport is allowed to “teleport” from
one part of the boundary to another, either to pass from one connected component to
another or to follow a shorter path going out of Ω), and they study the gradient flow, for
this distance, of the functional F(ρ) =

´
(ρ logρ−ρ)dx. Note that in the usual study

of the entropy on P(Ω) one can decide to forget the term −
´

ρ , which is anyway a
constant because the total mass is fixed. Here this term becomes important (if the func-
tion f (t) = t log t− t is usually preferred to t log t, it is because its derivative is simpler,
f ′(t) = log t, without changing its main properties).

With this choice of the functional and of the distance, the gradient flow that Figalli
and Gigli obtain is the Heat equation with the particular boundary condition ρ = 1 on
∂Ω. One could wonder where the constant 1 comes from and a reasonable explanation
is the following: if the transport on the boundary is free of charge, then automatically
the solution selects the value which is the most performant for the functional, i.e. the
constant t which minimizes f (t) = t log t− t. In this way, changing the linear part and
using F(ρ) =

´
(ρ logρ − cρ)dx could change the constant on the boundary, but the

constant 0 is forbidden for the moment. It would be interesting to see how far one
could go with this approach and which Dirichlet conditions and which equations could
be studied in this way, but this does not seem to be done at the moment.

Moreover, the authors explain that, due to the lack of geodesic convexity of the
entropy w.r.t. Wb2, the standard abstract theory of gradient flows is not able to provide
uniqueness results (the lack of convexity is due in some sense to the possible concen-
tration of mass on the boundary, in a way similar to what happened in [224] when
dealing with the door on ∂Ω). On the other hand, standard hilbertian results on the
Heat equation can provide uniqueness for this equation, as the authors smartly remark
in [166].

We observe that this kind of distances with free transport on the boundary were
already present in [72, 71], but in the case of the Wasserstein distance W1, and the
analysis in those papers was not made for applications to gradient flows, which are less
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natural to study with p = 1. We can also point out a nice duality formula:

Wb1(µ,ν) := min
{ˆ
|x− y|dγ : γ ∈Πb(µ,ν)

}
= sup

{ˆ
ud(µ−ν) : u ∈ Lip1(Ω), u = 0 on ∂Ω

}
.

Note that in general we also have the (easy) equality

Wbp(µ,ν) = inf
{

Wp(µ +χ
+,ν +χ

−) : spt(χ±)⊂ ∂Ω
}
,

where the Wasserstein distance on the right is defined, by abuse of notation, for every
pair of positive measures with the same mass, not only for probabilities. In the special
case p = 1 and µ(

◦
Ω) = ν(

◦
Ω), we also obtain

Wb1(µ,ν) = Tc(µ,ν), for c(x,y) = min{|x− y|,d(x,∂Ω)+d(y,∂Ω)}.

The cost c is a pseudo-distance on Ω where moving on the boundary is free. This kind
of distance has also been used in [98] (inspired by [71]) to model free transport costs
on other lower dimensional sets, and not only the boundary (with the goal to model,
for instance, transportation networks, and optimize their shape). It is interesting to see
the same kind of ideas appear for so different goals.

8.4.4 Evolution PDEs: not only gradient flows
We finish this chapter (and this book) with some other applications and connections
of optimal transport with evolution PDEs (note that we already saw connections with
static PDEs: the Monge-Ampère equation, in Section 1.7.6, and the Monge-Kantorovich
system, in Section 4.2.2).

Incompressible Euler Equation Let us consider an incompressible and homoge-
neous fluid moving inside a smooth domain Ω. The Euler equation for incompressible
fluids describes the evolution of its velocity field v in terms of the pressure field p:

∂tvt +(vt ·∇)vt +∇pt = 0, ∇ ·vt = 0.

To clarify the notation (v ·∇)v we could write componentwise as ∂tvi +v jvi
j = pi (we

ignore here the subscripts t for time, and use superscripts for components and subscripts
for derivatives, and Einstein’s convention for summation over repeated indices). Note
that the term ∂tvt +(vt ·∇)vt is nothing but the acceleration in Lagrangian coordinates.
Indeed, the trajectory of a particle initially at position x is obtained by following the
vector field vt , i.e. we have, as usual, the flow y′x(t) = vt(yx(t)) with yx(0) = x. If we
denote by Yt the map x 7→ yx(t), for each time t the map Yt is a measure-preserving
diffeomorphism of Ω, and for each x we have

y′′x (t) =−∇pt(yx(t)).
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In [23], Arnold interpreted the equation above as a geodesic equation on the space
SDiff(Ω) of measure-preserving diffeomorphism of Ω, viewed as an infinite-dimensional
manifold with the metric inherited from the embedding in L2(Ω) (the tangent space cor-
responding to the divergence-free vector fields). According to this interpretation, one
can find solutions by minimizing

ˆ T

0

ˆ
D

1
2
|ġ(t,x)|2 dxdt (8.20)

among all paths g(t, ·) : [0,T ]→ SDiff(Ω) with g(0, ·) = g0 and g(T, ·) = gT prescribed
(typically, by right invariance, g0 is taken as the identity map). In this way, the pressure
field arises as a Lagrange multiplier from the incompressibility constraint.

Shnirelman proved in [284, 285] that when d ≥ 3 the infimum is not attained in
general, and that when d = 2 there exists h ∈ SDiff(D) which cannot be connected to
the identity by a path with finite action. These “negative” results motivate the study of
relaxed versions of Arnold’s problem.

The first relaxed version of Arnold’s minimization problem was introduced by Bre-
nier in [84] and it is a sort of transport problem. Its relation to Arnold’s problem is
the same that Kantorovich problem has w.r.t. Monge. Brenier considered probability
measures Q on the space AC(Ω) of absolutely continuous paths (here below simply
denoted C ) ω : [0,T ]→Ω, and looked at the variational problem

Problem 8.11. Solve

(EP) min
{ˆ

C
K2(ω)dQ(ω) : Q ∈P(C ),(e0,eT )#Q = γ, (et)#Q = LΩ∀ t

}
.

(8.21)
where K2(ω) :=

´ T
0

1
2 |ω

′(t)|2 dt is the kinetic energy of a curve ω and the transport
plan γ ∈P(LΩ,LΩ) is fixed, typically of the form γ = (id,h)#LΩ.

The existence of a minimizer Q is standard, provided that there exists at least a Q
with finite action (see [84]), which is true when Ω is smooth enough.

We observe that any sufficiently regular path g(t, ·) : [0,1]→ SDiff(Ω) induces a
flow (a traffic plan, in our language, see Section 4.2) Q, but the converse is far from be-
ing true: particles starting from different points are allowed to cross at a later time, and
particles starting from the same point are allowed to split, which is of course forbidden
by classical flows. These solutions are called non-deterministic, and [84] proposes in-
deed an example in the easy case T = π , Ω = B(0,1) and h(x) =−x where they can be
optimal.

On the other hand, in [84], a consistency result was proved: smooth solutions to
the Euler equation are optimal even in the larger class of admissible Q provided the
pressure field p satisfies

sup
t∈[0,T ]

sup
x∈Ω

∇
2
x p(t,x)≤ π2

T 2 I (8.22)

and are the unique ones if the above inequality is strict.
Uniqueness of the solution of the minimal action problem is an interesting matter:

in [53] the situation is analyzed in 1D (when a general uniqueness result is proven
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assuming the pressure to be smooth) and 2D (where, on the contrary, [53] extends
and characterizes the non-deterministic solutions of [84] finding a very rich family of
non-deterministic optimizers).

Optimal transport appears in this framework in two aspects. First, the action-
minimization problem by Brenier is indeed a multi-marginal Kantorovich problem,
with marginal constraints for each time t (see Section 1.7.4). Second, when we dis-
cretize in time this problem, natural strategies for numerics involve the following pro-
cedure: suppose we have determined the positions of the particles at time ti−1 and
ti+1 (with a uniform partition ti = T i

n ) and that they are represented by two functions
Xi−1 and Xi+1, both with image measure equal to LΩ; without the incompressibility
constraint, the intermediate value Xi = (Xi−1 +Xi+1)/2 would be optimal in order to
minimize the kinetic energy, but its image measure is not, in general, LΩ. Hence, we
need to project it onto the set of maps X with prescribed image measure, which is a
classical transport problem, in the polar factorization formulation (see Section 1.7.2).

