
Optimisation Convexe: Algorithmes et
Applications en Apprentissage

M2 Statistique, Modélisation et Science des données
Université Claude Bernard Lyon 1

Filippo Santambrogio

Contents
1 Introduction to Optimization 2

1.1 Min and inf, max and sup . 2
1.2 Example of optimization problems in data sciences 3
1.3 Existence and optimality conditions . 4
1.4 Convex functions . 5

2 Gradient descent 6
2.1 Unconstrained fixed-step gradient algorithm . 6
2.2 Projected gradient algorithm . 7
2.3 Slower convergence and acceleration for non-elliptic smooth convex functions 9

3 Non-smooth optimization 12
3.1 Subdifferential and subgradient descent . 12
3.2 Proximal methods . 14

4 Convex duality and algorithms using duality 16
4.1 Fenchel-Legendre transform . 16
4.2 Dual problems . 18
4.3 Uzawa and Augmented Lagrangian algorithms . 23

5 Stochastic gradient descent 25

6 Complementary material 28
6.1 Point clouds separation . 28
6.2 Inverse problems . 29

Updated on September 30, 2024.

1

1 Introduction to Optimization

1.1 Min and inf, max and sup

Definition 1.1. Given a non-empty set E ⊂ R we say that a number a0 ∈ R is the minimum of E
(and we write a0 = minE) if it satisfies the two following properties:

a) for every a ∈ E we have a ≥ a0,

b) a0 ∈ E.
We say instead that a value ` ∈ R̄ = [−∞,+∞] is the infimum of E (and we write ` = inf E) if it
satisfies the two following properties:

a) for every a ∈ E we have a ≥ `,

b) for every `′ > ` there exists a ∈ E such that a < `′ (in other words, ` is the maximal value
which satisfies the previous property).

The existence of the infimum is a consequence of the contruction of the set of real numbers R.
Note that the inf is never +∞, except for the emptyset (or, if we considered E ⊂ R̄, in the case
E = {+∞}). On the contrary, the minimum does not always exist, think at E = (0,∞). One can
check that the minimum exists if and only if we have inf E ∈ E (i.e. the inf satisfies the second
property for the min).

Moreover, one can also characterize the inf in this other way
a) for every a ∈ E we have a ≥ `,

b) there exists a sequence of elements an ∈ E such that an → `.
In practice, we never look for the minimum (or inf) of a set of numbers which is already well-

known, but for the min or inf of the set of values that a certain function takes on a certain set, i.e. we
take E = {f(x) : x ∈ A}, for a given function f : A → R. The set A, the domain of the function,
can be more or less arbitrary, but it is important that the function takes values into R. This is due
to the fact that we want an order on the target set, and we cannot optimize functions which are
complex-valued, vector-valued, fruit-valued. . . It is possible – and sometimes useful – to consider
functions valued into R ∪ {+∞}. Unless f is the constant function +∞ then its inf is for sure in
R∪{−∞}. In general we do not consider the minimization of a function which takes somewhere the
value −∞, since it would be trivial. All these considerations can of course be done for maximization
instead of minimization, and we could define the maximum and the supremum.
Example. Suppose that we want to build the wing of an airplane and that we describe our choice
in terms of a certain number of parameters (x1, x2, . . . , xN) standing for its length, width at different
locations of the wing, its density a different locations, etc. Suppose that f(x) stands for the construc-
tion cost of a wing of type x = (x1, x2, . . . , xN) ∈ RN , and that g(x) stands for a certain performance
of the wing. We could be interested in solving

min{f(x) : x ∈ A}, where A = {x ∈ RN : g(x) ≥ c}
for a certain constant c. It is also possible to replace the constraint with a penalization, looking at
something like

min{f(x)− λg(x) : x ∈ RN},
and the choice of the parameter λ > 0 is a delicate matter.

It is important in optimization not to get confused between the minimal value and the minimizer
of a function (this distinction does not exist when we minimize a set of values but, as we said, in
practice we always minimizes the value of a function f over a set A). We denote by min

A
f the minimal

value, which is a number. Such number, if it exists, is always unique. We denote by argmin
x∈A

f(x) the

minimizer, which could be unique or not (many points could give the same minimal value).

2

1.2 Example of optimization problems in data sciences

A typical problem in data analysis is the following: we have two sets, X and Y , and we obtain data
in the form of pairs (x, y) ∈ X × Y . We can imagine that Y is a set whose goal is to classify points
of X . For instance, the set X is composed of images of animals and we would like to decide whether
the image represents a cat, a dog or a dolphin, i.e. Y = {cat,dog,dolphin,other}. Or X could be
again a set of images, and we would just like to decide whether the image represents a cat or not,
so that we could use Y = {−1, 1} for a binary choice, or Y = [−1, 1] if we want to insert different
degrees of certainty in the answer (y > 0 means “most likely a cat”, while y < 0 “most likely not a
cat”). We suppose that pairs of data (x, y) ∈ X ×Y can occurr with a certain probability distribution
π ∈ P(X × Y), which we do not know. We also assume that the correspondence between x and y
should be (but it is not because of errors, noise, ambiguities in the interpretation. . .) deterministic,
i.e. y = f(x). We look for this function f : X → Y . To do it we fix a loss function L : Y × Y → R
which acts like a distance: L(y, y′) ≥ 0 and L(y, y′) = 0 if and only if y = y′. Then, we would like to
solve

min
f

E(X,Y)∼π[L(f(X), Y)].

Yet, as we do not know π we replace it with its empirical version, i.e. with πN = 1
N

N∑
i=1

δ(xi,yi), where

the points (xi, yi) ∈ X × Y are the observations we have collected. We then look at

min
f

∑
N

L(f(xi), yi).

This problem has to be considered either under additional constraints on f (for instance: we impose
f to be linear, or to be a polynomial of a certain fixed degree, or to belong to a certain parameterized
class, the latter being what is actually done in neural networks) or adding a penalization on f , called
a regularization. Indeed, if we plot the points (xi, yi) on a plane, we are looking for a function f
which best interpolates or approximates these data. If the xi are distinct it is always possible to find
a function f such that f(xi) = yi for every i, but this can produce a very nasty function f , different
from what we expect, and too much subject to outliers coming from possible measurement errors.
For instance, if X is a finite-dimensional vector space and Y = R, we can consider linear functions
of the form f(x) = v · x+ a and the problem

min
a,v

∑
N

|(a+ v · xi)− yi|2

is called linear regression. It consists in finding the best affine function approximating the data. As
an example of regularizing term, if X = [0,M] ⊂ R, we could instead consider

min
f :[0,M]→R

∑
N

|f(xi)− yi|2 +

M∫
0

|f ′′(x)|2 dx,

where f is not forced to be affine, but its second derivative (i.e. a measure of how much it is not
affine) is penalized.

The regularization term can also be used to impose sparsity, and not only “regularity”. For
instance, one could hope to write y as an affine function of x using few variables of x. . . If we define
for p > 0 the function Ap : RN → R via Ap(x) :=

∑
i

|xi|p (a function which coincides, for p ≥ 1, with

||x||p`p ; this involves the `p norm ||x||p := (
∑
i

|xi|p)1/p), we see that we have lim
p→0+

Ap(x) = #{i : xi 6=

0}. This limit is sometimes called, by abuse of language, the `0 norm of x; we can also denote it by
A0. We could be interested in solving

min
a,v

∑
N

|(a+ v · xi)− yi|2 + A0(v).

3

Before adding A0 this optimization problem was quadratic, and hence convex (see below), which was
a great advantage. A common trick to have a simpler problem to consider is to replace A0 with A1,
which is a convex function, but it is the closest to A0 among the Ap which are convex. In this case
we would have

min
a,v

∑
N

|(a+ v · xi)− yi|2 + ||v||1.

Another common problem from data analysis involving the `1 norm is the following:

min
x
||Ax− y||2 + ||x||1.

Here the question is slightly different: we try to describe the observations yi as obtained from uknown
parameters x via linear combinations, through a procedure, described by the matrix A, which is
known, i.e. we assume y ∼ Ax. We look for the values of x, and we want them to be sparse.

1.3 Existence and optimality conditions

The most common way to prove that a function admits a minimizer on a certain set is based on the
classic Weierstrass Theorem, possibly replacing continuity with semicontinuity.

Definition 1.2. On a metric space X, a function f : X → R ∪ {+∞} is said to be lower semi-
continuous (l.s.c. in short) if for every sequence xn → x we have f(x) ≤ lim inf

n
f(xn). A function

f : X → R∪{−∞} is said to be upper-semicontinuous (u.s.c. in short) if for every sequence xn → x
we have f(x) ≥ lim sup

n
f(xn).

We also remind the following:

Definition 1.3. A metric space X is said to be compact if from any sequence xn we can extract a
converging subsequence xnk → x ∈ X.

One of the main theorems in optimization is:

Theorem 1.4. If f : X → R ∪ {+∞} is lower semicontinuous and X is compact, then there exists
x̄ ∈ X such that f(x̄) = min{f(x) : x ∈ X}.

Proof. Define ` := inf{f(x) : x ∈ X} ∈ R ∪ {−∞} (` = +∞ only if f is identically +∞, but in this
case any point in X minimizes f). By definition there exists a minimizing sequence xn, i.e. points in
X such that f(xn)→ `. By compactness we can assume xn → x̄. By lower semicontinuity, we have
f(x̄) ≤ lim inf

n
f(xn) = `. On the other hand, we have f(x̄) ≥ ` since ` is the infimum. This proves

` = f(x̄) ∈ R and this value is the minimum of f , realized at x̄.

The compactness of X can be replaced by a lighter assumption: we just need that there exists
a value M for which {x ∈ X : f(x) ≤ M} is at the same time non-empty and compact. Indeed, it
is then possible to restrict the minization to this set. In particular this happens in the case where
X = RN and lim

||x||→∞
f(x) = +∞. In this case we say that f is coercive.

We recall this well-known statement:

Theorem 1.5. Suppose that f is C1, that x0 is a minimum point of f on E, and that x0 is in the
interior of E (there exists a radius r > 0 such that B(x0, r) ⊂ E). Then ∇f(x0) = 0.

The gradient of f is not only used to check whether a point x0 satisfies or not the optimality
conditions above, but also to move from a point in the direction of the minimizer. Indeed, the vector
∇f represents the direction in which f increases the most, and the vector −∇f the one in which it
decreases the most. Unfortunately, any use of the gradient in order to find a minimizer is limited

4

by the fact that for arbitrary functions there could be points where the gradient vanishes without
being minimizers, and that using the gradient (or even higher-order derivatives) will only provide
local informations, so that we will never be able to see the difference between a global minimizer and
a local minimizer (i.e. a point x0 such that there exists r > 0 such that x0 minimizes f over the ball
B(x0, r)). The only case where everything goes well is the case of convex functions.

1.4 Convex functions

Definition 1.6. A function f : Rn → R is called convex if, for all x, y ∈ Rn and all t ∈ [0, 1], we
have

f((1− t)x+ ty) ≤ (1− t)f(x) + tf(y).

