Contrôle final: durée 2 heures.

VEUILLEZ RÉDIGER CHAQUE EXERCICE DE CE DEVOIR SUR UNE COPIE DIFFÉRENTE

Aucun document n'est autorisé.

Exercice 1. (6 points).

- a) Énoncer le théorème d'inversion locale.
- b) Soit $f: U = \mathbb{R}^2 \setminus \{(0,0)\} \to \mathbb{R}^2$ définie pour tout $(x,y) \in U$ par $f(x,y) = (2xy, x^2 y^2)$. Montrer que f est un difféomorphisme local au voisinage de tout point de U.
- c) Montrer que f n'est pas un difféomorphisme global entre U et f(U).

Corrigé:

- a) Soit E un espace de Banach et f une fonction C^1 définie sur un ouvert U de E. Si en $a \in U$, Df(a) est un homéomorphisme de E, alors il existe V et W, respectivement voisinages de a et f(a), tels que f est un C^1 -difféomorphisme entre V et W.
- b) On est en dimension finie; pour s'assurer que Df(x,y) est un homéomoprhisme, il suffit de voir que sa jacobienne est de déterminant non nul. C'est bien le cas car elle vaut $-4(x^2+y^2)$ et $(0,0) \notin U$.
- c) On a par exemple f(1,0) = f(-1,0) donc f non injective.

Exercice 2. (8 points). Soit $\alpha > 0$. On le problème d'optimisation qui consiste à minimiser ou maximiser la fonction $f:(x,y) \in \mathbb{R}^2 \mapsto x^2y$ sur l'ensemble \mathcal{C}_{α} des éléments (x,y) de \mathbb{R}^2 satisfaisant la contrainte

$$g(x,y) = \alpha,$$

où q la fonction qui à $(x,y) \in \mathbb{R}^2$ associe $4x^2 + y^2$.

- a) Montrer que f admet un minimum global et un maximum global sur \mathcal{C}_{α} .
- b) Déterminer la valeur du minimum global et du maximum global sur cet ensemble, ainsi que les points qui les réalisent.
- c) Déterminer également tout autre extremum local sous contrainte, en précisant s'il s'agit d'un minimum local ou d'un maximum local.
- d) Notons pour tout $\alpha > 0$

$$V(\alpha) := \min_{\mathcal{C}_{\alpha}} f.$$

Montrer que V est dérivable en tout $\alpha > 0$, calculer sa dérivée, et prouver que cette dérivée est égale à la valeur du multiplicateur de Lagrange correspondant.

Corrigé:

- a) La fonction g est continue car polynomiale, donc $\mathcal{C}_{\alpha} = g^{-1}(\{\alpha\})$ est fermé. De plus, sur \mathcal{C}_{α} , $|x| \leq \sqrt{\alpha}/2$ et $|y| \leq \sqrt{\alpha}$. Donc \mathcal{C}_{α} est borné. Donc \mathcal{C}_{α} est compact. Comme f est continue car polynomiale, elle est bornée et atteint ses bornes sur \mathcal{C}_{α} .
- b) Nous allons utiliser le théorème des multiplicateurs de Lagrange. D'abord, f et g sont clairement C^1

De plus, soit $(x,y) \in \mathcal{C}_{\alpha}$ un extremum local de f sous contrainte. Montrons que la contrainte est qualifiée en (x,y). Comme $\alpha > 0$, on ne peut pas avoir (x,y) = (0,0). Donc

$$\nabla g(x,y) = \begin{pmatrix} 8x \\ 2y \end{pmatrix} \neq \begin{pmatrix} 0 \\ 0 \end{pmatrix} \quad \text{car} \quad (x,y) \neq (0,0).$$

Et la contrainte est donc qualifiée en (x, y).

En conséquence, le théorème des multiplicateurs de Lagrange s'applique : il existe $\lambda \in \mathbb{R}$ tel que

$$\begin{cases} g(x,y) = \alpha, \\ \nabla f(x,y) = \lambda \nabla g(x,y), \end{cases}$$
 c'est à dire
$$\begin{cases} 4x^2 + y^2 = \alpha, \\ 2xy = 8\lambda x, \\ x^2 = 2\lambda y. \end{cases}$$

