Optimisation Convexe: Algorithmes et
Applications en Apprentissage

M2 Statistique, Modélisation et Science des données
Université Claude Bernard Lyon 1

Filippo Santambrogio

Contents
1 Introduction to Optimization 2
1.1 Min and inf, max and sup 2
1.2 Example of optimization problems in data sciences 3
1.3 Existence and optimality conditionso 4
1.4 Convex functions e 5
2 Gradient descent 6
2.1 Unconstrained fixed-step gradient algorithm 6
2.2 Projected gradient algorithm oo 7
2.3 Slower convergence and acceleration for non-elliptic smooth convex functions 9
3 Non-smooth optimization 12
3.1 Subdifferential and subgradient descent 12
3.2 Proximal methods 14
4 Convex duality and algorithms using duality 16
4.1 Fenchel-Legendre transform L oo 16
4.2 Dual problems 18
4.3 Uzawa and Augmented Lagrangian algorithms 23
5 Stochastic gradient descent 25
6 Complementary material 28
6.1 Point clouds separation Lo 28
6.2 Inverse problems 29

Updated on September 30, 2024.

1 Introduction to Optimization

1.1 Min and inf, max and sup

Definition 1.1. Given a non-empty set E C R we say that a number ay € R is the minimum of E
(and we write ag = min F) if it satisfies the two following properties:

a) for every a € E we have a > aq,

b) ag € E.

We say instead that a value { € R = [—o0, +00] is the infimum of E (and we write { = inf E) if it
satisfies the two following properties:

a) for every a € E we have a > ¢,

b) for every ¢' > (there exists a € E such that a < {' (in other words, { is the maximal value
which satisfies the previous property).

The existence of the infimum is a consequence of the contruction of the set of real numbers R.
Note that the inf is never +oo, except for the emptyset (or, if we considered E C R, in the case
E = {+00}). On the contrary, the minimum does not always exist, think at £ = (0,00). One can
check that the minimum exists if and only if we have inf F € F (i.e. the inf satisfies the second
property for the min).

Moreover, one can also characterize the inf in this other way

a) for every a € F we have a > (,

b) there exists a sequence of elements a, € E such that a, — ¢.

In practice, we never look for the minimum (or inf) of a set of numbers which is already well-
known, but for the min or inf of the set of values that a certain function takes on a certain set, i.e. we
take £ = {f(z) : = € A}, for a given function f : A — R. The set A, the domain of the function,
can be more or less arbitrary, but it is important that the function takes values into R. This is due
to the fact that we want an order on the target set, and we cannot optimize functions which are
complex-valued, vector-valued, fruit-valued... It is possible — and sometimes useful — to consider
functions valued into R U {+o0}. Unless f is the constant function +oo then its inf is for sure in
RU{—o0}. In general we do not consider the minimization of a function which takes somewhere the
value —o0, since it would be trivial. All these considerations can of course be done for maximization
instead of minimization, and we could define the maximum and the supremum.

Example. Suppose that we want to build the wing of an airplane and that we describe our choice
in terms of a certain number of parameters (x*, 22, ..., 2N standing for its length, width at different
locations of the wing, its density a different locations, etc. Suppose that f(x) stands for the construc-
tion cost of a wing of type x = (x1,22, ..., 2V) € RN, and that g(x) stands for a certain performance
of the wing. We could be interested in solving

min{f(z) : z € A}, where A= {x € RY : g(z)>c}

for a certain constant c. It is also possible to replace the constraint with a penalization, looking at
something like

min{f(z) — A\g(z) : = € RV},
and the choice of the parameter A > 0 is a delicate matter.

It is important in optimization not to get confused between the minimal value and the minimizer
of a function (this distinction does not exist when we minimize a set of values but, as we said, in
practice we always minimizes the value of a function f over a set A). We denote by mjn f the minimal
value, which is a number. Such number, if it exists, is always unique. We denote by argmin f(x) the

€A
minimizer, which could be unique or not (many points could give the same minimal value).

