
c−Cyclical Monotonicity
of the support of optimal transport plans

This document aims at clarifying the proof of the necessary condition for the optimality of a
transport plan γ ∈ Π(µ, ν) stating that its support must be c−Cyclically Monotone, when the cost c
is continuous. The proof will try to be easier than what I presented in class (I thank Patrick Gerard
and Vianney Perchet for some observations during the pause). Some applications and remarks will
also be included.

First, some definitions.

Definition 1. Once a function c : Ω × Ω → R ∪ +∞ is given, we say that a set Γ ⊂ Ω × Ω is
c−cyclically monotone (briefly c−CM) if, for every k ∈ N, every permutation σ and every finite
family of points (x1, y1), . . . , (xk, yk) ∈ Γ we have

k∑
i=1

c(xi, yi) ≤
k∑
i=1

c(xi, yσ(i)).

The word “cyclical” refers to the fact that, since every σ is the disjoint composition of cylces,
it is enough to check this property for cyclical permutations, i.e. replacing

∑k
i=1 c(xi, yσ(i)) with∑k

i=1 c(xi, yi+1) in the definition (with the obvious convention yk+1 = y1). The word “monotone”
refers instead to the behavior of those sets when c(x, y) = −x · y.

It is useful to recall the following theorem, which is a generalization of a theorem by Rockafellar
in convex analysis, and whose proof may be found in [1], even if it is originally taken from [2]

Theorem 0.1. If Γ is a c−CM set and c is real valued, then there exist a pair of functions φ, ψ
such that φ(x) = infy c(x, y)− ψ(y), ψ(y) = infx c(y, x)− ψ(x) and

Γ ⊂ {(x, y) ∈ Ω× Ω : φ(x) + ψ(y) = c(x, y)}

(these functions are c−concave functions and Γ is included in the graph Gcφ).

To introduce the following theorem we recall the definition

Definition 2. On a separable metric space X, the support of a measure γ is defined as the smallest
closed set on which γ is concentrated, i.e.

spt(γ) :=
⋂
{A : A is closed and γ(X \A) = 0} .

This is well defined since the intersection may be taken countable, due to the assumption on the
space X. Moreover, there exists also this characterization

spt(γ) = {x ∈ XA : γ(B(x, r)) > 0 for all r > 0} .
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We can now prove

Theorem 0.2. If γ is an optimal transport plan for the cost c (i.e. it minimizes
∫
c dγ over Π(µ, ν))

and c is continuous, then spt(γ) is a c−CM set.

Proof. Suppose by contradiction that there exist k, σ and (x1, y1), . . . , (xk, yk) ∈ spt(γ) such that

k∑
i=1

c(xi, yi) >

k∑
i=1

c(xi, yσ(i)).

Take now ε < 1
2k

(∑k
i=1 c(xi, yi)−

∑k
i=1 c(xi, yσ(i))

)
. By continuity of c, there exists r such that

for all i = 1, . . . , k and for all (x, y) ∈ B(xi, r) × B(yi, r) we have c(x, y) > c(xi, yi) − ε and for all
(x, y) ∈ B(xi, r)×B(yσ(i), r) we have c(x, y) < c(xi, yσ(i)) + ε.

Now consider Vi := B(xi, r)×B(yi, r) and notice that γ(Vi) > 0 for every i, due to the condition
(xi, yi) ∈ spt(γ). Define the measures γi := γ Vi/γ(Vi) and µi := (πx)#γi, νi := (πy)#γi. Take
α < 1

k mini γ(Vi).
For every i, build a measure γ̃i ∈ Π(µi, νσ(i)) at will (for instance take γ̃i = µi ⊗ νi).
Now define

γ̃ := γ − α
k∑
i=1

γi + α
k∑
i=1

γ̃i.

We want to find a contradiction by proving that γ̃ is a better competitor than γ in the transport
problem, i.e. γ̃ ∈ Π(µ, ν) and

∫
c dγ̃ <

∫
c dγ.

