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A State of the art and objectives

This proposal is concerned with the study of a wide class of evolutionary partial differential equations, their disce-
tization and various properties of their solutions, in connection with the theory of optimal transportation (OT). The
main object of the proposal are those PDEs which have a variational structure in the space of probability measures
endowed with the Wasserstein distance (a distance induced by the optimal value of optimal transport problems), in
the sense that they are gradient flows of suitable functionals in such a space.

The notion of gradient flow, or steepest descent curve, is very classical in evolution equations: given a functional
F defined on a Hilbert space X, instead of looking at points x minizing F (which solve ∇F(x) = 0), we consider an
initial point x0 and look for a curve starting at x0 which tries to minimize F as fast as possible, solving an equation of
the form x′(t) = −∇F(x(t)). In the finite-dimensional case, this equation is very easy to deal with, while the infinite-
dimensional case can lead to PDEs. In order to detail some examples, we first need to (roughly) define the notion
of first variation of a functional F defined on a suitable functional space X: given u0 ∈ X, if there exists a function g
(belonging to X or to another functional space, we will not be precise now) such that limε→0

F(u0+εχ)−F(u0)
ε =

∫
gχ for

every χ belonging to a large enough class of smooth test functions, we say that F admits a first variation at u0 and we
write g = δF

δu (u0). In the case X = L2 this notion exactly coincides with that of Gateaux differential, so that δF
δu = ∇F

whenever F is differentiable. Hence, gradient flows in L2 are easy to consider, as they correspond to ∂tu = − δF
δu .

For instance, the evolution equation ∂tu = ∆u, is the gradient flow, in the L2 Hilbert space, of the Dirichlet energy
F(u) = 1

2

∫
|∇u|2, since δF

δu = −∆u.
The renovated interest in last years for the notion of gradient flow arrived, at the end of last century, with the work

of Jordan, Kinderleherer and Otto ([43]) and then of Otto [66], who saw a gradient flow structure in some equations
of the form ∂tρ−∇ · (ρv) = 0, where the vector field v is given by v = ∇[δF/δρ] for a certain functional F defined on
the space of probability measures ρ. This requires to use the space of such probabilities on a given domain Ω, and
to endow it with a non-linear metric structure, derived from the theory of optimal transport. This theory, initiated by
Monge in the 18th century ([64]), then developed by Kantorovich in the ’40s ([44]), is now well-established (many
texts present it, such as [76, 77, 70]) and is intimately connected with PDEs of the form of the continuity equation
∂tρ−∇ · (ρv) = 0.

In order to see the role of the metric structure in gradient flows, let us look at a natural time-discretization of the
equation x′ = −∇F(x): fix a small time step parameter τ > 0 and look for a sequence of points (xτk)k defined through
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the iterated scheme, called Minimizing Movement Scheme (see [31, 2]), based on the proximal operator: first, for
every point y and every value of τ > 0 define ProxF

τ (y) := argminx F(x) +
|x−y|2

2τ ; then, define a sequence obtained in
the following way: take xτ0 := x0, then

xτk+1 ∈ ProxF
τ (xτk). (1)

Under suitable differentiability assumptions on F, optimal points satisfy the condition
xτk+1−xτk

τ = −∇F(xτk+1), which is
an implicit Euler discretization of the desired evolution equation.

Yet, it is important to notice that the equation x′ = −∇F(x) requires, to be meaningful, the space X to be endowed
with a linear structure and a scalar product (which explains why Hilbert spaces were considered at the beginning),
so that we can define derivatives and gradients. On the other hand, the minimization probem in (1) can be easily be
considered in general metric spaces: once a l.s.c. function F : X→R∪{+∞} is given on a metric space (X,d), we can

interatively minimize F(x) +
d(x,xτk)2

2τ and consider the limit (should it exist) that we obtain after suitably interpolating
the points xτk and sending τ to 0.

This metric approach has been exploited in [43, 66] and in the whole theory developed in [3] using the space
P(Ω) of probability measures on a (bounded) domain Ω, endowed with the Wasserstein distance W2 induced by the
optimal transport with quadratic cost:

W2(µ,ν) :=

√
min

{∫
|x− y|2dγ : γ ∈ P(Ω×Ω), (πx)#γ = µ, (πy)#γ = ν

}
.

Given a functional F : P(Ω)→ R∪{+∞} we iteratively solve

ρτk+1 ∈ argminρ F(ρ) +
W2

2 (ρ,ρτk)

2τ
, (2)

and this minimization scheme is nowadays called JKO scheme. Generalizing the previous notation, we will also

denote by ProxF
τ (ν) the set of minimizers of F(ρ)+

W2
2 (ρ,ν)
2τ , so that the JKO scheme can also be defined with the same

laguage as in (1). In this case, it is in general possible to prove, under suitable conditions, that the obtained sequence
of minimizers converges as τ→ 0 to a solution of the PDE

∂tρ−∇ ·
(
ρ∇

(
δF
δρ

) )
= 0

with no-flux boundary conditions on ∂Ω that we will omit in the sequel of this text.
Some particular cases are of interest

• when F(ρ) =
∫
ρ logρ+ρV we obtain the Fokker-Plack equation ∂tρ−∆ρ−∇· (ρ∇V) = 0 where −∇V acts as a

drift and is associated with linear diffusion;

• when F(ρ) =
∫

ρm

m−1 + ρV we get the non-linear diffusion equation ∂tρ−∆(ρm)−∇ · (ρ∇V) = 0 (called porous
medium equation for m > 1, see [75], or fast diffusion for m < 1);

• when F(ρ) =
∫
ρV for ρ ≤ 1 and F(ρ) = +∞ if ρ is not bounded by 1 (i.e., the limit m→∞ of the previous

case), we obtain the Hele-Shaw type system

∂tρ−∆p−∇ · (ρ∇V) = 0, p ≥ 0, ρ ≤ 1, p(1−ρ) = 0, (3)

first seen as a gradient flow in [60] for applications to crowd motion models.

• aggregation-diffusion equations can be considered ([22, 23]) and the general framework is obtained choosing
the functional F(ρ) =

∫
f (ρ) +ρV + 1

2

∫ ∫
W(x− y)dρ(x)dρ(y) for an even interaction kernel W, which gives

∂tρ−∇ · (ρ∇( f ′(ρ) + V + W ∗ρ)) = 0.
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Many other diffusion PDEs can be obtained in this way, including the Keller-Segel model for chemotaxis ([45,
46, 14]) and higher order equations ([58, 21]). Several cross-diffusion models can be dealt with in product spaces
where several populations ρi evolve ([51, 24]): if we consider a functional F defined onP(Ω)×P(Ω) the JKO scheme
becomes

(ρτk+1,µ
τ
k+1) ∈ argminρ,µ F(ρ,µ) +

W2
2 (ρ,ρτk) + W2

2 (µ,µτk)

2τ
and the equation becomes a system ∂tρ−∇ · (ρ∇

(
δF
δρ

)
) = 0,

∂tµ−∇ · (µ∇
(
δF
δµ

)
) = 0.