2

1.2 Example of optimization problems in data sciences

A typical problem in data analysis is the following: we have two sets, X and), and we obtain data
in the form of pairs (z,y) € X x Y. We can imagine that Y is a set whose goal is to classify points
of X. For instance, the set X is composed of images of animals and we would like to decide whether
the image represents a cat, a dog or a dolphin, i.e.) = {cat,dog,dolphin,other}. Or X could be
again a set of images, and we would just like to decide whether the image represents a cat or not,
so that we could use Y = {—1,1} for a binary choice, or Y = [—1, 1] if we want to insert different
degrees of certainty in the answer (y > 0 means “most likely a cat”, while y < 0 “most likely not a
cat”). We suppose that pairs of data (z,y) € X x) can occurr with a certain probability distribution
m € P(X x Y), which we do not know. We also assume that the correspondence between x and y
should be (but it is not because of errors, noise, ambiguities in the interpretation...) deterministic,
ie. y = f(x). We look for this function f : X —). To do it we fix a loss function L:Y xY — R
which acts like a distance: L(y,y’) > 0 and L(y,y’) = 0 if and only if y = ¢'. Then, we would like to
solve

mfin Ex y)~r[L(f(X),Y)].

Yet, as we do not know 7 we replace it with its empirical version, i.e. with 7y = + Z O(xs,y;), Where

the points (z;,y;) € X x) are the observations we have collected. We then look at
min » L(f(x
LU

This problem has to be considered either under additional constraints on f (for instance: we impose
f to be linear, or to be a polynomial of a certain fixed degree, or to belong to a certain parameterized
class, the latter being what is actually done in neural networks) or adding a penalization on f, called
a regularization. Indeed, if we plot the points (z;,;) on a plane, we are looking for a function f
which best interpolates or approximates these data. If the x; are distinct it is always possible to find
a function f such that f(x;) = y; for every ¢, but this can produce a very nasty function f, different
from what we expect, and too much subject to outliers coming from possible measurement errors.
For instance, if X is a finite-dimensional vector space and Y = R, we can consider linear functions
of the form f(z) = v-z + a and the problem

nalivn2|(a+v~xi) —y)?
"N

is called linear regression. It consists in finding the best affine function approximating the data. As
an example of regularizing term, if X = [0, M] C R, we could instead consider

[gnﬁnﬁRZIfxz —yil”+ /If”)| da,

where f is not forced to be affine, but its second derivative (i.e. a measure of how much it is not
affine) is penalized.

The regularization term can also be used to impose sparsity, and not only ‘“regularity”. For
instance, one could hope to write y as an affine function of z using few variables of z... If we define
for p > 0 the function A4, : RN — R via A,(x) := _ |2%|P (a function which coincides, for p > 1, with

7
||z|[7»; this involves the ¢” norm |[|z[|, :== (32 |2?[P)1/P), we see that we have plir(r)l+ Ap(z) =#{i : xi#
(2

0}. This limit is sometimes called, by abuse of language, the /° norm of x; we can also denote it by
Ag. We could be interested in solving

min Y [(a+v - z;) = i + A (v).
U N

Before adding Ay this optimization problem was quadratic, and hence convex (see below), which was
a great advantage. A common trick to have a simpler problem to consider is to replace Ag with Ay,
which is a convex function, but it is the closest to Ay among the A, which are convex. In this case
we would have

min Y |(a+ v+ @) = 5l + [Jol 1.
a,v ~
Another common problem from data analysis involving the ¢* norm is the following:
min [|Az — y|[* + ||z},

Here the question is slightly different: we try to describe the observations y; as obtained from uknown
parameters x via linear combinations, through a procedure, described by the matrix A, which is
known, i.e. we assume y ~ Ax. We look for the values of x, and we want them to be sparse.