We say that f is strictly convex if the same inequality holds strictly whenever x 6= y and t ∈ (0, 1).

In dimension 1, we have the following characterizations.

Proposition 1.7. If f is C1, it is convex if and only if f ′ is an increasing function, and if and only
if we have the following inequality

f(y) ≥ f(x) + f ′(x)(y − x)

for all x, y.
If f is C2, then it is convex if and only if f ′′ ≥ 0.

In higher dimensions, it becomes

Proposition 1.8. If f is C1, it is convex if and only if ∇f satisfies the inequality

(∇f(x)−∇f(y)) · (x− y) ≥ 0

for all x, y, and if and only if we have the following inequality

f(y) ≥ f(x) +∇f(x) · (y − x)

for all x, y.
If f is C2, then it is convex if and only if D2f ≥ 0 in the sense of symmetric matrices (which is

equivalent to having non-negative eigenvalues).

We also provide the definition of uniformly convex or elliptic functions.

Definition 1.9. A function f : Rn → R is called uniformly convex or elliptic if there exists α > 0
such that x 7→ f(x)− α

2
||x||2 is a convex function (in this case, we say it is α-elliptic).

We obtain the following characterizations:

Proposition 1.10. If f is C1, it is α-elliptic if and only if ∇f satisfies the inequality

(∇f(x)−∇f(y)) · (x− y) ≥ α||x− y||2

for all x, y, and if and only if we have the following inequality

f(y) ≥ f(x) +∇f(x) · (y − x) +
α

2
||x− y||2

for all x, y.
If f is C2, then it is α-elliptic if and only if D2f ≥ αI in the sense of symmetric matrices (i.e.,

all its eigenvalues are greater than or equal to α).

5

It is worth noting that every elliptic function is strictly convex.
For the minimization of convex functions, we have:

Proposition 1.11. If f is a C1 convex function, then a point x̄ minimizes f if and only if ∇f(x̄) = 0.
If f is strictly convex, then the minimum point, if it exists, is unique. If f is elliptic, then the
minimum point exists and is unique.

Indeed, while strict convexity is sufficient for the uniqueness of the minimizer, it is not sufficient
for existence (consider f(x) = ex). However, ellipticity is sufficient for existence because every elliptic
function is bounded from below by a parabola, hence it tends to infinity at infinity.

2 Gradient descent
Given a C1 function f : RN → R we want to find its minimum point and its minimal value (provided
they exist), following the opposite direction of the gradient. A possibility could be to the follow the
flow of the evolution equation

x′(t) = −∇f(x(t))

which exactly means to follow the steepest descent lines of f and, hopefully, converge to the minimizer.
The above differential equation is useful to have an idea of the qualitative behavior of what we

want to do, but in practice one has to use a disretized algorithm.

2.1 Unconstrained fixed-step gradient algorithm

We consider the simplest optimization algorithm, the fixed-step gradient descent: given a point x0,
we define an iterated sequence by taking xk+1 = xk − τ∇f(xk).

We have the following theorem.

Theorem 2.1. Let f : Rn → R be a C2 function with αI ≤ D2f(x) ≤ LI for two constants L ≥ α > 0.
Suppose τ ∈ (0, 2

L
). Then, the sequence defined by the fixed-step gradient descent algorithm converges

to the unique minimizer x̄ of f , and we have

||xk − x̄|| ≤ ||x0 − x̄||λk

where the number λ is given by λ = max{1− τα, τL− 1} < 1.

Note that the value of τ that minimizes the value of λ is τ = 2
α+L

, which gives λ = L−α
L+α

.
The proof is based on the following preliminaries

• The Banach contraction principle: in a complete metric space X any map F : X → X such
that there exists λ ∈ (0, 1) wth d(F (x), F (y)) ≤ λd(x, y) for every x, y (such a map is called
a contraction, and being a contraction means being Lipschitz continuous with a Lipschitz
constant strictly smaller than 1) admits a unique fixed point x̄, and for every point x0 the
sequence defined by xk+1 = F (xk) converges to x̄, with d(xk, x̄) ≤ λkd(x0, x̄).

• The Lischitz constant of a C1 map F : Rn → Rm is given by sup
x
|||DF (x)|||, where the norm

|||A||| for a matrix A is defined as

|||A||| := sup
h6=0

||Ah||
||h||

.

• When n = m and A is symmetric, we have |||A||| = max{|λ1|, . . . , |λn|} = max{−λ1, λn}, if
λ1 ≤ λ2 ≤ · · · ≤ λn are the eignevalues of A.

6

We are now able to prove the above theorem.

Proof. Consider the map F : Rn → Rn given by F (x) = x− τ∇f(x). We have DF (x) = I−D2f(x),
which is a symmetric matrix. Since we suppose αI ≤ D2f(x) ≤ LI we have (1 − τL)I ≤ DF ≤
(1− τα)I, so that the eigenvaues of DF are between 1− τL and 1− τα. Hence, |||DF ||| ≤ max{1−
τα, τL−1} := λ. Our assumption guarantees 0 < λ < 1, so that F is a contraction, and the space Rn

is complete. Hence xk converges to x̄, a point characterized by F (x̄) = x̄, and we have the claimed
exponential convergence. The point x̄ satisfies x̄ − τ∇f(x̄) = x̄, so that we have ∇f(x̄) = 0 and,
since f is convex, x̄ is the minimizer of f .

Note that the above proof provides the convergence of the points xk to the optimizer x̄. We
can also look at the value of the function, and define εk := f(xk) − f(x̄), which is how much xk is
not optimal. Using the fact that f is locally Lipschitz continuous (f is C1 and on bounded sets C1

functions have bounded derivatives) we find εk ≤ C||xk − x̄||, hence εk ≤ Cλk. Actually, we con
obtain better. Indeed, close to the point x̄ the Lipschitz constant of f is small, since ∇f(x̄) = 0.
Using a second-order Taylor expansion we have

f(x) ≤ f(y) +∇f(y) · (x− y) +
L

2
||x− y||2.

Applying this to x = xk and y = x̄ we obtain

εk ≤
L

2
||xk − x̄||2 ≤ Cλ2k.

2.2 Projected gradient algorithm

We consider now constrained minimization problems, such as

min{f(x) : x ∈ K},

where K ⊂ Rn is a closed convex set and f is a C1 convex function. First of all, we establish the
optimality conditions.

Proposition 2.2. A point x0 ∈ K is a a solution of min{f(x) : x ∈ K} if and only if it satisfies

∇f(x0) · (x− x0) ≥ 0 for all x ∈ K. (2.1)

Proof. First, suppose that x0 satisfies (2.1). Then, using f(x) ≥ f(x0) +∇f(x0) · (x− x0) we obtain
f(x) ≥ f(x0) for all x ∈ K, which proves the minimality of x0. This part of the proof uses the
convexity of f .

Then, suppose that x0 is a minimizer, take x ∈ K and define xt := (1 − t)x0 + tx for t ∈ [0, 1].
The points xt belong to K because K is convex. Hence, we have f(xt) ≥ f(x0), i.e. the function
[0, 1] 3 t 7→ f(xt) is minimal for t = 0. Its derivative is given by ∇f(xt) · (x − x0) and at t = 0 it
should be non-negative by minimality.

A particular constrained optimization problem is that of the projection onto K.

Proposition 2.3. Given a point x0 ∈ Rn and a closed and convex set K ⊂ Rn we consider the
problem

min{||x− x0||2 : x ∈ K}.
This problem admits a unique solution, that we call projection of x0 onto K and denote by PK [x0].
Moreover, a point x1 ∈ K is the projection of x0 onto K if and only if we have

(x− x1) · (x1 − x0) ≥ 0 for all x ∈ K. (2.2)

Finally, the map Rn 3 x0 7→ PK [x0] ∈ K is 1-Lipschitz.

7

Proof. The existence of the minimizer is due to the fact that x 7→ ||x−x0||2 is coercive. Its uniqueness
is due to the fact that the same function is strictly convex. Setting f(x) = 1

2
||x − x0||2 and using

∇f(x) = x− x0 we obtain the characterization of the minimizer as a particular case of Proposition
2.2. Now, consider x0, y0 ∈ Rn and x1 = PK [x0], y1 = PK [y0]. We have, using twice (2.2)

(y1 − x1) · (x1 − x0) ≥ 0 (x1 − y1) · (y1 − y0) ≥ 0.

If we sum these two inequalities we obtain

(y1 − x1) · (x1 − x0 − y1 + y0) ≥ 0,

which can be re-written as
||y1 − x1||2 ≤ (y1 − x1) · (y0 − x0).

Using the Cauchy-Schwartz inequality (the scalar product is smaller than the product of the norms)
we obtain

||y1 − x1||2 ≤ ||y1 − x1|| · ||y0 − x0||,

which gives ||y1 − x1|| ≤ ||y0 − x0||, and the claim.

We can now consider a variant of the fixed-step gradient algorithm which takes into account the
constraint. The goal is to solve min{f(x) : x ∈ K}. The algorithm is called projected gradient and
uses an iterative sequence defined as

xk+1 = PK [xk − τ∇f(xk)].

Theorem 2.4. Let f : Rn → R be a C2 function with αI ≤ D2f(x) ≤ LI for two constants
L ≥ α > 0. Suppose τ ∈ (0, 2

L
). Then, the sequence defined by the projected gradient algorithm

converges to the unique minimizer x̄ of f , and we have

||xk − x̄|| ≤ ||x0 − x̄||λk

where the number λ is given by λ = max{1− τα, τL− 1} < 1.

Proof. The proof is based on the same idea as in Theorem 2.1. We consider the map F (x) =
PK [x − τ∇f(x)] and prove it is a contraction. Since PK is 1-Lipschitz, and the map inside PK was
already proven to be a contraction under these very same assumptions, this is easy. Then, we obtain
||xk − x̄|| ≤ ||x0 − x̄||λk, but x̄ is not (yet) the minimizer of f over K, but the fixed point of F .
Hence, from x̄ = PK [x̄− τ∇f(x̄)] we deduce, using (2.2)

(x− x̄) · [x̄− (x̄− τ∇f(x̄)] ≥ 0 for all x ∈ K.

This can be re-written as
(x− x̄) · ∇f(x̄) ≥ 0 for all x ∈ K,

which is exactly the condition for the optimality of x̄.

We proved exponential convergence of xk to x̄, we could wonder about εk. Differently from the
unconstrained case we cannot use here the fact ∇f(x̄) = 0, so we cannot obtain a rate λ2k. We can
only use the Lipschitz behavior of f around x̄ and obtain εk ≤ Cλk.

We note that the above algorithm is only useful when computing the projection PK is “easy” (if
possible, we would like an explicit formula for the projection ; if computing it, which means solving an
optimization problem at each step, requires to run another algorithm to approximate the solution,
then it is not necessarily a good idea to use the projected gradient). In particular never use the
projected gradient to compute a projection ! Why? since you would need a formula to compute the
projection itself, which is exactly what you try to find.

8

Example. Among the sets for which computing the projection is easy we mention the rectangles:
K = [a1, b1]× · · · × [an, bn], and the ball K = B(0, R). In the first case the projection is given by

(PK [x])i = max{min{xi, bi}, ai}

and in the second case we have
PK [x] =

x

max{1, |x|/R}
.

