
Urban equilibria and displacement convexity

Filippo Santambrogio
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What I will speak about

A number of agents must choose where to live in a urban region Ω ⊂ Rd .

We denote by ρ their density over Ω (ρ ≥ 0,
∫

Ω
ρ(x)dx = 1, i.e. ρ ∈ P(Ω)).

Agents are supposed to be identical, to have the same preferences, and to
be individually negligible.

Several criteria affect the choice of each agent. We look for a simple mathe-
matical model describing the conditions on ρ so as to have an equilibrium,
and we compare the notion of equilibrium density with that of “optimal”
density”.

M.J. Beckmann. Spatial equilibrium and the dispersed city, Mathematical Land
Use Theory, 1976.

M. Fujita and J. F. Thisse. Economics of Agglomeration : Cities, Industrial

Location, and Regional Growth. 2002.
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The “cost” for each agent

Suppose that every agent chooses his own location x ∈ Ω in order to
minimize the sum of three costs :

an exogenous cost, depending on the amenities of x only : V (x)
(distance to the points of interest. . .) ;

an interaction cost, depending on the distances with all the other
individuals ; people living at x “pay” a cost of the form∫
W (x − y)ρ(y) dy where W is usually an increasing function of the

distance ;

a residential cost, which is an increasing function of the density at
x ; the individuals living at x “pay” a function of the form h(ρ(x)),
for h : R+ → R increasing ; this takes into account the fact that
where more people live, the price of land is higher (or that, for the
same price, they have less space).
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The total cost that we consider is fρ(x) := V (x) + (W ∗ ρ)(x) + h(ρ(x)).
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About the residential cost

Suppose that agents have a certain budget to be divided into land consump-
tion and money consumption, and that they have a concave and increasing
utility function U for land. This means they solve a problem of the form

max{U(L) + m : pL + m ≤ 0},

where p represents the price for land, L is the land consumption, m is the
left-over of the money, and the budget constraint has been set to 0 for
simplicity. The optimal land consumption will be such that U ′(L) = p.
The optimal utility is U(L)− U ′(L)L (relation between L and utility).
The land consumption is the reciprocal of the density, hence L = 1

ρ , and

the residential cost h(ρ), which is the opposite of the utility, is

h(ρ) =
1

ρ
U ′
(

1

ρ

)
− U

(
1

ρ

)
.

Remark that t 7→ 1
tU
′( 1

t )−U( 1
t ) is the derivative of −tU( 1

t ), hence h = H ′

with H(t) = −tU( 1
t ).
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Equilibria

We look for an equilibrium configuration, i.e. a density ρ such that, for
every x0, there is no reason for people at x0 to move to another location,
since the function fρ is minimal at x0, in the spirit of Nash equilibria.

Nash equilibria
Several players i = 1, . . . , n must choose a strategy among a set of possibi-
lities Si ; the pay-off of each player is given by a function fi : S1×· · ·×Sn →
R.
A configuration (s1, . . . , sn) (si ∈ Si ) is said to be a Nash equilibrium if,
for every i , si optimizes Si 3 s 7→ fi (s1, . . . , si−1, s, si+1, . . . , sn) (i.e. si
is optimal for player i under the assumption that the other players freeze
their choice).

This can be extended to a continuum of identical players where each one is
negligible compared to the others (non-atomic games). We have a common
space S of possible strategies and we look for a density ρ on S . This density
induces a payoff function fρ : S → R and we want : there exists C ∈ R
such that fρ(x) = C on spt(ρ) and fρ(x) ≥ C everywhere.

J. Nash, Equilibrium points in n-person games, Proc. Nati. Acad. Sci., 1950.

J. Nash, Non-Cooperative Games Ann. Math., 1951.
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Equilibrium and optimality conditions

The equilibrium condition that we consider is the following

∃C s.t. fρ(x) ≥ C for every x and fρ(x) = C if ρ(x) > 0.

Consider the following quantity

F (ρ) :=

∫
Ω

V (x)ρ(x)dx+
1

2

∫
Ω

∫
Ω

W (x−y)ρ(x)ρ(y)dxdy+

∫
Ω

H(ρ(x))dx ,

where H is defined through H ′ = h.
Suppose that ρ minimizes F in P(Ω) (i.e. among densities ρ ≥ 0 with∫

Ω
ρ(x)dx = 1) : then ρ is an equilibrium.