First we check that γ̃ is a positive measure. It is sufficient to check that γ − α
∑k

i=1 γi is
positive, and, for that, the condition αγi <

1
kγ will be enough. This condition is satisfied since

αγi = (α/γ(Vi))γ Vi and α/γ(Vi) ≤ 1
k .

Now, let us check the condition on the marginals of γ̃. We have

(πx)#γ̃ = µ− α
k∑
i=1

(πx)#γi + α

k∑
i=1

(πx)#γ̃i = µ− α
k∑
i=1

µi + α

k∑
i=1

µi = µ,

(πy)#γ̃ = ν − α
k∑
i=1

(πy)#γi + α
k∑
i=1

(πy)#γ̃i = ν − α
k∑
i=1

νi + α
k∑
i=1

νσ(i) = ν.

Finally, let us estimate
∫
c dγ −

∫
c dγ̃ and prove that it is positive, thus concluding the proof.

We have ∫
c dγ −

∫
c dγ̃ = α

k∑
i=1

∫
c dγi − α

k∑
i=1

∫
c dγ̃i

≥ α
k∑
i=1

(c(xi, yi)− ε)− α
k∑
i=1

(c(xi, yσ(i)) + ε)

= α

(
k∑
i=1

c(xi, yi)−
k∑
i=1

c(xi, yσ(i))− 2kε

)
> 0,
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where we used the fact that γi is concentrated on B(xi, r) × B(yi, r), γ̃i on B(xi, r) × B(yσ(i), r),
and that they have unit mass (due to the rescaling by γ(Vi)).

Notice that the previous theorem, together with Theorem 0.1, guarantees the existence of a
solution to the dual problem

max

{∫
φdµ+

∫
ψdν : φ, ψ ∈ C(Ω), φ(x) + ψ(y) ≤ c(x, y)

}
,

and the equality between this maximum and the minimum of
∫
cdγ over Π(µ, ν). If one follows this

way, it is not necessary to evoke abstract convex analysis theorems guaranteeing the equality when
one exchanges inf and sup. Notice also that the opposite path could also be possible, i.e. using the
existence of an optimal pair (φ, ψ) (with φ a Kantorovitch potential and ψ = φc) to prove that spt(γ)
is c−CM. Anyway, the two concepts are quite important so that it is worthwhile to prove them in
two different ways. It is also clear that, besides the case where c is continuous and real-valued, the
two approaches (looking at the support or looking at the potential) could not be equivalent, even if
we do not develop here these more difficult cases.

An application of the previous theorem, for c continuous, is the following result concerning the
one-dimensional case. To introduce it, we recall that, for every pair µ, ν ∈ P(R) with µ non-atomic,
there exists a unique non-decreasing map T : R→ R such that T#µ = ν (defined uniquely µ−a.e.).
Let us denote this map by Tmon. This map is, by the way, the optimal transport map for the
quadratic cost (since in this case we know that the optimal transport is the gradient of a convex
function, which means, in dimension one, a non-decreasing function). It is important to notice that,
any transport plan γ ∈ Π(µ, ν), satisfying the property

(x, y), (x′, y′) ∈ spt(γ) x < x′ ⇒ y ≤ y′

actually coincides with γTmon . This is easy to check: for any point x one can define the interval Ix
as the minimal interval I such that spt(γ) ∩ {x} × R ⊂ {x} × I. The above property implies that
the interior of all these intervals are disjoint (and ordered). In particular, there can be at most a
countable quantity of points such that Ix is not a singleton. Sine these points are µ−negligible (as a
consequence of µ being atomless), we can define µ−a.e. a map T such that γ is concentrated on the
graph of T . This map will be monotone non-decreasing as a consequence of the implication above,
and this gives T = Tmon since we already know the uniqueness of a non-decreasing map with fixed
marginals.

Theorem 0.3. Let h : R→ R be a strictly convex function, and µ, ν ∈ P(R) be compactly supported
measures with µ non-atomic. Then the optimal transport problem with cost c(x, y) = h(y − x) over
Π(µ, ν) has a unique solution, which is given by γTmon.

Moreover, if the strict convexity assumption is withdrawn and h is only convex, then the same
Tmon is actually an optimal transport map, but no uniqueness is guaranteed anymore.

