
STABILITY IN THE ISOPERIMETRIC PROBLEM

BENT FUGLEDE

We shall discuss the question of stability of the solution of the classical isoperi-
metric problem in Uk: if a domain D in U3, say, of volume V and surface area S is
such that

is close to its minimal value 0, must then D be 'close' to being a ball? We obtain a
positive answer to this vaguely formulated question in the case of domains D that are
assumed from the outset to differ from suitable balls by at most 5 %, in a certain sense:
see §2, Theorem. Some such additional hypothesis is necessary for stability in
dimension k ^ 3; see the remark at the end.

In the planar case k = 2, however, there is unrestricted stability. This is expressed
by a number of inequalities due to Bonnesen [1]; see also his monograph [2, no. 43].
Alternatively, the stability can be read off immediately from Hurwitz' elegant proof
[3; 4, no. 6] that the disk is the unique solution of the isoperimetric problem in the
plane; see §1. It seems, however, difficult to extend Hurwitz' method to higher
dimensions (see [4, no. 8]); hence our alternative approach in §2. For convex bodies,
stability can be inferred from Bonnesen [2, p. 135] (in uniform norm, only; see below).

ACKNOWLEDGEMENT. The problem treated in the present note arose in a
discussion with Professor V. A. Solonnikov in connection with free boundary value
problems.

1.

Hurwitz' proof-as refined by Lebesgue [5] in order to avoid differentiability
assumptions - runs as follows (in complex notation). Consider a simple, closed,
positively oriented, rectifiable curve y in C of length L = In, represented parametri-
cally with arc length se[—n,7i] as parameter:

y:s^z(s), \z'(s)\ = \ a.e., (1)

the function z being clearly absolutely continuous with z{ri) = z( — n). In terms of the
(uniformly) convergent Fourier expansion

z(s)= 2 cne
ins, cn=^-\ z(s)e-insds,

the area A of the domain D enclosed by y is

A = \ I xdy-ydx = £Im | * z{s)z\s)ds = n I n\cn\\ (2)
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600 BENT FUGLEDE

On the other hand, from \z'(s)\ = 1 a.e. it follows that

= 2 n*\cn\\ (3)
nel

Since n2 > n for neZ\{0,1}, Hurwitz deduces from (2), (3) the isoperimetric
inequality A < n, whereby equality holds for a circle only, viz: cn = 0 for all« # 0 , 1 ,
that is

z(s) = co + Cle
is. (4)

Let us now consider the deviation

of the general curve, or motion, y in (1) from the associated circular motion (4). Since

l+n2<f(H2-n) , neZ\{0,l},

we obtain

n # 0,

2 («2-«)
n e Z

(5)

This estimate exhibits again the circle as the unique solution of the isoperimetric
problem in the plane, but it shows moreover that the solution is stable in Sobolev
1-norm. And from that it follows easily that there is stability also in the uniform norm

f"max \w(s)\: since w(s)ds = 0, there exists / such that Re w(t) = 0, hence for any s
8 J-n

(taken from [t — n, t + n])

|Re wf(r)\2dr,

and similarly for Im w, whence from (5)

\w(s)\2 ^n\n \w'(r)\2dr < 5n(n-A).
J-n

It follows immediately from this inequality (dropping the above normalisation
L = 2TT) that y is contained in a circular annulus of width d, where d2 ^ 5(L2—4nA).
This consequence of (5) is a weaker version of a result of Bonnesen [1] according to
which the constant 5 here can be replaced by 1/(4TT), which is best possible. On the
other hand, (5) itself is in a sense stronger than Bonnesen's inequalities because the
Sobolev norm is stronger than the uniform norm. I do not know the best possible
constant in (5).

2.

As mentioned in the introduction, Hurwitz' method does not seem to extend to
higher dimensions. Measuring the deviation of D from balls in a different way we
proceed to establish stability, again in Sobolev 1-norm and in uniform norm, of the
ball as solution of the isoperimetric problem in Uk for any k in the case of nearly
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spherical domains: see (7) below. Such domains are not necessarily convex. Our
analysis will be carried out in dimension k = 3, but applies equally well in any
dimension k ^ 2, save for the values of constants. We shall consider a bounded
Lipschitz domain D in R3, starshaped with respect to its barycentre, and normalised
so as to have the same volume V = 4rc/3 as the unit ball. Taking the barycentre of
D as origin, we represent the boundary of D in polar coordinates R, t,:

where S denotes the unit sphere in R3. Writing

R3=\+3u (6)

(hence u « R— 1 for small \u\) we finally impose the essential restriction that D be
nearly spherical in the sense that

\u\^c, \Vu\^c on I (7)

for a suitable constant c ̂  1/20, V denoting the gradient operator on I . (From
|V«| < c it follows incidentally that |w| ̂  nc since it follows from (12) below that there
exists nel, with u(rj) = 0.)

Writing da for the normalised surface measure on S, and S for the total surface
area of T = 9Z>, we have

3V C

- = J ^ = 1 , (9)
= f R^da,

h
0 = f R^da, (10)

h
where (10) expresses that the barycentre of/) is 0.