Coupling HJ and continuity equations, Mean Field Games We saw in Remark
6.2 in Chapter 6 that the Benamou-Brenier method provides a solution of the following
PDE system {

∂tρ +∇ · (ρ∇ϕ) = 0
∂ϕ + 1

2 |∇ϕ|2 = 0, ρ0 = µ,ρ1 = ν ,

where the second equation is satisfied ρ-a.e., with inequality ∂tϕ + 1
2 |∇ϕ|2 ≤ 0 every-

where.
This kind of coupled systems with Hamilton-Jacobi and continuity equations also

arise in other situations, and in particular in the newborn theory of Mean Field Games
(MFG).

Let us give a quick and informal presentation of this theory. We will only consider
the deterministic case (i.e. there will be no stochastic part in the evolution of the agents
and we will use deterministic optimal control theory and not stochastic control). The
reader may refer to [206, 207] and [106] to have a wider introduction to this theory.

Suppose that a population of agents may evolve in time, each agent following tra-
jectories of the controlled equation

y′(t) = f (t,y(t),α(t)), t ∈ [0,T ] (8.23)

α : [0,T ]→ Rd being a control that every agent may choose. At each time t, the goal
of each agent is to maximize the payoff

−
ˆ T

t

(
|α(s)|2

2
+g(ρ(s,y(s)))

)
ds+Φ(y(T )), (8.24)

where g is a given increasing function. This means that α is the effort that every agent
makes to move in the desired direction, and he pays for it (for simplicity, we take a
quadratic cost), that its position depends on α through the equation (8.23), and that
he tries to optimize the final payoff Φ but he also pays for the densities of the regions
he passes by. In particular agents would like to avoid overcrowded areas. At this first
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step the density ρ(t,x) is supposed to be a given function. Yet, the MFG problem is
an equilibrium problem: given the initial density ρ0, find a time-dependent family of
densities ρt such that, when every agent selects its optimal trajectory so as to optimize
(8.24), the density realized by these optimal trajectories at time t are exactly ρt .

One can study the optimal control problem given by (8.23) and (8.24) by means of
its value function.

Box 8.3. – Memo – Optimal control and Hamilton-Jacobi

Consider the optimization problem

max
{ˆ T

0
L(t,y(t),α(t))dt +Φ(y(T )) : y′ = f (t,y,α), y(0) = x0

}
,

where α is the control that we can use to affect the solution of the state equation on the
trajectory x. Define the so-called value function

ϕ(t,x) = sup
{ˆ T

t
L(s,y(s),α(s))ds+Φ(y(T )) : y(t) = x, y′ = f (s,y,α)

}
.

It is well-known from optimal control theory (see for instance Section 10.3 in [159]) that ϕ

satisfies the Hamilton-Jacobi-Bellmann equation (in the viscosity sense)

∂tϕ(t,x)+H(t,x,∇ϕ(t,x)) = 0, ϕ(T,x) = Φ(x),

where the Hamiltonian H is defined through

H(t,x,ξ ) = sup
α

ξ · f (t,x,α)+L(t,x,α) (8.25)

Moreover, it is also well-known that in the control problem, for every (t,x), the optimal
choice of α(t) so as to solve the optimization problem starting from x at time t is the
control α which maximizes in the definition of H given in (8.25) for ξ = ∇ϕ(t,x), i.e.
which maximizes ∇ϕ(t,x) · f (t,x,α)+L(t,x,α).

In the remarkable case where f (t,x,α) = α and L(t,x,α) = − 1
2 |α|

2− g(t,x) we get
H(t,x,ξ ) = 1

2 |ξ |
2 − g(t,x), thus ∂tϕ + 1

2 |∇ϕ|2 = g, and the optimal curves follow y′ =
∇ϕ(t,y).

This gives a system of two coupled equations, since ϕ solves an HJB equation
where ρ appears in the Hamiltonian, and ρ evolves according to a continuity equation
∂tρ +∇ · (ρv) = 0. To be more precise, we can give an explicit example, in the case
f (t,x,α) = α . In such a case, the vector field to be put in the continuity equation is
exactly ∇ϕ . This gives the system

∂tϕ + |∇ϕ|2
2 −g(ρ) = 0,

∂tρ +∇ · (ρ∇ϕ) = 0,
ϕ(T,x) = Φ(x), ρ(0,x) = ρ0(x),

(8.26)

where the first equation is satisfied in the viscosity sense and the second in the distri-
butional sense.
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In this case, it is also known that a solution of this system (i.e. an equilibrium in the
Mean Field Game) may be obtained by minimizing a suitable global functional (obvi-
ously, up to a change of sign, we could also express it as a maximization). Actually,
one can solve

min
ˆ T

0

ˆ
Ω

(
1
2
|α(t,x)|2ρ(t,x)+G(ρ(t,x))

)
dxdt−

ˆ
Ω

Φ(x)ρ(T,x)dx

among solutions (ρ,α) of the continuity equation ∂tρ +∇ · (ρα) = 0 with initial da-
tum ρ(0,x) = ρ0(x). When the function G is chosen as the antiderivative G of g (i.e.
G′ = g, and in particular G is convex), it happens that the minimizers of this global
functional are equilibria in the sense explained above (the trajectories that the agents
chose according to these densities are such that they exactly realize these densities).
These functionals are a modification of the functional proposed by Benamou and Bre-
nier [36] and studied in Chapters 5 and 6, and the minimization corresponds to finding a
good curve in W2, which avoids over-congested measures. This kind of problems was
also studied, without equilibrium issues, by Buttazzo, Jimenez and Oudet in [97]. Also
note the analogy with the congested problems of Section 4.4.1. The main difference
here is the crucial role of time, while the movement in Section 4.4.1 was stationary.

Semi-geostrophic equation One of the first applications of optimal transport has
been its role in this equation modeling large scale atmospheric behavior in a certain
asymptotical regime. The main ingredients of the physical description are the Coriolis
force, the gravity, and an incompressibility constraint. We suppose that the particles
could have different weights, thus leading to different impact of gravity, but their num-
ber per unit of volume should be constant in time and space. This consists in imposing
that the density (mass per unit of volume) is constant in Lagrangian coordinates, but
not necessarily in time and space.

By ignoring, in a very shallow atmosphere (consider that the radius of the Earth is
much larger than the width of the atmosphere) the vertical effects of the Coriolis force,
and using local coordinates where the vertical axis is orthogonal to the Earth surface,
we can write an equation in Lagrangian formulation:

X ′′(t,a)+ JX ′(t,a)+∇pt(X(t,a)) = f (a),

where pt is the pressure at time t, a is a Lagrangian label, and the matrix J ∈M3×3 is
given by

J =

 0 −1 0
1 0 0
0 0 0

 .

The force f stands for gravity, is vertical, and only depends on the label a. The pressure
pt appears in order to take care of the incompressibility constraint, which corresponds
to a 7→ X(t,a) being measure-preserving for every t. For details on this theory we refer
the reader to the book by M. Cullen, [131].
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In Eulerian coordinate the above equation is written
∂tvt +(vt ·∇)vt + Jv+∇pt = ft ,
∂t ft +vt ·∇ ft = 0,
∇ ·vt = 0,

where the second equation represents the fact that the force is transported by the flow
itself (hence it “follows” the particles) and the third stands for incompressibility.