2.3 Slower convergence and acceleration for non-elliptic smooth convex
functions

If in the fixed-step gradient algorithm we use a function f which is convex but not elliptic, i.e. α = 0,
then we are not guaranteed that the map g given by g(x) = x − τ∇f(x) is a contraction. Hence,
we have no proof of the exponential convergence of xk to x̄. Yet, if we suppose D2f ≤ LI, we can
obtain a proof of convergence of εk to 0, even if much slower (and with no clue about the rate of
convergence of xk to x̄).

In order to have an idea of what happens we first consider the continuous-in-time equation
x′(t) = −∇f(x(t)) instead of the fixed-step gradient algorithm. We compute

d

dt

(
1

2
||x(t)− x̄||2

)
= (x(t)− x̄) · x′(t) = −(x(t)− x̄) · ∇f(x(t)) ≤ f(x̄)− f(x(t)) := −ε(t),

where we define ε(t) as the optimality error of x(t), i.e. ε(t) = f(x(t))− f(x̄). We can see that ε(t)
is non-increasing in t since

d

dt
(f(x(t))) = ∇f(x(t)) · x′(t) = −||∇f(x(t))||2 ≤ 0.

Hence we have

Tε(T) ≤
T∫

0

ε(t)dt ≤
T∫

0

− d

dt

(
1

2
||x(t)− x̄||2

)
dt =

1

2
||x(0)− x̄||2 − 1

2
||x(T)− x̄||2 ≤ 1

2
||x(0)− x̄||2,

which provides ε(T) ≤ C/T . In this computation we do not need the constant L, i.e. we do not
need D2f to be bounded from above neither. Yet, in order to handle the discrete case, we will need
it. We try to mimick the same principle in the proof of the statement below.

Proposition 2.5. Let f : Rn → R be a C2 function with D2f(x) ≤ LI, which admits a minimizer x̄.
Suppose τ ∈ (0, 1

L
). Then, the sequence defined by the fixed-step gradient descent algorithm satisfies

εk+1 ≤ C/k, where C = ||x0−x̄||2
2τ

.

Proof. Let us consider

1

2
||xk+1 − x̄||2 −

1

2
||xk − x̄||2 = (xk+1 − xk) ·

(
xk+1 + xk

2
− x̄
)

(2.3)

= −τ∇f(xk) ·
(

(xk − x̄)− τ

2
∇f(xk))

)
(2.4)

≤ −τεk +
τ 2

2
||∇f(xk)||2. (2.5)

We now consider how much f decreases from one step to the other. We have

f(xk+1) ≤ f(xk) +∇f(xk)(̇xk+1 − xk) +
L

2
||xk+1 − xk||2 = f(xk)− τ ||∇f(xk)||2 +

τ 2L

2
||∇f(xk)||2.

9

Hence, f decreases at each step if τ 2L ≤ 2τ , i.e. τ ≤ 2/L. If we suppose τ ≤ 1
L
we have more: we

obtain −τ + τ2L
2
≤ − τ

2
, hence

εk+1 ≤ εk −
τ

2
||∇f(xk)||2,

which can be combined with (2.3). We then obtain

1

2
||xk+1x̄||2 −

1

2
||xk − x̄||2 ≤ −τεk+1

and, moreover, εk is non-increasing in k. Hence we have

τkεk+1 ≤ τ

k∑
i=0

εi+1 ≤
k∑
i=0

1

2
||xi − x̄||2 −

1

2
||xi+1 − x̄||2 ≤

1

2
||x0 − x̄||2,

which is the claim.

Since C/k is much worse than λk, people have looked for ways to accelerate the convergence, and
a very clever idea was presented by Nesterov in [4]. What Nesterov suggests is to apply at each step
the same construction of the fixed-step gradient algorithm, i.e. passing from a point y to y−τ∇f(y),
but instead of applying it to y = xk doing it to another point y = yk, which is a clever combination of
xk and xk−1. From the computational point of view, the cost is approximately the same (one unique
computation of the gradient at each iteration), and what [4] proves is that we obain εk ≤ C/k2.

We will discuss the algorithm in details and provide a proof of this rate of convergence. We
consider the following algorithm:

xk+1 = yk − τ∇f(yk) ; yk = a linear combination of xk and xk−1 using coefficients (tk)k.

We start from the following estimates: for every x we have

f(x) ≥ f(yk) +∇f(yk) · (x− yk)

as well as
f(x) ≤ f(yk) +∇f(yk) · (x− yk) +

L

2
||x− yk||2.

We take x = xk+1 in the second estimate and subtract from the first, so that we get

f(x)− f(xk+1) ≥ ∇f(yk) · (x− xk+1)− L

2
||xk+1 − yk||2.

Then, we use ∇f(yk) = (yk − xk+1)/τ , and we choose τ = 1
L
, so that we obtain

f(x)− f(xk+1) ≥ L(yk − xk+1) · (x− xk+1)− L

2
||xk+1 − yk||2. (2.6)

We apply (2.6) to x = xk and obtain

2

L
(εk − εk+1) ≥ 2(yk − xk+1) · (xk − xk+1)− ||xk+1 − yk||2. (2.7)

We also apply (2.6) to x = x̄ and obtain

− 2

L
εk+1 ≥ 2(yk − xk+1) · (x̄− xk+1)− ||xk+1 − yk||2. (2.8)

We multiply (2.7) by tk+1 − 1 and add it to (2.8) and obtain

2

L
((tk+1 − 1)εk − tk+1εk+1) ≥ 2(yk − xk+1) · ((tk+1 − 1)xk + x̄− tk+1xk+1)− tk+1||xk+1 − yk||2.

10

We multiply everything by tk+1 and we assume that we have t2k+1 − tk+1 ≤ t2k, so that we obtain

2

L

(
t2kεk − t2k+1εk+1

)
≥ 2tk+1(yk − xk+1) · ((tk+1 − 1)xk + x̄− tk+1xk+1)− t2k+1||xk+1 − yk||2.

Using 2a · b− ||a||2 = −||a− b||2 + ||b||2 with a = tk+1(yk − xk+1) and b = (tk+1− 1)xk + x̄− tk+1xk+1

we can re-write the right-hand side and obtain

2

L

(
t2kεk − t2k+1εk+1

)
≥ ||(tk+1 − 1)xk + x̄− tk+1xk+1||2 − ||(tk+1 − 1)xk + x̄− tk+1yk||2.

We would like the right-hand side to give rise to a telescopic sum. We would like the last term
to be equal to the previous one when exchanging k + 1 with k. More precisely, if we set uk :=
(tk − 1)xk−1 − tkxk + x̄ we would like to write the right-hand side above as ||uk+1||2 − ||uk||2. For
this, we need to impose

(tk+1 − 1)xk + x̄− tk+1yk = (tk − 1)xk−1 − tkxk + x̄.

This requires to choose

yk = xk +
tk − 1

tk+1

(xk − xk−1).

This explains the precise choice of the point yk, and the choice of the coefficients tk has to comply
with the condition t2k+1 − tk+1 ≤ t2k. We then obtain the following.

Proposition 2.6. Let f : Rn → R be a C2 function with D2f(x) ≤ LI, which admits a minimizer
x̄. Suppose τ = 1

L
. Fix a sequence (tk)k such that t0 = 0 and t2k+1− tk+1 ≤ t2k and a point x0. Define

x−1 = x0 and

yk = xk +
tk − 1

tk+1

(xk − xk−1);xk+1 = yk − τ∇f(yk)

Setting εk = f(xk)− f(x̄) we then obtain

εk ≤
C

t2k
where C =

L

2
||x0 − x̄||2.

Proof. Applying all the computations that we just described we obtain the inequality

2

L

(
t2kεk − t2k+1εk+1

)
≥ ||uk+1||2 − ||uk||2,

where uk := (tk − 1)xk−1 − tkxk + x̄. We take the sum of these inequalities for k ranging from 0 to
N and obtain

2

L

(
t20ε0 − t2N+1εN+1

)
≥ ||uN+1||2 − ||u0||2 ≥ −||u0||2.

We use t0 = 0 to get rid of the first term, change the sign and multiply by L/2 and obtain

t2N+1εN+1 ≤
L

2
||u0||2.

We conclude using u0 := (t0 − 1)x−1 − t0x0 + x̄, so that ||u0|| = ||x−1 − x̄|| = ||x0 − x̄||.

In the previous statement, we can use tk = (k+ 1)/2 for k ≥ 1, since we can easily check that we
have

t2k+1 − tk+1 =
(k + 2)2

4
− k + 2

2
=
k2 + 2k

4
≤ k2 + 2k + 1

4
= t2k.

Another reasonable choice is the one which saturates the inequality t2k+1 − tk+1 ≤ t2k making it an
equality, i.e.

tk+1 =
1 +

√
1 + 4t2k
2

.

Anyway, in all these cases we have tk = O(k) and we obtain thus εk ≤ C/k2.

11

3 Non-smooth optimization
In the last section we removed the assumption that the objective function should be elliptic, but
still we kept the assumption that it has to be smooth (i.e. ∇f should be Lipschitz continuous, D2f
bounded from above). We want now to consider the case where f is not necessarily smooth. In
particular, convex functions could be non-differentiable.

3.1 Subdifferential and subgradient descent

One of the main tools to deal with non-differentiable convex functions is the deinition of subdiffer-
ential.

Definition 3.1. Given f : Rn → R ∪ {+∞} and a point x0 ∈ Rn we define the subdifferential of f
at x0 as the set ∂f(x0) ⊂ Rn defined as follows

∂f(x0) := {v ∈ Rn : f(x) ≥ f(x0) + v · (x− x0) for all x ∈ Rn}.

The elements of the subdifferential are called subgradients.

The above definition is inspired by the property which is satisfied when taking v = ∇f(x0).
Among the main properties of the subdifferential we cite the following.

• The subdifferential ∂f(x) is always a closed and convex set, whatever is f .

• If f is l.s.c., the graph of the subdifferential multi-valued map is closed: take a sequence xn → x0

and a sequence vn with vn → v and vn ∈ ∂f(xn). Then v ∈ ∂f(x0). This is useful to obtain
stability properties for the subdifferential.

• When dealing with arbitrary functions f , the subdifferential is in most cases empty, as there
is no reason that the inequality defining v ∈ ∂f(x0) is satisfied for x very far from x0. The
situation is completely different when dealing with convex functions, which is the standard
case where subdifferentials are defined and used. In this case we can prove that ∂f(x0) is
never empty if x0 lies in the interior of the set {f < +∞} (note that outside {f < +∞}
the subdifferential of a proper function is clearly empty). In particular, for real-valued convex
functions, the subdifferential is never empty.

• If f is convex and differentiable at a point x0, then ∂f(x0) = {∇f(x0)}.

• A point x0 solves min{f(x) : x ∈ Rn} if and only if we have 0 ∈ ∂f(x0).

• The subdifferential satisfies the monotonicity property

vi ∈ ∂f(xi) for i = 1, 2 ⇒ 〈v1 − v2, x1 − x2〉 ≥ 0.