1.3 Existence and optimality conditions

The most common way to prove that a function admits a minimizer on a certain set is based on the
classic Weierstrass Theorem, possibly replacing continuity with semicontinuity.

Definition 1.2. On a metric space X, a function f : X — R U {400} is said to be lower semi-
continuous (l.s.c. in short) if for every sequence x, — x we have f(z) < liminf f(x,). A function

f: X = RU{—o00} is said to be upper-semicontinuous (u.s.c. in short) if for every sequence x,, — x
we have f(z) > limsup f(z,).

We also remind the following;:

Definition 1.3. A metric space X is said to be compact if from any sequence x,, we can extract a
converging subsequence x,, — v € X.

One of the main theorems in optimization is:

Theorem 1.4. If f: X — RU{+o0} is lower semicontinuous and X is compact, then there exists
z € X such that f(Z) = min{f(z) 1z € X}.

Proof. Define ¢ := inf{f(z) :2 € X} € RU{—00} (¢ = +oo only if f is identically 400, but in this
case any point in X minimizes f). By definition there exists a minimizing sequence z,, i.e. points in
X such that f(z,) — ¢. By compactness we can assume x,, — . By lower semicontinuity, we have
f(z) < limninff(xn) = (. On the other hand, we have f(z) > ¢ since ¢ is the infimum. This proves

¢ = f(z) € R and this value is the minimum of f, realized at z. O

The compactness of X can be replaced by a lighter assumption: we just need that there exists
a value M for which {z € X : f(x) < M} is at the same time non-empty and compact. Indeed, it
is then possible to restrict the minization to this set. In particular this happens in the case where

X =R" and || 1‘1‘m f(x) = 4+o00. In this case we say that f is coercive.
T||—0o0

We recall this well-known statement:

Theorem 1.5. Suppose that f is C1, that xo is a minimum point of f on E, and that zy is in the
interior of E (there exists a radius r > 0 such that B(xo,r) C E). Then V f(xy) = 0.

The gradient of f is not only used to check whether a point xy satisfies or not the optimality
conditions above, but also to move from a point in the direction of the minimizer. Indeed, the vector
V f represents the direction in which f increases the most, and the vector —V f the one in which it
decreases the most. Unfortunately, any use of the gradient in order to find a minimizer is limited

4

by the fact that for arbitrary functions there could be points where the gradient vanishes without
being minimizers, and that using the gradient (or even higher-order derivatives) will only provide
local informations, so that we will never be able to see the difference between a global minimizer and
a local minimizer (i.e. a point xy such that there exists r > 0 such that zy minimizes f over the ball
B(zg,7)). The only case where everything goes well is the case of convex functions.

1.4 Convex functions

Definition 1.6. A function f : R™ — R is called convez if, for all z,y € R™ and all t € [0, 1], we
have

J(A =tz +ty) < (1 —1t)f(x) +1f(y).
We say that f is strictly convex if the same inequality holds strictly whenever x # y and t € (0,1).

In dimension 1, we have the following characterizations.

Proposition 1.7. If f is C*, it is convex if and only if f' is an increasing function, and if and only
if we have the following inequality

f) > flx) + fl(2)(y — z)

for all x,y.
If f is C?, then it is convex if and only if f” > 0.

In higher dimensions, it becomes
Proposition 1.8. If f is C!, it is convex if and only if V f satisfies the inequality
(Vf(z) =Vfy) (z—y)=0
for all xz,y, and if and only if we have the following inequality
fly) = f(@) + V() - (y —)

for all z,y.
If f is C?, then it is convex if and only if D*f > 0 in the sense of symmetric matrices (which is
equivalent to having non-negative eigenvalues).

We also provide the definition of uniformly convex or elliptic functions.

Definition 1.9. A function f : R™ — R s called uniformly convex or elliptic if there exists a > 0
such that © — f(x) — §||x|[* is a convex function (in this case, we say it is a-elliptic).

