BENT FUGLEDE

We shall discuss the question of stability of the solution of the classical isoperimetric problem in \mathbb{R}^k : if a domain D in \mathbb{R}^3 , say, of volume V and surface area S is such that

$$\frac{S}{4\pi} - \left(\frac{3V}{4\pi}\right)^{2/3}$$

is close to its minimal value 0, must then D be 'close' to being a ball? We obtain a positive answer to this vaguely formulated question in the case of domains D that are assumed from the outset to differ from suitable balls by at most 5%, in a certain sense: see §2, Theorem. Some such additional hypothesis is necessary for stability in dimension $k \ge 3$; see the remark at the end.

In the planar case k = 2, however, there is unrestricted stability. This is expressed by a number of inequalities due to Bonnesen [1]; see also his monograph [2, no. 43]. Alternatively, the stability can be read off immediately from Hurwitz' elegant proof [3; 4, no. 6] that the disk is the unique solution of the isoperimetric problem in the plane; see §1. It seems, however, difficult to extend Hurwitz' method to higher dimensions (see [4, no. 8]); hence our alternative approach in §2. For *convex* bodies, stability can be inferred from Bonnesen [2, p. 135] (in uniform norm, only; see below).

ACKNOWLEDGEMENT. The problem treated in the present note arose in a discussion with Professor V. A. Solonnikov in connection with free boundary value problems.

1.

Hurwitz' proof – as refined by Lebesgue [5] in order to avoid differentiability assumptions – runs as follows (in complex notation). Consider a simple, closed, positively oriented, rectifiable curve γ in \mathbb{C} of length $L = 2\pi$, represented parametrically with arc length $s \in [-\pi, \pi]$ as parameter:

$$\gamma: s \mapsto z(s), \quad |z'(s)| = 1 \quad \text{a.e.}, \tag{1}$$

the function z being clearly absolutely continuous with $z(\pi) = z(-\pi)$. In terms of the (uniformly) convergent Fourier expansion

$$z(s) = \sum_{n \in \mathbb{Z}} c_n e^{ins}, \quad c_n = \frac{1}{2\pi} \int_{-\pi}^{\pi} z(s) e^{-ins} ds,$$

the area A of the domain D enclosed by γ is

$$A = \frac{1}{2} \int_{\gamma} x \, dy - y \, dx = \frac{1}{2} \operatorname{Im} \int_{-\pi}^{\pi} \bar{z}(s) z'(s) \, ds = \pi \sum_{n \in \mathbb{Z}} n |c_n|^2.$$
(2)

Received 9 December 1985.

1980 Mathematics Subject Classification 49B50.

On the other hand, from |z'(s)| = 1 a.e. it follows that

$$I = \frac{1}{2\pi} \int_{-\pi}^{\pi} |z'(s)|^2 ds = \sum_{n \in \mathbb{Z}} n^2 |c_n|^2.$$
(3)

Since $n^2 > n$ for $n \in \mathbb{Z} \setminus \{0, 1\}$, Hurwitz deduces from (2), (3) the isoperimetric inequality $A \leq \pi$, whereby equality holds for a circle only, viz: $c_n = 0$ for all $n \neq 0, 1$, that is

$$z(s) = c_0 + c_1 e^{is}.$$
 (4)

Let us now consider the deviation

$$w(s) = z(s) - (c_0 + c_1 e^{is})$$

of the general curve, or motion, γ in (1) from the associated circular motion (4). Since

$$1+n^2 \leq \frac{5}{2}(n^2-n), \quad n \in \mathbb{Z} \setminus \{0, 1\},$$

we obtain

$$\frac{1}{2\pi} \int_{-\pi}^{\pi} (|w|^2 + |w'|^2) \, ds = \sum_{n \neq 0, 1} (1 + n^2) |c_n|^2$$
$$\leq \frac{5}{2} \sum_{n \in \mathbb{Z}} (n^2 - n) |c_n|^2$$
$$= \frac{5}{2} (1 - A/\pi). \tag{5}$$

