STABILITY IN THE ISOPERIMETRIC PROBLEM

BENT FUGLEDE

We shall discuss the question of stability of the solution of the classical isoperi-
metric problem in R¥: if a domain D in R3, say, of volume ¥ and surface area S is

such that
S [3V\
E‘(ZZ)

is close to its minimal value 0, must then D be ‘close’ to being a ball? We obtain a
positive answer to this vaguely formulated question in the case of domains D that are
assumed from the outset to differ from suitable balls by at most 5%, in a certain sense:
see §2, Theorem. Some such additional hypothesis is necessary for stability in
dimension k > 3; see the remark at the end.

In the planar case k = 2, however, there is unrestricted stability. This is expressed
by a number of inequalities due to Bonnesen [1]; see also his monograph (2, no. 43].
Alternatively, the stability can be read off immediately from Hurwitz’ elegant proof
[3; 4, no. 6] that the disk is the unique solution of the isoperimetric problem in the
plane; see §1. It seems, however, difficult to extend Hurwitz’ method to higher
dimensions (see [4, no. 8]); hence our alternative approach in §2. For convex bodies,
stability can be inferred from Bonnesen [2, p. 135] (in uniform norm, only; see below).

ACKNOWLEDGEMENT. The problem treated in the present note arose in a
discussion with Professor V. A. Solonnikov in connection with free boundary value
problems.

1.

Hurwitz’ proof — as refined by Lebesgue [S] in order to avoid differentiability
assumptions — runs as follows (in complex notation). Consider a simple, closed,
positively oriented, rectifiable curve y in C of length L = 27, represented parametri-
cally with arc length se[—n, n] as parameter:

pis2z(s), [Z(5) =1 a.e., (1)

the function z being clearly absolutely continuous with z(z) = z(—=). In terms of the
(uniformly) convergent Fourier expansion

2(s)= X c, e, c,= EIZJ' z(s)etmeds,

nel

the area A of the domain D enclosed by y is

n
A= %j xdy —ydx = %Imf Z(s)z’(s)ds == ZZ njc,|®. )
14 -n ne
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On the other hand, from |z'(s)| = 1 a.e. it follows that
1 n
= — / 2 = 2 2
I=5 L |2’ (s)|?ds ,Ezn lcal®. A3)

Since n® > n for neZ\{0,1}, Hurwitz deduces from (2), (3) the isoperimetric
inequality A4 < m, whereby equality holds for a circle only, viz: ¢, = 0foralln # 0, 1,
that is

2(s) = ¢y +c, €. 9

Let us now consider the deviation

w(s) = z(s) — (¢ + ¢, €%)
of the general curve, or motion, y in (1) from the associated circular motion (4). Since
1+n2 <§(n*—n), neZ\{0, 1},
we obtain
=] (w3 e

2n n#0,1
<§ X (@ —n)leyl
nel

=§(1-4/m). ©)

This estimate exhibits again the circle as the unique solution of the isoperimetric
problem in the plane, but it shows moreover that the solution is stable in Sobolev

1-norm. And from that it follows easily that there is stability also in the uniform norm
n

w(s)ds = 0, there exists ¢ such that Re w(f) = 0, hence for any s
n

max |w(s)|: sincej

8
(taken from [t—=, t+7])

IRe w(s)|* =

§ 2 n
f Rew'(t)de| <= J |Re w'(7)|%dr,
t -n

and similarly for Im w, whence from (5)
n
[w(s)I? < nJ [w'(z)|2dt < Sa(n— A).
-

It follows immediately from this inequality (dropping the above normalisation
L = 27) that y is contained in a circular annulus of width d, where d? < 5(L2—4nA).
This consequence of (5) is a weaker version of a result of Bonnesen [1] according to
which the constant 5 here can be replaced by 1/(4r), which is best possible. On the
other hand, (5) itself is in a sense stronger than Bonnesen’s inequalities because the
Sobolev norm is stronger than the uniform norm. I do not know the best possible
constant in (5).

2.