We obtain the following characterizations:
Proposition 1.10. If f is C!, it is a-elliptic if and only if V f satisfies the inequality
(Vi) = Vi) (= —y) = allz -yl
for all x,y, and if and only if we have the following inequality

F4) = f@) + V@) (y—2) + Slle =yl

for all z,y.
If f is C?, then it is a-elliptic if and only if D*f > ol in the sense of symmetric matrices (i.e.,
all its eigenvalues are greater than or equal to o).

5

It is worth noting that every elliptic function is strictly convex.
For the minimization of convex functions, we have:

Proposition 1.11. If f is a C' convex function, then a point T minimizes f if and only if V f(Z) = 0.
If f s strictly convex, then the minimum point, iof it exists, is unique. If f s elliptic, then the
mainimum point exists and is unique.

Indeed, while strict convexity is sufficient for the uniqueness of the minimizer, it is not sufficient
for existence (consider f(x) = e*). However, ellipticity is sufficient for existence because every elliptic
function is bounded from below by a parabola, hence it tends to infinity at infinity.

2 Gradient descent

Given a C! function f : RY — R we want to find its minimum point and its minimal value (provided
they exist), following the opposite direction of the gradient. A possibility could be to the follow the
flow of the evolution equation

a'(t) = =V f(z(t))
which exactly means to follow the steepest descent lines of f and, hopefully, converge to the minimizer.

The above differential equation is useful to have an idea of the qualitative behavior of what we
want to do, but in practice one has to use a disretized algorithm.

2.1 Unconstrained fixed-step gradient algorithm

We consider the simplest optimization algorithm, the fixed-step gradient descent: given a point xg,
we define an iterated sequence by taking xy1 = zx — 7V f(xg).
We have the following theorem.

Theorem 2.1. Let f : R™ — R be a C? function with al < D?f(z) < LI for two constants L > a > 0.
Suppose T € (0, %) Then, the sequence defined by the fived-step gradient descent algorithm converges
to the unique minimizer T of f, and we have

llow = 2| < [lzo — Z[|A"

where the number X is given by A = max{l — 7o, 7L — 1} < 1.

Note that the value of 7 that minimizes the value of)\ is 7 = é—jrg

The proof is based on the following preliminaries

2 : : _
o7 Which gives A =

e The Banach contraction principle: in a complete metric space X any map F': X — X such
that there exists A € (0,1) wth d(F'(z), F(y)) < Ad(z,y) for every z,y (such a map is called
a contraction, and being a contraction means being Lipschitz continuous with a Lipschitz
constant strictly smaller than 1) admits a unique fixed point Z, and for every point zy the
sequence defined by x4, = F () converges to z, with d(zy, z) < M\d(z0, 7).

e The Lischitz constant of a C* map F : R® — R™ is given by sup|||DF(z)|||, where the norm

[||A]|| for a matrix A is defined as

|| ARl
[A[l] := sup :
nzo [[7]]
e When n = m and A is symmetric, we have |||A||| = max{|\],...,| |} = max{—X, \,}, if

A < Ap < -2 <)\, are the eignevalues of A.

6

We are now able to prove the above theorem.

Proof. Consider the map F': R® — R" given by F(z) = x — 7V f(x). We have DF(z) =1— D?f(z),
which is a symmetric matrix. Since we suppose al < D?f(x) < LI we have (1 — 7L)I < DF <
(1 — 7)1, so that the eigenvaues of DF' are between 1 — 7L and 1 — 7a. Hence, |||DF||| < max{l —
Ta, TL—1} := A, Our assumption guarantees 0 < A < 1, so that Fis a contraction, and the space R"
is complete. Hence z;, converges to Z, a point characterized by F(zZ) = Z, and we have the claimed
exponential convergence. The point Z satisfies £ — TV f(Z) = Z, so that we have Vf(z) = 0 and,
since f is convex, ¥ is the minimizer of f. O]