The time-scale regime of the model is quasi-stationary, in the sense that we suppose
that the configuration at time t is stable. This can be interpreted in several ways. A first
one, with a variational flavor, is the following: at each time t we have a distribution
of particles, each with its velocity. Suppose that these particles want to move, each
from a position x to x′. The new distribution of positions must be incompressible and,
among these new redistributions, we need to impose that the original one minimizes the
energy of the system, which is given by kinetic energy and potential energy. Consider
that, because of Coriolis force, when moving from x to x′, the velocity moves from
v(x) to v(x)+ J(x′− x). Hence the energy to be minimized is of the form

´ 1
2 |J(x

′−
x)|2 + `(x,x′ − x), where `(x, ·) is affine for every x (the gravity part is included in
`). Consider the pressure, which takes care of the incompressibility constraint. This
means that minimizing such an energy under prescribed image measure (which is by
the way an optimal transport problem with a cost equivalent to the quadratic one), is
the same (see also the part on incompressible Euler) as minimizing

´ 1
2 |J(x

′− x)|2 +
p(x′)+ `(x,x′− x) under no constraints. It is clear that each position is stable if and
only if it minimizes x′ 7→ 1

2 |J(x
′− x)|2 + p(x′)+ `(x,x′− x). This imposes first-order

conditions, but also the fact that x′ 7→ 1
2 |Jx′|2 + p(x′) is convex.

Another way of seeing the same fact is the following. Fix a time t0 and a point
x0, where particles have a velocity v0. Suppose that some particles around x0 have
a small perturbation in their speed v ≈ v0. We want to see what happens to these
particles: do they stay close to x0 or do they move far away? We freeze the pressure
in time, and approximate it around x0 with its Taylor expansion at x0. Consider a
particle starting from x0 with velocity v(s): here the variable s denotes time, but at a
shorter time scale than that of the global evolution in t (which justifies the fact that
we freeze t = t0). The equation on v, if we differentiate the acceleration law, is of the
form v′′+ Jv′+D2 p(x0)v = 0 (here we take a second-order Taylor expansion for p).
By replacing v′ with −Jv+ const (taking, for this lower-order condition, a first-order
Taylor expansion for p) we get

v′′+(D2 p(x0)− J2)v = const.

For stability, we want to avoid the existence of solutions of this equation which diverge
exponentially If only bounded solutions exist, this means that small perturbations in
the speed produce small displacements, and hence the profile at (t0,x0) is stable.

In both interpretations (the variational one above, and the one related to linear sta-
bility), the condition that we find is that D2 p(x0)− J2 (which is a symmetric matrix)
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only has positive eigenvalues. This means

D2 p+

 1 0 0
0 1 0
0 0 0

≥ 0

in the sense of positive-definite symmetric matrices. Equivalently, the function x 7→
Pt(x) := pt(x)+ 1

2 (|x1|2 + |x2|2) must be convex.
This convexity fact is known as the Cullen-Purser stability condition, see [131] or

[286, 132].
We now come back to the acceleration law, we differentiate it as above, and replac-

ing X ′′ using the equation we get

X ′′′(t,a)+ [∇t p(X(t,a))]′− J2X ′(t,a) = J∇pt(X(t,a)).

If we decide, on this time-scale, to ignore the third derivative (yep!), and we set Yt(a) =
∇Pt(X(t,a)), we have

Y ′(t,a) = J(Y (t,a)−X(t,a)),

and this is an evolution equation on Y where X is defined from Y in the following
way: for each time t, X(t, ·) is measure-preserving, and Y is decomposed into the
composition of the gradient of a convex function P and X . Here is where optimal
transport, and in particular polar factorization (see Section 1.7.2) comes into play! We
refer to [34] for the first applications of optimal transport in this field.

This equation is also studied in the so-called dual variables, i.e. Y and its image
measure ρ (which has nothing to do with the density of the fluid). They solve{

∂tρt +∇ · (ρtJ(y−∇P∗t (y))) = 0,
det(D2P∗t ) = ρt , P∗t is convex.

This equation has been mathematically studied in several papers, where recent regular-
ity improvements on the Hessian of the Kantorovich potential (the W 2,1 result that we
briefly addressed in Section 1.7.6) have allowed for rigorous results (see for instance
[14, 15]).

Reconstruction of the Early Universe This is another surprising domain where op-
timal transport for a quadratic cost played an important role. The problem considers
the evolution of the density ρ of the matter in the Universe, subject to the gravity field
created by ρ itself. In the so-called co-moving coordinates the equations read as follow

∂tv+(v ·∇)v =− 3
2

∇ϕ+v
t ,

∂tρ +∇ · (ρv) = 0,
∆ϕ = ρ−1

t .

(8.27)

The first equation gives the acceleration of a particle in terms of the gradient of the
potential, the second is conservation of mass, and the third is the relation of the poten-
tial with the density itself. To understand where the precise expressions of the first and
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third equations come from, the reader is invited to look at the very first pages of [47].
He will easily see that the main point is given by the change of variable imposed in
the choice of the co-moving coordinates, i.e. coordinates which follow the expansion
of the universe. In these coordinates we use x′ = a(t ′)x as a space variable, where x
is the physical space variable and a is the expansion coefficient, which grows in time.
We change the time scale from t to t ′, via dt = a(t ′)dt ′. After the change-of-variables,
we drop the superscripts ’ in the new variables. The expansion factor a needs to sat-
isfy precise equations, called Friedmann equations. Note that also the friction term
in the first equation (i.e. the negative velocity at the r.h.s.) exactly comes from this
change-of-variable.

One sees from these equations that the density ρ at time 0 must be uniform. It
corresponds to the distribution of matter in the very first instants of the universe. On
the contrary, the density of the universe today is far from being uniform, and is well
approximated by a number of Dirac masses corresponding each to a galaxy cluster (that
is, each atom represents several galaxies, very close to each other). The question arises
whether we can guess the evolution of the universe in the past by only knowing the
current density ρT (T being the final time, i.e. now, but we will set T = 1 for simplicity),
i.e. without knowing the initial velocity. This question has been analyzed by U. Frisch
and collaborators, involving among others Y. Brenier because of the connections this
problem has with optimal transport. See [90] and [173]. By the way, Appendix A in
[90] explains in details the derivation of the above equations in co-moving coordinates
presenting the set of choices and simplifications that have been made compared to the
general framework in [47].

The connections of these equations and of the problem of the reconstruction from
the only knowledge of ρT with optimal transport theory are twofold. First, let us start
from the so-called Zel’dovich approximation. This approximation consists in assum-
ing that, for t > 0, all the particles move on straight lines with constant speed only
depending on the initial data. Let us be more precise: in Lagrangian coordinates the
first equation of (8.27) reads

2t
3

X ′′(t,x0)+X ′(t,x0) =−∇ϕt(X(t,x0)).

Here the potential ϕt is required to satisfy 1+t∆ϕt = ρt , where ρt is the image measure
of X(t, ·). The approximation consists in ignoring the second derivative, and freezing
the r.h.s. at its value at t = 0, i.e. X(t) = x0− t∇ϕ0(x0).

It seems a rude approximation, but it gives good results in practice, and it has an
optimal transport justification, as pointed out by Y. Brenier. Indeed, choose as ρt the
geodesic in W2 between ρ0 = 1 and ρ1. If −ϕt is the Kantorovich potential between
ρt and ρ0, we know that it solves the Monge-Ampère equation

det(I+ tD2
ϕt) = ρt .

Moreover, if T is the optimal transport from ρ0 to ρ1, the Lagrangian map X(t,x0) =
(1− t)x0 + tT(x0) is the optimal transport from ρ0 to ρt . This means that particles
should arrive at time t with velocity equal to−∇ϕt(X(t,x0)) and proves that−∇ϕt(X(t,x0))=
T(x0)− x0 does not depend on time. In particular, it is also equal to its initial value
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−∇ϕ0(x0). In this way, we have constructed a Lagrangian map compatible with the
Zel’dovich approximation (i.e. particles move with X ′′ = 0), with the only exception
that it solves det(I+ tD2ϕt) = ρt instead of 1+ t∆ϕt = ρt . In this way, the Zel’dovich
approximation provides approximate solution for the original equation but exact solu-
tions for this new, modified equation. Note the use of a nonlinear equation to approxi-
mate a linear one (the linear one being the linearization of the non-linear around t = 0),
quite peculiar in this case.