As mentioned in the introduction, Hurwitz’ method does not seem to extend to
higher dimensions. Measuring the deviation of D from balls in a different way we
proceed to establish stability, again in Sobolev 1-norm and in uniform norm, of the
ball as solution of the isoperimetric problem in R* for any k in the case of nearly
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spherical domains: see (7) below. Such domains are not necessarily convex. Our
analysis will be carried out in dimension k = 3, but applies equally well in any
dimension k > 2, save for the values of constants. We shall consider a bounded
Lipschitz domain D in R?, starshaped with respect to its barycentre, and normalised
so as to have the same volume V = 4rn/3 as the unit ball. Taking the barycentre of
D as origin, we represent the boundary of D in polar coordinates R, ¢:

R=R(), {=(xy2)€el,
where Z denotes the unit sphere in R2. Writing
R =1+3u (6)

(hence u ~ R—1 for small |u]) we finally impose the essential restriction that D be
nearly spherical in the sense that

u<c, |Vu<c onX @)

for a suitable constant ¢ < 1/20, V denoting the gradient operator on X. (From
|Vu| < cit follows incidentally that |u| < mc since it follows from (12) below that there
exists n€X with u(n) = 0.)

Writing do for the normalised surface measure on I, and S for the total surface
area of I' = 0D, we have

i-— 2 2)4

e L R(R®*+|VR|®)do, ®)

3V _ —

E—J;R do—l, (9)
0= LR"Z,‘da, (10)

where (10) expresses that the barycentre of D is 0.

THEOREM. With the above notations we have for a starshaped Lipschitz domain D
of volume V = 4n /3 and satisfying (7) with c = 1/20

S
2+ |Vu|? <8{——1)
L W+ |Vu|*)do < 8 (47z 1>

In view of the restriction (7) this implies, for each p > 2, the following estimate of the
uniform norm of u:

K (S-1)"”
< - _
awvor< (1)

ing )llq
— Ri/ppr-2/p( 271
K, = s (o Gr9)

with 1/q = 1—1/p and ¢ = 1/20. (One may incidentally replace 8 by 6 in K,.)

where

REMARK. Using (6) we could of course obtain quite similar estimates (with
slightly different constants) whereby u(£) is replaced by R()—1 and Vu by VR.

Proof of Theorem. To begin with we shall allow any value of ¢ < 1/20. In order
to estimate S from below consider the integrand in (8) and insert (6):

R(R?+|VR[?)t = (14 3u)?/3 (1 4+ (1 + 3u)~2[Vu|?)}. 49))
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By Taylor expansion and estimation we obtain
[oo]
(1+3upP =1+ Z ( DD (-G
121 4

_1 27
2,3( 1) Gu)*— 31333, I3 "
because n—15/3 < n. In view of (7) we thus have

4 ¢
2/3 > 2 "
(14+3u)3 > 142u—u 3T=3:%

> 14+ 2u—u2—1.57 cu? (> 1 —2.054 ul),
> (14(1 —6¢) |Vul2)
> 1+ (3 —3¢) [Vul*—1[Vult

> 1+3(u)+

u?

(1+(1+3u)~2|Vu2)}

>14+3-3.01 c) |Vul2.
Inserting these estimates in (11) we obtain, by further use of (7),
R(RE+|VR]PR > 14 2u—u?—1.57cuz + (1—2.054|ul) 3 — 3.01 ¢) |Vu|?
2 14+ 2u—u?+1|Vulr—c(1.57u® 4+ 3.01{Vu|* 4+ 1.027|u| |Vu|)
2 14+2u—u?+3|Vul*—3.18¢c(u®+|Vul?).

In view of (8) we obtain by integration, invoking also the following consequence of

(6) and (9):
L udo =0, (12)

the following key inequality

S

i f (1—u2+3[Vul? = 3.18¢(u* + |Vu2)) do.

In terms of the inner product o) = J fedo

and the associated norm ||. || = |. ||, this estimate leads to
S
5—12 3w, — Auy — ||uf|2—3.18c(Cu, — Auy + [|u||?), (13)

where A denotes the Laplace—Beltrami operator on Z, satisfying ||Vu||2 = (u, —Au).
Now expand  in normalised spherical harmonics Y, (each ¥, belonging to the
(2n+ 1)-dimensional eigenspace for — A corresponding to the eigenvalue n(n+1)):

o

u= X a,Y,, a,=<uY,),

n=0
s ) =0pp, —AY, =n(n+1)Y,.
In particular, ¥, = 1, and so
a0=f udo =0 (14)
>
by (12). Moreover, Y] has the form
Y Q) =ox+fy+yz 15)
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with a?+ f2+y? = 3 and hence
IHI = v3, el (16)

In fact, ||x||2 = || y||® = ||z||? = &, while {x,y) =0, etc., by symmetry.
We proceed to deduce from (10) that a? is very small compared to

flull® = Ea 17
see (14). Expanding R* = (14 3u)*/3 (see (6)) yields

R{—1—

—23c“2 < 2.4u (18)