Note that the above proof provides the convergence of the points z;, to the optimizer z. We
can also look at the value of the function, and define ¢, := f(zx) — f(Z), which is how much =y is
not optimal. Using the fact that f is locally Lipschitz continuous (f is C' and on bounded sets C*
functions have bounded derivatives) we find e, < C||z, — Z||, hence g, < CA*. Actually, we con
obtain better. Indeed, close to the point z the Lipschitz constant of f is small, since V f(z) = 0.
Using a second-order Taylor expansion we have

F) < F0) + V) - (=) + gl — ol

Applying this to z = x;, and y = T we obtain

L
er < §||g;k —Z|]* < CN*.

2.2 Projected gradient algorithm

We consider now constrained minimization problems, such as
min{f(z) : z € K},

where K C R" is a closed convex set and f is a C' convex function. First of all, we establish the
optimality conditions.

Proposition 2.2. A point o € K is a a solution of min{f(x) : x € K} if and only if it satisfies
Vf(ze) (x —x¢) >0 forallzeK. (2.1)

Proof. First, suppose that xq satisfies (2.1). Then, using f(z) > f(xo) + Vf(xq) - (x — z9) we obtain
f(x) > f(xo) for all z € K, which proves the minimality of z5. This part of the proof uses the
convexity of f.

Then, suppose that z(is a minimizer, take x € K and define z; := (1 — t)zo + tx for t € [0, 1].
The points x; belong to K because K is convex. Hence, we have f(x;) > f(x¢), i.e. the function
[0,1] 5 ¢t +— f(x;) is minimal for ¢ = 0. Its derivative is given by Vf(z;) - (x — zo) and at t = 0 it
should be non-negative by minimality. O

A particular constrained optimization problem is that of the projection onto K.

Proposition 2.3. Given a point xo € R™ and a closed and conver set K C R™ we consider the
problem
min{||z — 20||* : z € K}.

This problem admits a unique solution, that we call projection of xo onto K and denote by Pg[zo].
Moreover, a point x1 € K 1is the projection of xq onto K if and only if we have

(x —x1) - (r1 —x0) >0 foralzxeK. (2.2)

Finally, the map R™ > xy — Pxlxo| € K is 1-Lipschitz.

7

Proof. The existence of the minimizer is due to the fact that x — ||z —x¢||? is coercive. Its uniqueness

is due to the fact that the same function is strictly convex. Setting f(z) = 1||z — o||* and using
Vf(z) = x — xo we obtain the characterization of the minimizer as a particular case of Proposition

2.2. Now, consider xg,yo € R" and x; = Pk[x¢], y1 = Pk[yo]. We have, using twice (2.2)

(1 — 1) - (11 —20) 20 (21 —y1) - (y1 —yo) > 0.

If we sum these two inequalities we obtain

(y1 — 1) - (21 — 2o — Y1 + o) > 0,

which can be re-written as
Hyl - $1||2 < (yl - «Tl) : (yo - xo)-

Using the Cauchy-Schwartz inequality (the scalar product is smaller than the product of the norms)
we obtain

lyr = 21l * < [y — 21| - llyo — oll,

which gives ||y; — z1|| < ||yo — xo|, and the claim. O

We can now consider a variant of the fixed-step gradient algorithm which takes into account the
constraint. The goal is to solve min{ f(x) : = € K}. The algorithm is called projected gradient and
uses an iterative sequence defined as

Tpy1 = Prloy — 7V f (1))

Theorem 2.4. Let f : R® — R be a C? function with ol < D?f(x) < LI for two constants
L > «a > 0. Suppose T € (0,%). Then, the sequence defined by the projected gradient algorithm
converges to the unique minimizer T of f, and we have

[z — 2| < [|lwo — Z[A"
where the number X is given by A = max{l — 7o, 7L — 1} < 1.