The JKO scheme, which provides a natural approximation, is a powerful tool to obtain existence results, as well
as a theoretical numerical method, discrete in time but still continuous in space. If for well-known PDEs (such as
the linear Fokker-Planck equation) there are many easier techniques for both existence and numerics, for other cases
the JKO scheme could be crucial. Of course, other approximations could exist (adding vanishing viscosity, non-local
terms. . . ) but in many cases the advantage of the JKO scheme is that it preserves many features (including some
powerful algebraic miracles in the computations) of the structure of the desired continuous-time equations.

One of the goal of the present project is exactly to show to which extent many features of the corresponding PDEs
can be observed in the JKO scheme, and we mainly focus on those properties of the solutions which can be inferred
from this scheme. For instance, in [32] the PI and collaborators introduced a technique, based on an inequality
nowadays called five-gradients-inequality, which allowed to prove that the BV norm of ρτk decreases with k on the
JKO scheme for the porous-medium equation: given an arbitrary probability density ν ∈ P(Ω) on a convex domain
Ω, taking F(ρ) :=

∫
f (ρ(x))dx for a convex and superlinear function f , then we have ||ρ||BV ≤ ||ν||BV for ρ = ProxF

τ (ν).
Moreover, considering f (ρ) = ρm and sending m→∞, we also obtain the same BV estimate when ρ solves

min
{
W2

2 (ρ,ν) : ρ ≤ 1
}
,

i.e. when ρ is the projection of ν onto the set of densities bounded by 1, a projection operator very useful in density-
constrained models such as those for crowd motion (see [60]).

This kind of result, well-known for the continuous-in-time setting, was not known for the discrete-in-time case,
and is useful to obtain compactness properties, asymptotic behavior, consistence of numerical schemes. . . For the
linear Fokker-Planck equation, the spectrum of available results is much wider, starting from some very interesting
works by Lee ([54] and [55]), which respectively prove Lipschitz and semiconcavity bounds in the case where Ω

is the torus. The Lipschitz bound has been recently extended by the PI with a young collaborator in [37] to the
case of a convex domain, with a sharp rate which exactly reproduces what happens in the continuous-in-time case.
Similarly, some Sobolev bounds proven in [34] are sharp in what concerns Fokker-Planck, but have also been proven
in a non-sharp form (the asymptotical behavior is non-optimal) for other aggregation-diffusion equations, including
Keller-Segel. Among the other classes of bounds which can be proven on the JKO scheme, we cite 0−order bounds,
such as estimates on the Lp norm of ρ, or on L∞ bounds from above or below. Other available bounds, instead of
being uniform along the iterations (i.e., in time) are integrated in time. For instance, on the heat equation it is easy
to see that if one differentiates in time the quantity t 7→

∫
ρ2

t we obtain at the same time a uniform L2 bound on ρ
and an integral bound on the L2 norm of ∇ρ, since d

dt

∫
ρ2

t = −2
∫
|∇ρt|

2; a discrete counterpart can be proven using
the so-called flow interchange technique (see [58]). Similarly, it is possible to differentiate 1st order quantities and
obtain a bound on the integral of a 2nd order one: for instance, in the discrete-in-time setting it is possible to obtain
bounds on quantities such as

∑
k τ

∫
ρτk |D

2 log(ρτk)|2 and hence L2
t H2

x bounds.
The research project will be structured along three main themes, together with their connections.

A.1 (τ, x) – Discrete-in-time regularity estimates and applications

This part of the project is the main core of it. It aims at developing a general theory for the JKO scheme for various
equations and
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• reproduce in discrete time integrability, decay, and uniform estimates which are known in the continuous case,

• find new ones which could be easier to observe in the discrete case and/or to prove rigorously.

The second above point (i.e. that it could be easier in some cases to act on the discrete setting than in the continuous
one) could seem surprising but one has to think that in this case there is no regularity issue to justify the computations
(as the time is discrete and functions can be assumed to be essentially as smooth as we want for fixed time step τ > 0);
moreover, it could happen that some involved error terms could not be immediately seen to have a sign, while this
could be made apparent by using some black-box inequality coming either from the flow interchange (based on
displacement convexity, see [61]) or the five-gradients-inequality, as it happened for the case of variational Mean
Field Games in [53], where the desired result was indeed proven by discretization in time and flow interchange.

In order to exemplify the kind of properties we could consider we list here below the main results which are
known in the easiest case, the Fokker-Planck equation, that we write as ∂tρ−∇ · (ρ∇u) = 0, with u = logρ+ V . Note
that we use F(ρ) =

∫
ρ logρ+ ρV =

∫
ρu. We consider a datum ρ0 and set ρ1 := ProxF

τ (ρ0), i.e. the new density
produced by the JKO scheme. We also set, for k = 0,1, uk = logρk + V . Here is what is known, so far, when the
domain Ω is convex:

• If u0 is bounded from above (resp., below) then u1 is bounded from above (resp., below) by the same constant,
whatever is V (this is proven in a more general setting in [41]).

• If V is Lipschitz continuous then we have a bound on the Lp norm:
∫
ρ

p
1 ≤ (1 + τC(p)Lip(V)2)

∫
ρ

p
0 . This

provides uniform bounds on the Lp norm of ρτk as soon as ρ0 ∈ Lp and τk ≤ T . Moreover, it is possible to
improve the above estimate into∫

ρ
p
1 ≤ (1 +τC(p)Lip(V)2)

∫
ρ

p
0 −τC(p)

∫
ρ

p−2
1 |∇ρ1|

2,

which allows to deduce integral bounds in time and space on the H1 norm of ρp/2, i.e. on τ
∑

k

∫
Ω

(ρτk)p−2|∇ρτk |
2.

• When V is semiconvex, i.e. it satisfies D2V ≥ αI for some α ∈ R, if u0 is Lipschitz continuous so is u1, and
Lip(u1) ≤ (1 +ατ)−1 Lip(u0) (this is proven in [54] for the torus, and in [37] for the case of convex domains).

• Again for D2V ≥ αI, setting Jp(ρ) :=
∫
|∇u|pρ, we get Jp(ρ1) ≤ (1 +αpτ)−1Jp(ρ0) (see [34]). This estimate

can also be improved with a higher-order remainder term depending on p, ∇ρ1 and D2ρ1. Using p = 2 we
obtain in particular integral bounds in time and space on the Hessian of u, and more precisely a bound on
τ
∑

k

∫
Ω
ρτk |D

2uτk |
2.

The recent paper [34] partially generalizes some of the above results to the JKO scheme corresponding to other
equations of the form ∂tρ−∆ρ−∇· (ρ∇V[ρ]) = 0 where the potential V is allowed to depend on ρ (by convolution, or
by solving a PDE as in the Keller-Segel case −∆V[ρ] = ρ). However, in this case the results are far from being sharp
and the spectrum of available results becomes much more restricted when passing to non-linear diffusion such as the
porous medium equation ∂tρ−∆(ρm) = 0.