This estimate exhibits again the circle as the unique solution of the isoperimetric problem in the plane, but it shows moreover that the solution is *stable* in Sobolev 1-norm. And from that it follows easily that there is stability also in the uniform norm $\max_{s} |w(s)|$: since $\int_{-\pi}^{\pi} w(s) ds = 0$, there exists t such that Re w(t) = 0, hence for any s (taken from $[t - \pi, t + \pi]$)

$$|\operatorname{Re} w(s)|^2 = \left| \int_t^s \operatorname{Re} w'(\tau) \, d\tau \right|^2 \leq \pi \int_{-\pi}^{\pi} |\operatorname{Re} w'(\tau)|^2 \, d\tau,$$

and similarly for Im w, whence from (5)

$$|w(s)|^2 \leq \pi \int_{-\pi}^{\pi} |w'(\tau)|^2 d\tau \leq 5\pi(\pi - A).$$

It follows immediately from this inequality (dropping the above normalisation $L = 2\pi$) that γ is contained in a circular annulus of width d, where $d^2 \leq 5(L^2 - 4\pi A)$. This consequence of (5) is a weaker version of a result of Bonnesen [1] according to which the constant 5 here can be replaced by $1/(4\pi)$, which is best possible. On the other hand, (5) itself is in a sense stronger than Bonnesen's inequalities because the Sobolev norm is stronger than the uniform norm. I do not know the best possible constant in (5).

As mentioned in the introduction, Hurwitz' method does not seem to extend to higher dimensions. Measuring the deviation of D from balls in a different way we proceed to establish stability, again in Sobolev 1-norm and in uniform norm, of the ball as solution of the isoperimetric problem in \mathbb{R}^k for any k in the case of *nearly*

600

spherical domains: see (7) below. Such domains are not necessarily convex. Our analysis will be carried out in dimension k = 3, but applies equally well in any dimension $k \ge 2$, save for the values of constants. We shall consider a bounded Lipschitz domain D in \mathbb{R}^3 , starshaped with respect to its barycentre, and normalised so as to have the same volume $V = 4\pi/3$ as the unit ball. Taking the barycentre of D as origin, we represent the boundary of D in polar coordinates R, ξ :

$$R = R(\xi), \quad \xi = (x, y, z) \in \Sigma,$$

where Σ denotes the unit sphere in \mathbb{R}^3 . Writing

$$R^3 = 1 + 3u \tag{6}$$

(hence $u \approx R-1$ for small |u|) we finally impose the essential restriction that D be nearly spherical in the sense that

$$|u| \leq c, \quad |\nabla u| \leq c \quad \text{on } \Sigma \tag{7}$$

for a suitable constant $c \le 1/20$, ∇ denoting the gradient operator on Σ . (From $|\nabla u| \le c$ it follows incidentally that $|u| \le \pi c$ since it follows from (12) below that there exists $\eta \in \Sigma$ with $u(\eta) = 0$.)

Writing $d\sigma$ for the normalised surface measure on Σ , and S for the total surface area of $\Gamma = \partial D$, we have

$$\frac{S}{4\pi} = \int_{\Sigma} R(R^2 + |\nabla R|^2)^{\frac{1}{2}} d\sigma, \qquad (8)$$

$$\frac{3V}{4\pi} = \int_{\Sigma} R^3 d\sigma = 1, \qquad (9)$$

$$0 = \int_{\Sigma} R^4 \xi \, d\sigma, \tag{10}$$

where (10) expresses that the barycentre of D is 0.

THEOREM. With the above notations we have for a starshaped Lipschitz domain D of volume $V = 4\pi/3$ and satisfying (7) with c = 1/20

$$\int_{\Sigma} (u^2 + |\nabla u|^2) \, d\sigma \leq 8 \left(\frac{S}{4\pi} - 1 \right)$$

In view of the restriction (7) this implies, for each p > 2, the following estimate of the uniform norm of u:

$$\max_{\xi \in \Sigma} |u(\xi)| \leq K_p \left(\frac{S}{4\pi} - 1\right)^{1/p}$$
$$K_p = 8^{1/p} c^{1-2/p} \left(\frac{\frac{1}{2}\pi q}{\sin\left(\frac{1}{2}\pi q\right)}\right)^{1/q}$$

where

with
$$1/q = 1 - 1/p$$
 and $c = 1/20$. (One may incidentally replace 8 by 6 in K_p .)

REMARK. Using (6) we could of course obtain quite similar estimates (with slightly different constants) whereby $u(\xi)$ is replaced by $R(\xi) - 1$ and ∇u by ∇R .