From the above observations, the authors of [90] concentrated on the search for an
optimal map T in the transport between the uniform density ρ0 and the current density
ρ1 and obtained satisfactory reconstruction results. Numerically, they discretized also
the source measure and used an auction algorithm.

On the other hand, [90] also shows (in Section 6 and Appendix D) that System
(8.27) (without approximation or replacing the Poisson equation with the Monge-
Ampère equation) can be obtained as the optimality condition of a variational problem,
namely

min


ˆ 1

0

ˆ (
t3/2

2
ρ|v|2 + 3t−1/2

4
|∇ϕ|2

)
with


∂tρ +∇ · (ρv) = 0,
∆ϕ = ρ−1,
ρ0 = 1,ρ1 = given

 . (8.28)

This problem is a sort of modified Benamou-Brenier problem, with a time-scale factor,
and the addendum of a term F(ρ) which penalizes (with a time-scale coefficient as
well) the H−1 norm of ρ−1. Note that this term is the same which appears in chemio-
taxis gradient flows (see Section 8.4.2), but with the good sign, and also note the same
formalism as the variational formulation of Mean Field Games. Moreover, the impor-
tant fact is that this minimization problem is strictly convex, which implies uniqueness
of the solution of (8.27).

We leave the proof of the fact that the optimality conditions of the above minimiza-
tion lead to (8.27) as an exercise, Ex(54).

We also stress that the existence of a minimizer is not straightforward. Indeed, the
coefficient t3/2 in front of the kinetic term does not allow to preserve the condition at
t = 0 along minimizing sequence, and the H−1 term is multiplied times a coefficient
t−1/2 which is integrable, hence not enough to compensate for it. We are in a situation
analogous to the following 1D problem

min
{ˆ 1

0
t1+α |x′(t)|2 + t−1+α G(x(t)) : x(1) = x1

}
where G is a convex functional, with quadratic growth, minimal at x0. We omit the
constraint x(0) = 0 since this condition would not be stable under convergence. In
particular, there are finite-energy curves x(t) with x(0) 6= x0 (compare to Ex(56)). On
the other hand, one can prove that the minimizers of this problem must satisfy an
extra condition at t = 0, because of optimality (like Neumann conditions, which are
not meaningful here since they only give 0 = 0 because of the coefficient t3/2). It is
possible to see, as in Ex(55), that this condition is x(0) = x0.

The minimal action problem (8.28) has also been studied, in a simplified setting,
by Loeper in [216]. We also mention a variant problem proposed by Brenier, which
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is meant to could give a better insight in the formation of concentration, [88]. Indeed,
it is quite disappointing to think that in the optimal transport problem between ρ0 and
ρ1, Dirac masses only appear at the final time (coherently with the analysis of the
intermediate measures µt that we did in Section 4.3). This means that they only appear
now. . . and if we restudied again the same problem tomorrow?

Finally, it is challenging to think that both the “static” version of this cosmologi-
cal problem (i.e. the optimal transport between ρ0 and ρT ) and the “dynamical” one
(8.28) still have many secrets to reveal, if treated with the new numerical methods and
approaches (see Chapter 6, in particular for semi-discrete methods which are exactly
suitable for ρ0 = 1 and atomic ρT ) which were not available at the time of [90].
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Exercises

The following is a short list of possible exercises related to the subject of the book.
The level of difficulty is strongly heterogeneous and the most difficult exercises are
indicated with one * or two **. The symbol ♠ is associated to those exercises which
are more relevant for the theory. Some (very) short hints follow.

Exercises from the topics of Chapter 1

Exercise 1. Find an example of a sequence of functions fn : [0,1]→ [0,1] such that
( fn)#(L

1 [0,1]) = L 1 [0,1] but fn ⇀
1
2 . Can these functions be taken C1?

Exercise 2. ♠ Consider the problem

max
{ˆ
|x−T(x)|2 dµ : T#µ = ν

}
.

Prove that, if µ is absolutely continuous, it admits a solution and the optimal T is the
gradient of a concave function.

Exercise 3. Find the optimal transport map for the quadratic cost c(x,y) = |x− y|2
between µ = f ·L 2 and ν = g ·L 2 in 2D, where f (x) = 1

π
1B(0,1)(x) and g(x) =

1
8π
(4−|x|2).

Exercise 4. Let R :Rd→Rd be given by R(x)=−x. Characterize the probabilities µ ∈
P2(Rd) such that R is an optimal transport map between µ and R#µ for the quadratic
cost.

Exercise 5. Let S : Rd → Rd be given by S(x1,x2, . . . ,xd) = (x1,x2, . . . ,−xd). Prove
that S cannot be the optimal transport map between µ and S#µ for the quadratic cost
if µ �L d . Prove that, if S is optimal in the above sense, then µ is concentrated on a
Lipschitz hyper-surface of the form {xd = f (x1,x2, . . . ,dd−1)}, with f ∈ Lip1(Rd−1).

Exercise 6. Consider the multi-marginal problem

min
{ˆ

c(x1, . . . ,xN)dγ : γ ∈P((Rd)N)(πi)#γ = µi

}
,

where µi ∈P(Rd) are given compactly supported measures. Suppose that γ is con-
centrated on a set {(x1, . . . ,xN) ∈ (Rd)N : x1 + · · ·+ xN = constant}. Prove that γ is
optimal whenever the cost c is given by c(x1, . . . ,xN) = h(x1 + · · ·+ xN) for a convex
function h : Rd → R and also in the case c(x1, . . . ,xN) =−∑i6= j |xi− x j|2.

295
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Exercises from the topics of Chapter 2

Exercise 7. Consider two probability measures µ and ν on R, that we will suppose
atomless and with full support for simplicity. Let Fµ and Fν be their cumulative distri-
bution functions: Fµ(x)= µ((−∞,x]) and Fν(x)= ν((−∞,x]). Prove that the following
facts are equivalents

1. Fµ ≥ Fν ,

2. there exists γ ∈Π(µ,ν) concentrated on {(x,y) : y≥ x},

3. there exists T : R→ R such that T#µ = ν and T(x)≥ x for every x,

4. the monotone increasing transport T from µ to ν satisfies T(x)≥ x for every x.

Exercise 8. Prove that an optimal γ ∈ π(µ,µ) for the cost c(x,y) = 1
|x−y| exists, and

that it is concentrated on at most two increasing graphs, one above and one below the
diagonal. Prove that these two graphs do not superpose and that the plan comes indeed
from a transport map. Is it increasing?

Exercise 9. * In the case µ = L 1 [0,1] find the optimal transport map from µ to µ

for the cost c(x,y) = 1
|x−y| .

Exercise 10. ♠ Prove the optimality of γmon in 1D under the assumption that the cost
c : R×R→R is C2 with ∂ 2

∂x∂y c(x,y)< 0 for every (x,y)∈R×R. Deduce the existence
of an optimal map if µ is atomless.

Exercise 11. Let A and B two symmetric positive definite matrices and LA,LB : Rd →
Rd be affine functions defined through LA(x) = Ax+a, LB(x) = Bx+b, for given a,b∈
Rd . Take a reference measure ρ which is invariant under rotations (i.e. R#ρ = ρ for
every matrix R s.t. R ·Rt = I) and define µ := (LA)#ρ and ν := (LB)#ρ . Find the optimal
transport map from µ to ν for the quadratic cost.

Exercises from the topics of Chapter 3

Exercise 12. Consider a domain Ω = [0,3]× [0,2] and two absolutely continuous mea-
sures on it, µ0 and µ1, with density ρ0 and ρ1, respectively, given by

ρ0(x,y) =
2
9

if x≤ 1 or x ∈]1,2[ and y≤ 1,

ρ0(x,y) =
1
9

if x≥ 2 or x ∈]1,2[ and y > 1,

ρ1(x,y) =
2
9

if x≥ 2 or x ∈]1,2[ and y≤ 1,

ρ1(x,y) =
1
9

if x≤ 1 or x ∈]1,2[ and y≥ 1.