Résolvons ce système. D'abord, si x = 0, alors le système devient

$$\begin{cases} y^2 = \alpha, \\ \lambda y = 0. \end{cases}$$

Donc $y = \pm \sqrt{\alpha}$ et $\lambda = 0$ et on obtient 2 solutions à notre système dans le cas x = 0. Si x est non nul, le système devient

$$\begin{cases} 4x^2 + y^2 = \alpha, \\ y = 4\lambda, \\ x^2 = 2\lambda y. \end{cases}$$

En particulier,

$$\alpha = 4x^2 + y^2 = 4 \times 2\lambda y + y^2 = 8\lambda \times 4\lambda + (4\lambda)^2 = 3 \times (4\lambda)^2.$$

Donc

$$\lambda = \pm \frac{1}{4} \sqrt{\frac{\alpha}{3}}.$$

Si $\lambda = \sqrt{\alpha}/4\sqrt{3}$, alors $y = \sqrt{\alpha}/\sqrt{3}$ et $x^2 = 8\lambda^2 = \alpha/6$. Donc $x = \pm\sqrt{\alpha}/\sqrt{6}$.

Si $\lambda = \sqrt{\alpha}/4\sqrt{3}$, alors $y = -\sqrt{\alpha}/\sqrt{3}$ et comme précédemment $x = \pm \sqrt{\alpha}/\sqrt{6}$.

On a donc trouvé 4 solutions à notre système dans le cas $x \neq 0$.

En notant $x_0 := \sqrt{\alpha}/\sqrt{6}$, $y_0 := \sqrt{\alpha}/\sqrt{3}$ et $\lambda_0 := \sqrt{\alpha}/4\sqrt{3}$, on peut donc ranger les six solutions de notre système dans le tableau suivant.

(x,y)	$(0,-\sqrt{\alpha})$	$(0,\sqrt{\alpha})$	$(-x_0, -y_0)$	$(x_0, -y_0)$	$(-x_0, y_0)$	(x_0, y_0)
f(x,y)	0	0	$-\frac{(\alpha/3)^{3/2}}{2}$	$-\frac{(\alpha/3)^{3/2}}{2}$	$\frac{(\alpha/3)^{3/2}}{2}$	$\frac{(\alpha/3)^{3/2}}{2}$
λ	0	0	$-\lambda_0$	$-\lambda_0$	λ_0	λ_0

On lit dans ce tableau que le minimum global de f sous contraintes est $-\frac{(\alpha/3)^{3/2}}{2}$ atteint en $(-x_0, -y_0)$ et $(x_0, -y_0)$, le maximum global de f sous contraintes est $\frac{(\alpha/3)^{3/2}}{2}$ atteint en $(-x_0, y_0)$ et (x_0, y_0) .

- c) Les deux extremum locaux potentiels qui ne sont pas globaux sont donc $(0, -\sqrt{\alpha})$ et $(0, \sqrt{\alpha})$, points auxquels f vaut 0. Or, au voisinage de $(0, -\sqrt{\alpha})$, f est négative, donc $(0, -\sqrt{\alpha})$ est un point de maximum local sous contrainte. De même, au voisinage de $(0, \sqrt{\alpha})$, f est positive, donc $(0, -\sqrt{\alpha})$ est un point de minimum local sous contrainte.
- d) Le minimum global de f sous contrainte est

$$V(\alpha) = -\frac{(\alpha/3)^{3/2}}{2}.$$

Cette fonction est bien dérivable pour tout $\alpha > 0$, et pour tout $\alpha > 0$,

$$V'(\alpha) = -\frac{(\alpha/3)^{1/2}}{4} = -\frac{1}{4}\sqrt{\frac{\alpha}{3}} = -\lambda_0.$$

On retrouve donc la valeur du multiplicateur de Lagrange aux points de minimum global. C'est ce à quoi on s'attendait en vertue du théorème de l'enveloppe.

Exercice 3. (6 points) Soit $f: \mathbb{R}^3 \to \mathbb{R}$, $f(x, y, z) = xy - z^3$.

- a) Montrer que l'ensemble $S=\{(x,y,z)\in\mathbb{R}^3: f(x,y,z)=0\}\setminus\{(0,0,0)\}$ peut être représenté localement comme une surface paramétrée régulière. Donner un paramétrage de classe C^1 et régulier de chacun de ses sous-ensembles $\{(x,y,z)\in S: x\neq 0\}, \{(x,y,z)\in S: y\neq 0\}$ et $\{(x,y,z)\in S: z\neq 0\}$. Peut-on trouver un paramétrage de classe C^1 et régulier de l'ensemble S tout entier?
- b) Soit D la droite définie par les équations x = 2 et y = 3z 3. Donner un paramétrage de la droite D.
- c) Déterminer tous les points P = (x, y, z) de S tels que le plan tangent à S passant par P contient la droite D.