Proof. The proof is based on the same idea as in Theorem 2.1. We consider the map F(z) =
Py [z — 7V f(x)] and prove it is a contraction. Since Pk is 1-Lipschitz, and the map inside Py was
already proven to be a contraction under these very same assumptions, this is easy. Then, we obtain
llzx — Z|| < ||xo — Z||A*, but Z is not (yet) the minimizer of f over K, but the fixed point of F'.
Hence, from = = Pk [z — 7V f(Z)] we deduce, using (2.2)

(x—2)-[z—(—7Vf(Z)] >0 forallzekK.

This can be re-written as
(x—2)-Vf(z) >0 foralxekK,

which is exactly the condition for the optimality of z. m

We proved exponential convergence of x to Z, we could wonder about ¢;. Differently from the
unconstrained case we cannot use here the fact Vf(Z) = 0, so we cannot obtain a rate A2*. We can
only use the Lipschitz behavior of f around Z and obtain g, < CAF.

We note that the above algorithm is only useful when computing the projection Py is “easy” (if
possible, we would like an explicit formula for the projection ; if computing it, which means solving an
optimization problem at each step, requires to run another algorithm to approximate the solution,
then it is not necessarily a good idea to use the projected gradient). In particular never use the
projected gradient to compute a projection ! Why? since you would need a formula to compute the
projection itself, which is exactly what you try to find.

8

Example. Among the sets for which computing the projection is easy we mention the rectangles:
K = [ay,by] X -+ X [an, by], and the ball K = B(0, R). In the first case the projection is given by

(Pklz]); = max{min{x;, b;}, a;}

and in the second case we have .

Picla] = max{1,|z|/R}

2.3 Slower convergence and acceleration for non-elliptic smooth convex
functions

If in the fixed-step gradient algorithm we use a function f which is convex but not elliptic, i.e. a =0,
then we are not guaranteed that the map g given by g(z) = x — 7V f(x) is a contraction. Hence,
we have no proof of the exponential convergence of z;, to Z. Yet, if we suppose D?f < LI, we can
obtain a proof of convergence of g5 to 0, even if much slower (and with no clue about the rate of
convergence of xy to).

In order to have an idea of what happens we first consider the continuous-in-time equation
2'(t) = =V f(z(t)) instead of the fixed-step gradient algorithm. We compute

o (gnx@ - f||2) = (2(t) =) - 2'(t) = —(a(t) = 7) - VI (2(1) < () — f((t) = —<(0),

where we define £(t) as the optimality error of x(t), i.e. (t) = f(z(t)) — f(z). We can see that (¢)
is non-increasing in ¢ since

o (@@)) = V() - ' (t) = IV f @@ <0.

Hence we have

T

d

7=() < / at < [-5 (llte) ~ I) dt = 51lo0) = 7P = Jllo) - 7P < 5 jo(0) - .
0

which provides ¢(7') < C/T. In this computation we do not need the constant L, i.e. we do not

need D?f to be bounded from above neither. Yet, in order to handle the discrete case, we will need

it. We try to mimick the same principle in the proof of the statement below.

Proposition 2.5. Let f: R” — R be a C? function with D? f(x) < L1, which admits a minimizer T.

Suppose T € (0, %) Then, the sequence defined by the fixed-step gradient descent algorithm satisfies

=2
epe1 < C/k, where C = w

Proof. Let us consider

1 e 1 2 Tpt1 + T _

§ka+1 —z||* - §ka —7|° = (Tpy1 —p) - (+T - :C) (2.3)
= Vi) - (o= 7) - SV F@) (24)
< —re+ SVl (2.5)

We now consider how much f decreases from one step to the other. We have

Flonn) < P+ V@) waen —) + 5 llowen — ol = flaw) = IV @l + 5oVl

Hence, f decreases at each step if 72L < 27, i.e. 7 < 2/L. If we suppose 7 < % we have more: we
obtain —7 + TQTL < —%, hence