The objective of this part is to generalize as much as possible (other equations, general domains, mild assumptions
on the data. . . ) the estimates on the solutions of the JKO scheme and apply these results in different directions. We
list here below the main tasks to be accomplished. Note that the generalization to other JKO-like schemes will
also be matter of study if the results on the “standard” JKO scheme are satisfactory enough. This includes splitting
schemes with a JKO step coupled with explicit steps, minimizing movements in other distances involving W2 (see
(t, x) for cross-diffusion in the product space W2 ×W2 or [15] for Hybrid variational schemes in W2 × L2), higher-
order (in time) JKO-like schemes as in [56, 59], or even the equations which can be obtained by replacing W2

2/τ with
WP

p /τ
p−1 which gives (see [1])

∂tρ+∇ · (ρv) = 0, |v|p−2v = −∇
δF
δρ
.
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A.1.1 Task (τ, x)−1: strong convergence for linear diffusion

Let us consider the decay estimate of the L2 norm for the JKO scheme of the Heat equation (Fokker-Planck with
V = 0, for simplicity): it is of the form ∫

ρ2
1 ≤

∫
ρ2

0−2τ
∫
|∇ρ1|

2,

which, iterated along the JKO scheme, provides∫ T

0

∫
Ω

|∇ρτ|2 +

∫
Ω

(ρτT )2 ≤

∫
Ω

(ρ0)2,

where ρτ denotes the piecewise constant interpolation of the sequence ρ0,ρ1, . . . . When sending τ→ 0 this allows
to estimate from above limsupτ

∫ T
0

∫
Ω
|∇ρτ|2 and, using the characterization of strong L2 convergence as weak con-

vergence completed by the convergence of the L2 norm, proves strong L2 convergence of ∇ρτ to ∇ρ, the gradient
of the continuous-in-time solution. This exploits the fact that the estimate obtained in the discrete setting is exactly
the translation of the continuous one. The extenstion to the case V , 0 is easy, and the extension to higher-order
convergence (using the functional J2 and estimating the L2 norm of D2uτ) is a work-in-progress of the PI with G.
Toshpulatov (current master student of the PI). The core of this task, after finalizing the study of the case of the
Fokker-Planck equation, will consist in generalizing it to aggregation-diffusion equations, with linear diffusion but
density-dependent potential (for instance with potential of the form V[ρ] := W ∗ ρ), starting from the most regular
cases and possibly arriving to more singular convolution kernels W, up to the Keller-Segel case.

Once these strong convergence results are proven, they allow to use the densities obtained through the JKO
scheme as a reasonable proxy for the solution of the continuous equation, including in what concerns the pointwise
(a.e.) values of their derivatives, thus improving the role of numerical simulations for visualizing the solutions.

A.1.2 Task (τ, x)−2: BV, sobolev or Lipschitz bounds for non-linear diffusion

First-order estimates on the JKO scheme besides the case of linear diffusion (considered in [34]) are so far only
available for the gradient flow of functionals of the form F(ρ) =

∫
f (ρ(x))dx, i.e. for equations of the form ∂tρ =

∇ · (ρ∇( f ′(ρ)) (which can also be written as ∂tρ = ∆(h(ρ)) for a suitable function h depending on f ). In this case the
results in [32] prove that the BV norm decreases in time. Yet, the very same proof cannot even be used in the case
where a potential is added (F(ρ) =

∫
f (ρ(x))dx +

∫
Vdρ), and the only known way to tackle the case of a potential

is by splitting: instead of a standard JKO scheme we first follow the drift −∇V for a time τ, which allows for BV
estimate if V is very smooth (C3, actually), and then use a step of the JKO scheme for the functional without V . Not
only this is not very satisfactory, but another natural question also arises, i.e. obtaining estimates which go beyond
the BV case, such as the W1,p estimates obtained in [34] for linear diffusion. Of course, non-sharp estimates would
already be a great success.

This task, even if it stems from previous results of the PI ([32, 41, 34, 37]), is one of the more difficult challenges
of the project, as the currently used techniques do not guarantee obtaining such a result. The new techniques which
will be developed in such a task will for sure help in the study of other equations, including cross-diffusion systems.

A.1.3 Task (τ, x)−3: functional inequalities using discrete flows

If V is a convex potential with D2V ≥ αI, α > 0, and
∫

e−V = 1, the well-known logarithmic Sobolev inequality states
that for every g we have α

∫
(g2 logg)e−V ≤

∫
|∇g|2e−V . This can be formulated, setting g2 = ρeV , F(ρ) =

∫
ρ logρ+ρV ,

u = log(g2) = logρ+ V and J2(ρ) =
∫
|∇u|2dρ, as 2αF ≤ J2 and can be proven, according to the Bakry-Emery theory

(see for instance [5]), starting from an arbitrary initial datum ρ0 in the Fokker-Planck equation ∂tρ = ∆ρ+∇ · (ρ∇V)
and differentiating both F and J2. We obtain d

dt F(ρt) = −J2(ρt) and d
dt J2(ρt) ≤ −αJ2(ρt). Using the fact that both F

and J2 tend to 0 as t→∞ and integrating in time, this provides the desired inequality for the initial datum.
The same technique has now been popularized for other functional inequalities by differentiating twice suitable

energies. Yet, this requires the study of the corresponding continous-in-time PDE, and in particular to prove existence
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and regularity of the solution, which may be hard in some cases. We cite, for instance [78], together as the PhD thesis
of the same author, where the study of a non-linear flow required an impressing number of approximations. Hence, a
natural idea is to replace continuous flows with the JKO scheme, as a consequence of the 0 and 1st order inequalities
which can sometimes be proven on the solutions of such a scheme. The advantage would be to completely skip
the difficulties related to regulairty and existence. A proof of the logarithmic Sobolev inequality using the estimates
on the Fokker-Planck JKO scheme from [34] seems doable, even if an extra difficulty arises from the fact that the
decrease rate of F is not expressed in terms of an equality with J2, but only of an inequality (one should prove that
this is asymptotically an equality as τ→ 0). The core of this task, after detailing this proof about the Fokker-Planck
case and the log-Sobolev inequality, will be the generalization to other flows and the application of this technique to
other functional inequalities. This part will be mainly developed in collaboration with I. Gentil (see the Methodology
Section B2 for the list of collaborators and their roles).

A.2 (τ,h) – Estimates for fully discrete schemes

This part of the project aims at exploiting some of the results of the first part, together with extra ideas from the
algorithmic and computational side, for efficient numerical methods. Due to the variational structures of the equations
we consider, the resulting algorithm will be a procedure based on optimization tools (convex and linear optimization)
to approximate the solution of an evolution PDE.

