
Chapter 1

Some elements of convex
analysis

1.1 Fenchel-Legendre Transform
Let us fix a Banach space X together with its dual X ′, and denote by 〈ξ ,x〉 the duality
between an element ξ ∈ X ′ and x ∈ X . More generally, we could fix a pair of normed
vector spaces on which we fix a bilinear form which plays the role of the duality be-
tween them.

Definition 1.1. We say that a function valued in R∪{+∞} is proper if it is not identi-
cally equal to +∞. The set { f <+∞} is called the domain of f .

Definition 1.2. Given a vector space X and its dual X ′, and a proper function f : X →
R∪{+∞} we define its Fenchel-Legendre transform f ∗ : X ′→ R∪{+∞} via

f ∗(ξ ) := sup
x
〈ξ ,x〉− f (x).

Remark 1.3. We observe that we trivially have f ∗(0) =− infX f .

We note that f ∗, as a sup of affine continuous (in the sequel we will just say affine
and mean affine and continuous, i.e. of the form `(x) = 〈ξ ,x〉+c for ξ ∈ X ′ and c∈R)
functions, is both convex and l.s.c., as these two notions are stable by sup.

By abuse of notations, when considering functions defined on X ′ we will see their
Fenchel-Legendre transform as a function defined on X (and not on X ′′: this is possible
since X ⊂ X ′′ and we can restrict it to X , and by the way in most cases we will use only
reflexive spaces).

We prove the following results.

Proposition 1.4. 1. If f : X → R∪{+∞} is proper, convex and l.s.c. then there
exists a continuous affine function ` such that f ≥ `.

2. If f : X → R∪{+∞} is proper, convex and l.s.c. then it is a sup of continuous
affine functions.
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3. If f : X → R∪ {+∞} is proper, convex and l.s.c. then there exists g : X ′ →
R∪{+∞} such that f = g∗.

4. If f : X → R∪{+∞} is proper, convex and l.s.c. then f ∗∗ = f .

Proof. We consider the epigraph Epi( f ) := {(x, t) ∈ X ×R : t ≥ f (x)} of f which
is a convex and closed set in X ×R. We take a point x0 such that f (x0) < +∞ and
consider the singleton {(x0, f (x0)− 1)} which is a convex and compact set in X ×R.
The Hahn-Banach separation theorem provides the existence of a pair (ξ ,a) ∈ X ′×R
and a cosntant c such that 〈ξ ,x0〉+ a( f (x0)− 1) < c and 〈ξ ,x〉+ at > c for every
(x, t) ∈ Epi( f ). Note that this last condition implies a ≥ 0 since we can take t → ∞.
Moreover, we should also have a > 0 otherwise taking any point (x, t) ∈ Epi( f ) with
x = x0 we have a contradiction. If we then take t = f (x) for all x such that f (x)<+∞

we obtain a f (x) ≥ −〈ξ ,x〉+ 〈ξ ,x0〉+a( f (x0)−1) and, dividing by a > 0, we obtain
the first claim.

We now take an arbitrary x0 ∈ X and t0 < f (x0) and separate again the singleton
{(x0, t0)} from Epi( f ), thus getting a pair (ξ ,a) ∈ X ′×R and a constant c such that
〈ξ ,x0〉+ at0 < c and 〈ξ ,x〉+ at > c for every (x, t) ∈ Epi( f ). Again, we have a ≥ 0.
If f (x0)<+∞ we obtain as before a > 0 and the inequality f (x)>− ξ

a · (x− x0)+ t0.
We then have an affine function ` with f ≥ ` and `(x0) = x0. This shows that the sup
of all affine functions smaller than f is, at the point x0, at least t0. Hence this sup
equals f on { f < +∞}. The same argument works for f (x0) = +∞ if for t0 arbitrary
large the corresponding coefficient a is strictly positive. If not, we have 〈ξ ,x0〉 < 0
and 〈ξ ,x〉 ≥ 0 for every x such that (x, t) ∈ Epi( f ) for at least one t ∈ R, i.e. for
x ∈ { f <+∞}. Consider now `n = `−nξ where ` is the affine function smaller than f
previously found. We have f ≥ ` ≥ `−nξ since ξ is non-negative on { f < +∞} and
moreover limn `n(x0) = +∞. This shows that in such a point x0 the sup of the affine
functions smaller than f equals +∞, and hence f (x0).

Once that we know that f is a sup of affine functions we can write

f (x) = sup
α

〈ξα ,x〉+ cα

for a family of indexes α . We then set c(ξ ) := sup{cα : ξα = ξ}. The set in the sup
can be empty, which means c(ξ ) = −∞. Anyway, the sup is always finite: fix a point
x0 with f (x0)<+∞ and use since cα ≤ f (x0)−〈ξ ,x0〉. We then define g =−c and we
see f = g∗.

finally, before proving f = f ∗∗ we prove that for any function f we have f ≥ f ∗∗

even if f is not convex or lsc. Indeed, we have f ∗(ξ )+ f (x) ≥ 〈ξ ,x〉 which allows
to write f (x) ≥ 〈ξ ,x〉− f ∗(ξ ), an inequality true for every ξ . Taking the sup over ξ

we obtain f ≥ f ∗∗. We want now to prove that this inequality is an equality if f is
convex and lsc. We write f = g∗ and transform this into f ∗ = g∗∗. We then have f ∗ ≤ g
and, transforming this inequality (which changes its sign), f ∗∗ ≥ g∗ = f , which proves
f ∗∗ = f .

