Université Paris-Dauphine DUMI2E 1e année Analyse 2

Feuille 1 de TD Corrigé de l'exercice 2

Exercice 2

Soit $(a_n)_n$ une suite de nombres réels et $(m_n)_n$ définie par

$$m_n = \inf_{k > n} a_k.$$

Démontrer que $(m_n)_n$ est croissante et en déduire qu'elle admet une limite l. Cette limite sera appelée "limite inférieure" de la suite $(a_n)_n$, et on écrira $l = \liminf_{n \to \infty} a_n$.

Demontrer qu'une fonction $f: A \to \mathbb{R}$ est semicontinue inférieurement au point x si et seulement si, pour toute suite $(x_n)_n$ de points de A qui converge à x, on a

$$\liminf_{n \to \infty} f(x_n) \ge f(x).$$

Solution

Pour la première question il suffit de voir que $\{a_k : k \ge n+1\} \subset \{a_k : k \ge n\}$, donc en prenant les bornes inférieurs la première (m_{n+1}) est plus grande que la deuxième (m_n) . Ceci montre que m_n est une suite croissante et que sa limite existe.

On va puis remarquer cette propriété de la limite inférieure : si a_n a déjà une limite L alors $\lim\inf_{n\to\infty}a_n=L$.

Pourquoi? Supposons $L \in \mathbb{R}$ et fixons $\varepsilon > 0$. Il existe alors N tel que pour tout $k \geq N$ on a $L - \varepsilon \leq a_k \leq L + \varepsilon$. On en déduit facilement que pour tout $n \geq N$ on a $L - \varepsilon \leq m_n \leq L + \varepsilon$ (car la borne inférieure d'un ensemble de nombres compris entre $L - \varepsilon$ et $L + \varepsilon$ y est comprise aussi). En passant à la limite pour $n \to \infty$ on a $L - \varepsilon \leq l \leq L + \varepsilon$. Comme ε est arbitraire, alors l = L. La même preuve peut être faite avec les limites infinies. Si $L = -\infty$, alors fixons M arbitraire. Il existe alors N tel que pour tout $k \geq N$ on a $a_k \leq M$, d'où l'on déduit que pour tout $n \geq N$ on a $m_n \leq M$ et après $l \leq M$ à la limite. Comme M est arbitraire, on a $l = -\infty$. Pour le cas $L = +\infty$ il suffit de changer les inégalités.

Ok, maintenant on sait que la limite (si elle existe) coïncide avec la limite inférieure.

Démontrons l'équivalence concernant la semi-continuité.

Supposons que f satisfasse la propriéte avec la limite inférieure. Démontrons qu'elle est semicontinue inférieurement. Pour le faire, on prend $x_n \to x$ avec $f(x_n) \to l$. Comme la suite $f(x_n)$ est déjà supposée avoir une limite, sa limite inférieure coïncide avec la limite, donc on a

$$l = \liminf f(x_n) \ge f(x)$$

et ceci montre la semi-continuité.

Il faut maintenant l'autre implication. On sait ce qu'il se passe pour les suites qui ont une limite, il faut déduire l'inégalité pour celles qui n'ont qu'une limite inférieure.

Prenons donc $x_n \to x$: on veut construire une sous-suite extraite de cette suite, de manière à ce que $(f(x_{n_j}))_j$ ait une limite et cette limite coïncide avec liminf $f(x_n)$. Si on la trouve, on a gagné car $x_{n_j} \to x$ et $f(x_{n_j}) \to l = \liminf f(x_n)$, donc on déduit de la définition qu'on a donnée de semi-continuité que liminf $f(x_n) \ge f(x)$.

Comment faire? on va donner une règle générale pour extraire une sous-suite avec limite d'une suite a_n de manière à ce que la limite de la sous-suite soit la limite inférieure de la suite.

Notons d'abord que les m_n pourraient être égaux à $-\infty$. On prend une borne inférieure, ça peut se passer. On est dans ce cas si la suite $(a_n)_n$ n'est pas bornée inférieurement, et alors on a $m_n = -\infty$ pour tout n. Autrement, ils sont tous finis. On traitera le cas $m_n = -\infty$ après.

Définissons par récurrence les indices n_i comme ça :

- n_0 est un indice tel que $a_{n_0} < m_0 + 2^{-0}$ et $n_0 \ge 0$;
- n_{j+1} est un indice tel que $a_{n_{j+1}} < m_{n_j+1} + 2^{-j}$ et $n_{j+1} \ge n_j + 1$.

Ces indices existent par définition de borne inférieure. Grâce à la dernière condition, on a $n_{j+1} > n_j$ et la suite d'indices est strictement croissante, ce qui donne lieu à une sous-suite. De plus, $(m_{n_j+1})_j$ est une sous-suite de $(m_n)_n$ et donc $\lim_{j\to\infty} m_{n_j+1} = l$, comme la limite de toute la suite.

On a donc

$$m_{n_i+1} \le a_{n_{i+1}} \le m_{n_i+1} + 2^{-j},$$

ce qui implique, par le théorème des gendarmes, comme $\lim_{j\to\infty} m_{n_j+1}+2^{-j}=l$ aussi, que $\lim_{j\to\infty} a_{n_j}=l$.

Il nous reste à regarder le cas $m_n = -\infty$, c'est-à-dire quand $(a_n)_n$ n'est pas bornée inférieurement. Alors on définie les indices comme ça

- n_0 est un indice tel que $a_{n_0} < -0$ et $n_0 \ge 0$;
- n_{j+1} est un indice tel que $a_{n_{j+1}} < -j$ et $n_{j+1} \ge n_j + 1$.

Ces indices existent car une suite non bornée inférieurement admet toujours des valeurs aussi négatives que l'on veut, et aussi lointaines (après $n_j + 1$) que l'on veut. Et parès on a

$$a_{n_i} < -j \to -\infty = \liminf a_n$$
.

Remarques sur la semi-continuité

En pratique on a souvent des fonctions définies de manière différente sur plusieurs intervalles (genre celle de l'exercice 1) et on se pose la question de leur semi-continuité. Dans ce cas là il n'est pas nécessaire de considérer toute suite possible, mais il suffit de regarder les limites droites et gauches de f en x_0 . Vous pouvez vérifier par exercice (démontrer) que, sous la condition que $\lim_{x\to x_0, x>x_0} f(x)$ et $\lim_{x\to x_0, x<x_0} f(x)$ existent, alors f est semi-continue inférieurement en x_0 si et seulement si les deux limites sont supérieures ou égales à $f(x_0)$ et semi-continue supérieurement au même point si les deux limites sont inférieures ou égales à $f(x_0)$. Ou bien vous pouvez prendre ça comme un critère, si vous n'avez pas envie de le démomntrer.

Par contre, il peut y avoir des cas où la fonction n'admet pas des limites, même pas des deux côtés séparément. Par exemple, la fonction

$$f(x) = \begin{cases} 1 & \text{si } x \in \mathbb{Q}, \\ 0 & \text{si } x \in \mathbb{R} \setminus \mathbb{Q}, \end{cases}$$

est-elle semi-continue inférieurement au point $\sqrt{2}$? au point 2? et semi-continue supérieurement? est-elle globalement semi-continue inférieurement ou supérieurement?