This can be seen by writing

f(x1) ≥ f(x2) + v2 · (x1 − x2), f(x2) ≥ f(x1) + v1 · (x2 − x1),

and summing up the two inequalities.

Example. Several examples can be considered

• For the function f : R→ R given by f(x) = |x| we have

∂f(x) =


{1} if x > 0,

{−1} if x < 0,

[−1, 1] if x = 0.

12

• For the function f : Rn → R given by f(x) = ||x|| we have

∂f(x) =

{
{ x
||x||} if x 6= 0,

B(0, 1) if x = 0.

• Different situations can occur at the boundary of {f < +∞}. If we take for instance the proper
function f defined via

f(x) =

{
x2 if x ≥ 0,

+∞ if x < 0,

we see that we have ∂f(0) = [−∞, 0] so that the subdifferential can be “fat” on these boundary
points. If we take, instead, the proper function f defined via

f(x) =

{
−
√
x if x ≥ 0,

+∞ if x < 0,

we see that we have ∂f(0) = ∅, a fact related to the infinite slope of f at 0: of course, infinite
slope can only appear at boundary points.

We also prove the following fact.

Proposition 3.2. Take two convex functions f1 and f2, and suppose that f1 is differentiable at a
point x0. Set f = f1 + f2. Then we have

v ∈ ∂f(x0)⇔ v −∇f1(x0) ∈ ∂f2(x0).

In other words, ∂f(x0) = ∇f1(x0) + ∂f2(x0). As a consequence, x0 minimizes f if and only if
−∇f1(x0) ∈ ∂f2(x0).

Proof. If v = ∇f1(x0) + w with w ∈ ∂f2(x0), then clearly we have v ∈ ∂f(x0). On the other hand,
suppose v ∈ ∂f(x0) and take a point x1. Define xt := (1− t)x0 + tx1. Using xt− x0 = t(x1− x0), for
t ∈ [0, 1] we have

f1(xt) + f2(xt) ≥ f1(x0) + f2(x0) + tv · (x1 − x0).

This can be re-written as
f2(xt)− f2(x0)

t
≥ v · (x1 − x0)− f1(xt)− f1(x0)

t
.

Since the incremental ratios of convex functions are increasing we also obtain

f2(x1)− f2(x0)

1
≥ f2(xt)− f2(x0)

t
≥ v · (x1 − x0)− f1(xt)− f1(x0)

t
.

Taking the limit t→ 0 we then get

f2(x1)− f2(x0)

1
≥ v · (x1 − x0)−∇f1(x0) · (x1 − x0),

which shows v −∇f1(x0) ∈ ∂f2(x0).

A reasonable algorithm that one could imagine to replace the gradient descent in the case of
non-differentiable functions could be the following: given xk take vk ∈ ∂f(xk) and then update
xk+1 = xk − τvk. The problem with this algorithm is that at the point x̄ which minimizes f we have
0 ∈ ∂f(x̄), but close to this point the vectors which belong to the sudifferential are not necessarily
small. This is what happens in the case of the modulus or the norm functions, where outside the
origin all vectors in teh subdifferential have unit norm. This prevents the sequence to converge, since
we would have ||xk+1−xk|| ≥ cτ . The correct version of the algorithm requires to use a non-constant
step τk. The convergence result (that we do not prove) is the following.

13

Theorem 3.3. Let f : Rn → R be a convex function which admits a minimizer and (τk)k a sequence
such that τk > 0,

∑
k

τk = +∞,
∑
k

τ 2
k < +∞. Then, any sequence (xk, vk) satisfying

vk ∈ ∂f(xk), vk 6= 0, and xk+1 = xk − τk
vk
||vk||

is such that xk → x̄, where x̄ is a minimizer of f .

The proof of this fact can be found in Theorem 9.3 of [2].
From the computational point of view, the drawback of this algorithm is that it imposes to choose

a variable step-size τk which should tend to 0, and this implies that the algorithm is necessarily slow
(it can be proven that it cannot be as fast as the fixed-step gradient algorithm, i.e. that we cannot
have ||xk − x̄|| ≤ Cλk for λ < 1). This explains the quest for alternative algorithms for non-smooth
optimization, based on different principles.

3.2 Proximal methods

Let us think at what we actually do in the fixed-step algorithm. If we want to minimize a function
f at each step we take a point xk, compute ∇f(xk), and then move to xk+1 = xk − τ∇f(xk). We
can also say that the point xk+1 is characterized by

xk+1 = argmin
x

f̃(x) := f(xk) +∇f(xk) · (x− xk) +
1

2τ
||x− xk||2,

i.e. xk+1 minimizes a quadratic function f̃ that is chosen as an approximation of f around xk. The
function f̃ recalls a Taylor expansion of f , but the second-order term 1

2
D2f(xk)(x−xk) · (x−xk) has

been replaced with a simpler second-order term. If we had used f̃(x) := f(xk) +∇f(xk) · (x− xk) +
1
2
D2f(xk)(x− xk) · (x− xk) we would have found as an algorithm the Newton’s method for finding

the solution of ∇f = 0 (indeed, expanding the function f at order two is the same as expanding
∇f at order one). Yet, Newton’s method requires to invert D2f(xk) and requires high regularity to
converge, which is not the first goal here. Another interesting point of not choosing the exact 2nd
order Taylor expansion is that it allows to obtain f̃ ≥ f . This works as soon as τ ≤ 1

L
, which is an

assumption we already used many times. The advantage of having f̃ ≥ f is that the optimality of
xk+1 provides f(xk+1) ≤ f̃(xk+1) ≤ f̃(xk) = f(xk), so that the algorithm let f decrease.

Now, the question is: what to do if f is not smooth? take for instance a function f of the form
f = f1 + g, with f1 smooth but g only convex. In this case a good choice of f̃ is given by

f̃(x) := f1(xk) +∇f1(xk) · (x− xk) +
1

2τ
||x− xk||2 + g(x),

where we only replace with a second-order polynomial the smooth part f1. Minimizing f̃ is equivalent
to solving

min g(x) +
||x− (xk − τ∇f1(xk))||2

2τ
,

which means applying a proximal operator. These operators are defined here.

Definition 3.4. Given g : Rn → R ∪ {+∞} a convex function we define the proximal operator of g
as follows:

Proxτ,g[x0] := argmin
x

g(x) +
||x− x0||2

2τ
,

where τ > 0 is a parameter. Note that the minimizer of g(x) + ||x−x0||2
2τ

exists (because g is convex,
hence bounded from below by an affine function, and adding a quadratic penalization we obtain a
coercive function) and is unique (because g is convex, and adding a quadratic penalization we obtain
a strictly convex function).

14

Among the main properties of the proximal operator we cite the following.

• A point y0 equals Proxτ,g[x0] if and only if −y0−x0
τ
∈ ∂g(y0).

• For any τ > 0, the map x0 7→ Proxτ,g[x0] is 1-Lipschitz. This can be seen by taking x0, x1

and yi = Proxτ,g[xi]. We then write −yi−xi
τ
∈ ∂g(yi) and use the monotonicity property of the

subdifferential, thus obtaining

(x− 1− y1 − x0 + y0) · (y1 − y0) ≥ 0.

This can be written as

||y1 − y0||2 ≤ (x0 − x1) · (y1 − y0) ≤ ||y1 − y0|| · ||x1 − x0||

and allows to obtain ||y1 − y0|| ≤ ||x1 − x0||.

• In the particular case where g is the function given by

g(x) =

{
0 if x ∈ K
+∞ if x /∈ K,

for a convex set K ⊂ Rn (this function is called indicator function of K, in convex analysis,
and denoted by IK), we have Proxτ,g = PK for every τ > 0.

The use of the proximal operator allows to define a new algorithm, different from the subgradient
descent algorithm, in order to attack non-smooth optimization problems. The algorithm, called
proximal gradient algorithm, will work as follows: when minimizing f1 + g, we take τ > 0 and define
an iterative sequence via

xk+1 = Proxτ,g[xk − τ∇f1(xk)].

We then have the following theorem.

Theorem 3.5. Let f1 : Rn → R be a C2 function with αI ≤ D2f(x) ≤ LI for two constants
L ≥ α > 0, and g : Rn → R ∪ {+∞} a convex function. Suppose τ ∈ (0, 2

L
). Then, the sequence

defined by the proximal gradient algorithm converges to the unique minimizer x̄ of f := f1 + g, and
we have

||xk − x̄|| ≤ ||x0 − x̄||λk

where the number λ is given by λ = max{1− τα, τL− 1} < 1.

Proof. The idea is the same as for the projected gradient algorithm. We define F : Rn → Rn via
F (x) = Proxτ,g[x− τ∇f1(x)]; we check that F is a contraction, since x 7→ x− τ∇f(x) is λ−Lipchitz,
and Proxτ,g is 1−Lipschitz. Then the sequence converges exponentially to x̄, defined as the fixed point
of F . We now need to prove that x̄ is the minimizer of f . The condition x̄ = Proxτ,g[x̄ − τ∇f1(x̄)]
implies

− x̄− (x̄− τ∇f1(x̄))

τ
∈ ∂g(x̄),

which means −∇f1(x̄) ∈ ∂g(x̄). this is exactly the condition to minimize f1 + g

As for the projected gradient algorithm (which is a particular case of the proximal algorithm,
when taking g = IK), this procedure is only useful if we know how to compute the proximal operator
explicitly. This is the case, for instance, of a convex function widely used in application to data
sciences, i.e. g(x) = ||x||1 =

∑
i

|xi| (please note that the index i is a coordinate here, and not the

iteration step of the algorithm), as we can see in the following example.

15

Example. Suppose n = 1 and take g(x) = |x|. Given x0 ∈ R, it is clear that Proxτ,g[x0] and x0

shoud have the same sign (because, otherwise, changing the sign would make the point closer to x0

without changing the value of g). Suppose for simplicity x0 ≥ 0. We can then find Proxτ,g[x0] by
solving min

x≥0
x+ |x−x0|2

2τ
. Differentiating, we get 1 + (x−x0)/τ . The derivative vanishes at x = x0− τ .

If such a point is in the domain x ≥ 0, then it is the minimizer. Otherwise the mnimizer is 0. So the
solution of the minimization problem is given by (x0 − τ)+. More generally, we have Proxτ,g[x0] =
sign(x0)(|x0| − τ)+. This procedure is called shrinkage-thresholding since we shrink x0 moving it
towards the origin, with a threshold effect (if closer than τ , we stop at the origin).

In higer dimension the same construction can be done componentwise: every time that a function
g is separable (i.e. it is a sum of functions of different components) we can exploit the fact that
also the quadratic penalization is separable and treat separately each variable. We then obtain, for
g(x) = ||x||1,

(Proxτ,g[x0])i = sign(xi0)(|xi0| − τ)+.

In particular, it turns out that it is quite easy to use this algorithm to solve min f1(x)+||x||1 when
f1 is smooth and elliptic. On the other hand, a typical example would be to take f1(x) = ||Ax− b||22,
which in many cases is not elliptic. In this case we can adapt the results of Section 2.3 (but we won’t
prove them) and obtain the following.