Corollary 1.5. Given an arbitrary proper function f : X → R∪{+∞} we have f ∗∗ =
sup{g : g≤ f , g is convex and lsc}.
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Proof. Let us call h the function obtained as a sup on the right hand side. Since f ∗∗ is
convex and lsc and smaller than f , we have f ∗∗ ≤ h. Note that h, as a sup of convex
and lsc functions, is also convex and lsc, and it is of course smaller than f . We write
f ≥ h and double transform this inequality, which preserves the sign. We then have
f ∗∗ ≥ h∗∗ = h, and the claim is proven.

We finally discuss the relations between the behavior at ∞ of a fonction f and its
Legendre transform. We give two definitions.

Definition 1.6. A function f : X → R∪{+∞} defined on a normed vector space X is
said to be coercive if lim||x||→∞ f (x)=+∞ ; it is said to be superlinear if lim||x||→∞

f (x)
||x|| =

+∞.

We note that the definition of coercive does not include any speed of convergence
to ∞, but that for onvex functions this should be at least linear:

Proposition 1.7. A proper, convex, and l.s.c. function f : X →R∪{+∞} is coercive if
and only there exist two constants c0,c1 such that f (x)≥ c0||x||− c1.

Proof. We just need to prove that c0,c1 exist if f is coercive, the converse being trivial.
Take a point x0 such that f (x0)<+∞. Using lim||x||→∞ f (x) = +∞ we know that there
exists a radius R such that f (x) ≥ f (x0)+ 1 as soon as ||x− x0|| ≥ R. By convexity,
we have, for each x with ||x− x0||> R, the inequality f (x)≥ f (x0)+ ||x− x0||/R (it is
enough to use the definition of convexity on the three points x0,x and xt = (1− t)x0 +
tx ∈ ∂B(x0,R)). Since f is bounded from below by an affine function, it is bounded
from below by a constant on B(x0,R), so that we can write f (x)≥ c2 + ||x− x0||/R for
some c2 ∈ R and all x ∈ X . We then use the triangle inequality and obtain the claim
with c0 = 1/R and c1 = c2−||x0||/R.

Proposition 1.8. A proper and convex function f : X → R∪{+∞} is coercive if and
only if f ∗ is bounded in a neighboorhood of 0; it is superlinear if and only if f ∗ is
bounded on each bounded ball of X ′.

Proof. We know that f is coercive if and only if there exist two constants c0,c1 such
that f ≥ gc0,c1 where gc0,c1(x) := c0||x||− c1. Since both f and gc0,c1 are convex l.s.c.,
this inequality is equivalent to the opposite inequality for their transforms, i.e. f ∗ ≤
g∗c0,c1

. We can compute the transform and obtain

g∗c0,c1
(ξ ) =

{
c1 if ||ξ || ≤ c−1

0 ,

+∞ if not.

This shows that f is coercive if and only if there exist two constants R,C (with R = c−1
0 ,

C = c1) such that f ∗ ≤C on the ball of radius R of X ′, which is the claim.
We follow a similar procedure for the case of superlinear functions. We first note

that a convex l.s.c. function f is superlinear if and only if for every c0 there exists c1
such that f ≥ gc0,c1 . Indeed, it is clear that, should this condition be satisfied, we would
have liminf||x||→∞ f (x)/||x|| ≥ c0, and hence liminf||x||→∞ f (x)/||x|| = +∞ because c0
is arbitrary, so that f would be superlinear. On the other, if f is superlinear, for every
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c0 we have f (x) ≥ c0||x|| for large ||x||, say outside of B(0,R) . If we then choose
−c1 := min{infB(0,R) f −c0R,0} (a value which is finite since f is bounded from below
by an affine function), the inequality f (x)≥ c0||x||− c1 is true everywhere.

We then deduce that f is superlinear if and only if for every R = c−1
0 there is a

constant c1 such that f ∗ ≤ c1 on the ball of radius R of X ′, which is, again, the claim.

1.2 Subdifferentials
The above-the-tangent property of convex functions ispired the definition of an exten-
sion of the notion of differential, called sub-differential, as a set-valued map:

Definition 1.9. Given a function f : X → R∪{+∞} we define its subdifferential at x
as the set

∂ f (x) = {ξ ∈ X ′ : f (y)≥ f (x)+ 〈ξ ,y− x〉 ∀y ∈ X}.

We observe that ∂ f (x) is always a closed and convex set, whatever is f . Moreover,
if f is l.s.c. we easily see that the graph of the subdifferential multi-valued map is
closed:

Proposition 1.10. Suppose that f is l.s.c. and take a sequence xn→ x. Suppose ξn ⇀ ξ

and ξn ∈ ∂ f (xn). Then ξ ∈ ∂ f (x).

Proof. for every y we have f (y)≥ f (xn)+ 〈ξ ,y−xn〉. We can then use the strong con-
vergence of xn and the weak convergence of ξn, together with the lower semicontinuity
of f , to pass to the limit and deduce f (y)≥ f (x)+ 〈ξ ,y− x〉, i.e. ξ ∈ ∂ f (x).

Note that in the above proposition we could have exchanged strong convergence
for xn and weak for ξn for weak convergence for xn (but f needed in this case to be
weakly l.s.c.) and strong for ξn.

When dealing with arbitrary functions f , the subdifferential is in most cases empty,
as there is no reason that the inequality defining ξ ∈ ∂ f (x) is satisfied for y very far
from x. The situation is completely different when dealing with convex functions,
which is the standard case here subdifferentials are defined. In this case we can prove
that ∂ f (x) is never empty if x lies in the interior of the set { f <+∞} (note that outside
{ f <+∞} the subdifferential of a proper function is clearly empty).