We start this presentation from a connection with the estimates from the (τ, x) part, and in particular the Lipschitz
bound on u for Fokker-Planck. Indeed, since the drift in the equation is −∇u, Lipschitz bounds on u translate into
L∞ bounds on ∇u, hence on the speed of the particles. More precisely, at the discrete level with time step τ, every
particle moves along the optimal transport between ρτk and ρτk+1 of a distance being at most Cτ. This can be used for
numerical purposes, as it simplifies the computational cost of some algorithms for optimal transport.

In order to present in few words the existing numerical methods for optimal transport, the most efficient ones can
be classified in three classes: purely continuous, PDE-based (Benamou-Brenier, [8]); semi-discrete (one measure has
a density but the other is atomic, thus transforming the problem into a partition problem into Laguerre cells, [62, 52]);
purely discrete, exploiting the linear programming formulation of the Kantorovich problem. All these algorithms
admit suitable variants where one of the marginal measures is not prescribed but is part of the optimization, as it
happens for the JKO scheme (see [11, 12]). We are interested here in the last class, where the most used algorithm
is the Sinkhorn one, popularized first by [28] and then by [10]. Sinkhorn provides a “lightspeed” approximation of
the optimizer. In order to have the exact optimizer other, slower, algorithms exist, based for instance on the network
simplex (see for instance [16] for an efficient application of this method to optimal transport). Yet, Sinkhorn’s strength
is to be able to deal with arbitrary costs and/or non-structured sets of points, wich is not crucial when dealing with the
discretization of a PDE. Indeed, in this case the best is to have points on a uniform or structured grid. For this latter
situation, a recent variant of the network simplex, exploiting the separability of the cost according to the different
coordinate variables, strongly reduces the number of arcs in the network to consider ([4], see also the methodology
section B1), and is a reasonable choice which will be mainly followed in this project. Also note other reasons to
prefer the use of the network simplex rather than Sinkhorn: first, for iterating the minimization problem, it is crucial
to have a very precise estimate of the minimizer ; then, we would like to exploit the information on the size of the
displacement of each particle, which allows for an extra redution of the number of arcs, an advantage which does
not seem to be exploited by Sinkhorn (knowing that some entries of the transport plan will necessarily be 0 goes in a
direction incompatible with the explicit lightspeed structure of such an algorithm).

We then see that the Lipschitz estimates on the JKO scheme for Fokker-Planck allow to reduce, essentially by
a factor τ, the number of arcs to be considered in a network simplex approach to the optimal transport problems in
the JKO scheme (where the number of OT problems to be solved is of order τ−1). Similar results for other equations
would be extremely useful for the numerical approximation of the solutions.

This part of the project will focus on the convergence when τ,h→ 0, on the computational complexity, on the
numerical implementation, and on the search for new efficient bounds on the displacement in terms of τ in both a
continuous and a discrete setting in x.

6
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A.2.1 Task (τ,h)−1: displacement estimates for nonlinear diffusion

This task starts with a question which could also fit the part (τ, x): for a given functional F, for instance of the form
F(ρ) =

∫
f (ρ(x))dx +

∫
Vdρ, can we bound in L∞ norm the displacement T (x)− x for the optimal transport map T

from the optimal density ρτk+1 to the previous one ρτk? the goal would be to bound it in terms of a power τα of the
time-step τ (if possible, α = 1, as it is the case for the Fokker-Planck case when logρ0 is Lipschitz continuous).

A case on which we can say something is the crowd motion case where f is the constraint ρ ≤ 1, (3). In this case
the choice α = 1 cannot be met, but we can quite easily obtain α = 2/(d + 2). The impossibility of proving a bound
with α = 1 comes from [29], which proves an L4 bound on the gradient of the pressure of the incompressible limit
and shows that it is sharp, while the displacement being O(τ) would imply an L∞ bound on ∇p. On the other hand,
the techniques in [18] can be adapted to the crowd motion case (3), where the important region is the saturated region
{ρ = 1}, in order to obtain ||T − id||L∞ ≤ CW2/(d+2)

2 and then estimate this in terms of τ (but we do not know whether
this exponent is sharp for the crowd motion case). Since this case corresponds to m = ∞ in the porous medium
equation ∂tρ = ∆(ρm), it would be natural to look for similar displacement estimates for other exponents m ∈ (1,∞)
and It would be interesting to obtain an exponent α depending on m. This is the core of the first part of this task.

However, the linear programming approach that we propose for numerical purposes requires space discretization,
and the same happens for these L∞ bounds on the displacement. Indeed, it is possible to impose as an extra constraint
on the (fully-discrete) linear programming problem the L∞ displacement bound obtained from the JKO scheme
(discrete in time but not in space), but we have to prove that this extra constraint does not affect the convergence to
the desired limit; or we can follow another, more natural path: re-prove similar bounds, adapted to the case where also
space is discretized. The technique for the L∞ bounds on the displacement in the continuous (in space) or discrete
cases are necessarily very different from each other, since in the continous case we can exploit the fact that we have
T − id = −∇ϕ and use the Monge-Ampère equation to find the maximum point for |∇ϕ| (see the Methodology Section
B1).

A.2.2 Task (τ,h)−2: efficient JKO algorithms via network simplex

First part: efficient LP algorithm for crowd motion

This part of the project will require computer implementation and optimization of the network simplex algorithm
for the JKO scheme. The most natural case where to apply the approach we described above is the crowd motion
case (3). The reason is the fact that the functional F is linear, up to a part which imposes a constraint (ρ ≤ 1), which
is also linear. Hence, the whole JKO scheme can be written as a sequence of Linear Programming (LP) prolems on
the unknown γ, which is the transport plan between the new and the old measure: the functional to be minimized is,
in continuous language, of the form

γ 7→

∫ (
|x− y|2

2τ
+ V(x)

)
dγ

under the constraints (πx)#γ ≤ 1 and (πy)#γ = ν (the fixed measure ν being the optimizer of the previous step). This
can be discretized, and transformed into a network problem with a reduced number of arcs using at the same time the
separability trick of [4] and the estimates on the displacement of the previous task. Its complexity and comparison
with other previously used algorithms for the same equation will be studied.

Second part: efficient algorithm for other equations

After studying the case where the optimization problems are linear, we will pass on to the case of convex opti-
mization, in particular for functionals of the form F(ρ) =

∫
f (ρ(x))dx +

∫
Vdρ. Note that the Fokker-Planck case is

peculiar in this sense: the equation is linear, but the optimization problem is not, because of the logarithmic entropy.
Using general f arises two difficulties: the first consists in the displacement bounds, which should come from the
results of Task (τ,h)−1; the second is the fact that the discretized optimization problem is a network problem where
the flow on some arcs is not bounded in capacity but penalized via a convex function, and this requires adapations of
the algorithm.