Corrigé:

a) Pour la partie $\{(x,y,z)\in S\,:\,x\neq 0\}$ un paramétrage C^1 est le suivant :

$$\mathbb{R}^* \times \mathbb{R} \ni (u, v) \mapsto X(u, v) = (u, \frac{v^3}{u}, v).$$

C'est aussi un paramétrage régulier car les deux vecteurs tangents

$$\frac{\partial X}{\partial u} = (1, -\frac{v^3}{u^2}, 0)$$
 et $\frac{\partial X}{\partial v} = (0, 3\frac{v^2}{u}, 1)$

forment une famille libre comme une vérification immédiate le montre (la deuxième composante du produit vectoriel est égale à -1).

De manière symétrique, un paramétrage C^1 et régulier de la partie $\{(x,y,z)\in S:y\neq 0\}$ est donné par

$$\mathbb{R}^* \times \mathbb{R} \ni (u, v) \mapsto \widehat{X}(u, v) = (\frac{v^3}{u}, u, v).$$

L'ensemble $\{(x,y,z)\in S:z\neq 0\}$ est inclus dans les deux ensembles traités plus haut, n'importe lequel des deux paramétrages précédents convient.

Enfin, S tout entier admet un paramétrage C^1 et régulier donné par

$$\mathbb{R}^2 \setminus \{(0,0)\} \ni (u,v) \mapsto \widetilde{X}(u,v) = (u^3, v^3, uv).$$

En effet, nous avons que

$$\frac{\partial \widetilde{X}}{\partial u} = (3u^2, 0, v)$$
 et $\frac{\partial \widetilde{X}}{\partial v} = (0, 3v^2, u)$

donc

$$\frac{\partial \widetilde{X}}{\partial u} \times \frac{\partial \widetilde{X}}{\partial v} = (-3v^3, -3u^3, 9u^2v^2) \neq (0, 0, 0).$$

b) En posant z = t on obtient le paramétrage suivant de la droite D:

$$\mathbb{R}\ni t\mapsto \gamma(t)=(2,3t-3,t).$$

c) Soit $P = (x_0, y_0, z_0)$ un point de S. Nous avons donc $x_0y_0 = z_0^3$. L'ensemble S étant défini comme l'ensemble des zéros de f, le vecteur normal à S en P est donné par $\nabla f(P) = (y_0, x_0, -3z_0^2)$. L'équation du plan tangent à S en P est donc donnée par

$$[(x, y, z) - P] \cdot \nabla f(P) = 0 \iff (x - x_0)y_0 + (y - y_0)x_0 + (z - z_0)(-3z_0^2) = 0$$

$$\iff xy_0 + yx_0 - 3zz_0^2 = 2x_0y_0 - 3z_0^3.$$

Ce plan contient le plan D si et seulement si l'équation au-dessus est vérifié par $\gamma(t)$ pour tout t:

$$2y_0 + (3t - 3)x_0 - 3tz_0^2 = 2x_0y_0 - 3z_0^3 \qquad \forall t \in \mathbb{R}$$

En identifiant les coefficients et en se rappelant que le point P est sur la surface S, on obtient le système suivant d'équations que x_0 , y_0 et z_0 doivent vérifier :

$$\begin{cases} x_0 y_0 = z_0^3 \\ x_0 - z_0^2 = 0 \\ 2y_0 - 3x_0 = 2x_0 y_0 - 3z_0^3. \end{cases}$$

Si $z_0 = 0$ la deuxième équation donne $x_0 = 0$ et la troisième donne $y_0 = 0$ aussi ce qui est impossible puisque l'origine n'est pas dans S.

Si $z_0 \neq 0$, alors la deuxième équation donne $x_0 = z_0^2$, puis la première équation donne $y_0 = z_0$. On remplace ces valeurs dans la troisième équation et on obtient $2z_0 - 3z_0^2 = -z_0^3$. On simplifie un z_0 et on trouve finalement $z_0^2 - 3z_0 + 2 = 0$. Il y a deux solutions $z_0 = 1$ ou $z_0 = 2$.

En conclusion, il y a deux points qui répondent à la question : $P_1 = (1, 1, 1)$ et $P_2 = (4, 2, 2)$.

Exercice 4. (4 points) On considère la courbe plane C d'équation $x^3 - 2xy + 2y^2 = 1$.