Warning : the energy F is not the total cost for all the agents, which
should be

∫
Ω
fρ(x)ρ(x)dx .

Games where the equilibria are found by minimizing a global energy F are
called potential games.

D. Monderer and L. S. Shapley. Potential games. Games and Economic

Behavior, 1996.
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Where convexity comes into play

We can say that the equilibrium condition corresponds to F ′(ρ) = 0. Is
this equivalent to the minimization of F ? This depends on convexity.

ρ 7→
∫

Ω
V (x)ρ(x)dx is linear, hence convex.

ρ 7→
∫

Ω
H(ρ(x))dx , is convex, since H is convex (h = H ′ was

increasing).

unfortunately, ρ 7→ 1
2

∫
Ω

∫
Ω
W (x − y)ρ(x)ρ(y)dxdy is not convex in

general. . .

Example : take W (x − y) = |x − y |2 and compute∫
Ω

∫
Ω

|x − y |2 ρ(x)ρ(y)dxdy

=

∫
Ω

∫
Ω

|x |2 ρ(x)ρ(y)dxdy +

∫
Ω

∫
Ω

|y |2 ρ(x)ρ(y)dxdy−2

∫
Ω

∫
Ω

x ·yρ(x)ρ(y)dxdy

= 2

∫
Ω

|x |2 ρ(x)dx − 2

(∫
Ω

x ρ(x)dx

)2

.
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Vertical and horizontal distances

Given ρ0, ρ1 two densities on Ω, define

W2(ρ0, ρ1) := min

{√∫
Ω

|T (x)− x |2ρ0(x)dx : T#ρ0 = ρ1

}
,

where the symbol # denotes the image measure :
∫
φ(T (x))ρ0(x)dx =∫

φ(y)ρ1(y)dy for every φ : Ω → R. This quantity, called Wasserstein
distance, is a distance on probability densities in P(Ω). It is somehow an
“horizontal” distance, if compared to usual Lp distances

ρ0

ρ1

x T (x) x T (x)

ρ0

ρ1

C. Villani Topics in Optimal Transportation, 2003.

F. Santambrogio Optimal Transport for Applied Mathematicians, 2015.
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BREAK
–

time for commercials
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Tired of optimal transport texts full of Ricci curvature stuff ?
Don’t wonna read 1000 pages by C. Villani ?

His 1st book was wonderful but want to know what happened next ?
Want to see numerical methods and modeling ?

also available (temporarily) on cvgmt.sns.it

Filippo Santambrogio Urban equilibria and displacement convexity



Vertical and horizontal interpolations

Consider the optimal T in the minimization problem defining W2. By the
way, it exists, it is unique, and it is of the form T = ∇u for u convex
(Brenier Theorem).

We can define ρt through ρt = ((1− t)id + tT )#(ρ0) ∈ P(Ω) (supposing
Ω to be convex) This curve of densities is a geodesic for the distance W2.
It gives an “horizontal” interpolation between ρ0 and ρ1, different from
the standard “vertical” one (1− t)ρ0 + tρ1).
A functional F : P(Ω)→ R is said to be displacement convex if t 7→ F (ρt)
is convex for every ρ0, ρ1.

Y. Brenier, Décomposition polaire et réarrangement monotone des champs de
vecteurs. C. R. A. S., 1987.

R. J. McCann A convexity principle for interacting gases. Adv. Math., 1997.
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Displacement convex energies

Fortunately, it can be proven (McCann) that

ρ 7→
∫
V (x)ρ(x)dx is displacement convex if V is convex,

ρ 7→
∫ ∫

W (x − y)ρ(x)ρ(y)dxdy is displacement convex if W is
convex,

ρ 7→
∫
H(ρ(x))dx is displacement convex if H is convex and

t 7→ tdH(t−d) is convex and decreasing (Ω ⊂ Rd , where d is the
dimension). Examples : H(t) = t log t,H(t) = tp, p > 1. . .

Moreover : if F is displacement convex, then every equilibrium is a minimi-
zer, and if we have strict displacement convexity (if V is strictly convex)
the equilibrium is unique. If only W and/or tdH(t−d) are strictly convex,
it is unique up to translations.

Important : the assumption on H is easy to write in term of U. We need
t 7→ U(td) to be increasing (which is fine) and concave.