From (10), (15) it follows that [3R*Y,do = 0, and since szlda = 0 by symmetry, we
obtain in view of (18), (16)

U uY do

because (u|| < ¢ by (7). Hence
o0
a2 = (u, ¥,)* < 1.08 c2||u® < 0.054c T a2 (19)
1

<0.6v/3 LuZda < 0.6v/3clul

=1

1 J (R*—1—4u)Y,do

on account of (17).
[+ o]
Inserting in (13) the expansion u = ¥ 4, Y, (see (14)) we find
S o0 ! [e.o]
o 1 22X@Gn(n+1)—1)a2 -3.18c E (n(n+1)+1)a3
2 1

[o0]
2 —$a§+(5“3.18c)2(n(n+ 1)+ 1)a3 (20)
because In(n+1)—1 = #(n(n+ 1)+ 1) for n > 2. From (19) it follows that

a < 0.018cZ(n(n+ D+1)ad,
and (20) yields !
S 0
E_l > (‘3'—3-26)2(n(n+ D+1)ak = (¢—3.2¢) (| Vu| >+ ||u|?)

(under the hypothesis (7) with ¢ < 1/20).
Taking from now on ¢ = 1/20 we have thus obtained the desired estimate in
Sobolev 1-norm

S
2 2 S —_— 1
i+ 1Vuls < 8 (1) )
under the hypothesis that |u|, |Vu| < 1/20 pointwise on X. The estimate of the uniform
norm max |u(&)| stated in the theorem follows from (21) in view of (12) by application
of the following lemma (which is more or less known).
LeEmMMA.  For any Lipschitz function u on £ and any number p > 2 we have

u—J udo
T

where 1/p+1/q=1.

lnq 1
< (=2 317 | Vu| 22,
Lw\(sm(é,,q)) IVl =27 |V
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Proof. Let £€X be given. For any #neZ we have

4
W —u(y) = L Vu(Q)-dL,

(4
&)~ [ utrrdoto) = | dotr) L Vu(0)-dL.

In terms of spherical coordinates ¢ € [0, z], #€[0, 2], where ¢ = 0 at &, this implies

on n ¢
< ! J dej sin¢d¢j |Vu(z, )| dt
0 0

4nl,

u(&)— L udo

_ % Lz a0 J: (1+cos §) [Vu(s, 0)|do

= f coti¢ |Vuldo
z
< |[cotdgll e [|Vull Lo

ln 1/q
< (— tng ) IVall§2/7 [Vl 22
sin (inq)

by evaluation of |coti¢| .« and application of Holder’s inequality.

ReMARK. The following simple example shows that the hypothesis (7) cannot
be removed, nor can it be replaced by the weaker requirement

lleell®+ [IVuel| % < 2¢2, (22)

no matter how small the constant c is taken. (The norms are L2-norms as above.) Fix
two antipodal points +¢&, of X. For suitably small ¢, > 0 define v on X by

v(¢) = o(1 =5 —=&l/e)* +o(1 =+ &ol/e)*s

where a* denotes max (a, 0), and write
u®) = u®)- [ vdo

to achieve [udo =0. With R defined by (6), the volume condition (9) and the
barycentre condition (10) are clearly fulfilled. Since fvdo ~ 326 is negligible we have,
if /6 is small,
i—l = led
47 T T
llll®+ 1 Vul® = 0+ [|Vo||* ~ 407,

which is < 2¢? if § is fixed, d < 2¢; but |Ju||2+ ||Vu|/? does not approach 0 as ¢ = 0
and hence (S/4m)—1 — 0. Likewise max|u(£)| ~ ¢ does not approach 0.

It is worth noticing that the same type of example in the planar case, now with
€ = (6/c)?, shows that even then one cannot drop a condition like (7), or replace it
by one like (22) above, if one wants stability in Sobolev 1-norm in the setup of the
present section. This does not contradict the result obtained in § 1 by Hurwitz’ method,
where no condition like (7) was needed; in fact, the measures underlying the Sobolev
norms are not the same in the two approaches. As to the uniform norm max|R()— 1],
there is stability in the case of planar domains (supposed starshaped with respect to
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their barycentre in order to make the representation in polar coordinates meaningful);
this follows easily from the stability result in uniform norm established in §1, or from
Bonnesen’s inequality.
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