We first provide an insight about the finite-dimensional case. In this case we simply
write ξ · x for the duality product, which coincides with the Euclidean scalar product
on RN .

We start from the following property.

Proposition 1.11. Given f :RN→R∪{+∞} suppose that f is differentiable at a point
x0. Then ∂ f (x0)⊂ {∇ f (x0)}. If moreover f is convex, then ∂ f (x0) = {∇ f (x0)}.

Proof. from the definition of sub-differential we see that ξ ∈ ∂ f (x0) means that y 7→
f (y)−ξ ·y is minimal at y = x0. Since we are supposing that f is differentiable at such
a point, we obtain ∇ f (x0)−ξ = 0, i.e. ξ = {∇ f (x0). This shows ∂ f (x0)⊂ {∇ f (x0)}.
The inclusion becomes an equality if f is convex since the above-the-tanent property
of convex functions exactly provides f (y)≥ f (x0)+∇ f (x0) · (y− x0) for every y.
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Proposition 1.12. Suppose that f : RN → R∪{+∞} is convex and take a point x0 in
the interior of { f <+∞}. Then ∂ f (x0) 6= /0.

Proof. It is well-known that convex functions in finite dimension are locally Lipschitz
in the interior of their domain, and Lipschitz functions are differentiable Lebesgue-
a.e. because of the Rademacher’s theorem. We can then take a sequence of points
xn → x0 such that f is differentiable at xn. We then have ∇ f (xn) ∈ ∂ f (xn) and the
Lipschitz behavior of f around x0 implies |∇ f (xn)| ≤C. It is then possible to extract a
subsequence such that ∇ f (xn)→ v. Proposition 1.10 implies v ∈ ∂ f (x0).

We can easily see, even from the 1D case, that different situations can occurr at the
boundary of { f <+∞}. If we take for instance the proper function f defined via

f (x) =

{
x2 if x≥ 0,
+∞ if x < 0,

we see that we have ∂ f (0) = [−∞,0] so that the subdifferential can be “fat” on these
boundary points. If we take, instead, the proper function f defined via

f (x) =

{
−
√

x if x≥ 0,
+∞ if x < 0,

we see that we have ∂ f (0) = /0, a fact related to the infinite slope of f at 0, an inifnite
slope that can of course only appaer on boundary points.

The proof of the fact that the sub-differential is non-empty1 in the interior of the
domain is more involved in the general (infinite-dimensional) case, and also based on
the use of the Hahn-Banach theorem. It will require the function to be convex and
l.s.c., this second assumption being useless in the finitdimensional case, since convex
functions are locally Lipschitz in the interior of their domain. It also requires to dis-
cuss whether the function is indeed locally bounded around some points. We state the
following clarifying proposition.

Proposition 1.13. If f : X → R∪ {+∞} is a proper convex and l.s.c. function, the
following facts are equivalent

1. f is locally Lipschitz continuous on the interior of its domain (i.e. for every point
in the interior of the domain there exists a ball centered at such a point where f
is Lipschitz continuous);

2. there exists a non-empty ball where f is finite-valued and Lipschitz continuous;

3. there exists a point where f is continuous and finite-valued;

4. there exists a point which has a neighborhood where f is bounded from above
by a finite constant.

1Note that, instead, we do not discuss the relations between subdifferential and gradients as we decided
not to discuss the differentiability in the inifnite-dimensional case.
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Moreover, all the above facts hold if X is a Banach space.

Proof. It is clear that 1. implies 2., which implies 3., which implies 4. Let us note that,
if f is bounded from above on a ball B(x0,R), then necessarily f is Lipschitz continuous
on B(x0,R/2). Indeed, we know (point 1 in Proposition 1.4) that f is also bounded from
beow by an affine function, and hence by a constant on B(0,R). Then, if there are two
points x1,x2 ∈ B(x0,R/2) with an incremental ratio equal to L and f (x1)> f (x2), then,
following the half-line going from x2 to x1 we find two points x3 ∈ ∂B(x0,R/2) and
x4 ∈ ∂B(x0,3R/4) with |x3−x4| ≥ R/4 and an incremental ration which is also at least
L. This implies f (x4)> f (x3)+LR/4 but the upper and lower bounds on f on the ball
B(0,R) imply that L cannot be too large, so f is Lipschitz continuous on B(x0,R/2).

Hence, in order to prove that 4. implies 1. we just need to prove that every point
in the interior of the domain admits a ball centered at such a point where f is bounded
from above. We start from the existence of a ball B(x0,R) where f is bounded from
above and we take another point x1 in the interior of the domain of f . for small ε > 0,
the point x2 := x1− ε(x0− x1) also belongs to the domain of f and every point of the
ball B(x1,r) with r = εR

1+ε
can be written as a convex combination of x2 and a point in

B(x0,R): indeed we have

x1 + v =
1

1+ ε
x2 +

ε

1+ ε
(x0 +

1+ ε

ε
v)

so that |v|< r implies x0+
1+ε

ε
v∈ B(x0,R). Then, f is bounded from above on B(x1,r)

by max{ f (x2),supB(x0,R) f} which shows the local bound around x1.
finally, we want to prove that f is necessarily locally bounded around every point

of the interior of its domain if X is complete. Consdier a closed ball B contained in
{ f < +∞} and write B =

⋃
n{ f ≤ n}∩B. Since f is l.s.c., each set { f ≤ n}∩B is

closed. Since their countable union has non-empty interior Baire’s theorem (which is
valid in complete metric spaces) implies that at least one of these sets also has non-
empty interior, so there exists a ball contained in a set { f ≤ n}, hence a point where
f is locally bounded from above. Then we satisfy condition 4., and consequently also
condition 1., 2. and 3.