Proposition 3.6. Let f1 : Rn → R be a C2 function with D2f(x) ≤ LI which admits a minimizer x̄,
and let g : Rn → R ∪ {+∞} be a convex function. Take τ = 1/L. Then, the sequence defined by the
proximal gradient algorithm satisfies εk+1 ≤ C/k, where εk := f(xk)− f(x̄) and C = L||x0 − x̄||2.

If, instead, we fix a sequence (tk)k such that t0 = 0 and t2k+1 − tk+1 ≤ t2k, we take a point x0,
define x−1 = x0, and take a sequence (xk, yk) such that

yk = xk +
tk − 1

tk+1

(xk − xk−1);xk+1 = Proxτ,g[yk − τ∇f(yk)],

setting εk = f(xk)− f(x̄) we then obtain

εk ≤
C

t2k
where C =

L

2
||x0 − x̄||2.

These results are proven, for instance, in [1].

4 Convex duality and algorithms using duality
We consider here some tools from convex analysis, with the goal to associate with some classes of
optimization problems a corresponding dual problem, which could be useful to develop algorithms
to solve the primal one exploiting the dual one.

4.1 Fenchel-Legendre transform

Definition 4.1. We say that a function valued in R ∪ {+∞} is proper if it is not identically equal
to +∞. The set {f < +∞} is called the domain of f .

Definition 4.2. Given a proper function f : Rn → R ∪ {+∞} we define its Fenchel-Legendre
transform f ∗ : Rn → R ∪ {+∞} via

f ∗(ξ) := sup
x
ξ · x− f(x).

We observe that we trivially have f ∗(0) = − inf
Rn
f .

We note that f ∗, as a sup of affine functions, is both convex and l.s.c., as these two notions are
stable by sup. We indeed have the following lemma.

16

Lemma 4.3. Given a family of functions fα : X → R ∪ {+∞}, define f(x) := sup
α
fα(x). Then, if

the functions fα are all l.s.c. f is also l.s.c. If they are all convex, f is also convex.

Proof. Assume that the functions fα are all l.s.c. Take xn → x and write

fα(x) ≤ lim inf
n

fα(xn) ≤ lim inf
n

f(xn).

It is then enough to take the sup over α in the left hand side in order to obtain

f(x) ≤ lim inf
n

f(xn),

which is the desired result.
For convexity, assume that the functions fα are all convex, and take x, y and write

fα((1− t)x+ ty) ≤ (1− t)fα(x) + tfα(y) ≤ (1− t)f(x) + tf(y).

Again, taking the sup over α in the left hand side provides the desired inequality.

We then note that, actually, not only any sup of affine functions is convex and l.s.c. but any
convex and l.s.c. function is indeed a sup of affine functions. A rough proof of this fact can be
obtained by considering for every point x ∈ Rn the (or a) tangent to the graph of f at (x, f(x)). This
actually works well whenever f is finite-valued, while some attention has to be paid to the points
where f takes the value +∞, or to the boundary of the domain of f in the general case. By the
way, the assumption that f is l.s.c. is useless when f is finite-valued, since finite convex functions
are always locally Lipschitz and hence continuous.

We then consider the following characterization.

Proposition 4.4. Consider a function f : Rn → R∪{+∞} which is proper, convex, and l.s.c. Then

a) there exists g : Rn∗ → R ∪ {+∞} such that f = g∗;

b) we have f ∗∗ = f .

Proof. Once we know that f is a sup of affine functions we can write

f(x) = sup
α

(ξα · x + cα)

for a family of indices α. We then set c(ξ) := sup{cα : ξα = ξ}. The set in the sup can be empty,
which would mean c(ξ) = −∞. Anyway, the sup is always finite: fix a point x0 with f(x0) < +∞
and use since cα ≤ f(x0)− 〈ξ, x0〉. We then define g = −c and we see f = g∗.

Finally, before proving f = f ∗∗ we prove that for any function f we have f ≥ f ∗∗ even if f is not
convex or l.s.c. Indeed, we have f ∗(ξ) + f(x) ≥ ξ · x which allows to write f(x) ≥ ξ · x − f ∗(ξ), an
inequality true for every ξ. Taking the sup over ξ we obtain f ≥ f ∗∗. We now want to prove that this
inequality is an equality if f is convex and l.s.c. We write f = g∗ and transform this into f ∗ = g∗∗.
We then have f ∗ ≤ g and, transforming this inequality (which changes its sign), f ∗∗ ≥ g∗ = f , which
proves f ∗∗ = f .

A nice connection between Fenchel-Legendre transforms and subdifferentials is the following.

Proposition 4.5. If f is convex and l.s.c., the subdifferentials of f and f ∗ are related through

ξ ∈ ∂f(x)⇔ x ∈ ∂f ∗(ξ)⇔ f(x) + f ∗(ξ) = ξ · x

17

Proof. Once we know that for convex and l.s.c. functions we have f ∗∗ = f , it is enough to prove
ξ ∈ ∂f(x) ⇔ f(x) + f ∗(ξ) = ξ · x since then, by symmetry, we can also obtain x ∈ ∂f ∗(ξ) ⇔
f(x) + f ∗(ξ) = ξ · x. We now look at the definition of subdifferential, and we have

ξ ∈ ∂f(x) ⇔ for every y we have f(y) ≥ f(x) + ξ · (y − x)

⇔ for every y we have ξ · x− f(x) ≥ ξ · y − f(y)

⇔ ξ · x− f(x) ≥ sup
y
ξ · y − f(y)

⇔ ξ · x− f(x) ≥ f ∗(ξ).

This shows that ξ ∈ ∂f(x) is equivalent to ξ · x ≥ f(x) + f ∗(ξ), which is in turn equivalent to to
ξ · x = f(x) + f ∗(ξ), since the opposite inequality is always true by definition of f ∗.

A corollary of the above fact is the following; take two proper, convex and l.s.c. conjugate functions
f and f ∗ (with f = f ∗∗); then f is a real-valued C1 function on Rn if and only if f ∗ is strictly convex
and superlinear. This can be seen in the following way: f is a real-valued C1 function on Rn if for
every x we find a unique ξ in the set ∂f(x); on the other hand, f ∗ is strictly convex if for every x
we find at most one point ξ such that x ∈ ∂f ∗(ξ), and superlinear if for every x we find at least one
point ξ such that x ∈ ∂f ∗(ξ).

All the above properties can be verified on the following examples.

Example. Given p > 1, consider f(x) = 1
p
||x||p. Then we have f ∗(ξ) = 1

q
||ξ||q, where q is the dual

exponent of p, characterized by 1
p

+ 1
q

= 1. For p = 1, setting f(x) = ||x||, we have

f ∗(ξ) =

{
0 if ||ξ|| ≤ 1,

+∞ it not.

Let us consider the last case in the one-dimensional setting (i.e. f(x) = |x|, x ∈ R). In this case we
have ∂f(x) ⊃ {1} for every x ≥ 0, and every x ≥ 0 is such that x ∈ ∂f ∗(1). All the other cases in
the relations described in Proposition 4.5 can be easily checked.

We also discuss a connection between proximal operators and Legendre transforms.

Proposition 4.6. We have the following equality

Prox1,g + Prox1,g∗ = id.

Proof. Take a point y and call x := Prox1,g[y]. The point x is characterized by y − x ∈ ∂g(x). This
implies, using Proposition 4.5, that we also have x ∈ ∂g∗(y− x). Setting z = y− x we can write this
as y − z ∈ ∂g∗(z), i.e. z = Prox1,g∗ [y]. The condition x+ z = y allows to conclude, as we wanted to
prove Prox1,g[y] + Prox1,g∗ [y] = y.

4.2 Dual problems

In this section we introduce the notion of dual problem of a convex optimization problem through an
inf-sup exchange procedure. This often requires to write possible constraints as a sup penalization.

We start as an example from the following problem:

(P) min {f(x) : x ∈ Rn gi(x) ≤ ci i = 1, . . . ,m} ,

where the functions f, gi (i = 1, . . . ,m) are convex. We also consider the function g : Rn → Rm whose
components are the functions gi and we write g ≤ c (when writing inequalities involving vectors, we
mean componentwise inequalities).

18

We then observe that we have

sup
λ∈Rm+

λ · (g(x)− c) =

{
0 if g(x) ≤ c,

+∞ if not.

Since we can always replace a constraint in an optimization problem by adding a function which
takes the value 0 if it is satisfied and +∞ if not, the above optimization problem is equivalent to

min
x∈Rn

sup
λ∈Rm+

f(x) + λ · (g(x)− c).

We get now to a problem of the form

inf
x∈X

sup
λ∈Λ

L(x, λ)

where, in this case, L(x, λ) := f(x) + λ · (g(x)− c).
This is an inf-sup problem, and we can associate with it a second optimization problem, obtained

by switching the order of the inf and the sup. We can consider

sup
λ∈Λ

inf
x∈X

L(x, λ),

which means maximizing over λ the function G obtained as the value of the inf over x: G(λ) :=
inf
x∈X

L(x, λ). We denote by F the function obtained by maximizing first in λ, i.e. F (x) := sup
λ∈Λ

L(x, λ).

In this very example the function F coincides with f if the constraint is met, otherwise it is +∞.
We would like the two above optimization problems (“inf sup” and “sup inf”) to be related to each

other, and for instance their values to be the same.
Given an arbitrary function L the values of inf sup and of sup inf are in general different, as we

can see from this very simple example: take X = Λ = {±1} and L(x, λ) = λx. In this case we have
inf sup = 1 > sup inf = −1. Here the two values are different, and the inf sup is larger than the sup
inf. Actually, this inequality is always true. Indeed, for arbitrary x, λ we have by definition of F,G

F (x) ≥ L(x, λ) ≥ G(λ).

Ignoring the term in the middle we see that all the values of F are larger than all the values of G,
hence inf F ≥ supG.

We then want to discuss the connection between minimizing F , maximizing G, and finding saddle
points of L.

Definition 4.7. Given a function L : X × Λ→ R we say that a pair (x0, λ0) is a saddle point of L
if x 7→ L(x, λ0) is minimal for x = x0 and λ 7→ L(x0, λ) is maximal for λ = λ0.

We have the following theorem.

Theorem 4.8. Suppose inf F = supG. Then the two following conditions are equivalent:

a) (x0, λ0) is a saddle point of L,

b) x0 is a minimizer for F and λ0 a maximizer for G.

Proof. If (x0, λ0) is a saddle point of L, this means G(λ0) = L(x0, λ0) (since x 7→ L(x, λ0) is minimal
for x = x0) and F (x0) = L(x0, λ0) (since λ 7→ L(x0, λ) is maximal for λ = λ0). Hence we have
F (x0) = G(λ0) but we also know that for every x we have F (x) ≥ G(λ0), hence x0 is a minimizer
for F , and for every λ we have G(λ) ≤ F (x0), hence λ0 a maximizer for G.