Proof of Theorem. To begin with we shall allow any value of $c \le 1/20$. In order to estimate S from below consider the integrand in (8) and insert (6):

$$R(R^{2} + |\nabla R|^{2})^{\frac{1}{2}} = (1 + 3u)^{2/3} (1 + (1 + 3u)^{-2} |\nabla u|^{2})^{\frac{1}{2}}.$$
 (11)

By Taylor expansion and estimation we obtain

$$(1+3u)^{2/3} = 1 + \sum_{n=1}^{\infty} \frac{1}{n!} \frac{2}{3} \left(-\frac{1}{3}\right) \left(-\frac{4}{3}\right) \dots \left(-(n-\frac{5}{3})\right) (3u)^n$$

$$\ge 1 + \frac{2}{3} (3u) + \frac{1}{2!} \frac{2}{3} \left(-\frac{1}{3}\right) (3u)^2 - \frac{1}{3!} \frac{2}{3!} \frac{1}{3!} \frac{4}{3!} \sum_{n=3}^{\infty} |3u|^n$$

because n - 5/3 < n. In view of (7) we thus have

$$(1+3u)^{2/3} \ge 1+2u-u^2 -\frac{4}{3}\frac{c}{1-3c}u^2$$

$$\ge 1+2u-u^2-1.57\,cu^2\,(\ge 1-2.054\,|u|),$$

$$(1+(1+3u)^{-2}|\nabla u|^2)^{\frac{1}{2}} \ge (1+(1-6c)\,|\nabla u|^2)^{\frac{1}{2}}$$

$$\ge 1+(\frac{1}{2}-3c)\,|\nabla u|^2-\frac{1}{8}|\nabla u|^4$$

$$\ge 1+(\frac{1}{2}-3.01\,c)\,|\nabla u|^2.$$

Inserting these estimates in (11) we obtain, by further use of (7),

$$R(R^{2} + |\nabla R|^{2})^{\frac{1}{2}} \ge 1 + 2u - u^{2} - 1.57cu^{2} + (1 - 2.054|u|) \left(\frac{1}{2} - 3.01c\right) |\nabla u|^{2}$$
$$\ge 1 + 2u - u^{2} + \frac{1}{2} |\nabla u|^{2} - c(1.57u^{2} + 3.01|\nabla u|^{2} + 1.027|u| |\nabla u|)$$
$$\ge 1 + 2u - u^{2} + \frac{1}{2} |\nabla u|^{2} - 3.18c(u^{2} + |\nabla u|^{2}).$$

In view of (8) we obtain by integration, invoking also the following consequence of (6) and (9): \int_{1}^{1}

$$\int_{\Sigma} u d\sigma = 0, \tag{12}$$

the following key inequality

$$\frac{S}{4\pi} \ge \int_{\Sigma} (1 - u^2 + \frac{1}{2} |\nabla u|^2 - 3.18c(u^2 + |\nabla u|^2)) \, d\sigma.$$

 $\langle f,g\rangle = \int_{\Sigma} fg\,d\sigma$

In terms of the inner product

and the associated norm $\|.\| = \|.\|_{L^2}$, this estimate leads to

$$\frac{S}{4\pi} - 1 \ge \frac{1}{2} \langle u, -\Delta u \rangle - \|u\|^2 - 3.18c(\langle u, -\Delta u \rangle + \|u\|^2), \qquad (13)$$

where Δ denotes the Laplace-Beltrami operator on Σ , satisfying $\|\nabla u\|^2 = \langle u, -\Delta u \rangle$.

Now expand u in normalised spherical harmonics Y_n (each Y_n belonging to the (2n+1)-dimensional eigenspace for $-\Delta$ corresponding to the eigenvalue n(n+1)):

$$u = \sum_{n=0}^{\infty} a_n Y_n, \quad a_n = \langle u, Y_n \rangle,$$

$$\langle Y_m, Y_n \rangle = \delta_{mn}, \quad -\Delta Y_n = n(n+1)Y_n.$$

In particular, $Y_0 = 1$, and so

$$a_0 = \int_{\Sigma} u \, d\sigma = 0 \tag{14}$$

by (12). Moreover, Y_1 has the form

$$Y_1(\xi) = \alpha x + \beta y + \gamma z \tag{15}$$

with $\alpha^2 + \beta^2 + \gamma^2 = 3$ and hence

$$|Y_1(\xi)| \ge \sqrt{3}, \quad \xi \in \Sigma. \tag{16}$$

In fact, $||x||^2 = ||y||^2 = ||z||^2 = \frac{1}{3}$, while $\langle x, y \rangle = 0$, etc., by symmetry.