We can now prove the following theorem.

Theorem 1.14. Suppose that f : X →R∪{+∞} is a proper convex and l.s.c. function
and take a point x0 in the interior of { f <+∞}. Also suppose that there exists at least
a point x1 (possibly different from x0) where f is continuous. Then ∂ f (x0) 6= /0.

Proof. Let us consider the set A given by the interior of Epi( f ) in X ×R and B =
{(x0, f (x0))}. They are two disjoint convex sets, and a is open. Hence, there exists a
pair (ξ ,a) ∈ X ′×R and a constant such that 〈ξ ,x0〉+ a f (x0) ≤ c and 〈ξ ,x〉+ at > c
for every (x, t) ∈ A.

The assumption on the exisntence of a point x1 where f is continuous implies that f
is bounded (say by a constant M) on a ball around x1 (say B(x1,R) and hence the set A
is non-empty since it includes B(x1,R)× (M,∞). Then, the convex set Epi( f ) has non-
empty interior and it is thus the closure of its interior (to see this it is enough to connect
every point of a closed convex set to the center of a ball contained in the set, and see
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that there is a cone composed of small balls contained in the convex set approximating
such a point). In particular, since (x0, f (x0)) belongs to Epi( f ), it is in the closure of
A, so necessarily we have 〈ξ ,x0〉+a f (x0)≥ c and hence 〈ξ ,x0〉+a f (x0) = c.

As we did iin Proposition 1.4, we must have a > 0. Indeed, we use Proposition 1.13
to see that f is also locally bounded around x0 so that points of the form (x, t) = (x0, t)
for t large enough should belong to A and should satisfy a(t− f (x0))> 0, which implies
a > 0.

Then, we can write 〈ξ ,x〉+ at > c = 〈ξ ,x0〉+ a f (x0), dividing by a and using
ξ̃ := ξ/a as

〈ξ̃ ,x〉+ t > 〈ξ̃ ,x0〉+ f (x0) for every (x, t) ∈ A.

The inequality becomes large on the clouse of A but implies, when applied to (x, t) =
(x, f (x)) ∈ Epi( f ) = A,

〈ξ̃ ,x〉+ f (x)≥ 〈ξ̃ ,x0〉+ f (x0),

which exactly means −ξ̃ ∈ ∂ f (x0).

Of course, thanks to the last claim in Proposition 1.13, when x is a Banach space
we obtain ∂ f (x0) 6= /0 for every x0 in the interior of { f <+∞}.

We list some other properties of subdifferentials.

Proposition 1.15. 1. A point x0 solves min{ f (x) : x∈ X} if and only if 0∈ ∂ f (x0).

2. The subdifferential satisfies the monotonicity property

ξi ∈ ∂ f (xi) for i = 1,2 ⇒ 〈ξ1−ξ2,x1− x2〉 ≥ 0.

3. If f is convex and l.s.c., the subdifferentials of f and f ∗ are related through

ξ ∈ ∂ f (x)⇔ x ∈ ∂ f ∗(ξ )⇔ f (x)+ f ∗(ξ ) = 〈ξ ,x〉.

Proof. 1. is a straightforward consequence of the definition of subdifferential, since
0 ∈ ∂ f (x0) means that for every y we have f (y)≥ f (x0).

2. is also straightforward if we sum up the inequalities

f (x2)≥ f (x1)+ 〈ξ ,x2− x1〉; f (x1)≥ f (x2)+ 〈ξ ,x1− x2〉.

for part 3., once we know that for convex and l.s.c. functions we have f ∗∗ = f , it
is enough to prove ξ ∈ ∂ f (x)⇔ f (x)+ f ∗(ξ ) = 〈ξ ,x〉 since then, by symmetry, we
can also obtain x ∈ ∂ f ∗(ξ )⇔ f (x)+ f ∗(ξ ) = 〈ξ ,x〉. We now look at the definition of
subdifferential, and we have

ξ ∈ ∂ f (x) ⇔ for every y ∈ X we have f (y)≥ f (x)+ 〈ξ ,y− x〉
⇔ for every y ∈ X we have 〈ξ ,x〉− f (x)≥ 〈ξ ,y〉− f (y)

⇔ 〈ξ ,x〉− f (x)≥ sup
y
〈ξ ,y〉− f (y)

⇔ 〈ξ ,x〉− f (x)≥ f ∗(ξ ).

This shows that ξ ∈ ∂ f (x) is equivalent to 〈ξ ,x〉 ≥ f (x) + f ∗(ξ ), which is in turn
equivalent to to 〈ξ ,x〉 = f (x)+ f ∗(ξ ), since the opposite inequality is always true by
definition of f ∗.
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We also state another property, but we prefer to stick to the finite-dimensional case
for simplicity.

Proposition 1.16. A function f : RN → R∪ {+∞} is strictly convex if and only if
∂ f (x0)∩∂ f (x1) = /0 for all x0 6= x1.

Proof. If we have ∂ f (x0)∩∂ f (x1) 6= /0 for two points x0 6= x1, take ξ ∈ ∂ f (x0)∩∂ f (x1)
and define f̃ (x) := f (x)−〈ξ ,x〉. Then both x0 and x1 minimize f̃ and this implies that
f is not strictly convex. If, instead, we suppose that f is not strictly convex, we need
to find two points with a same vector in the subdifferential. Consider two points x0
and x1 on which the strict convexity fails, i.e. f is affine on [x0,x1]. We then have a
segment S = {(x, f (x)) : x ∈ [x0,x1]} in the graph of f and we can separate it from the
interior A of Epi( f ) exactly as we did in Theorem 1.14. Up to restricting the space
where f is defined to the minimal affine space containing its domain, we can always
suppose that the domain has non-empty interior and hence the epigraph as well. This
is not restrictive, since if we want then to define subdifferentials in the original space
it is enough to add arbitrary components orthogonal to the affine space containing the
domain.