If on the contrary x0 is a minimizer for F and λ0 a maximizer for G, then we have

inf F = F (x0) ≥ L(x0, λ0) ≥ G(λ0) = supG = inf F,

and all inequalities are equalities. Hence, we obtain F (x0) = L(x0, λ0), thus λ 7→ L(x0, λ) is maximal
for λ = λ0, and G(λ0) = L(x0, λ0), thus x 7→ L(x, λ0) is minimal for x = x0. Then (x0, λ0) is a saddle
point of L.

19

We note that in the above statement, the implication 1. implies 2. does not need the assumption
inf F = supG.

The idea of duality is then that we can solve at the same time the primal problem minF and the
dual problem maxG if we are able to find all saddle points of L. Moreover, we can solve minF if
we are able to solve the dual problem maxG, find a maximizer λ0, and then find all saddle points of
L of the form (x0, λ0). This requires to solve the optimization problem min

x
L(x, λ0). The interest is

that, in many cases, this helps in getting rid of the constraints. For instance, in the case of problem
(P) where L(x, λ) := f(x) + λ · (g(x)− c), instead of considering the “hard” optimization problem

min {f(x) : x ∈ Rn g(x) ≤ c} ,

where the constraints could be very annoying, we have to solve

max {G(λ) : λ ≥ 0} ,

which is also a constrained optimization problem (because of λ ≥ 0), but with a much nicer constraint
(the set being Λ := Rm

+ , and the projection on it is explicit: PΛ(x1, . . . , xm) = (x1
+, . . . , x

m
+), which

allows to efficiently use the projected gradient algorithm), and then the unconstrained problem
min
x
f(x) + λ0 · (g(x) − c). This construction also corresponds to finding the good value of the

Lagrange multiplier λ, and the optimality condition ∇f(x0) + λ0 · Dg(x0) = 0 is exactly what we
expect from the Lagrange multipliers theory.

We need now to prove that, in the case of problem (P), we have inf F = supG, at least under
suitable assumptions.

Theorem 4.9. Consider L(x, λ) = f(x) +λ0 · (g(x)− c), with X = Rn and Λ = Rm
+ , so that we have

F (x) =

{
f(x) if g(x) ≤ c,

+∞ if not,

and
G(λ) := inf

x∈Rn
f(x) + λ0 · (g(x)− c).

Suppose that f is a coercive convex function, and that all gi are convex. Then we have inf F = supG.

Proof. We define a function h : Rm → R via

h(p) := inf{f(x) : g(x) + p ≤ c}.

We compute h∗:
h∗(λ) = sup

p
λ · p− h(p) = sup

p,x:g(x)+p≤c
λ · p− f(x).

We note that we can subract arbitrary positive numbers from the components of p and still satisfy
the constraints, so that if λ is not a positive vector the sup on the right-hand side will be +∞, by
choosing a vector p with a very negative component correponding to a λi < 0. Then we consider the
case where λ ≥ 0 and in this case in the optimization it is convenient to choose p as large as possible,
hence p = c− g(x). We then obtain

h∗(λ) =

sup
x
λ · (c− g(x))− f(x) = −G(λ) if λ ≥ 0,

+∞ if not.

We then use f ∗(0) = − inf f applied to h∗, thus obtaining

h(0) = inf F ; h∗∗(0) = − inf −G = supG,

20

and the proof is concluded if we have h = h∗∗. For this, we need to prove that h is convex and l.s.c.
Let us start from convexity, and fix p0, p1, together with the corresponding minimizers x0, x1 (which
exist since f is coercive and the set {x : g(x) + p ≤ c} is closed), satisfying h(pj) = f(xj) and
g(xj) + Pj ≤ c for j = 0, 1. We then define xt := (1− t)x0 + tx1 and pt := (1− t)p0 + tp1. For every
i we use

gi(xt) + pt ≤ (1− t)gi(x0) + tgi(x1) + (1− t)p0 + tp1 ≤ (1− t)c+ tc = c,

so that xt is admissible in the optimization problem defining h(pt). Then we have

h(pt) ≤ f(xt) ≤ (1− t)f(x0) + tf(x1) = (1− t)h(p0) + th(p1),

which proves convexity.
For lower semicontinuity, we consider a sequence pn → p0 and the corresponding sequence of

optimizers xn. If h(pn) = f(xn) is unbounded there is nothing to prove, otherwise we can extract a
converging subsequence from xn, say xnk → x0. The condition g(xn) + pn ≤ c passes to the limit and
gives g(x0) + p0 ≤ c, so that x0 is admissible in the optimization problem defining h(p0) and we have

h(p0) ≤ f(x0) ≤ lim inf
k

f(xnk) = lim inf
k

h(pnk),

which proves the semicontinuity.

This is a nice application of the notion of Fenchel-Legendre transform to convex duality, but there
are cases where this notion appears even more.

Consider for instance the case of linear equality constraints:

min {f(x) : x ∈ Rn, Ax = b} ,

where A is a linear map between Rn and Rm, b ∈ Rm is a fixed vector and f : Rn → R ∪ {+∞} is a
given convex and l.s.c. function. We will denote by At the transpose operator of A, a linear mapping
defined on Rm, valued into Rn, and characterized by

Atξ · x = ξ · Ax for all ξ ∈ Rm and x ∈ Rn.

We can see that the above problem is equivalent to

min

{
f(x) + sup

ξ∈Rm
ξ · (Ax− b) x ∈ Rn

}
.

In this case, in order to enforce an equality constraint, we do not need to impose a sign on the dual
variable ξ. Setting L(x, ξ) := f(x) + ξ · (Ax− b), we then consider the dual problem

sup
ξ

inf
x
L(x, ξ).

We can then give a better expression to this new problem, that we will call dual problem. Indeed
we have

sup
ξ

inf
x
L(x, ξ) = sup

ξ
−ξ · b+ inf

x
f(x) + ξ · Ax.

We then rewrite ξ · Ax as Atξ · x and change the sign in the inf so as to write it as a sup. We do
obtain

sup
ξ

inf
x
L(x, ξ) = sup

ξ
−ξ · b− sup

x
−f(x) +−Atξ · x.

We now recognize in the sup over x the form of a Fenchel-Legendre transform and we finally obtain

sup
ξ

inf
x
L(x, ξ) = sup

ξ
−ξ · b− f ∗(−Atξ).

21

This is a convex optimization problem in the variable ξ (the maximization of the sum of a linear
functional and the opposite of a convex function, f ∗, applied to a linear function of ξ), involving the
Legendre transform of the original objective function f .

It is possible to prove in a very similar way to what done in Theorem 4.9 that we indeed have
equality between the inf in the primal and the sup in the dual, or even to see it as a particular case
of Theorem 4.9, writing the equality Ax = b as two inequalities Ax ≤ b and −Ax ≤ −b. We now
discuss some consequences and some other variants.

A first consequence concerns the necessary optimality conditions. If x0 and ξ0 are optimal, then
we have

f(x0) = −ξ0 · b− f ∗(−Atξ0) and Ax0 = b.

This can be re-written as

f(x0) + f ∗(−Atξ0) = −ξ0 · b = −ξ0 · Ax0 = −Atξ0 · x0,

i.e. we have equality in the inequality f(x) + f ∗(y) ≥ x · y. This is equivalent to

x0 ∈ ∂f ∗(−Atξ0) and − Atξ0 ∈ ∂f(x0).

We can note once more the similarity with Lagrange multipliers, where optimizing a function f under
a linear constraint of the form Ax = b can be translated into the fact that ∇f should belong to a
subspace, orthogonal to the affine space of the constraints, which is indeed the image of At.

The main variant that we want to consider is the following one:

min {f(x) + g(Ax)} ,

where g = I{b} corresponds to the previous example, or g = IK , for K = {y ∈ Rm : y ≤ b}
corresponds to the inequality constrait case.

In the case where we use a generic function g, we do not have constraints to write as a sup,
but we can decide to write one of the two functions f or g as a sup thanks to the double Legendre
transform. We then set

L(x, ξ) := f(x) + ξ · Ax− g∗(ξ)

and we easily see that we have

min {f(x) + g(Ax)} = inf
x

sup
ξ
L(x, ξ).

We then interchange inf and sup thus obtaining the dual problem

sup
ξ

inf
x
L(x, ξ) = sup

ξ
−g∗(ξ) + inf

x
f(x) + ξ · Ax

= sup
ξ
−g∗(ξ)− sup

x
−f(x) +−Atξ · x = sup

ξ
−g∗(ξ)− f ∗(−Atξ).

As we said, the equality constraint Ax = b corresponds to g = I{b}, and indeed we have g∗(ξ) = ξ · b.
The duality between

min {f(x) + g(Ax) : x ∈ X} and sup
{
−g∗(ξ)− f ∗(−Atξ) : ξ ∈ Y ′

}
(where A is a linear and continuous operator from a space X to a space Y) is a classical object in
convex analysis and a theorem guaranteeing, under some conditions, that the the values are actually
equal is known as Fenchel-Rockafellar theorem. See, for instance, Chapter 6 in [3].

22

4.3 Uzawa and Augmented Lagrangian algorithms

We consider here how to turn the ideas from convex duality into a way to produce algorithms whose
aim is to solve an optimization problem which is complicated, for instance because of the presence
of constraints, but manage to do it by exploiting its dual problem. We will consider three cases:

• the case of linear equality constraints:

min{f(x) : Ax = b};

in this case the dual problem is

max{G(λ) := inf
x
f(x) + λ · (Ax− b) : λ ∈ Rm};

we will not necessarily use the fact that G can be expressed in terms of f ∗ as we explained
above;

• the case of linear inequality constraints:

min{f(x) : Ax ≤ b},

where, as usual, the inequality is to be considered component-wise; in this case the dual problem
is

max{G(λ) := inf
x
f(x) + λ · (Ax− b) : λ ∈ Rm

+};

• the case of non-linear inequality constraints:

min{f(x) : gi(x) ≤ ci for i = 1, . . . ,m};

in this case the dual problem is

max{G(λ) := inf
x
f(x) +

m∑
i=1

λi(gi(x)− ci) : λ ∈ Rm}.

We do not consider non-linear inequality constraints because this would give raise to non-convex
optimization problems.

The general idea is to run a fixed-step gradient algorithm on G. It is then necessary compute
∇G(λ). In order to do this, we exploit a general idea for the differentiation of functions expressed as
the result of on optimization problem: G(λ) = min

x
L(x, λ). In this case we compute ∇λL(x, λ) and

we obtain, for fixed λ, a vector depending on x; we then need to choose the poit x = x(λ) which is
the one which realizes the minimal value in the definition of G(λ). It is possible to prove that, if such
a point is unique and L is C1, then G is also differentiable at λ and we have ∇G(λ) = ∇λL(x(λ), λ);
moreover, independently of the uniqueness of x(λ), if G is differentiable at λ we necessarily have
∇G(λ) = ∇λL(x(λ), λ), which also implies that if many minimizers exist, their gradients should be
the same.