Proof. We will use the fact that the support of any optimal γ is a c−CM set Γ. This means in
particular that (x, y), (x′, y′) ∈ Γ implies

h(y − x) + h(y′ − x′) ≤ h(y′ − x) + h(y − x′). (0.1)
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We only need to show that this implies (in the strictly convex case) a monotone behavior : we will
actually deduce from (0.1) that x < x′ implies y ≤ y′, and this will allow to conclude as we noticed
above.

To prove y ≤ y′ suppose by contradiction y > y′ and denote a = y−x, b = y′−x′ and c = x′−x.
Condition (0.1) reads h(a) + h(b) ≤ h(b + c) + h(a − c). Morevoer, the assumption y < y implies
b+ c < a. We also need to recall that c > 0 (x < x′) : this implies that b+ c and a− c are locates
in the segment between b and a (and b < a). More precisely, we have

b+ c = (1− t)b+ ta, a− c = tb+ (1− t)a, for t =
c

a− b
∈]0, 1[.

Thus, convexity yields

h(a) + h(b) ≤ h(b+ c) + h(a− c)
< (1− t)h(b) + th(a) + th(b) + (1− t)h(a) = h(a) + h(b).

This gives a contradiction and proves the thesis in the strictly convex case.
The statement when h is only convex is obtained by approximation through the transport prob-

lem for the cost cε(x, y) := h(y − x) + ε|y − x|2. In this case we can say that γTmon optimizes the
cost

∫
cε dγ and hence∫ (

h(y − x) + ε|y − x|2
)
dγTmon ≤

∫ (
h(y − x) + ε|y − x|2

)
dγ,

for all γ ∈ Π(µ, ν). Passing to the limit as ε →, since
∫
|x − y|2dγ,

∫
|x − y|2dγTmon < +∞, we get

that γTmon also optimizes the cost c.

Notice that the assumptions on the compactness of the support has exactly been put so as to
guarantee the finiteness of the integral for the quadratic cost. Yet, it is possible to choose other
strictly convex approximation in much more general situations, but we will not enter into details
about these technicalities.

After this application to the one-dimensional case, it is worthwhile to give some details about
the case where c is not continuous. This could be, by the way, applied exactly as in the previous
theorem to the one dimensional situation for c(x, y) = h(x− y) and h is convex but not real-valued,
which was the assumption guaranteeing its continuity. We will give two results about l.s.c. costs.

The first concerns the validity of the duality formula. This means the equality

min

{∫
c dγ, γ ∈ Π(µ, ν)

}
= sup

{∫
φdµ+

∫
ψdν : φ, ψ ∈ C(Ω), φ(x) + ψ(y) ≤ c(x, y)

}
. (0.2)

By now, we have established this equality when c is continuous, also proving that the dual problem
admits a maximizing pair. We also know that an inequality is always true : the minimum on the
left is always larger than the maximum on the right (just integrate w.r.t. γ the condition on (φ, ψ)).
More precisely, we are able to deal with the uniformly continuous case (since we want to guarantee
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continuity of c−concave functions of the form φ(x) = infy c(x, y)− ψ(y)). This means that we can
handle the case where Ω is compact, or we need to add the uniform continuity assumption on c.

To deal with a l.s.c. cost c bounded from below, we will use the fact there exists a sequence
ck of continuous functions (each one being k−Lipschitz) increasingly converging to c. We need the
following lemma.

Lemma 0.4. Suppose that ck and c are l.s.c. and bounded from below and that ck converges in-
creasingly to c. Then

lim
k→∞

min

{∫
ck dγ, γ ∈ Π(µ, ν)

}
= min

{∫
c dγ, γ ∈ Π(µ, ν)

}
.

Proof. Due to the increasing limit condition, we have ck ≤ c and hence the limit on the left (which
exists by monotonicity) is obviously smaller than the quantity on the right. Now consider a sequence
γk ∈ Π(µ, ν), built by picking an optimizer for each cost ck. Up to subsequences, due to the tightness
of Π(µ, ν), we can suppose γk ⇀ γ̄. Fix now an index j. Since for k ≥ j we have ck ≥ cj , we have

lim
k

min

{∫
ck dγ, γ ∈ Π(µ, ν)

}
= lim

k

∫
ck dγk ≥ lim inf

k

∫
cj dγk.