Both parts of this task will be mainly considered in collaboration with N. Bonneel.
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A.2.3 Task (τ,h)−3: convergence proofs

This task concerns the rigorous proofs of convergence of the above fully-discrete schemes, consisting in a sequence
of discrete optimization problems approximating the solution of the desired PDE, for which we will be able to provide
explicit bounds on the complexity of their solution. Yet, for the convergence when τ,h→ 0 some conditions will for
sure be needed, since it is well-known that τ cannot be too small compared to h: otherwise, the cost for moving a
unit mass would be at least O(|h|2/τ) which could result in a completely frozen evolution if |h|2� τ.

Of course, the rate of convergence as a function of τ and h will also be investigated and, thanks to the possible
results in (τ, x)−1, they could be quantified either in W2 distance or in stronger norms.

This last question will require involving specialists from numerical analysis and in particular F. Lagoutière.

A.3 (t, x) – Analysis of continuous-in-time models

This part of the project is more focused on PDE questions, but of course will exploit many of the results from the two
previous parts. In what concerns existence of a solution, the JKO scheme will be a tool but not the only one, even
if many other ideas are anyway inspired from the variational structure of the problem, such as the use of the Energy
Dissipation Inequality (EDI, see [3, 72]).

For some PDEs for which existence has already been proven the question is to study sharp uniqueness results
and/or regularity and qualitiative or asymptotic properties of the solutions. For some equations another approach is
to consider the JKO scheme as the main object, and then study the PDE properties of the limits when τ→ 0 of its
solutions: if the class of weak solutions is large, find which one is selected by the JKO scheme; if the equation has
a formal gradient-flow structure, but associated with a functional which is not lsc findd the connections between the
gradient flow of the lsc envelop and the initial equation (more generally, study the limits of the JKO scheme when
such a scheme is well-posed an the continuous equation is not, or not known to be well-posed).

A.3.1 Task (t, x)−1: improved estimates on crowd motion models and applications

One of the main contribution of the PI to the theory of Wasserstein gradient flows was the study of the crowd motion
model started in [60]. Such a paper mainly proved existence (and provided numerical simulations), while uniqueness
results are contained in [33] and in the recent preprint [42]. We do not know much about the regularity, in particular
of the pressure term, but the techniques in [30] should provide ∇p ∈ L4

t,x and some weak second-order estimates (this
is a work in progress of the PI with the authors of [30]).

Improving the regularity, and the stability, of the solutions of such a gradient flow would be, besides an interest
per se, important for applications to systems where this PDE appears but is not the only ingredient, in order for
instance to apply fixed point theorems. This is the case of the Mean Field Game (MFG) model under density
constraints proposed in [71], which consists in a (time-dependent) gradient evolution driven by a value function
solving a Hamilton-Jacobi equation where the gradient of the pressure appears. Existence could be proven via a fixed
point procedure on the pressure, but requires strong stability and uniqueness results in order to apply Schauder’s fixed
point theorem.

For simplicity reasons, since it is known that this makes uniqueness easier (see [33]), the same MFG has been
considered adding diffusion to the players, which means adding a Laplacian to both equations. This leads to the
variant of the crowd motion model involving diffusion studied in [63], which also arises its number of questions. In
particular, even if we expect to have better estimates, some of the algebraic tricks used in [30] should be adapted,
and reproducing the same results is not trivial in this case.

In this task, mainly involving the PI and exterior collaborators, the goal will be to find sharp regularity results on
the pressure and study their applications to other models in density-constrained fluid problems, including MFG.

A.3.2 Task (t, x)−2: existence results for the total variation flow and higher-order equations

Some higher-order equations can be considered in the framework of this project. We can obtain fourth-order equa-
tions as soon as the functional F involves derivatives of ρ. Note that in general these functionals (except for few
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examples in dimension 1, see [25]) are not geodesically convex, which prevents from using the general theory of
[3] and requires ad-hoc estimates, as iti is intensively done in [58]. Among the equations that are of interest for
EYAWKAJKOS, we mention the gradient flow of the total Variation functional F(ρ) =

∫
|∇ρ| (to be intended in the

BV sense). Here the non-linear equation can be written as

∂tρ+∇ · (ρ∇(∇ · z)) = 0, z · ∇ρ = |∇ρ|, |z| ≤ 1.

This PDE has been studied in [21] but the existence result was only presented in 1D, the reason being the fact that
some estimates to guarantee compactness and pass to the limit τ→ 0 required lower bounds on the density ρ. If
upper bounds can be obtained by estimating integrals of the form

∫
ρq for q→∞, and these quantities can be tackled

via the usual flow interchange technique, lower bounds would require q→−∞, which does not allow to use the flow
interchange technique since for q< 0 we do not have a displacement convex functional (except in dimension 1, which
explains the partial result in [21]). Yet, we already saw that lower bounds can be preserved for other equations, such
as in the Fokker-Planck case, via a different technique introduced in [41], and we could hope for a similar result in
this setting, thus allowing to generalize the existence result of [21] to arbitrary dimensions.
Besides existence, the asymptotic behavior of the solution and the rate of convergence to the stable configuration (a
constant value equal to 1/|Ω| could also be investigated. Note that this stable solution cannot be attained if a constraint
ρ ∈ {0,1} is added, and the variant with this extra constraint (for which the JKO scheme is perfectly well-posed) gives
an interesting geometric evolution flow (see [26]).

Among other fourth-order equations that can be considered, we cite thin-film equations of the form ∂tρ+∇ ·

(ρ∇∆ρ) = 0, (see [7] as well as [58]) or their variants ∂tρ+∇ · (M(ρ)∇∆ρ) = 0, coming from modified Wasserstein
distances with a different mobility function, in the spirit of [35]. Note that the theory in [35] requires M to be
concave in order to have lsc action functionals, but here the regularizing effect coming from the higher-order energy
F(ρ) :=

∫
|∇ρ|2 should allow more general M.

Finally, we cite the possibility of applying five-gradient inequalities to this higher-order setting, which could
come up into uniform-in-time second-order bounds (since we estimate quantities of the form −

∫
∇ρ · ∇ϕ, where

ϕ = − δF
δρ . . . considering for instance ϕ = −∆ρ, integrating by parts,we obtain a bound on

∫
|∆ρ|2).

A.3.3 Task (t, x)−3: new results for cross-diffusion models and for the Muskat problem

Among other systems deserving their study, cross-diffusion problems are a natural application of the gradient flow
theory. The simplest example of a gradient-flow cross-diffusion problem for which there is so far, in general, no
existence result is the following system∂tρ−∇ · (ρ∇( f ′(ρ+µ)))−∇ · (ρ∇V) = 0,

∂tµ−∇ · (µ∇( f ′(ρ+µ)))−∇ · (µ∇W) = 0.
(4)

This is the gradient flow, in W2(Ω)×W2(Ω), of the energy (ρ,µ) 7→
∫

f (ρ+µ) +
∫

Vdρ+
∫

Wdµ. It has been studied
under a very restrictive assumption in dimension 1 in [51], but the higher-dimensional problem is open. The difficulty
is to pass to the limit the product of ρ or µ times∇( f ′(ρ+µ)), two terms on which it is easy to obtain weak convergence
but not strong. A similar system, with reaction terms instead of different potentials, was studied in [40, 13] and then
with optimal transport methods in [24], but, again, only in the 1D case. Note that the presence of reaction terms made
the equation non-conservative and required a slight modification of the JKO scheme, i.e. a splitting technique (first
we apply a reaction phenomen for a duration τ, then we apply a step of a JKO scheme; this is not a major change and
this part of the project will also consider problems of this form, adapting the main techniques).