.
Erp1 < € — §||Vf($k)||2>

which can be combined with (2.3). We then obtain
1 1
sllern@ll” = Sllo = 2| < —7ern

and, moreover, £;, is non-increasing in k. Hence we have

||z0 — %,

N —

k k
1 1
7k5k+1§7—5 €ip1 < E §||$i_f||2_§|’$i+l_f||2§
i—0 =0

which is the claim. O
Since C'/k is much worse than A*, people have looked for ways to accelerate the convergence, and
a very clever idea was presented by Nesterov in [4]. What Nesterov suggests is to apply at each step
the same construction of the fixed-step gradient algorithm, i.e. passing from a point y to y — 7V f(y),
but instead of applying it to y = x; doing it to another point y = ¥, which is a clever combination of
xy and z5_1. From the computational point of view, the cost is approximately the same (one unique
computation of the gradient at each iteration), and what [4] proves is that we obain & < C'/k%.

We will discuss the algorithm in details and provide a proof of this rate of convergence. We
consider the following algorithm:

T =Y — TV f(yr) ; yr = a linear combination of x; and z;_; using coefficients (t)y.
We start from the following estimates: for every x we have

f(x) > flur) + VI(ye) - (2 — yr)

as well as I
Fla) < flye) + V) - (2 = yi) + S llo = yil >
We take x = xp,1 in the second estimate and subtract from the first, so that we get

£) =) 2 V) - (@ =) = 5 llewes — well

Then, we use V f(yx) = (yx — T41)/7, and we choose 7 = 1, so that we obtain

F(&) = Flenin) 2 Dl =) - (0 = 2aer) = 5o = wall (2:6)
We apply (2.6) to z = x; and obtain
% (er = ers1) 2 209 — Trp1) - (2 — Tpr) = ||gn — yal % (2.7)
We also apply (2.6) to x = = and obtain
Gk 2 20y — Trr1) - (T — Tpyr) — e — wil® (2.8)

We multiply (2.7) by tx41 — 1 and add it to (2.8) and obtain

2

7 ((trs1 — Deg = trgrensr) = 20 — Ts) - (G — D + T — b1 @) — to || 2n1 — il

10

We multiply everything by ¢41 and we assume that we have ¢, — tx+1 < t7, so that we obtain

7 (trer — tiarr1) = 21 (v — Trg1) - ((Ber — D + T — topa2pr) — i |2ra — vl

Using 2a-b — ||a||> = —||a — b||* + ||b]|? with @ = tgpy1(yp — Try1) and b= (tp1 — DT + T — tpp1Tg 1
we can re-write the right-hand side and obtain

2
I’ (trer — tireer1) = Wt — Daw + T — ez | = [[(tran — Dok + 7 — tepauel |

We would like the right-hand side to give rise to a telescopic sum. We would like the last term
to be equal to the previous one when exchanging k£ 4+ 1 with k. More precisely, if we set up =
(t, — 1)zp_1 — trwr + T we would like to write the right-hand side above as ||ujy1|[* — |Jux||?. For
this, we need to impose

(thp1 — Dag + T — tysaye = (b —) wpq — teay + 7.

This requires to choose
ty — 1
L1
This explains the precise choice of the point ¥, and the choice of the coefficients t; has to comply
with the condition 7, — tx41 < t7. We then obtain the following.

Yp = Tp + (T — xp_1).

Proposition 2.6. Let f : R" — R be a C* function with D?f(x) < L1, which admits a minimizer
x. Suppose T = % Fiz a sequence (ty)y, such that to = 0 and t7, | — tyy1 < t; and a point xy. Define
rT_1 = 2o and
ty — 1
k+1
Setting e, = f(xx) — f(Z) we then obtain

Y = Tp, + () — Tp—1); X1 = yx — TV f (Ur)

C L
er < — where C = Z||lzo — Z|[°.