By semicontinuity of the integral cost cj we have

lim inf
k

∫
cj dγk ≥

∫
cj dγ̄.

Hence we have obtained

lim
k

min

{∫
ck dγ, γ ∈ Π(µ, ν)

}
≥
∫
cj dγ̄.

Since j was arbitrary and limj

∫
cj dγ̄ =

∫
c dγ̄ by monotone convergence, we also have

lim
k

min

{∫
ck dγ, γ ∈ Π(µ, ν)

}
≥
∫
c dγ̄ ≥ min

{∫
c dγ, γ ∈ Π(µ, ν)

}
.

This concludes the proof. Notice that it also gives, as a byproduct, the optimality of γ̄ for the limit
cost c.

We can now establish the validity of the duality formula for semi-continuous costs.

Theorem 0.5. If c is l.s.c. and bounded from below, then (0.2) holds.

Proof. Consider a sequence ck of k−Lipschitz functions approaching c increasingly. Then the same
duality formula holds for ck, and hence we have

min

{∫
ck dγ, γ ∈ Π(µ, ν)

}
= max

{∫
φdµ+

∫
ψdν : φ, ψ ∈ C(Ω), φ(x) + ψ(y) ≤ ck(x, y)

}
≤ sup

{∫
φdµ+

∫
ψdν : φ, ψ ∈ C(Ω), φ(x) + ψ(y) ≤ c(x, y)

}
,
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where the inequality is justified by the fact that ck ≤ c and hence every pair (φ, ψ) satisfying
φ(x) + ψ(y) ≤ ck(x, y) also satisfies φ(x) + ψ(y) ≤ c(x, y). The conclusion follows by letting
k → +∞, using Lemma 0.4. Notice that for the cost c we cannot guarantee the existence of a
maximizing pair (φ, ψ).

The duality formula also allows to prove the following c−cyclical monotonicity theorem.

Theorem 0.6. If c is l.s.c. and γ is an optimal transport plan, then γ is concentrated on a c−CM
set Γ (which will not be closed in general).

Proof. Thanks to the previous theorem the duality formula holds, which means that, if we take a
maximizing pair (φh, ψh) in the dual problem, we have∫

(φh(x) + ψh(y))dγ =

∫
φhdµ+

∫
ψhdν →

∫
c dγ,

since the value of
∫
c dγ is the minimum of the primal problem, which is also the maximum of

the dual. Yet, we also have c(x, y) − φh(x) + ψh(y) ≥ 0, which implies that the functions fh :=
c(x, y)−φh(x)−ψh(y), defined on Ω×Ω, converge to 0 in L1(Ω×Ω, γ) (since they are positive and
their integral tends to 0). As a consequence, up to a subsequence (not relabeled) they also converge
pointwisely γ−a.e. to 0. Let Γ ⊂ Ω×Ω be a set with γ(Γ) = 1 where the convergence happens. Let
us prove that this set is c−CM. This is true since, for any k, σ and (x1, y1), . . . , (xk, yk) ∈ Γ we have

k∑
i=1

c(xi, yi) = lim
h

k∑
i=1

φh(xi) + ψh(yi) = lim
h

k∑
i=1

φh(xi) + ψh(yσ(i)) ≤
k∑
i=1

c(xi, yσ(i)).

We conclude these notes by stressing that the problems about the c−cyclical monotonicity, the
duality formula and the existence of optimal potentials (φ, φc) in general situations are a matter of
current investigation. Typical questions are the equivalence between the optimality of γ and the fact
that γ is concentrated on a c−CM set, as well as the existence of a solution to the dual problem in
a suitable functional class (probably not C0 nor Lipschitz functions but rather BV ) for costs taking
the value +∞. Possible answers to these questions could find applications also in easier problems for
“normal” costs (i.e. uniformly continuous and real-valued, say), since some strategies about these
costs pass through decompositions that add additional constraints or through secondary variational
problems.
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