Following the same arguments as in Theorem 1.14, we obtain the existence of a
pair (ξ ,a)i ∈ X ′×R such that

〈ξ ,x〉+a f (x)< 〈ξ ,x′〉+at for every (x′, t) ∈ A and every x ∈ [x0,x1].

We then prove a > 0, divide by a, pass to a large inequality on the closure of A, and
deduce −ξ/a ∈ ∂ f (x) for every x ∈ [x0,x1].

Limiting once more to the finite-dimensional case (also because we do not want to
discuss differentiability in other settings) we can deduce from the previous proposition
and from part 3. of Proposition 1.15 the following fact.

Proposition 1.17. Take two proper, convex and l.s.c. conjugate functions f and f ∗

(with f = f ∗∗); then f is a real-valued C1 function on RN if and only if f ∗ is strictly
convex and superlinear.

Proof. We first prove that a convex function is C1 if and only if ∂ f (x) is a single-
ton for every x. If it is C1, and then differentiable, we already saw that this implies
∂ f (x) = {∇ f (x)}. The converse implication can be proven as follows: first we ob-
serve that, if we have a map v : RN → RN with ∂ f (x) = {v(x)}, then v is necessarily
locally bounded and continuous. Indeed, the function f is necessaril finite everywhere
(since the subdifferential is non-empty at every point) and hence locally Lipschitz; lo-
cal boundedess of v comes from v(x) · e ≤ f (x+ e)− f (x) ≤ C|e| (where we use the
Local Lipschitz behavior of f ): using e oriented as v(x) we obtain a bound on |v(x)|.
Continuity comes from local boundedness and from Proposition 1.10: when xn → x
then v(xn) admits a converging subsequence, but the limit can only belong to ∂ f (x),
i.e. it must equal v(x). Then we prove v(x) = ∇ f (x), and for this we use the definition
of ∂ f (x) and ∂ f (y) so as to get

v(y) · (y− x)≥ f (y)− f (x)≥ v(x) · (y− x).
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We then write v(y) · (y− x) = v(x) · (y− x)+ o(|y− x|) and we obtain the first-order
development f (y)− f (x) = v(x) ·(y−x)+o(|y−x|) which characterizes v(x) = ∇ f (x).

This shows that f is C1 as soon as subdifferentials are singletons. On the other
hand, point 3. in 1.15 shows that this is equivalent to having, for each x ∈ RN , exacty
one point ξ with x ∈ ∂ f ∗(ξ ). The fact that no more than one point ξ has the same
vector in the subdifferential is equivalent (Proposition 1.16) to being strictly convex.
The fact that each point is taken at least once as a subdifferential is, instead, equivalent
to being superlinear (see Lemma 1.18 below)

Lemma 1.18. A convex and l.s.c. function f : RN → R∪{+∞} is superlinear if and
only if ∂ f is surjective.

Proof. Let us suppose that f is convex, l.s.c, and superlinear. Then ofr every ξ the
function f̃ given by f̃ (x) := f (x)− ξ · x is also l.s.c, and superlinear, and it admitds a
minizer x0. Such a point satisfies ξ ∈ ∂ f (x0), which proves that ξ is in the image of
∂ f , which is then surjective.

Let us suppose now that ∂ f is surjective. Let us fix a number L > 0 and take the
2N vectors ξ

±
i := ±Lei, where the vectors ei are the canonical basis of RN . Since

each of these vectors belong to the image of the subdifferential, there exist points
x±i such that ξ

±
i ∈ ∂ f (x±i ). This implies that f satisfies 2N inequalities of the form

f (x) ≥ ξ
±
i · x−C±i for some constants C±i . We then obtain f (x) ≥ L||x||∞−C, where

||x||∞ = max{|xi|} = maxi x · (±ei) is the norm on RN given by the maximal modulus
of the components, and C = maxC±i . from the equivalence of the norms in finite di-
mension we get f (x) ≥C(N)L||x||−C, which shows liminf||x||→∞

f (x)
||x|| ≥C(N)L. The

arbitrariness of L concludes the proof.

1.3 Formal duality for constrained and penalized opti-
mization problems

In this section we introduce the notion of dual problem of a convex optimization prob-
lem through an inf-sup exchange procedure. This often requires to write possible con-
straints as a sup penalization, and we will then see how to adapt to more general prob-
lems. No proof of duality results will be given, and we will analyze in details in the next
section the most relevant examples in the calculus of variations. The proofs presented
in Section 4.3 will then inspire Section 4.5 for a more general theory.

We start from the following problem:

min{ f (x) : x ∈ X , Ax = b} ,

where A : X → Y is a linear map between two normed vector spaces, b ∈ Y is a fixed
vector and f : X → R∪{+∞} is a given convex and l.s.c. function. We will denote
by At the transpose operator of A, a linear mapping defined on Y ′, the dual of Y , and
valued into X ′, dual of X , and characterized by

〈At
ξ ,x〉 := 〈ξ ,Ax〉 for all ξ ∈ Y ′ and x ∈ X .
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We can see that the above problem is equivalent to

min

{
f (x)+ sup

ξ∈Y ′
〈ξ ,Ax−b〉 : x ∈ X

}
,

since we can compute the value of the expression supξ∈Y ′〈ξ ,Ax−b〉 by distinguishing
two cases: either Ax = b, in which case 〈ξ ,Ax−b〉= 0 for every ξ and the sup equals
0, or Ax 6= b, in which case there exists an element ξ ∈ Y ′ such that 〈ξ ,Ax− b〉 6= 0
and, by multiplying ξ times arbitrarily large constants, positive or negative depending
on the sign of 〈ξ ,Ax−b〉, we can see that the sup is +∞. Hence, adding this sup means
adding 0 if the constraint is satisfied or adding +∞ if not; since in a minimization
problem the value +∞ is the same as a constraint, we can see the equivalence between
the problem with the constraint Ax = b and the problem with the sup over ξ .