A. Blanchet, P. Mossay and F. Santambrogio Existence and uniqueness
of equilibrium for a spatial model of social interactions, Int. Econ. Rev., 2015.
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of equilibrium for a spatial model of social interactions, Int. Econ. Rev., 2015.
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Displacement convex energies

Fortunately, it can be proven (McCann) that

ρ 7→
∫
V (x)ρ(x)dx is displacement convex if V is convex,

ρ 7→
∫ ∫

W (x − y)ρ(x)ρ(y)dxdy is displacement convex if W is
convex,

ρ 7→
∫
H(ρ(x))dx is displacement convex if H is convex and

t 7→ tdH(t−d) is convex and decreasing (Ω ⊂ Rd , where d is the
dimension). Examples : H(t) = t log t,H(t) = tp, p > 1. . .

Moreover : if F is displacement convex, then every equilibrium is a minimi-
zer, and if we have strict displacement convexity (if V is strictly convex)
the equilibrium is unique. If only W and/or tdH(t−d) are strictly convex,
it is unique up to translations.

Important : the assumption on H is easy to write in term of U. We need
t 7→ U(td) to be increasing (which is fine) and concave.

A. Blanchet, P. Mossay and F. Santambrogio Existence and uniqueness
of equilibrium for a spatial model of social interactions, Int. Econ. Rev., 2015.
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Example 1 : a Gaussian

In general, the equilibrium condition may be re-written as

h(ρ(x)) = max{C − V − (W ∗ ρ), h(0)}.

Take U(t) = log t, hence H(t) = t log t and h(t) = log t + 1. Take V = 0
and W (x − y) = |x − y |2 and Ω = Rd . The equilibrium is unique up to
translations. Moreover

(W ∗ρ)(x) =

∫
|x−y |2ρ(y)dy = |x |2−2x ·

∫
yρ(y)dy +

∫
|y |2ρ(y)dy

= |x − x0|2 + c ,

where x0 =
∫
yρ(y)dy and c =

∫
|y |2ρ(y)dy − |x0|2. The equilibrium

condition reads

log ρ(x) = C − |x − x0|2 ⇒ ρ(x) = ce−|x−x0|2 .
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Example 2 : a sea-shore model

Take U(t) = − 1
2t , hence H(t) = 1

2 t
2 and h(t) = t. Take Ω = {x ∈ R2 :

x · e > 0}, V (x) = x · e and W (x − y) = 1
2 |x − y |2. We have

ρ(x) =

(
C − 1

2
|x − x0|2 − x · e

)
+

=

(
C − 1

2
|x − (x0 + e)|2

)
+

.

The spatial equilibrium distribution corresponds to a truncated paraboloid
centered at y0 = x0− e. The support of all possible spatial equilibria must
intersect the boundary e⊥ and that the distance from y0 to that boundary
must be fixed (the same for all equilibria).

•y0
•x0

B1

•y0

•x0

B2

B3

•y0 = x0

e
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A case without convexity - the model

Consider now Ω = S1 ≈ [0, 2π], W (x−y) = τdS1 (x , y) (where dS1 (x , y) =
min{|x − y + 2kπ|, k ∈ Z}), V = 0 and h(t) = βt, with τ, β > 0.
We have

ρ(x) =
(
C − δ2φ(x)

)
+
,

where δ2 = τ/β and

φ(x) =

∫
S1

|x − y |ρ(y)dy − π

2
.

Remark φ(x) + φ(x + π) = 0 and

φ′′(x) = 2ρ(x)− 2ρ(x + π) = 2(C − δ2φ(x))+ − 2(C + δ2φ(x))+.

It is enough to solve φ′′ = f (φ) with f (t) = 2(C − δ2t)+ − 2(C + δ2t)+

and then find ρ.

P. Mossay and P. Picard. A spatial model of social interactions. J. Econ.

Theory, 2011.

Filippo Santambrogio Urban equilibria and displacement convexity



A case without convexity - solution

From the form of the function f , the solution φ is composed of sinusoidal
oscillations. We distinguish C > 0 and C < 0.

− c
δ2

c
δ2

f

t

f

t

−C
δ2

C
δ2

There are multiple solutions, with possibly disconnected “cities”. The num-
ber of oscillations is odd and can arrive up to

√
2δ.
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The End

Thanks for your attention
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