We proceed to deduce from (10) that a_1^2 is very small compared to

$$\|u\|^2 = \sum_{1}^{\infty} a_n^2; \tag{17}$$

see (14). Expanding $R^4 = (1 + 3u)^{4/3}$ (see (6)) yields

$$|R^4 - 1 - 4u| \le \frac{2}{1 - 3c} u^2 \le 2.4 u^2.$$
⁽¹⁸⁾

From (10), (15) it follows that $\int_{\Sigma} R^4 Y_1 d\sigma = 0$, and since $\int_{\Sigma} Y_1 d\sigma = 0$ by symmetry, we obtain in view of (18), (16)

$$\left|\int_{\Sigma} u Y_1 d\sigma\right| = \frac{1}{4} \left|\int_{\Sigma} \left(R^4 - 1 - 4u\right) Y_1 d\sigma\right| \le 0.6\sqrt{3} \int_{\Sigma} u^2 d\sigma \le 0.6\sqrt{3} \, c \|u\|$$

because $||u|| \leq c$ by (7). Hence

$$a_1^2 = \langle u, Y_1 \rangle^2 \le 1.08 \, c^2 \|u\|^2 \le 0.054c \sum_{1}^{\infty} a_n^2 \tag{19}$$

on account of (17).

Inserting in (13) the expansion $u = \sum_{1}^{\infty} a_n Y_n$ (see (14)) we find

$$\frac{S}{4\pi} - 1 \ge \sum_{2}^{\infty} (\frac{1}{2}n(n+1) - 1)a_n^2 - 3.18c \sum_{1}^{\infty} (n(n+1) + 1)a_n^2 \ge -\frac{6}{7}a_1^2 + (\frac{2}{7} - 3.18c) \sum_{1}^{\infty} (n(n+1) + 1)a_n^2$$
(20)

because $\frac{1}{2}n(n+1)-1 \ge \frac{2}{7}(n(n+1)+1)$ for $n \ge 2$. From (19) it follows that

$$a_1^2 \leq 0.018c \sum_{1}^{\infty} (n(n+1)+1) a_n^2,$$

and (20) yields

$$\frac{S}{4\pi} - 1 \ge {\binom{2}{7} - 3.2c} \sum_{1}^{\infty} (n(n+1) + 1) a_n^2 = {\binom{2}{7} - 3.2c} (\|\nabla u\|^2 + \|u\|^2)$$

(under the hypothesis (7) with $c \leq 1/20$).

Taking from now on c = 1/20 we have thus obtained the desired estimate in Sobolev 1-norm

$$\|u\|^{2} + \|\nabla u\|^{2} \leq 8\left(\frac{S}{4\pi} - 1\right)$$
(21)

under the hypothesis that |u|, $|\nabla u| \leq 1/20$ pointwise on Σ . The estimate of the uniform norm max $|u(\xi)|$ stated in the theorem follows from (21) in view of (12) by application of the following lemma (which is more or less known).

LEMMA. For any Lipschitz function u on Σ and any number p > 2 we have

$$\left\| u - \int_{\Sigma} u \, d\sigma \right\|_{L^{\infty}} \leq \left(\frac{\frac{1}{2}\pi q}{\sin\left(\frac{1}{2}\pi q\right)} \right)^{1/q} \| \nabla u \|_{L^{\infty}}^{1-2/p} \| \nabla u \|_{L^{2}}^{2/p},$$

where 1/p + 1/q = 1.