Treating the above cross-diffusion system will require new higher-order estimates on ρ and µ (or on ∇(ρ+ µ))
which are not available so far and is a challenging part of the ERC project EYAWKAJKOS.

Recently, the PI, in collaboration with R. Ducasse and H. Yoldas, also studied a different cross-diffusion problem
which is motivated by [6], a paper devoted to the very natural system∂tρ−∆ρ−∇ · (ρ∇µ) = 0,

∂tµ−∆µ−∇ · (µ∇ρ) = 0,

9
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which is formally the Wasserstein gradient flow of the functional F(ρ,µ) =
∫
ρ logρ+ µ logµ+ ρµ. Unfortunately,

this functional is not l.s.c. since the function (a,b) 7→ f (a,b) := a loga + b logb + ab fails to be convex on {ab > 1}.
Hence, in such a work in progress with Ducasse and Yoldas, the PI is considering the gradient flow of the lower
semi-continuous envelop of F (i.e. the integral functional defined by convexifying f on R2

+), and an existence
result is available using a technique based on the Energy Dissiparion Inequality (EDI, see [3]), proving the lower
semicontinuity of the slope of the new functional (note that the same technique cannot be applied to (4) as the
corresponding slope fails to be lsc for the weak convergence of probability measures, which confirms that stronger
bounds and better convergence need to be enforced). An extra question which has not been considered yet is to find
the relation between the two PDEs, the one which is the gradient flow of F and the one which is the gradient flow of
its lsc envelop. Indeed, if in the JKO scheme, which is a minimization problem, the lsc envelop of F automatically
appears (minimizing a functional which is not lsc, considering that the extra terms are Wasserstein distances which,
on a compact domain, are continuous for the weak convergence, produces a minimizing sequence, with possible
oscillating behavior, which weakly concerges to the minimizer of the relaxed functional), it is not clear what happens
in the PDE setting.

Some of the features of the two above cross-diffusion problems meet when considering another, independent,
PDE model, which is part of the research project of another collaborator of EYAWKAJKOS, Aymeric Baradat, with
whom this task will be mainly considered and whose competences will be useful in most of this part of the project.
This model is the so-called Muskat problem, see [65], which is a model for the evolution of two incompressible and
immiscible fluids subjects to different gravity effects because of their different densities. The same problem can be
reformulated in terms of a gradient flow for two species (see also [50]), ρ and µ, subject to two different potentials
acting in the same direction (consider ∇V and ∇W to be two opposite constant multiples of the vertical vector), so
that we can write

F(ρ,µ) =

∫
zdρ−

∫
zdµ if ρ+µ = 1,

where z denotes the vertical coordinate function. The W2×W2 gradient flow of F gives a formulation for the Muskat
problem, if we forget about the fact that we would also like to impose the immiscibility (segregation) constraint
ρµ = 0 (equivalently, this means that ρ and µ are indicator functions). Note that in general the solutions of the
JKO scheme for this functional, which is a sequence of linear minimization problems, automatically satisfy this
segregation constraint (since ρ and µ will be the concentrated on the upper and lower level sets of some function),
but this condition is not stable for weak convergence.

This underlines many questions and similarities between this problem and the two cross-diffusion problems
previously exposed. First, even ignoring the immiscibility constraint, the Muskat problem formally fits the framework
of (4) using f = I{1} (or, equivalently, f = I[0,1] as imposing ρ+ µ = 1 everywhere will be the same as ρ+ µ ≤ 1 if
the domain Ω has suitable volume). Morever, the constraint ρµ = 0 is a non-convex constraint which prevents lower
semicontinuity, and its relaxation exactly consists in removing this constraint and admitting mixing of the two fluids.
This procedure (studying the JKO scheme of the relaxed functional) is exactly what is done for the second above
problem. For the Muskat problem, general notions of subsolution have been introduced in various works [27, 74, 38],
and taking the limit of the JKO scheme is indeed a way of selecting a particular subsolution in this class.

As a consequence, this task will on the one hand look for existence results for general cross-diffusion models
which have a variational structure in the (squared) Wasserstein space, but also investigate the connections between
the limits of the solutions of the JKO scheme (which automatically applies a relaxation procedure, the class of
functionals being lsc when involving two densities instead of one being much more restricted than in the classical
case) and the solutions or subsolutions of continuous PDEs, in collaboration with A. Baradat and with the current
collaborators of the PI.

A.3.4 Task (t, x)−4: the sliced Wasserstein flow

Before the rise of strong numerical methods for OT and in connections with some procedures already applied in image
processing [67], in the years 2000 proposed a flow whose goal was to moe the particles from an initial configuration
ρ0 to a target ν. In this flow every particle followed the vector field v obtained in the following way: given the two
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measures ρ,ν ∈ P(Rd), we project them onto any one-dimensional direction e ∈ Sd−1 via the map πe :Rd→R given by
πe(x) = x · e and call Te : R→ R the monotone optimal transport between the two image measures (πe)#ρ and (πe)#ν.
Then we define ve(x) := (Te(πe(x))−πe(x))e and v(x) =

>
S d−1 ve(x)dHd−1(e), where Hd−1 is the uniform measure on

the sphere.
An old idea by Bernot, motivated by the approximation of well-behaved transport maps from ρ0 to ν, was to

iterate a construction with a time step τ > 0, but a natural continuous counterpart exists: we consider ν as a fixed
target and we define, for every ρ ∈ P(Rd), the vector field v[ρ] as the one computed above, and we solve the equation

∂tρt +∇ · (ρtv[ρt]) = 0.

It happens that this equation has a gradient flow structure: it is indeed the gradient flow of the functional F(ρ) :=
1
2 SW2

2 (ρ,ν), where SW2 is the so-called Sliced Wasserstein distance (see [69, 17]): given µ,ν ∈ P(Rd), set

SW2(µ,ν) :=
(?

S d−1
W2

2 ((πe)#µ, (πe)#ν)dHd−1(e)
)1/2

.

Existence and estimates on the solution of this equation are proven in [17], and the nonlinearity of v(ρ) is quite
easy to deal with. On the other hand, many, natural and useful, questions are still open, starting from the most crucial
one: is it true that ρt ⇀ ν as t→∞? This is the first and main question, and a partial answer is contained in [17],
but requires to prove that the limit measure ρ∞ has strictly positive density a.e. If on the one hand this requires an
assumption on ν (which is natural, and some counter-examples are known in the discrete case), it also requires to
prove lower bounds on the densities, which could be attacked via the JKO scheme. Another question is whether we
can define (at least under regularity assumptions on the initial data) the flow of the vector field v[ρt], and what is the
limit of this flow as t→∞ (it will be a transport map between ρ0 and ν, which are its properties?).