Then, in the case of linear equality constraints the algorithms reads as follows: we define a
sequence (λk, xk) with

λ0 = 0, xk := argmin
x

f(x) + λk · (Ax− b), λk+1 := λk + τ(Axk − b),

where τ > 0 is a fixed step, the vector Axk − b represents ∇G(λk), and the positive sign in front of
τ is due to the fact that G is maximized and not minimized. If we can prove convergence, then the
sequence xk converges to the minimizer of the primal problem, and the sequence λk to the maximizer
of the dual.

23

For the case of linear inequality constraints the only difference is given by the update in λ, as we
should impose the positivity constraints. We then define

λ0 = 0, xk := argmin
x

f(x) + λk · (Ax− b), λk+1 := (λk + τ(Axk − b))+,

where the positive part is to be applied componentwise and corresponds to projecting on the set Rm
+ .

In this case, we are running a projected gradient algorithm.
Finally, in the case of non-linear inequality constraints the only difference is given by the update

in λ, as we should impose the positivity constraints. We then define

λ0 = 0, xk := argmin
x

f(x) +
∑
i

λik(gi(x)− ci), λik+1 := (λik + τ(gi(x)− ci))+.

These algorithms, in particular in the last case, are called Uzawa algorithm.
We provide a proof of convergence in the case of linear equalities or inequalities.

Theorem 4.10. If f is α−elliptic and τ < 2α/|||A|||2 then the sequence xk defined by the Uzawa
algorithms in the case of linear equality constraints converges to the unique solution x̄ of the primal
problem.

Proof. Using Lagrange multipliers, the point x̄ is such that there exists a vector λ̄ such that ∇f(x̄)+
Atλ̄ = 0 and Ax̄ = b. Moroever, using the optimality conditions at each step of the Uzawa algorithm
we have ∇f(xk) + Atλk = 0. We then compute

||λk+1 − λ̄||2 = ||λk − λ̄||2 + 2τ(Axk − b) · (λk − λ̄) + τ 2||Axk − b||2.

Replacing b with Ax̄ this gives

||λk+1 − λ̄||2 ≤ ||λk − λ̄||2 + 2τA(xk − x̄) · (λk − λ̄) + τ 2|||A|||2||xk − x̄||2.

We then use

A(xk − x̄) · (λk − λ̄) = (xk − x̄) · At(λk − λ̄) = −(xk − x̄) · (∇f(xk)−∇f(x̄)) ≤ −α||xk − x̄||2

and obtain
||λk+1 − λ̄||2 ≤ ||λk − λ̄||2 − (2τα− τ 2|||A|||2)||xk − x̄||2.

If 2τα − τ 2|||A|||2 > 0 this shows that the series of the terms ||xk − x̄||2 is bounded above by a
telescopic series, and hence converges. We deduce ||xk − x̄||2 → 0.

The variat for the case of inequality constraints is the following:

Theorem 4.11. If f is α−elliptic and τ < 2α/|||A|||2 then the sequence xk defined by the Uzawa
algorithms in the case of linear inequality constraints converges to the unique solution x̄ of the primal
problem.

Proof. First, let us assume that the point x̄ is such that there exists a vector λ̄ ∈ Rm
+ such that

∇f(x̄) + Atλ̄ = 0, Ax̄ ≤ b and λ̄ · (Ax̄− b) = 0. This means

PRm+ [λ̄+ τ(Ax̄− b)] = λ̄.

Indeed, for each component i such that λ̄i = 0 we have (λ̄+ τ(Ax̄− b))i ≤ 0 and for each component
i such that λ̄i > 0 we have (λ̄+ τ(Ax̄− b))i = λ̄i.

We then use this condition together with the fact that projections are 1-Lipschitz to obtain

||λk+1 − λ̄||2 = ||PRm+ [λk + τ(Axk − b)]− PRm+ [λ̄+ τ(Ax̄− b)]||2 ≤ ||λk + τ(Axk − b)− λ̄− τ(Ax̄− b)||

24

and then the computation goes almost as in the previous theorem. Indeed, we obtain

||λk+1 − λ̄||2 ≤ ||λk − λ̄||2 + τ 2|||A|||2||xk − x̄||2 + 2τA(xk − x̄) · (λk − λ̄),

so that we have
||λk+1 − λ̄||2 ≤ ||λk − λ̄||2 − (2τα− τ 2|||A|||2)||xk − x̄||2.

Why can we say that we have a vector λ̄ ∈ Rm
+ such that ∇f(x̄) + Atλ̄ = 0, Ax̄ ≤ b and

λ̄ · (Ax̄− b) = 0? if we use Lagrange multipliers we easily get ∇f(x̄) +Atλ̄ = 0, Ax̄ ≤ b and, for each
component i such that (Ax̄− b)i < 0, we have λ̄i = 0 (since such a constraint would not be active).
The only remaining fact to prove is that we can assume λ̄ ≥ 0. This can be seen as a particular case
of Kuhn-Tucker conditions (Lagrange multipliers with sign constraints), or as a consequence of the
duality result (but we need in this case to prove that the dual problem admits a solution, which will
be λ̄).

We finish this section with a variant of the Uzawa algorithm for equality constraints. We keep
in mind that the goal of such an algorithm is to find the saddle points of the Lagrangian L(x, λ) =
f(x) + λ · (Ax − b). The variant we consider, called Augmented Lagrangian, considers instead the
Lagrangian function L̃(x, λ) := f(x) + λ · (Ax − b) + τ

2
||Ax − b||2. The important point is that the

saddle points of L and of L̃ are the same. Indeed, the sadle points of L are characterized by{
∇f(x) + Atλ = 0,

Ax− b = 0,

while those of L̃ by {
∇f(x) + Atλ+ τAt(Ax− b) = 0,

Ax− b = 0,

which has the same sets of solutions since the second equation imposes that the extra term in the
first vanishes.

The algorithm then becomes looking for a sequence (λk, xk) with

λ0 = 0, xk := argmin
x

f(x) + λk · (Ax− b) +
τ

2
||Ax− b||2, λk+1 := λk + τ(Axk − b).

The extra quadratic term in the minimization defining xk makes the function to be minimized more
convex, and eases the use of fast-converging fixed step gradient algorithms for this. We omit the
proof of convergence, but it could be done without the ellipticity assumption on f (coercivity would
be enough to obtain convergence, up to a subsequence, to a saddle point for L) .

5 Stochastic gradient descent
We consider here the case where we adapt the procedure of a gradient descent algorithm in order to
include random effects. More precisely, we consider an iterative algorithm of the form

Xk+1 = Xk − τkYx,

where Yk is any random variable such that E[Yk|Xk] = ∇f(Xk). Even if we take X0 = x0 to be a
deterministic initial point (for instance x0 = 0), starting from the first iterations the algorithm will
give as an output a random variable and not a precise value. The goal is to provide conditions such
that Xk or some other r.v. built out of the sequence (Xk)k converges (for instance in L2, or a.s.) to
the minimizer x̄ of f .

Before proving any convergence result, let us analyze some examples of application.

25

Example. Suppose that we have f(x) := E[g(x, ω)], where ω is a random variable. Under suitable
assumptions so as to apply the differentiation under the integral sign we have ∇f(x) = E[∇xg(x, ω].
This means that we can choose Yk = ∇xg(Xk, ωk), where (ωk)k is a sequence of independent random
variable distributed as ω. In practice, we want to optimize the average value of something which
depends on a parameter x and on a random effect ω. At each step we are in a certain x (= Xk)
and we move to a new point by choosing to follow the opposite gradient computed according to one
realization of ω instead of the average over all ωs. This is particularly useful when the distribution
of the variable ω is not actually known but we only know a sequence of samples ωk.

Example. Suppose that f is a detrministic function of the form f(x) =
n∑
i=1

fi(x). We can consider

it as an expectation of the form f(x) := E[g(x, ω)], where ω is a r.v. uniformly distributed over
{1, . . . , n}, and g(x, ω) = nfω(x). We can then move from Xk to Xk+1 using the gradient of one
only function fi choosing the index i at random. It is also possible to select once for all an order (a
permutation) of the indices at random, and then cycle accoring to this order.

Example. It is also possible to exploit the fact that a gradient is a sum of vectors of the form ∂f
∂xi
ei,

where the vectors ei are the vectors of the canonical basis. In this case we use Yk = n ∂f
∂xi

(Xk)ei, where
the index i is uniformly drawn from {1, . . . , n}.

We suppose f to be convex. The main computation that we do is the following

E[||Xk+1 − x̄||2] = E[||Xk − x̄||2]− 2τkE[Yk · (Xk − x̄)] + τ 2
kE[||Yk||2].

We then use E[Yk|Xk] = ∇f(Xk) and assume E[||Yk||2] ≤M . SupposeD2f ≥ αI. We will distinguish
later the case α > 0 and α = 0. We use the inequality

min f = f(x̄) ≥ f(x) +∇f(x) · (x̄− x) +
α

2
||x̄− x||2

and apply it to x = Xk, and take expectations. In this way we obtain

E[||Xk+1 − x̄||2] ≤ (1− τkα)E[||Xk − x̄||2]− 2τkE[f(Xk)−min f] + τ 2
kM. (5.1)

We then state the two following results:

Theorem 5.1. Suppose that f is convex; let Yk satisfy E[Yk|Xk] = ∇f(Xk) and E[||Yk||2] ≤ M .
Let the sequence of random variables Xk be defined via the stochastic gradient algorithm as described
above. Define

γk :=
k∑
j=0

τj and X̃k :=

k∑
j=0

τjXj

γk
.

Then we have

E[f(X̃k)−min f] ≤
E[||X0 − x̄||2] +M

k∑
j=0

τ 2
j

2γk

and, in particular, if τk = 1√
k+1

, we obtain E[f(X̃k)−min f] ≤≈ C+log k√
k

.

Proof. We use (5.1) with α = 0, sum over k. This gives

2
k∑
j=0

τkE[f(Xj)−min f] ≤ E[||X0 − x̄||2]− E[||Xk+1 − x̄||2] +M
k∑
j=0

τ 2
j .

26

We divide by γk, ignore the positive term E[||Xk+1 − x̄||2], and use f(X̃k) ≤
∑

j=0k
τ j

γkf(Xj), which

is a consequence of the convexity of f , since X̃k is a convex combination of the variables Xj. This
gives the desired estimate.

We can then choose suitably the coefficients τj so as to make the right-hand side tend to 0. If we

choose τj ≈ j−1/2 we have
k∑
j=0

τ 2
j ≈

k∑
j=0

1
j
≈ log k and

k∑
j=0

τj ≈
k∑
j=0

1√
j
≈
√
k, which gives the result.

It is possible to check that other choices of τj of the form τj ≈ j−α provide a less good result,

since we would have in this case
k∑
j=0

τ 2
j ≈ k1−2α and

k∑
j=0

τj ≈ k1−α. In case α < 1/2, the ratio would be

of the order of k−α, which is a power strictly worse that k−1/2 and hence of C+log k√
k

. In case α > 1/2

the dominant term of the numerator would be the constant one and the ratio would be of order kα−1.
Again, the exponent would be worse than −1/2.

In the case α > 0 it is possible to give a differnt result, in terms of E[||Xk − x̄||] instead of the
value of the function. This is not surprising, if we think at the case of the gradient descent and of
the different results that we obtain in the elliptic case or in the case where f is only convex.