Represent graphically these two densities and find an optimal transport, as well as a
Kantorovich potential, between µ0 and µ1 for the cost c(x,y) = |x− y|. Is the optimal
transport unique? and the potential?
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Exercise 13. Find the optimal transport map for the cost c(x,y) = |x− y| between
µ = f ·L 2 and ν = g ·L 2 in 2D, where f (x) = 1

π
1B(0,1)(x) and g(x) = 1

8π
(4−|x|2).

Exercise 14. Consider the cost c(x,y) = |x−y|α for a given exponent 0<α < 1. Prove
that, for every pair µ,ν ∈P(Ω), we have

Tc(µ,ν) = sup
{ˆ

ud(µ−ν) : u ∈C0,α(Ω), [u]0,α ≤ 1
}
,

where [u]0,α is the C0,α seminorm of u: [u]0,α := supx 6=y
|u(x)−u(y)|
|x−y|α .

Exercise 15. Consider the cost c(x,y) = arctan(|x− y|) and two measures µ,ν ∈
P(Rd) with compact and disjoint supports.

1. What can we say about c-concave functions for this c? are they (uniformly)
continuous, Lipschitz. . . ?

2. Do the problems min
{´

c(x,y)dγ : γ ∈Π(µ,ν)
}

admit a solution?

3. Write the dual problem in terms of functions u having a given modulus of conti-
nuity.

4. Which is the connection between the support of an optimal γ and the optimal u
in the dual problem?

5. Supposing that µ is absolutely continuous, prove that the optimal γ is unique and
derives from a transport. Give its expression in terms of ∇u.

Exercise 16. Consider h : Rd → R defined through h(z) = (|z|− 1)2
+. Prove that, for

every µ,ν ∈P(Ω) with µ � L d and Ω compact, there exists an optimal transport
map for the cost c(x,y) = h(x− y).

Exercise 17. Consider the cost c(x,y) = b|x− y|c (the integer part of the distance:
bac = max{n ∈ Z : n ≤ a}. Prove that, for every µ,ν ∈P(Ω) with µ �L d and Ω

compact, there exists an optimal transport plan for such a cost of the form γ = ∑
N
i=1 γi

where each γi is induced by a transport map and N ≤ diam(Ω)+1.

Exercise 18. For ε > 0, consider the cost cε(x,y) = ε

⌊
|x−y|

ε

⌋
and let γε be an optimal

transport plan for such a cost between two measures µ,ν ∈P(Ω) (consider Ω compact
for simplicity). Prove that, up to subsequences, γε ⇀ γ , where γ is an optimal transport
plan between the same measures for the cost c(x,y) = |x− y|.

Exercise 19. ♠ Consider the cost cε(x,y) =
√

ε2 + |x− y|2 and let γε be optimal for
the cost cε in Π(µ,ν). Let ε → 0. Prove that, up to subsequences, we have γε ⇀ γ

where γ is optimal for the cost |x− y|. Supposing µ �L d and spt(µ)∩ spt(ν) = /0,
prove that we have full convergence to the ray-monotone transport plan. What can we
say about the limit ε → ∞?

Exercise 20. * Find a Borel set A⊂ [0,1] such that for every interval I ⊂ [0,1] we have
0 < L 1(I∩A)< L 1(I).
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Exercise 21. Let us define a distance, called SNCF distance, on a set X in the following
way:

SNCF(x,y) :=

{
0 if x = y,
P(x)+P(y) if x 6= y,

where P : X → R is a bounded function, to be interpreted as the distance to a fixed
connecting hub: imagine that every point is connected by a direct train to this hub, and
to no other location4. Prove that SNCF(x,y) is a distance on X and that, for c(x,y) =
SNCF(x,y) and µ,ν ∈P(X), we have Tc(µ,ν) =

´
P(x)d|µ−ν |(x).

Exercises from the topics of Chapter 4

Exercise 22. Let y be a solution of the ODE y′(t) = vt(y(t)). Prove that ρt := δy(t) is a
solution of the continuity equation ∂tρt +∇ · (ρtvt) = 0.

Exercise 23. * Prove that the set of polynomial functions is dense for the C1 norm in
the set C1([0,1]d).

Exercise 24. Find the transport density σ (see Section 4.3) between the measures
µ = f ·L 2 and ν = g ·L 2 in 2D, where f = 1

π
1B(0,1) and g(x) = 1

4π
1B(0,2).

Exercise 25. Suppose µ ∈ Lp(Ω) and ν ∈ Lq(Ω), with p > q. Prove that, if p <
d/(d−1), the transport density σ in the transport from µ to ν belongs to Lp and, if
p≥ d/(d−1), it belongs to Lr(Ω) for all the exponents r satisfying

r < r(p,q,d) :=
dq(p−1)

d(p−1)− (p−q)
.

Exercise 26. ♠ Given µ,ν ∈P(Ω), prove that there exists Q ∈P(C ) with (e0)#Q =
µ,(e1)#Q= ν and iQ ∈ Lp(Ω) (we recall that iQ is the traffic intensity defined in Section
4.2.3 and that the et are the evaluation maps) if and only if µ−ν ∈ (W 1,p′)∗.

Exercise 27. Given Q ∈P(C ) with (e0)#Q = µ,(e1)#Q = ν , prove that there exists
Q̃ ∈P(C ) concentrated on injective curves and such that (e0)#Q̃ = µ,(e1)#Q̃ = ν and
iQ̃ ≤ iQ.

Exercise 28. Consider the (simple) network on the right, where the cost for a commuter
to move along a segment of length ` with traffic intensity i is given by i`.
Do not distinguish between different traffic directions on a same seg-
ment (i.e. i is the sum of the number of commuters going in one
direction plus the number going in the other direction). Consider
the case where a quantity 1 of commuters must go from A to A′ and
another quantity 1 from B to B′. Find the Wardrop equilibrium.

•A

•A′

•B

•B′

Exercise 29. Prove that dα(LΩ,δ0) = +∞ for every compact domain Ω ⊂ Rd with
non-empty interior and |Ω|= 1, and every α < 1−1/d.

4The common hub could be called Paris, for instance. However, no restriction on the space X is imposed,
and in particular there is no need to assume that it has hexagonal shape.
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Exercise 30. Consider the branched transport for α = 1/2 between two atomic mea-
sures µ = ∑i aiδxi and ν = ∑ j b jδy j . Consider a triple junction at a point z which is not
one of the points xi or y j: among the three branches at z, either two are incoming and
one out coming or two out coming and one incoming. Prove that the two with the same
orientation must make an angle of 90◦.

Exercises from the topics of Chapter 5

Exercise 31. ♠ Let X be a Polish metric space, and µn,µ ∈P1(X) be probability
measures on X such that

´
φ dµn →

´
φ dµ for every φ ∈ Lip1(X). Prove

´
φ dµn →´

φ dµ for every φ ∈Cb(X).

Exercise 32. Prove the following equalities, for every compact set Σ ⊂ Ω and every
density f ∈ L1(Ω) with f ≥ 0 and

´
Ω

f (x)dx = 1,

ˆ
d(x,Σ) f (x)dx = min{W1( f ,ν) : ν ∈P(Σ)}

= min{|w|(Ω) : w ∈M d
div(Ω), spt(∇ ·w− f )⊂ Σ}.

What could we say if we considered, instead,
´

d(x,Σ)p f (x)dx, for p > 1?

Exercise 33. Let γ ∈ Π(µ,ν) be a transport plan between two probabilities on two
compact spaces X and Y , respectively. Let µn ⇀ µ and νn ⇀ ν be two weakly con-
verging sequences of probabilities. Prove that there exists a sequence γn ∈ Π(µn,νn)
with γn ⇀ γ . Deduce that for any sequence of costs cn converging uniformly to c we
have Tcn(µn,νn)⇀ Tc(µ,ν).