Proof. Let $\xi \in \Sigma$ be given. For any $\eta \in \Sigma$ we have

$$u(\xi) - u(\eta) = \int_{\eta}^{\xi} \nabla u(\zeta) \cdot d\zeta,$$
$$u(\xi) - \int_{\Sigma} u(\eta) d\sigma(\eta) = \int_{\Sigma} d\sigma(\eta) \int_{\eta}^{\xi} \nabla u(\zeta) \cdot d\zeta.$$

In terms of spherical coordinates $\phi \in [0, \pi]$, $\theta \in [0, 2\pi]$, where $\phi = 0$ at ξ , this implies

$$\begin{aligned} \left| u(\xi) - \int_{\Sigma} u \, d\sigma \right| &\leq \frac{1}{4\pi} \int_{0}^{2\pi} d\theta \int_{0}^{\pi} \sin \phi \, d\phi \int_{0}^{\phi} |\nabla u(t,\theta)| \, dt \\ &= \frac{1}{4\pi} \int_{0}^{2\pi} d\theta \int_{0}^{\pi} (1 + \cos \phi) |\nabla u(\phi,\theta)| \, d\phi \\ &= \int_{\Sigma} \cot \frac{1}{2} \phi |\nabla u| \, d\sigma \\ &\leq \|\cot \frac{1}{2} \phi\|_{L^{q}} \|\nabla u\|_{L^{p}} \\ &\leq \left(\frac{1}{2\pi q} \sin \frac{1}{2} \pi q\right)^{1/q} \|\nabla u\|_{L^{\infty}}^{1-2/p} \|\nabla u\|_{L^{2}}^{2/p} \end{aligned}$$

by evaluation of $\|\cot \frac{1}{2}\phi\|_{L^q}$ and application of Hölder's inequality.

REMARK. The following simple example shows that the hypothesis (7) cannot be removed, nor can it be replaced by the weaker requirement

$$\|u\|^{2} + \|\nabla u\|^{2} \leq 2c^{2}, \tag{22}$$

no matter how small the constant c is taken. (The norms are L^2 -norms as above.) Fix two antipodal points $\pm \xi_0$ of Σ . For suitably small $\varepsilon, \delta > 0$ define v on Σ by

$$v(\xi) = \delta(1 - |\xi - \xi_0|/\varepsilon)^+ + \delta(1 - |\xi + \xi_0|/\varepsilon)^+,$$

where a^+ denotes max (a, 0), and write

$$u(\xi) = v(\xi) - \int_{\Sigma} v \, d\sigma$$

to achieve $\int u d\sigma = 0$. With R defined by (6), the volume condition (9) and the barycentre condition (10) are clearly fulfilled. Since $\int v d\sigma \approx \frac{1}{6}e^2\delta$ is negligible we have, if ε/δ is small,

$$\frac{S}{4\pi} - 1 \approx \frac{1}{2}\varepsilon\delta$$

$$\|u\|^{2} + \|\nabla u\|^{2} \approx 0 + \|\nabla v\|^{2} \approx \frac{1}{2}\delta^{2},$$

which is $\leq 2c^2$ if δ is fixed, $\delta \leq 2c$; but $||u||^2 + ||\nabla u||^2$ does not approach 0 as $\varepsilon \to 0$ and hence $(S/4\pi) - 1 \to 0$. Likewise $\max|u(\xi)| \approx \delta$ does not approach 0.

It is worth noticing that the same type of example in the planar case, now with $\varepsilon = (\delta/c)^2$, shows that even then one cannot drop a condition like (7), or replace it by one like (22) above, if one wants stability in Sobolev 1-norm in the setup of the present section. This does not contradict the result obtained in §1 by Hurwitz' method, where no condition like (7) was needed; in fact, the measures underlying the Sobolev norms are not the same in the two approaches. As to the uniform norm max $|R(\xi) - 1|$, there is stability in the case of planar domains (supposed starshaped with respect to

their barycentre in order to make the representation in polar coordinates meaningful); this follows easily from the stability result in uniform norm established in §1, or from Bonnesen's inequality.

References

- 1. T. BONNESEN, 'Über das isoperimetrische Defizit ebener Figuren', Math. Ann. 91 (1924) 252-268.
- 2. T. BONNESEN, Les problèmes des isopérimètres et des isépiphanes (Gauthier-Villars, Paris, 1929).
- 3. A. HURWITZ, 'Sur le problème des isopérimètres', C.R. Acad. Sci. Paris 132 (1901) 401-403.
- A. HURWITZ, 'Sur quelques applications géométriques des séries de Fourier', Ann. Sci. École Norm. Sup. (3) 19 (1902) 357-408; Mathematische Werke I, 509-554.
- 5. H. LEBESGUE, Leçons sur les séries trigonométriques (Gauthier-Villars, Paris, 1906).

Matematisk Institut Universitetsparken 5 DK-2100 Copenhagen Denmark 605