- a) Déterminer l'équation de la tangente à cette courbe au point (1,1) et préciser la position de la courbe par rapport à cette tangente au voisinage de ce point.
- b) Trouver tous les points de la courbe au voisinage desquels le théorème des fonctions implicites ne s'applique ni pour exprimer x en fonction de y ni pour exprimer y en fonction de x.

Corrigé : On calcule au préalable le gradient de la fonction f définie par $f(x,y) = x^3 - 2xy + 2y^2 - 1$, qui définit la courbe comme ensemble des points où f vaut 0. On a

$$\nabla f(x,y) = (3x^2 - 2y, -2x + 4y).$$

a) On a $\nabla f(1,1)=(1,2)$. La tangente à C en (1,1) est donc l'ensemble de tous les points (x,y) tels que $(1,2)\cdot(x-1,y-1)=0$. Cela donne l'équation x+2y-3=0. Pour trouver la position de la courbe par rapport à cette tangente hélas ce calcul ne suffit pas. Attention : regarder la convexité de f ne sert à rien, parce que le même ensemble peut être défini comme $\{f=0\}$ ou $\{-f=0\}$, et f et -f ont des convexités opposées, alors que la courbe et la tangente seraient la même.

Il faut donc utiliser le théorème des fonctions implicites pour paramétrer C. Comme $\nabla f(1,1) = (1,2) \neq 0$, la différentiel de f (qui est C^1) est de rang maximal en (1,1) et on peut bien applique ce théorème. En particulier, comme $\frac{\partial f}{\partial y}(1,1) \neq 0$, on peut exprimer y en fonction de x. On écrit donc $y = \phi(x)$ pour une fonction $\phi \in C^1$ telle que $\phi(1) = 1$. On remplace cela dans l'expression de f et on trouve que ϕ doit satisfaire

$$x^3 - 2x\phi(x) + 2\phi(x)^2 = 1.$$

On peut dériver une fois en obtenant

$$3x^{2} - 2\phi(x) - 2x\phi'(x) + 4\phi(x)\phi'(x) = 0.$$

En prenant x=1 on trouve $\phi'(1)=-1/2$, ce qui aurait pu être utilisé pour trouver la tangente sous la forme y=1-(x-1)/2, qui est la même équation que celle trouvée auparavant. La fonction ϕ sera aussi C^2 au voisinage de x=1, ce qui peut être justifié par la régularité C^2 de f, ou par l'expresion de ϕ' obtenue en regardant la condition $3x^2-2\phi(x)-2x\phi'(x)+4\phi(x)\phi'(x)=0$.

On dérive alors une fois de plus et on obtient

$$6x - 4\phi'(x) - 2x\phi''(x) + 4\phi(x)\phi''(x) + 4|\phi'(x)|^2 = 0.$$

En prenant x=1 on trouve $\phi''(1)=-9/2<0$. Cela montre que le graphe de la fonction ϕ se trouve en dessous de sa tangente au voisinage de x=1. La courbe C est donc contenue dans le demi-plan qui se trouve en dessous de la tangente, le demi-plan défini par $x+2y-3\leq 0$. Cela est vrai au voisinage de (1,1), rien n'empêche que loin de ce point la courbe repasse au dessus de cette droite. Attention : vérifier que certains points de la courbe C se trouvent en dessous ne suffit pas pour justifier que ce comportement est vrai au voisinage de (1,1).

b) Pour que le théorème des fonctions implicites ne s'applique ni pour exprimer x en fonction de y ni pour exprimer y en fonction de x il faut que les deux dérivées partielles de f s'annulent. On cherche donc les solutions au système

$$\begin{cases} 3x^2 - 2y = 0\\ -2x + 4y = 0 \end{cases}$$

qui appartiennent à la courbe C. Le système peut se résoudre en trouvant x=2y dans la deuxième équaiton, en le mettant dans la première, et en trouvant donc $12y^2=2y$. Il faut donc soit y=0 (et donc x=0), soit y=1/6 (et donc x=1/3). Les seuls points qui annulent le graident de f sont donc (0,0) et (1/3,1/6). Or, f(0,0)=-1 et $f(1/3,1/6)=\frac{1}{27}-\frac{2}{18}+\frac{2}{36}-1=-\frac{55}{54}\neq 0$. Ces points n'appartiennent donc pas à C. Le théorème des fonctions implicites peut donc s'appliaquer partout.