We get now to a problem of the form

inf
x

sup
ξ

L(x,ξ ), where L(x,ξ ) = f (x)+ 〈ξ ,Ax−b〉.

This is an inf-sup problem, and we can associate with it a second optimization
problem, obtained by switching the order of the inf and the sup. We can consider

sup
ξ

inf
x

L(x,ξ ),

which means maximizing over ξ the function obtained as the value of the inf over
x. Remember that we have forgotten the constraint Ax = b, since it took part in the
definition of L, and we now minimize over all x. We can then give a better expression
to this new problem, that we will call dual problem. Indeed we have

sup
ξ

inf
x

L(x,ξ ) = sup
ξ

−〈ξ ,b〉+ inf
x

f (x)+ 〈ξ ,Ax〉.

We then rewrite 〈ξ ,Ax〉 as 〈Atξ ,x〉 and change the ign in the inf so as to write it as a
sup. We do obtain

sup
ξ

inf
x

L(x,ξ ) = sup
ξ

−〈ξ ,b〉− sup
x
− f (x)+ 〈−At

ξ ,x〉.

We now recognize in the sup over x the form of a Legendre transform and we finally
obtain

sup
ξ

inf
x

L(x,ξ ) = sup
ξ

−〈ξ ,b〉− f ∗(−At
ξ ).

This is a convex optimization problem in the variable ξ (the maximization of the sum
of a linear functional and the opposite of a convex function, f ∗, applied to a linear
function of ξ , involving the Legendre transform of the original objective function f .

We would like the two above optimization problems (“inf sup” and “sup inf”) to be
related to each other, and for instance their values to be the same. Given an arbitrary
function L the values of inf sup and of sup inf are in genrel different, as w can see
from this very simple example: take L : A×B→ R with A = B = {±1} and L(a,b) =
sign(ab). In this case we have infsup = 1 > supinf =−1. Indeed, we always have an
inequality, that we prove here.
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Proposition 1.19. Given an arbitrary function L = A×B→ R we have

inf
a

sup
b

L(a,b)≥ sup
b

inf
a

L(a,b).

Proof. Take (a0,b0) ∈ A×B and write L(a0,b0)≥ infa L(a,b0). We then take the sup
over b0 on both sides, thus obtaining supb0

L(a0,b0)≥ supb0
infa L(a,b0). We have now

a number on the right-hand side, and a function of a0 on the left-hand side. We then
take the inf over a0 and get

inf
a0

sup
b0

L(a0,b0)≥ sup
b0

inf
a

L(a,b0),

which is exactly the same as the claim up to renaming the variables.

If in general it is not possible to connect the two problems obtained as inf-sup and
sup-inf of a same function, it can be the case when some conditions are met. The main
tool to do it is a theorem by Rockafellar (see [?], Section 37) requiring concavity in
the variable on which we maximize, convexity in the other one, and some compactness
assumption. In our precise case concavity and convexity are met, since L is convex
in x and linear in ξ , and hence concave. Yet, Rockafellar’s statement concerns finite-
dimensional spaces, and moreover we should still deal with the compactness properties
we would need. Hence, we will not provide any proof here that min{ f (x) : Ax = b}
and max{−〈ξ ,b〉− f ∗(−Atξ ) : ξ ∈Y ′} are equal, and we will wait till the next section
for a proof in a very particular case.

We only discuss here some consequences and some variants of this duality ap-
proach.

A first consequence concerns sufficient optimality conditions. Suppose to consider
two optimization problems issued by an inf-sup/sup-inf procedure, i.e. min{ f (a) : a ∈
A} and max{g(b) : b ∈ B} with f (a) := supb L(a,b) and g(b) := infa L(a,b). Then, if
a0 ∈ A and b0 ∈ B are such that f (a0) = g(b0), automatically a0 minimizes f and b0
maximizes g, just because Proposition 1.19 guarantees f (a0) ≥ inf f ≥ supg ≥ g(b0)
and all inequalities must be equalities here. In our precise case the functional f should
be replaced with f plus the constraint Ax = b, and g is given by g(ξ ) := −〈ξ ,b〉−
f ∗(−Atξ )

A second consequence concers instead necessary optimality conditions. We need
now to believe in inf f = supg, and we suppose that we have a pair (a0,b0) where a0
minimizes f and b0 maximizes g. Then we deduce f (a0) = g(b0), but this equality is
a very strong piece of information in many cases. for instance, in our case this means
that, if x0 and ξ0 are optimal, then we have

f (x0) =−〈ξ0,b〉− f ∗(−At
ξ0) and Ax0 = b.

This can be re-written as

f (x0)+ f ∗(−At
ξ0) =−〈ξ0,b〉=−〈ξ0,Ax0〉=−〈At

ξ0,x0〉,

i.e. we have equality in the inequality f (x)+ f ∗(y)≥ 〈x,y〉. This is equivalent to

x0 ∈ ∂ f ∗(−At
ξ0) and −At

ξ0 ∈ ∂ f (x0).
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We can note the similarity with Lagrange multipliers, where optimizing a function f
under a linear constraint of the form Ax = b can be translated into the fact that ∇ f
should belong to a subspace, orthogonal to the affine space of the constraints, which is
indeed the image of At .