Exercise 34. Let Ω ⊂ Rd be smooth and compact, and V be an operator which asso-
ciates to every probability ρ ∈P(Ω) a vector field V [ρ] : Ω→ Rd with the following
properties: for every ρ , V [ρ] is Lipschitz continuous and satisfies Lip(V [ρ])≤C (for a
constant C not depending on ρ) and V [ρ] ·n = 0 on ∂Ω; the map ρ 7→V [ρ] is Lipschitz
continuous in the following sense: ||V [ρ]−V [µ]||L∞ ≤CW2(ρ,µ) for every ρ,µ . Con-
sider the equation ∂tρ +∇ · (ρV [ρ]) = 0 with initial Cauchy datum ρ0 �L d . Prove
that any solution ρt stays absolutely continuous for t > 0 and prove uniqueness of the
solution.

Exercise 35. ♠ Prove the equality W∞(µ,ν) = limp→∞ Wp(µ,ν) for µ,ν compactly
supported. Prove also that for any sequence pn→ ∞, the optimal plans γn for the cost
|x−y|pn converge, up to subsequences, to an optimal plan for the problem defining the
W∞ distance.

Exercise 36. Prove the inequality dH(spt(µ),spt(ν)) ≤W∞(µ,ν), where dH denotes
the Hausdorff distance.

Exercise 37. * Is it true that for 1 ≤ p ≤ q ≤ ∞, if the same map T is optimal in
the definition of Wp and Wq, then it is also optimal in the definition of Wr for every
r ∈ [p,q]?
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Exercise 38. Prove that if f ∈W 1,p(Ω), Ω is a convex set, µ,ν ∈P(Ω)∩Lr(Ω) and
||µ||Lr , ||ν ||Lr ≤C, then, for 1

p +
1
q +

1
r = 1+ 1

qr , one has

ˆ
Ω

f d(µ−ν) ≤ C
1
q′ ||∇ f ||Lp(Ω)Wq(µ,ν).

Exercises from the topics of Chapter 6

Exercise 39. Let Σ = {x1, . . .xN} ⊂ Ω be a finite subset of a compact convex domain
Ω. For every i, let us set Vi := {x ∈ Ω : |x− xi| ≤ |x− x j| for all j}. Suppose that Σ

solves the problem min{
´

Ω
d(x,Σ)2 dx : #Σ≤ N}. Prove that, for every i, the point xi

is the barycenter of Vi.

Exercise 40. ♠ For A ⊂ Rd we define the extremal points of A as those points x ∈ A
such that y,z ∈ A,x = y+z

2 ⇒ y = z. Let K ⊂Mn(R) be the set of bistochastic matrices
(those matrices M = (mi j) with mi j ≥ 0, ∑ j mi j = ∑i mi j = 1 for all i, j). Prove that the
extremal points of this set are the permutation matrices.

Exercise 41. For a ∈ (R+)
n and b ∈ (R+)

m consider the set Π(a,b) defined through
Π = {M ∈Mn,m(R) : mi j ≥ 0,∑ j mi j = ai,∑i mi j = b j}. Prove that every extremal
matrix M in Π(a,b) is such that #{(i, j) : mi j > 0} ≤ n+m.

Exercise 42. Let γε
i j := pε

i qε
j ηi j be a solution of the approximated problem in (6.3)

(see Section 6.4.1). Suppose that ε log(pε
i ), ε log(qε

j ) and γε
i j converge as ε→ 0. Prove

that the limit of ε log(pε
i ) and ε log(qε

j ) are Kantorovich potentials in the limt problem
for ε = 0.

Exercise 43. Let u be a smooth function on Ω and M(x) := cof(D2u(x)). Let Mi j be
the (i, j)-entry of M and Mi j

k its derivative w.r.t. xk. Prove that for every index j we
have ∑i Mi j

i (x) = 0.

Exercise 44. * ♠ Consider a smooth transport map T : Ω→ Rd of the form T = ∇u
on a smooth domain Ω. Suppose T# f = ν , where f is a smooth positive density on Ω.
For every vector field v : Ω→ Rd with ∇ · ( f v) = 0 and v ·n = 0 on ∂Ω consider the
flow of the autonomous vector field v, given by Yt(x) = yx(t) (where y′x(t) = v(yx(t))
and yx(0) = x) and define Tt = T◦Yt . Let M(S) =

´
|S(x)− x|2 f (x)dx. Prove that the

function j(t) = M(Tt) satisfies j′′(0)≥ 0 if and only if u is convex.

Exercises from the topics of Chapter 7

Exercise 45. * ♠ Prove that the entropy functional

F (ρ) :=

{´
Rd ρ(x) logρ(x)dx if ρ �L d ,

+∞ otherwise.

is l.s.c. in W1(Rd). Also prove that if ρn ∈P2(Rd) and ρn ⇀ ρ ,
´
|x|2dρn(x) ≤ C,

then F (ρ)≤ liminfn F (ρn).
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Exercise 46. Prove that the problem

min
{ˆ 1

0

ˆ
Ω

ρ|v|2dxdt : ∂tρ +∇·(ρv)=0, ρt ∈P(Ω), ρ(0) = ρ0, ρ(1) = ρ1

}
is equivalent to the same problem with the additional constraint ρt ≤ 1, provided that
we have ρ0,ρ1 ≤ 1 and Ω is convex. Also, imagine a non-convex (but connected)
domain Ω where this is no more the case.

Exercise 47. Given a compact and convex domain Ω⊂ Rd and ν ∈P(Ω), prove that
the following problem admits a solution

min
{

W1(ρ,ν)+
1
2

ˆ
ρ

2(x)dx : ρ ∈ L2(Ω), ρ ≥ 0,
ˆ

ρ(x)dx = 1
}
.

Is this solution unique ? Write the optimality conditions satisfied by the optimal ρ ,
prove that ρ ∈ Lip1 and find explicitly the solution when Ω = B(0,5) and ν = δ0.

Exercise 48. ** Given p > 1, consider g∈P(Ω) an absolutely continuous probability
measure, and look at the problem min{Wp(ρ,g) : ρ ≤ f}, where f ∈ L1(Ω) is a given
positive function. Prove that a solution exists, that it is unique, and that it has the form
ρ = 1Ag+1Ac f .

Exercises from the topics of Chapter 8

Exercise 49. Consider the fourth-order PDE

∂tρ +∇ · (ρ∇(∆ρ))+∇ ·
(

∇ρ
√

ρ

)
= 0.

This PDE is the gradient flow in W2 of an energy: which one? also prove that the
variational problems to be solved at every time step (see Equation (8.3)) in the corre-
sponding minimizing movement scheme admit a solution.

Exercise 50. Let V : Rd → R be C1,1 and let G : P(Rd)→ R be defined through
G(ρ) = #(spt(ρ)) and let ρ0 ∈P(Rd) be a purely atomic probability measure ρ0 =

∑
N
i=1 aiδx0

i
with finitely many atoms. Prove that, for small τ (depending on what?), the

solution of the following minimization problem

min
{

G (ρ)+

ˆ
V dρ +

W 2
2 (ρ

0,ρ)

τ
: ρ ∈P2(Rd)

}
exists, is unique, and has the form ρ1 = ∑

N
i=1 aiδx1

i
with G (ρ1) = G (ρ0). Deduce that

the minimizing movement scheme for G +V gives the same limit curve as that for V ,
and find the equation of this curve.

Exercise 51. Let ρ0 ∈P2(Rd), x0 its barycenter, and ρ a solution of

∂tρt −∇ · (ρtvt) = 0

where vt(x) =
´
(x− y)dρt(y). Let E(t) :=

´
|x− x0|2dρt(x). Prove E ′(t) ≤ −E(t).