THEOREM. With the above notations we have for a starshaped Lipschitz domain D
of volume V = 4TT/3 and satisfying (7) with c = 1 /20

I 47T

In view of the restriction (7) this implies, for each p > 2, the following estimate of the
uniform norm ofu:

tel ^ p\4n J
where

/ l-rrn WQ

\/q = 1 — 1//? ««</ c = 1/20. (One may incidentally replace % by 6 in Kp.)

REMARK. Using (6) we could of course obtain quite similar estimates (with
slightly different constants) whereby u{£) is replaced by R(£) — 1 and VM by VR.

Proof of Theorem. To begin with we shall allow any value of c < 1/20. In order
to estimate S from below consider the integrand in (8) and insert (6):

|V«|2)i (11)
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By Taylor expansion and estimation we obtain

because n — 5/3 < n. In view of (7) we thus have

^ 1-2.0541«|),

(1 +(1 +3«)-2|Vu|2)i ^ (1 +(1 -6c) |Vu|

Inserting these estimates in (11) we obtain, by further use of (7),

l^ H-2«-M2-1.57cM2+(l-2.054|«|)(i-3.01c)|V«|2

In view of (8) we obtain by integration, invoking also the following consequence of
(6) and (9): f

uda = 0, (12)
Jl

the following key inequality

j-> J (l-M2+i|V«|2-

In terms of the inner product , r v f

and the associated norm ||. || = ||. y î, this estimate leads to

£ |2)5 (13)
where A denotes the Laplace-Beltrami operator on E, satisfying ||V«||2 = <M,-AM>.

Now expand u in normalised spherical harmonics Yn (each Yn belonging to the
(2«+ l)-dimensional eigenspace for —A corresponding to the eigenvalue n(n+1)):

00

u= S anYn, an = (u,Yn),

In particular, 3^=1, and so /•
ao=\ ud(j = Q (14)

JE

by (12). Moreover, Y^ has the form

(15)
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2 = 3 and hencewith

In fact, ||x||2 = \\y\\2 = ||z||2 = J, while (x,y) = 0, etc., by symmetry.
We proceed to deduce from (10) that a\ is very small compared to

see (14). Expanding R* = (1 + 3w)4'3 (see (6)) yields

|i?4-l-4«| A
i — ic

2 .4M 2 .

603

(16)

(17)

(18)

From (10), (15) it follows that feR^Y^a — 0, and since \iYxdo = 0 by symmetry, we
obtain in view of (18), (16)

f « 2

because ||w|| ^ c by (7). Hence

a\ = <u, Y^ ^ 1.08 c21| u||2 ^

on account of (17).
oo

Inserting in (13) the expansion u = '£anYn (see (14)) we find

(19)

(20)

because \n{n+ 1 ) - 1 ̂  f(«(«+ 1)+ 1) for /i ^ 2. From (19) it follows that

and (20) yields

• 471 !

(under the hypothesis (7) with c ^ 1/20).
Taking from now on c = 1/20 we have thus obtained the desired estimate in

Sobolev 1-norm

( £ ) (21)
under the hypothesis that |«|, |V«| ^ 1/20 pointwise on 2). The estimate of the uniform
norm max |«(^)| stated in the theorem follows from (21) in view of (12) by application
of the following lemma (which is more or less known).

LEMMA. For any Lipschitz function u on I. and any number p > 2 we have

u-

where \/p+\/q = 1.
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Proof. Let £eZ be given. For any 77el we have

[ {,)r,)= \ da(r,) f

In terms of spherical coordinates </>e[0,n], 6e[0,2n], where ^ = 0 at £, this implies

M(<0- f « ^ ^-!- P ^ P s i n ^ I \Wu(t,d)\dt

= ^-[n dd r
4rcJ0 JO

= cot\(f>\Vu\d
Ji

by evaluation of ||cot^||L« and application of Holder's inequality.

REMARK. The following simple example shows that the hypothesis (7) cannot
be removed, nor can it be replaced by the weaker requirement

IM| 2 + | |VH| | 2 ^2C 2 , (22)

no matter how small the constant c is taken. (The norms are L2-norms as above.) Fix
two antipodal points ±£0 of I . For suitably small e,S > 0 define v on I by

where a+ denotes max (a, 0), and write

to achieve \uda = 0. With R defined by (6), the volume condition (9) and the
barycentre condition (10) are clearly fulfilled. Since \vda « £e2<5 is negligible we have,
if E/S is small, „

which is < 2c2 if S is fixed, S < 2c; but ||M||2+ ||VM||2 does not approach 0 as e -*• 0
and hence (S/4n)— 1 -• 0. Likewise max|M(<̂ )| « S does not approach 0.

It is worth noticing that the same type of example in the planar case, now with
e = (<5/c)2, shows that even then one cannot drop a condition like (7), or replace it
by one like (22) above, if one wants stability in Sobolev 1-norm in the setup of the
present section. This does not contradict the result obtained in § 1 by Hurwitz' method,
where no condition like (7) was needed; in fact, the measures underlying the Sobolev
norms are not the same in the two approaches. As to the uniform norm max|i?(0 -11,
there is stability in the case of planar domains (supposed starshaped with respect to
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STABILITY IN THE ISOPERIMETRIC PROBLEM 605

their barycentre in order to make the representation in polar coordinates meaningful);
this follows easily from the stability result in uniform norm established in § 1, or from
Bonnesen's inequality.
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