Note that a recent variant has been introduced in [57] adding an entropy term to F (i.e. a Laplacian in the
equation). This has a meaning in data-generation models: we observe some sample points (providing an atomic
measure ν) drawn from a distribution ν0 that we do not know, but which we expect to be close to ν and smoother
(even if possibly concentrated very close to a submanifold of the ambient space, standing for a feasible subset);
we want an evolution model which at the same time finds an approximation of ν0, converges as t→∞ to it, and
provides, via a flow, a sort of projection map onto the support of ν0 or the submanifold which it represents. For this
modified equation the convergence in long time to the minimizer of the modified functional is easier to prove, but
many questions on the reconstruction of individual trajectories in the diffusive case have still to be well-understood.

The work on this task will be mainly done in collaboration with N. Bonneel and J. Digne.

B Methodology

B.1 Mathematical tools

As for many mathematical projects, the exact methods to use on these problems will be adapted to partial results and
are difficult to know in advance. It is anyhow possible to detail some tools, and in particular the most recent ones,
which will for sure be used

Flow interchange The flow interchange technique, introduced in [58] allows to consider the rate of dissipation of
a functional G along the iterations of the JKO scheme for a functional F. To make an example (computations
can be adapted to more general situations), if G(ρ) =

∫
g(ρ(x))dx and F(ρ) =

∫
f (ρ(x))dx and ρ ∈ ProxF

τ (ν) and
f is convex and g satisfies McCann’s conditions for displacement convexity ([61]) then we have

G(ρ) ≤G(ν)−τ
∫

f ′′(ρ)g′′(ρ)|∇ρ|2 ≤G(ν).

This allows at the same time to prove that G decreases along iterations and to obtain an integral bound (in
space-time) on a higher-order quantity, a squared H1 norm. The same computation is easy to obtain in the
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continuous setting: if ρ solves ∂tρ = ∇ · (ρ∇( f ′(ρ))), then an integration by parts provides the equality

d
dt

∫
g(ρt) = −

∫
g′′(ρ) f ′′(ρ)|∇ρ|2.

By the way, this continuous computation does not require at all the displacement convexity of G, while this
is required in the discrete setting as one needs to replace a derivative along the geodesic with the increment
G(ν)−G(ρ). This is just a technical point, and similar results could be obtained for λ−convex functionals,
with an extra error term of the order of |λ|τ2, thus disappearing at the limit τ→ 0. An interesting question
which has not been developed enough yet is to exploit this fact by approximating general non-displacement
convex functionals with functionals which are λ−convex for λ = −O(τ−1/2), which could be an extra tool in the
analysis.

Monge-Ampère equation The monge-Ampère equation det(I −D2ϕ) = ρ/ν(x−∇ϕ(x)) solved by the Kantorovich
potential ϕ in the transport from ρ = ProxF

τ (ν) to ν, which is at the same time related to ρ via the equality
ϕ
τ + δF

δρ = const, has been a useful tool to establish some L∞ bounds on ρ or ∇ρ, by looking at the maxi-
mum/minimum points for functions of ϕ or ∇ϕ (see Chapter 7 in [70] or [37]). We refer for instance to [39]
for the theory about this equation which is crucail in optimal transportation: since the general theory for this
kind of fully nonlinear PDE goes much beyond the simple application of maximum principle and Bernstein
estimates, we can expect to obtain stronger results if employeing stronger tools from this theory.

Five-gradients inequality The so-called Five Gradients Inequality has been developed by the PI and some coau-
thors in [32] to prove BV bounds for the solutions of variational problems involving the Wasserstein distance.
This inequality states that, whenever ρ and ν are smooth enough, if φ and ψ are the corresponding Kantorovich
potentials and H is a convex function, then∫

∇H(∇φ) · ∇ρ+

∫
∇H(∇ψ) · ∇ν ≥ 0.

This is of much interest when ρ ∈ ProxF
τ (ν) for some functional F, since in this case ∇ϕ and ∇ρ are strongly

related to each other, and allows to obtain bounds on |∇ρ|. In particular, H(z) = |z| allows to obtain BV bounds
when F is of the form

∫
f (ρ(x))dx for f convex, and a suitable use of H(z) = |z|p helps in some sort of W1,p

bounds, as explained in [34]. It is also possible to be explicit about the remainder term, thus coupling a uniform
(in time) first-order bound (in space) with an integral bound on second-order quantities.

Regularity by duality Another tool for regularity is the method called regularity via duality, first found in [19], then
used in [20, 68] for MFG, and presented in its full generality in [73]. This strategy allows to obtain Sobolev
(or, in some cases, BV or fractional Sobolev) regularity for the solutions of convex variational problems, by
estimating quantities such as ||uh−u|| (where uh is a translation of u and the norm is often an L2 norm) in terms
of the duality gap and of how much uh is not optimal. This has given original results in the framework of MFG,
but has never been explicitly used in gradient flows. Yet, many among the optimazion problems used in the
JKO scheme are convex optimization probelms, and this strategy could also be used, both to obtain regularity
and quantitative results. By the way, even the use of the dual problem of a JKO step is not so common, but
starts to be taken into consideration, see for instance [49].

L∞ bounds in OT A paper by Bouchitté, Jimenez and Rajesh ([18]) proved the following useful inequality: given
two probability densities ρ,ν on a convex set, denoting T the optimal transport map from ρ to ν, if ρ ≥ α, then
we have α||T − id|d+2

L∞ ≤ cW2
2 (ρ,ν) for a constant c = c(d) only depending on the dimension d. This is extremely

useful when estimating, for numerical purposes, the maximal displacement in a JKO step, and perfectly fits
the framework of crowd motion modelling, where we can assume ρ = 1 on the region of interest. On the
other hand, variant of this inequality need to be proven in order to deal with other cases (in particular if we
cannot guarantee uniform lower bounds on the densities), in order to apply it to other JKO schemes, such as
the porous-medium case. Let us mention that more refined local inequalities in the same spirit have been used
by Goldman-Otto in [47] and then generalized to other costs in [48]
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Network simplex for separable costs The optimal transport problem between two discrete measures with N atoms
each can be considered as a network linear programming problem, with a network containing N×N edges (one
per each possible origin-destination pair). Yet, when the cost is the quadratic cost, which can be decomposed
into the sum of d costs depending each on one variable x1, . . . xd only, if the N points are on a regular grid,
with N = nd, then an idea presented in [4] allows to strongly reduce the number of edges: one has to insert
d− 1 intermediate layers of N points, and connect each layer to the next one only accepting movement on a
given direction. In this way the total number of edges to be used is dnd+1, which is in general much smaller
than n2d. For applications to PDEs (and to image processing, as it is done in [4]) the grid structure is a natural
assumption and allows to reduce the computational cost of the linear programming problem. When passing to
a JKO scheme, this improvement can be easily applied to the crowd motion case, where the functional F is
linear with a linear costraint, while it requires some more adaptations for general F. Moreover, if it is possible
to provide L∞ bounds on the displacement, it is possible to reduce even further the number of edges, since if
the displacement is bounded by ε(τ), then the nuber of edges in each transport problem becomes of the order
of ε(τ)nd+1, which is useful considering that this optimization has to be iterated τ−1 times.