What can we conclude on the asymptotical behavior of ρt as t→ ∞?
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Exercise 52. Let V : Rd→R be a continuous function such that |V (x)| ≤ A+B|x|2 for
suitable constants A,B and let f : R+→R a convex function with f ′(0)>−∞. Define

F(ρ) =

ˆ
f (ρ(x))dx+

ˆ
V (x)ρ(x)dx

and consider, for ρ0 ∈P2(Rd),

min
{

F(ρ)+
W 2

2 (ρ,ρ0)

2τ
: ρ ∈P2(Rd)

}
.

Prove that, for small τ , a solution exists, is unique, and is compactly supported if ρ0 is
compactly supported.

Exercise 53. Consider m > 2 and define

F(ρ) =

ˆ
Ω

ρ
m− 1

2

ˆ
Ω

|∇uρ |2, where uρ ∈ H1
0 (Ω) solves −∆uρ = ρ.

Prove that
min

{
F(ρ)+W 2

2 (ρ,ρ0) : ρ ∈P2(Rd)
}

admits a solution.

Exercise 54. Prove that the optimality conditions of

min


ˆ T

0

ˆ
(
t3/2

2
ρ|v|2 + 3t−1/2

4
|∇ϕ|2) with


∂tρ +∇ · (ρv) = 0,
∆ϕ = ρ−1,
ρ0 = 1,ρT = given


impose, at least formally, the system of equations (8.27).

Exercise 55. Given α ∈]0,1[, prove that a minimizer for

min
{ˆ 1

0
t1+α |x′(t)|2 + ct−1+α |x(t)− x0|2 : x(1) = x1

}
exists, is unique, and satisfies x(0) = x0. Prove that a minimizer for the same problem
adding the condition x(0) = x̃0, with x̃0 6= x0, does not exist.

Exercise 56. Consider a triplet (ρt ,vt ,ϕt) on the torus Td (to avoid boundary issues)
satisfying

ˆ 1

0

ˆ
(
t3/2

2
ρ|v|2 + 3t−3/2

2
|∇ϕ|2)<+∞ with

{
∂tρt +∇ · (ρtvt) = 0,
∆ϕt = ρt −1

with ||ρt ||L∞ ≤C and t 7→ ρt continuous for W2 on ]0,1]. Prove that we necessarily have
W2(ρt ,1)→ 0 as t→ 0.

Miscellaneous
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Exercise 57. Find the optimal transport map for the costs of the form |x− y|p, p > 0,
between the two measures sketched below:

•

•
•

•
•
•

•
•

µ = 1
4 (δ(2,3)+δ(3,2)+δ(3,0)+δ(0,−1))

ν = 1
4 (δ(0,0)+δ(0,2)+δ(2,1)+δ(4,2))

Exercise 58. Find an example of a pair of compactly supported absolutely continuous
probability measures µ,ν on Rd and a continuous cost c : Rd×Rd → R+ such that no
optimal transport map exists in the corresponding Monge Problem.

Exercise 59. Find the optimal transport plan for the cost c(x,y) = (x2− y2)2 in 1D,
when µ = L 1 [0,1] and ν = 1

2L 1 [−1,1].

Exercise 60. Find an example of bounded l.s.c. (but not continuous) cost c : Rd → R,
together with two atomless compactly supported measures µ,ν ∈P(Rd) such that
inf(MP)> min(KP).

Exercise 61. * Prove that there exists a continuous map T : [0,1]→ [0,1]2 such that
T#(L

1 [0,1]) = L 2 [0,1]2.

Exercise 62. Consider a translation S : Rd → Rd given by S(x) = x+a.

1. Prove that S is the optimal transport for the cost c(x,y) = |x− y|2 between any
measure µ and S#µ .

2. Prove the same result for c(x,y) = |x− y|.

3. If T is the optimal transport between µ and ν , can we say that S◦T is the optimal
transport between µ and S#ν? answer this question both for c(x,y) = |x−y|2 and
c(x,y) = |x− y|.

4. More generally, is it true that the composition of two optimal transports is still
optimal?

Exercise 63. ♠ Prove that, if J ⊂ R is a (possibly unbounded) given interval, then
Wp(J) is isometric to a closed convex subset of Lp([0,1]).

Exercise 64. Given g ∈ L1([0,1])∩P([0,1]), prove W2(1,g) = ||1−g||Ḣ−1([0,1]).

Exercise 65. Consider µ,ν ∈P1(Rd) with
´

xdµ(x) =
´

ydν(y) = 0. Let γ be an
optimal transport plan for the cost c(x,y) = −x · y between these two measures and
Tc(µ,ν) the optimal value of this transport cost. Prove Tc(µ,ν) ≤ 0 and spt(γ) ⊂
{(x,y) : x ·y≥Tc(µ,ν)}. Deduce that if µn ⇀ µ and

´
xdµn(x) =

´
ydν(y) = 0, then

Tc(µ,ν)≥ limsupn Tc(µn,ν).

Exercise 66. Let f ,g be two smooth probability densities on a convex domain Ω and
ϕ,ψ the Kantorovich potentials for the transport from f to g for the cost c(x,y) = 1

2 |x−
y|2 . Prove

´
∇ f ·∇ϕ +∇g ·∇ψ ≥ 0. Conclude that the same is true for f ,g ∈ H1(Ω).
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Exercise 67. Prove the W2 distance between two (smooth) solutions to the Heat equa-
tion ∂tρ = ∆ρ decreases in time:

1. in a bounded domain Ω with homogeneous Neumann boundary conditions,

2. in Rd , with initial data in P2(Rd).

Exercise 68. Let v : [0,T ]×Ω→ Rd be Lipschitz continuous in space, uniformly in
time. Prove the uniqueness of the solution to the Fokker-Planck equation ∂tρ −∆ρ +
∇ · (ρv) = 0 (with Neumann boundary conditions) in the class of solutions which are
H1(Ω)∩P(Ω) for every t, by differentiating W 2

2 between two solutions. Why is H1 a
reasonable assumption for the regularity of the solution?

Exercise 69. Let f :Rd→R be a C2 strictly convex function with D2 f ≥αI (for α > 0)
on a smooth bounded domain Ω. Prove that ρ∞ = ce− f (for c= (

´
e− f )−1) is a solution

of ∆ρ+∇ ·(ρ∇ f ) = 0. Consider now any smooth solution of ∂tρ−∆ρ−∇ ·(ρ∇ f ) = 0
with Neumann boundary conditions on Ω, and prove W2(ρt ,ρ∞)→ 0 exponentially as
t→ ∞.

Hints

Hint to Ex. 1. Use piecewise affine oscillating functions. With C1 it’s impossible,
because C1 functions f with image measure with bounded density should satisfy f ′ 6= 0
and be diffeomorphisms. Yet, only f (x) = x and f (x) = 1− x preserve the measure
among diffeomorphisms.

Hint to Ex. 2. Write the Kantorovich problem and use a change of variable y 7→ −y in
the arrival measure.

Hint to Ex. 3. Find a monotone radial transport. The answer is

T(x) = 4

√
1−
√

1−|x|2 x
|x|

.

Hint to Ex. 4. Use c-cyclical monotonicity on two points (i.e. monotonicity).

Hint to Ex. 5. For the first question, use the characterization in terms of gradients of
convex functions. For the second, use again c-cyclical monotonicity.

Hint to Ex. 6. For ths first cost, use Jensen inequality. For the second, express it as
(x1 + . . .xN)

2+ functions of the xi separately.

Hint to Ex. 7. You can (partially) use the transport problem with cost h(y− x) with
h(z) = +∞ for z < 0 and h(z) = 0 for z≥ 0.

Hint to Ex. 8. Decompose γ above and below the diagonal and use results on convex
costs in 1D. Then prove that the superposition is not optimal.

Hint to Ex. 9. Check that T defined as T (x) = x+ 1
2 for x < 1

2 and T (x) = x− 1
2 for

x≥ 1
2 is optimal by using the functions φ(x) = 2−4|x− 1

2 | and ψ(y) = 2−4|y− 1
2 | as

a guess for the Kantorovich potentials.
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Hint to Ex. 10. If two pairs (x0,y0),(x1,y1)∈ sptγ exist with x0 < x1 and y0 > y1 exist,
integrate ∂ 2c

∂x∂y on [x0,x1]× [y1,y0] and find a contradiction.