Before moving on to variants of the previous pair of dual problems we want to
insist that writing an equality constraint as a sup over test elements of a dual space is
exactly what is always done in the weak formulation of PDEs. In the next section we
will see as an example what happens when the constraint is of the form ∇ ·v= f , which
can be written as

´
∇φ · v+φ f = 0 for every test function φ , and it is very natural to

replace the constraint with a sup over φ . In this case, the dual problem turns out to
be a maximization over scalar functions φ . Moreover, the transpose of the divergence
operator ∇· is the opposite of the gradient, since

´
φ∇ · v = −

´
∇φ · v by integration

by parts, as soon as boundary conditions are taken care of. In this way, the functional
f ∗(−Atφ) will be a very classical functional in calculus of variations.

Among variants, we first want to discuss the case of inequality constraints instead
of equalities. A constraint of the form Ax≤ b only has a meaning if we give a notion of
inequality among vectors, which is general is not canonically defined. In finite dimen-
sion a general convention, mainly used by computer scientists in optimization problem,
is that we can consider the inequality component-wise. In calculus of variations, we
can expect both Ax and b to be functions in a certain functional space, and we can
require the inequality to be satisfied pointwise (or a.e.). What is important is that we
should characterize the inequality in terms of test functions. for instance, the inequality
f ≤ g a.e. is equivalent to

´
φ( f − g) ≤ 0 for every φ ≥ 0 and a similar equivalence

can be stated in the finite-dimensional componentwise case. We then write

min{ f (x) : x ∈ X , Ax≤ b}= min

{
f (x)+ sup

ξ∈Y ′,ξ≥0
〈ξ ,Ax−b〉 : x ∈ X

}
,

since

sup
ξ∈Y ′,ξ≥0

〈ξ ,y〉=

{
0 if y≤ 0,
+∞ if not.

We can then go on with the very same procedures and obtain the dual problem

max{−〈ξ ,b〉− f ∗(−At
ξ ) : ξ ∈ Y,ξ ≥ 0}.

Finally, once that we know how to build dual problems out of constrained optimization
problems, we could consider a more general case, such as

min{ f (x)+g(Ax)} ,

where g = 1{b} corresponds to the previous example. In this case we do not have
constraints to write as a sup, but we can decide to write one of the two functions f or g
as a sup thanks to the double Legendre transform. We then set

L(x,ξ ) := f (x)+ 〈ξ ,Ax〉−g∗(ξ )
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and we easily see that we have

min{ f (x)+g(Ax)}= inf
x

sup
ξ

L(x,ξ ).

We then interchange inf and sup thus obtaining the dual problem

sup
ξ

inf
x

L(x,ξ ) = sup
ξ

−g∗(ξ )+ inf
x

f (x)+ 〈ξ ,Ax〉

= sup
ξ

−g∗(ξ )− sup
x
− f (x)+ 〈−At

ξ ,x〉= sup
ξ

−g∗(ξ )− f ∗(−At
ξ ).

As we said, the equality constraint Ax = b corresponds to g = 1{b}, so that we have
g∗(ξ ) = 〈ξ ,b〉.

The duality between

min{ f (x)+g(Ax)} and sup
ξ

−g∗(ξ )− f ∗(−At
ξ ),

is a classical object in convex analysis and a theorem guaranteeing, under some condi-
tions, that the the values are actually equal is known as Fenchel-Rockafellar’s theorem.
We will see in Section 4.5 a proof, in a simplified setting, of this theorem, inspired by
the precise proof of a concrete duality result presented in Section 4.3.

1.4 A proof of Fenchel-Rockafellar’s duality
In this section we want to take advantage of the technique developed in Section 4.3 for
the precisa case of minimal flow problems in order to prove a general abstract version
of the Fenchel-Rockafellar duality theorem. For simplicity, we will stick to the case
where all spaces are reflexive, so that the role of the function in the primal and in the
dual problems are completely symmetric. We will start from the following statement.

Theorem 1.20. Suppose that X and Y are separable reflexive normed vector spaes, that
f : X →R∪{+∞} and g : Y →R∪{+∞} are convex and lower-semicontinuous func-
tions, and that A : X → Y is a continuous linear mapping. Suppose that g is bounded
from below and f coercive. Then we have

min{ f (x)+g(Ax) : x ∈ X}= sup
{
−g∗(ξ )− f ∗(−At

ξ ) : ξ ∈ Y ′
}
,

where the existence of the minimum on the right-hand side is part of the claim.

Proof. We will define a function F : Y → R∪{+∞} via

F (p) := min{ f (x)+g(Ax+ p) : x ∈ X} .

The existence of the minimum is a consequence of the following fact: for any sequence
(xn, pn) with f (xn)+g(Axn + pn) ≤C the sequence xn is bounded. This boundedness
comes from the lower bound on g and from the coercive behavior of f . Once we know
this, we can use pn = p, take a minimizing sequence xn for fixed p, and extract a
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weakly converging subsequence xn ⇀ x using the Banach-Alaoglu Theorem. We also
have Axn + p ⇀ Ax+ p and the semicontinuity of f and g provide the minimality of x
(since, being convex, f and g are both l.s.c. for the strong and the weak convergence,
in X and Y , respectively).