Recent results on the mesa problem When considering porous-medium–type reaction diffusion equations, with an
exponent m, in the limit m→∞ many authors, starting from [36], have observed the formation of a plateau-
like region, which they refer to as “mesa”, of nearly constant density ρ = 1. This limit equation is, up to
the choice of the lower-order terms, the same as in Hele-Shaw models or crowd motion models. Different
community have studied these equations and putting together the different technique is something which is
starting to be done in a very fruitful way. For instance, [29] and [30], motivated by tumor-growth applications,
prove improved limit therorems and uniform estimates independent of m and new properties on the solution
such as an L4 bound on the gradient of the pressure. In what concerns uniqueness, the classical theory from the
Hele-Shaw community ignored possible advection by a drift, which is on the contrary the most interesting case
when the mass is preserved, as it happens in the JKO scheme; the first results in this direction were in [33],
but only covered the case where either the drift is smooth or diffusion is added but, very recently, the preprint
[42] came out with a different technique to prove uniqueness for drifts which are only Sobolev, an assumption
which is reasonably sharp in view of the Di-Perna Lions theory in the absence of density constraints.

B.2 Management of the team, of the work, and of the competences

In order to attack all the taks included in the research project a team composed of mathematicians and computer
scientists will be created. This team will be fully based in the Lyon 1 campus and will include permanent staff

(researchers who will be officially associated with the project, and accepted to devote a part of their working time
to EYAWKAJKOS), local collaborators (other colleagues or students already present in Lyon working on related
topics) and young members to be hired by the project.

The permament staff of EYAWKAJKOS will be composed of

• the PI, professor at the ICJ laboratory (mathematics), in the modeling and computing group. He will devote
55% of his time to the project.

• Ivan Gentil, also professor at ICJ, but in the PDE and Analysis group, who will be mainly involved in task
(τ, x)−3 but whose competences will more generally help in both the (τ, x) and the (t, x) parts. He will devote
15% of his time to the project.

• Aymeric Baradat, junior CNRS researcher at ICJ in the PDE and Analysis group, who will be mainly involved
in task (t, x)−3 but whose competences will also more generally help in both the (τ, x) and the (t, x) parts. He
will devote 20% of his time to the project.

• Nicolas Bonneel, junior CNRS researcher at the LIRIS lab (computer science), who will be mainly involved
in tasks (τ,h)−2 and (t, x)−4. He will devote 15% of his time to the project.

The local collaborators will be
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• Frédéric Lagoutière, professor at ICJ in the modeling and computing group, who will help in the numerical
analysis (task (τ,h)−3) and in aggregation-diffusion equtions.

• Sébastien Tran Tien, PhD student of F. Lagoutière (PhD started in 2020), who could help in the same areas.

• Annette Dumas, PhD student of the PI (starting in 2021), who works on a different but related topic (Mean
Field Games) and could be involved in task (t, x)−1 or in the use of time-discretization techniques common to
MFG and gradient flows.

• Julie Digne, junior CNRS researcher at LIRIS, who will be involved in task (t, x)−4.

EYAWKAJKOS will also hire 6 young members throughout the duration fo the project, one PhD student and one
postdoc per part. A completely tentative hiring plan would include

• a three-years postdoc working on the (τ, x) part and in particular attacking task (τ, x)− 2 (this task requires
higher competences than what a PhD student could offer) and helping in task (τ, x)−1

• a PhD student working on the (τ, x) part and in particular attacking task (τ, x)− 3, most likely co-supervised
with I. Gentil.

• a three-years postdoc working on the (τ,h) part and in particular attacking tasks (τ,h)− 1 and (τ,h)− 3, with
competences from numerical analysis and/or optimization.

• a PhD student working on the (τ,h) part and in particular attacking task (τ,h)− 2, most likely co-supervised
with N. Bonneel. Note that this PhD thesis could start before the corresponding postdoc, even if it could profit
of the results from the postdoc itself (bounds on the displacement, proof of convergence) beause of the time it
will be needed to train the student in efficient coding. The consequences of the theoretical results coming from
tasks (τ,h)−1 and (τ,h)−3 could be easily inserted in the code at a later stage.

• a three-years postdoc working on the (t, x) part and in particular attacking tasks (t, x)− 2 and (t, x)− 4 with
possible collaborations with N. Bonneel, J. Digne and other colleagues.

• a PhD student working on cross-diffusion in the (t, x) part and in particular attacking task (t, x)−3, most likely
co-supervised with A. Baradat.

Finally, as it was mentioned in the previous section, exterior collaborators will also be involved, such as G.
Toshpulatov, N. David, M. Schmidtchen, R. Ducasse, H. Yoldaş. . . Previous collaborators of the PI on related topics
(A. Mészáros, S. Di Marino, M. Iacobelli. . . ) are also likely to be involved in joint researches.

A tentative schedule for the workplan is in the following chart: (of course the work by PhD students and postdocs
is always accompanied by parallel, preliminary, and subsequent work by the PI and exterior collaborations; “Before
EYAWKAJKOS” stands for preliminary results or work-in-progress, not funded by ERC).

Task Before EYAWKAJKOS Year 1 Year 2 Year 3 Year 4 Year 5
(τ, x)−1 Work by PI & collaborators

Post-doc (τ, x)
(τ, x)−2 Post-doc (τ, x)
(τ, x)−3 PhD (τ, x)
(τ,h)−1 Post-doc (τ,h)
(τ,h)−2 PhD (τ,h)
(τ,h)−3 Post-doc (τ,h)
(t, x)−1 Work by PI & collaborators
(t, x)−2 Post-doc (t, x)
(t, x)−3 Work by PI & collaborators PhD (t, x)
(t, x)−4 Work by PI & collaborators

Post-doc (t, x)
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[69] J. Rabin, G. Peyré, J. Delon andM. Bernot. Wasserstein Barycenter and Its Application to Texture Mixing. In
Scale Space and Variational Methods in Computer Vision, edited by A. M. Bruckstein, B. M. Haar Romeny,
A.M. Bronstein, and M. M. Bronstein, Lecture Notes in Computer Science, vol. 6667, 435–446, Springer
Berlin Heidelberg, 2012.

[70] F. SantambrogioOptimal Transport for Applied Mathematicians, Progress in Nonlinear Differential Equations
and Their Applications no 87, Birkhäuser Basel (2015).
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