Hint to Ex. 11. Write A−1B as the product of a symmetric positive definite matrix and
a rotation.

Hint to Ex. 12. u(x) =−x is a potential.

Hint to Ex. 13. Same idea as in Ex(3). Use the potential u(x) =−|x| to prove that you
found an optimal map.

Hint to Ex. 14. The cost c(x,y) = |x− y|α is a distance.

Hint to Ex. 15. Use the same analysis as in Section 3.3.2.

Hint to Ex. 16. Decomposition strategy of Section 3.3.1.

Hint to Ex. 17. Use the results about L∞ optimal transport.

Hint to Ex. 18. The cost cε uniformly converges to the linear cost.

Hint to Ex. 19. Consider the Taylor expansion of the cost in ε to guess the lower-order
term.

Hint to Ex. 20. Start from classical example of fattened rationals.

Hint to Ex. 21. Prove that all functions u : X → R with |u(x)| ≤ P(x) belong to Lip1
for the distance SNCF, and apply the duality formula to have a lower bound on Tc. For
the opposite bound, just leave the common mass at rest.

Hint to Ex. 22. Just test against a C1
c function ψ(x).

Hint to Ex. 23. Two methods: induction on the dimension, or use a polynomial convo-
lution (with something like xn(1− x)n).

Hint to Ex. 24. By uniqueness, σ is radial. The Kantorovich potential is u(x) =−|x|.
Use the Monge-Kantorovich equation.

Hint to Ex. 25. Use the same strategy as in Theorem 4.24. See also [273].

Hint to Ex. 26. It is equivalent to the existence of w ∈ Lp with ∇ ·w = µ−ν .

Hint to Ex. 27. Solve the minimization problem

min
{

iQ̃(Ω) : (e0)#Q̃ = µ, (e1)#Q̃ = ν , iQ̃ ≤ iQ
}
.

Hint to Ex. 28. Make the ansatz that the mass from A to A′ will be splitted into three
parts α passing through B, α through B′, and β directly to A′, and the same for B to B′.
Write a 2×2 system for the equilibrium condition.

Hint to Ex. 29. Take a regular grid on a cube contained in Ω. Count how much does it
cost to move the mass of the central half of each cube out of the cube, and sum up.

Hint to Ex. 30. Use the angle law (4.31).

Hint to Ex. 31. Suppose φ ≥ 0, and use the k-Lipschitz functions φk defined in the
memo 1.5 on l.s.c. functions.

Hint to Ex. 32. Prove that the optimal ν is the image of f through the projection onto
Σ. Use Beckmann’s formulation.
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Hint to Ex. 33. Use Lemma 5.5 to modify the marginals of γ .

Hint to Ex. 34. Differentiate W 2
2 .

Hint to Ex. 35. Prove Γ-convergence.

Hint to Ex. 36. Take a point x0 ∈ spt(µ) realizing maxd(x,spt(ν)): it must be trans-
ported somewhere.

Hint to Ex. 37. Build a counterexample with a map T which is a gradient but such that
∇h(T(x)− x) is not a gradient for h(z) = |z|4.

Hint to Ex. 38. Adapt the proof of Lemma 5.33.

Hint to Ex. 39. Write optimality conditions when we move one point.

Hint to Ex. 40. Consider the entries of an extremal matrix which are in ]0,1[. Prove
that if there is one such an entry, then there is a “cycle” and find a contradiction.

Hint to Ex. 41. Same strategy as above.

Hint to Ex. 42. From logγε
i j = log pε

i + logqε
j + logηi j deduce ε log pε

i +ε logqε
j ≤ ci j,

with equality if at the limit γi j > 0.

Hint to Ex. 43. Write cof(D2u)D2u = det(D2u)I and differentiate.

Hint to Ex. 44. Compute the second derivative and integrate by parts to get
´

ui jviv j f .

Hint to Ex. 45. First part: add and subtract suitable functionals, continuous for W1, to
make the integrand positive, and restrict it to bounded domains. Second part: prove
that a bound on the second moment implies W1 convergence.

Hint to Ex. 46. Use the fact that the L∞ norm is bounded by one on a geodesic whenever
this is the case on the starting and arrival measures.

Hint to Ex. 47. Use the direct method for existence, strict convexity for uniqueness,
and let the potential appear in optimality conditions.

Hint to Ex. 48. Difficult: prove a sort of interior ball condition, i.e. if ρ(x0) > g(x0)
then ρ = f on B(T (x0), |x0−T (x0)|), and use Lebesgue points. See [152].

Hint to Ex. 49. Use
´ 1

2 |∇ρ|2 +4
√

ρ .

Hint to Ex. 50. Consider the optimal γ between ρ0 and ρ: if ρ has more than N atoms,
then replacing each γ

(
{xi}×Rd

)
with its barycenter gives a better result.

Hint to Ex. 51. Prove that the barycenter is preserved and use the equation to compute
E ′.

Hint to Ex. 52. Write the optimality conditions in term of the potential (direct method
for existence, strict convexity for uniqueness).

Hint to Ex. 53. Estimate the ∇uρ part in terms of ||ρ||2Lm , and use m > 2 to see that
these norms must be bounded on a minimizing sequence.

Hint to Ex. 54. Write the problem as a min-max, introducing Lagrange multiplier for
the constraints, and deduce the conditions to have a saddle-point.

Hint to Ex. 55. Write and solve the Euler-Lagrange equation.

Hint to Ex. 56. Prove that t 7→ ||ρt − 1||2H−1 is BV, by using Young inequality and
Lemma 5.33.
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Hint to Ex. 57. Check that moving every atom of ν on the (a) closest atom of ν is
possible.

Hint to Ex. 58. Use concave costs and measures with a common mass.

Hint to Ex. 59. Try to realize the cost 0.

Hint to Ex. 60. Use µ and ν as in the counter-example of Section 1.4, and choose
c(x,y) as a discontinuous function of |x− y|.
Hint to Ex. 61. Adapt the Peano construction for a surjective map onto the square,
defining a map as a fixed point of a contracting operator.

Hint to Ex. 62. Use the characterization of optimal maps as gradients of convex func-
tions (quadratic). Find a non-optimal transport between two measures with compact
support on R and translate them far away (linear cost). Find a composition of two
gradients which is not a gradient.

Hint to Ex. 63. Use the properties of F [−1]
µ .

Hint to Ex. 64. Write the optimal transport as x−ϕ ′(x), check ||1−g||Ḣ−1 = ||ϕ ′||L2 ,
and integrate by parts.

Hint to Ex. 65. For Tc ≥ 0, use the plan γ = µ ⊗ν to have a bound. For the support
of γ , take (x,y) and (x′,y′) in spt(γ), write c-cyclical monotonicity, and integrate w.r.t.
(x′,y′). This gives an upper bound that allows to prove upper semi-continuity.

Hint to Ex. 66. Use displacement convexity of the entropy, compare the derivative of
the entropy at t = 0 and t = 1 on a geodesic.

Hint to Ex. 67. For the first question, differentiate W 2
2 and use the Ex(66). For the

second, use the inequality in Lemma 5.2 and the semigroup properties of the heat
equation.

Hint to Ex. 68. After differentiating W 2
2 use Gronwall. H1 is reasonable because the

H1 norm is controlled in time.

Hint to Ex. 69. Differentiate W 2
2 between the solution of the evolution equation and

the static solution.
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(2e s. I-XXXV), 1887.
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[31] M. BEIGLBÖCK Cyclical Monotonicity and the Ergodic Theorem. Ergodic The-
ory Dynam. Systems, 35 (3), 710–713, 2015.
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[71] G. BOUCHITTÉ AND G. BUTTAZZO, Characterization of optimal shapes and
masses through Monge-Kantorovich equation J. Eur. Math. Soc. 3 (2), 139–168,
2001.
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