We now compute F ∗ : Y ′→ R∪{+∞}:

F ∗(ξ ) = sup
p
〈ξ , p〉−F (p)

= sup
p,x
〈ξ , p〉− f (x)−g(Ax+ p)

= sup
y,x
〈ξ ,y−Ax〉− f (x)−g(y)

= sup
y
〈ξ ,y〉−g(y)+ sup

x
〈−At

ξ ,x〉− f (x)

= g∗(ξ )+ f ∗(−At
ξ ).

Now we use, as we did in Section 4.3, F ∗∗(0) = sup−F ∗, which proves the claim,
as soon as we prove that F is convex and l.s.c.

The convexity of F is easy. We just need to take p0, p1 ∈ Y , and define pt := (1−
t)p0 + t p1. Let x0,x1 be optimal in the definition of F (p0) and F (p1), i.e.

´
f (xi)+

g(Axi + pi) = F (pi), and set xt := (1− t)x0 + tx1. We have

F (pt) ≤ f (xt) + g(Axt + pt) ≤ (1 − t)F (p0) + tF (p1),

and the convexity is proven.
For the semicontinuity, we take a sequence pn→ p in Y . We can suppose F (pn)≤

C otherwise there is nothing to prove. Take the corresponding optimal points xn and,
applying the very first observation of this proof, we obtain ||xn|| ≤C. We can extract a
subsequence such that limk F (pnk) = liminfn F (pn) and xnk ⇀ x. The semicontinuity
of f and g provides

F (p)≤ f (x)+g(Ax+ p)≤ liminf
k

f (xnk)+g(Axnk + pnk)= lim
k

F (pnk)= liminf
n

F (pn),

which gives the desired result.

We now note that, if g is not bounded from below, it is always possible to remove a
suitable linear function from it so as to make it bounded from below, since all convex
and l.s.c. functions are bounded from below by an affine function. We can then define
g̃ via g̃(y) = g−〈ξ0,y〉 for a suitable ξ0, and guarantee inf g̃ > −∞. In order not to
change the value of the primal problem we also need to modify f into f̃ defined via
f̃ (x) := f + 〈Atξ0,x〉, so that

f̃ (x)+ g̃(Ax) = f (x)+ 〈At
ξ0,x〉+g(Ax)−〈ξ0,Ax〉= f (x)+g(Ax).

Moreover, we can compute what changes in the dual problem. Is it true that we have
supξ −g∗(ξ )− f ∗(−Atξ ) = supξ −g̃∗(ξ )− f̃ ∗(−Atξ ) ?

In order to do this, we need to compute the Legendre transform of f̃ and g̃. A
general, and easy, fact, that is proposed as an exercise (see Exercise ??) states that
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subtracting a linear function translates into a translation on the Legendre transform.
We then have

g̃∗(ξ ) = g∗(ξ +ξ0); f̃ ∗(ζ ) = f ∗(ζ −At
ξ0)

and then
g̃∗(ξ )+ f̃ ∗(−At

ξ ) = g∗(ξ +ξ0)+ f ∗(−At(ξ +ξ0))

and a simple change of variable ξ 7→ ξ +ξ0 shows that the sup has not changed. This
shows that the duality result is not affected by this reformulation in terms of f̃ and g̃.
It is then enough, for the duality to hold, that the assumptions of Theorem 1.20 are
satisfied by ( f̃ , g̃) instead of ( f ,g). Since we chose ξ0 on purpose in order to have g̃
lower bounded, we only need now to require that f̃ is coercive. Not that this would
be the case if f was superlinear, as it would stay superlinear after adding any linear
function, but it is not automatic when speaking of a generic coercive function.

The condition on ξ0 such that, at the same time g̃ is bounded from below and f̃
superlinear can be more easily translated in terms of f ∗ and g∗. We can indeed state
the following propositon.

Proposition 1.21. Suppose that X and Y are separable reflexive normed vector spaes,
that f : X → R∪{+∞} and g : Y → R∪{+∞} are convex and lower-semicontinuous
functions, and that A : X→Y is a continuous linear mapping. Suppose that there exists
ξ0 ∈ Y ′ such that g∗(ξ0) < +∞ and that f ∗ is continuous and finite at Atξ0. Then we
have

min{ f (x)+g(Ax) : x ∈ X}= sup
{
−g∗(ξ )− f ∗(−At

ξ ) : ξ ∈ Y ′
}
,

where the existence of the minimum on the right-hand side is part of the claim.

Proof. The condition g∗(ξ0)<+∞ means g̃∗(0)<+∞, which means that g̃ is bounded
from below.

The condition on f ∗ at Atξ0 translates into the same condition for f̃ ∗ at 0, and we
know that a function is coercive if and only if its Legendre transform is bounded on a
neighborhood of 0. This means that f̃ is coercive.

We then conclude that we can apply Theorem 1.20 to ( f̃ , g̃) instead of ( f ,g), which
provides the desired result.

We can also deduce the following statement, which is probably the most standard
formulation of the Fenchel-Rockafellar duality theorem, even if we only state it for
reflexive spaces.

Theorem 1.22. Suppose that X and Y are separable reflexive normed vector spaes,
that f : X → R∪{+∞} and g : Y → R∪{+∞} are convex and lower-semicontinuous
functions, and that A : X→Y is a continuous linear mapping. Suppose that there exists
x0 ∈ X such that f (x0)<+∞ and that g is continuous and finite at Ax0. Then we have

inf{ f (x)+g(Ax) : x ∈ X}= max
{
−g∗(ξ )− f ∗(−At

ξ ) : ξ ∈ Y ′
}
,

where the existence of the minimum on the right-hand side is part of the claim.

Proof. The proof is straightforward once we realize that we can interchange f with g∗,
g with f ∗, and A with At in the statement of Proposition 1.21.
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