Theorem 5.2. Suppose that f is convex with D2f ≥ αI; let Yk satisfy E[Yk|Xk] = ∇f(Xk) and
E[||Yk||2] ≤ M . Let the sequence of random variables Xk be defined via the stochastic gradient
algorithm as described above. Suppose

∑
k

τk = +∞ but
∑
k

τ 2
k < +∞. Then we have

E[||Xk − x̄||2]→ 0.

When we choose τk = 1
(k+1)α

we have more precisely

E[||Xk − x̄||2] ≤≈ M log k

α2k
.

Proof. We use (5.1) with α > 0, and ignore the positive term E[f(Xk) − min f]. We then obtain,
setting uk := E[||Xk − x̄||2];

uk+1 ≤ (1− ατk)uk + τ 2
kM.

We can write this as ατkuk ≤ uk − uk+1 + τ 2
kM . With our assumptions, the right hand side is

summable, since a part is telescopic and we asumed
∑
k

τ 2
k < +∞. We deduce that we have

∑
k

τkuk <

+∞. If we suppose that we have lim inf uk > 0 we havea contradiction with the non-summability of
τk. Hence there exists a subsequence ukh → 0. If we fix ε > 0 we can choose h such that ukh < ε/2

and M
∞∑

k=kh

τ 2
k < ε2. Using un ≤ um +

m−1∑
k=n

τ 2
kM , which is true for any n > m, we deduce un < ε for

every n > kh, which exactly means lim
k
uk = 0.

In the particular case τk = 1
(k+1)α

we can make an explicit computation. We have

uk+1 ≤ (1− 1

k + 1
)uk +

M

α2(k + 1)2
.

Multiplying by k + 1 we obtain

(k + 1)uk+1 ≤ kuk +
M

α2(k + 1)

and hence

(k + 1)uk+1 ≤
M

α2

k∑
j=0

1

j + 1
≈ M log k

α2
,

which proves the claim.

27

We can observe that in this estimate there is no depdence on the initial datum and in particular
on E[||X0 − x̄||2]. Yet, our assumptions imply E[||∇f(Xk)||2] ≤ M and, since f is elliptic, we have
|∇f(Xk)||2 ≥ α2||Xk − x̄||2. It is then necessary to choose M large enough so as to bound all
the terms of the form E[||Xk − x̄||2], and in particular E[||X0 − x̄||2]. Hence, this result should
rather be understood as an information on the asymptotic rate of convergence rathern than a precise
non-asymptotic bound.

We finish this section with few words about the notion of importance sampling. Let us stick, for
instance, to the example where f =

∑
i

fi and imagine that the orders of magnitude of the different

functions fi and/or of their gradients are not at all comparable. We can write f =
∑
i

fi, but also

f =
∑
i

λif̃i, where f̃i = fi/λi, for arbitrary numbers λi > 0 such that
∑
i

λi = 1. Hence, fhte function

f is also the expected value of the f̃i, when we do not use the uniform distribution on the values of
i but we use a probability such that P(ω = i) = λi. If we then take Yk = ∇f̃ωk(Xk) we stille have
E[Yk|Xk] = ∇f(Xk) but we have

E[||Yk||2|Xk] =
∑
i

λi||∇f̃i(XK)||2 =
∑
i

||∇fi(Xk)||2

λi
.

This quantity is not independent of the λi and is minimized when each λi is proportional to ∇fi(Xk).
As a consequence, if one has bounds of the form ||∇fi|| ≤ Li, it could be convenient to use λi = Li∑

j
Lj
.

The expected value of the gradient does not change, but

6 Complementary material
We discuss here some examples of optimization problems coming from data analysis, essentially taken
from [3].

6.1 Point clouds separation

Suppose that we have some points xi ∈ Rn for i = 1, . . . ,m, in the space and for every point we have
a label yi = ±1. We want to find a separation between points with yi = +1 and points with yi = −1
so that when new data arrive we know how to classify them. For simplicity, we hope to find a linear
separation, i.e. a vector v ∈ Rn and a constant c ∈ R such that yi should have the same sign as
v · xi + c. We consider all pairs (v, c) such that, for every i, we have yi(v · xi + c) > 0 and we look for
the one which maximizes te distance between the points and the separation subspace {v ·x+ c = 0}.
This distance is given by min

i

|v·xi+c|
||v|| . We would like to solve

max

{(
min
i

|v · xi + c|
||v||

)
: v ∈ Rn, c ∈ R, yi(v · xi + c) > 0

}
.

We can always replace a pair (v, c) with (tv, tc) for t > 0 and nothing changes, so we can add the
condition min

i
|v ·xi + c| = 1 or, keeping into account the sign condition min

i
yi(v ·xi + c) = 1. In this

case, we have to minimize the norm of v or, equivalently, the square of the norm. This becomes

min

{
1

2
||v||2 : v ∈ Rn, c ∈ R min

i
yi(v · xi + c) = 1

}
.

We can also replace min
i
yi(v ·xi+ c) = 1 with min

i
yi(v ·xi+ c) ≥ 1 since it is clear, by rescaling again

v and c by a same factor, that the minimizer under the condition min
i
|v ·xi+ c| ≥ 1 would satisfy the

28

equality. The condition min
i
yi(v ·xi + c) ≥ 1 can be written as “for every i we have yi(v ·xi + c) ≥ 1”,

so that we get

min

{
1

2
||v||2 : v ∈ Rn, c ∈ R yi(v · xi + c) ≥ 1

}
.

How to solve this optimization problem under constraints? the projected gradient algorithm does
not seem a good idea since the whole problem indeed consists in projecting 0 onto the constraints,
and in general we do not have a formula for the projection. Uzawa’s algorithm is a better choice,
since we only have to solve a sequence of problems of the form

min
1

2
||v||2 +

∑
i

λi(1− yi(v · xi + c)),

for which we can have an explicit expression of the minimizers.
All the analysis above starts from the assumption that a separating hyperplane {v · x + c = 0}

exists. It is not always the case, but it is possible that it “almost” exists in the sense that few outliers
are the only exception. In this case a possibility is to solve the following problem:

min

{
1

2
||v||2 +

m∑
i=1

|εi| : v ∈ Rn, c ∈ R, ε ∈ Rm, yi(v · xi + c) ≥ 1− εi

}
,

which consists in admitting violations of the constraint yi(v ·xi + c) ≥ 1 but penalizing them. Again,
it is possible to solve this problem via the Uzawa algorithm. In this case, for λi ≥ 0 one has to solve
the problem

min
1

2
||v||2 +

m∑
i=1

|εi|+
∑
i

λi(yi(1− εi − (v · xi + c)).

If we look at the dependence in εi we see that we have min
ε
|ε|−λiε = 0 if λi ∈ [0, 1] while inf

ε
|ε|−λiε =

−∞ if λi > 1. Hence, the iterations of the Uzawa algorithm require the extra constraint λi ∈ [0, 1]
instead of only λi ≥ 0; at every step of the projected gradient algorithm on the variable λ it is then
necessary to project onto such a constraint, i.e. taking the positive part and truncating at 1.

6.2 Inverse problems

In many applications we cannot observe directly the parameters x ∈ Rn of a model but only their
output after applying an operator A ∈Mn×m and we want to find a reasonable estimation of x. We
want then to solve an equation Ax = b; in many cases A is neither injective nor surjective, and it is
also possible that, because of noise, the observation b that we have does not belong to the image of
A. We are then lead to solve an optimization problem of the form min ||Ax− b||2 and to add possible
regularization terms on X in order to select a “better” solution. We list here some observations on
this problem.

• If b ∈ Im(A) and we solve min ||Ax−b||2 +εF (x) we obtain (if they exist, which is the case if F
is coercive, and if they are unique, which is the case if F is strictly convex) a solution xε. Then,
if we have a sequence xεj → x0, we can say that x0 is a solution of Ax = b which minimizes,
among solutions, the quantity F . This is a consequence of Lemma 6.1. If F is strictly convex
and coercive the whole sequence xε is bounded and converges to x0.

• When we take F (x) = ||x||2 this is a way of finding the solution of Ax = b of minimal norm.
Since we have (AtAx+εI)xε = Atb we can see that xε depends linearly on b, so x0 also depends
linearly on b. This defines a map A† such that AA†b = b and A†b = argmin{||x|| : Ax = b}.
Note that the matrix AtA is always symmetric positive semidefinite, and becomes positive
definite when adding εI.

29

• If b /∈ ImA the problem is invariant if replacing b with b̃ := PImA[b], since ||Ax − b||2 =
||Ax− b̃||2 + ||b̃− b||2, using the fact that b̃− b is orthogonal to Im(A).

• We can consider F (x) = ||x||1, which is often used to select solutions of Ax = b which are
sparse. As we saw in Section 1.2 we should use a different quantity, that we called A0(x), but
Lemma 6.2 justifies the fact that we use the norm ||x||1.

• A problem that we are hence often lead to solve is therefor

min ||Ax− b||2 + ||x||1.

For this problem, the use of proximal gradient descent, maybe in accelerated versions (as in
[1], see also Section 3.2), is the best option. Note that when AtA is not positive definite the
function decomposes into f(x)+g(x) with f smooth but no elliptic and g non-smooth, and the
convergence rate is 1/k (for the non-accelerated version) or 1/k2.

Lemma 6.1. Let F,G be two l.s.c. functionals bounded from below on a space X and xε ∈ argminG+
εF . Suppose xεj → x0. Then x0 ∈ argmin{F (x) : x ∈ argminG}. If either G or F is coercive and
the problem min{F (x) : x ∈ argminG} has a unique solution, then the whole sequence xε converges
to such a solution.

Proof. Writing xε for xεj , for every x we have G(xε) + ε inf F ≤ G(xε) + εF (xε) ≤ G(x) + εF (x).
Passing to the limit as ε→ 0 we obtain G(x0) ≤ G(x). Which shows x0 ∈ argminG. We then choose
x ∈ argminG. We then obtain

G(x) + εF (xε) ≤ G(xε) + εF (xε) ≤ G(x) + εF (x).

This implies F (xε) ≤ F (x) and, at the limi, F (x0) ≤ F (x), which shows the claim.

Lemma 6.2. Consider the problem

min{||x||1 : Ax = b}.

This problem admits at least a solution x̄ such that #{i : xi 6= 0} ≤ dim(ImA).

We do not prove this last result, which van be found as Theorem 8.4 in [?]

Bibliographie
[1] A Beck, M Teboulle A fast iterative shrinkage-thresholding algorithm for linear inverse

problems SIAM journal on imaging sciences 2 (1), 183–202, 2009

[2] J.F. Bonnans, J.C. Gilbert, C. Lemaréchal and C. Sagastizábal, Numerical Opti-
mization, 2nd Edition, Springer-Verlag, Heidelberg, 2006.

[3] G. Carlier, Classical and Modern Optimization, World Scientific, London, 2022.

[4] Y.E.Nesterov, A method for solving the convex programming problem with convergence
rate O(1/k2), Dokl. Akad. Nauk SSSR,269(1983), pp. 543–547 (in Russian).

30