Proof. Applying all the computations that we just described we obtain the inequality
2
7 (tige = tienin) 2 [lunnll” = [l

where uy, = (ty — 1)zp_1 — trxr + . We take the sum of these inequalities for k& ranging from 0 to

N and obtain 9
7 (tog0 = thrnaensa) 2 [luwall” = lluol[* > —[luol*

We use ty = 0 to get rid of the first term, change the sign and multiply by L/2 and obtain

L
tyEntt < §||U0||2-

We conclude using g := (to — 1)x_1 — tozo + Z, so that ||ue|| = ||z_1 — Z|| = ||z0 — Z||- O

In the previous statement, we can use t;, = (k+ 1)/2 for kK > 1, since we can easily check that we

have
) (k+2)? k+2 K42k kK+2k+1

Another reasonable choice is the one which saturates the inequality 7, — tx+1 < t; making it an

equality, i.e.
1+ /144t
5 .
Anyway, in all these cases we have t; = O(k) and we obtain thus g, < C/k?.

thy1 =

11

3 Non-smooth optimization

In the last section we removed the assumption that the objective function should be elliptic, but
still we kept the assumption that it has to be smooth (i.e. V f should be Lipschitz continuous, D?f
bounded from above). We want now to consider the case where f is not necessarily smooth. In
particular, convex functions could be non-differentiable.

3.1 Subdifferential and subgradient descent

One of the main tools to deal with non-differentiable convex functions is the deinition of subdiffer-
ential.

Definition 3.1. Given f: R" — RU {+oc} and a point xg € R™ we define the subdifferential of f
at xo as the set Of (xg) C R™ defined as follows

Of (o) :={veR" : f(z) > f(xg) +v- (x —xg) for all z € R"}.
The elements of the subdifferential are called subgradients.

The above definition is inspired by the property which is satisfied when taking v = V f(x).
Among the main properties of the subdifferential we cite the following.

e The subdifferential 0f(z) is always a closed and convex set, whatever is f.

e If fisls.c., the graph of the subdifferential multi-valued map is closed: take a sequence x,, — xg
and a sequence v, with v, — v and v, € df(x,). Then v € df(xy). This is useful to obtain
stability properties for the subdifferential.

e When dealing with arbitrary functions f, the subdifferential is in most cases empty, as there
is no reason that the inequality defining v € Jf(z) is satisfied for x very far from xy. The
situation is completely different when dealing with convex functions, which is the standard
case where subdifferentials are defined and used. In this case we can prove that df(zg) is
never empty if xy lies in the interior of the set {f < +oo} (note that outside {f < +oo}
the subdifferential of a proper function is clearly empty). In particular, for real-valued convex
functions, the subdifferential is never empty.

o If f is convex and differentiable at a point x¢, then df(z¢) = {V f(zo)}.
e A point zg solves min{ f(z) : x € R"} if and only if we have 0 € 0f(x).
e The subdifferential satisfies the monotonicity property
v; € Of(x;) fori=1,2 = (v — vy, 11 — x) > 0.
This can be seen by writing
f(w1) > f(xo) +vo- (21 —@2), fla2) > f(x1) +v1 - (22 — 11),
and summing up the two inequalities.
Example. Several examples can be considered

e For the function f: R — R given by f(z) = |z| we have

{1} if x >0,
of@) = {-1} ifz <0,
—1,1] ifz=0.

12

e For the function f:R™ — R given by f(z) = ||z|| we have

WMimr ifr#£0,
oro - {10

e Different situations can occur at the boundary of {f < +oo}. If we take for instance the proper
function [defined via

x? if x >0,
fz) = { ‘
+oo ifx <0,
we see that we have Of(0) = [—00,0] so that the subdifferential can be “fat” on these boundary

points. If we take, instead, the proper function f defined via

=z ifx>0,
fw) = {+oo if v <0,

we see that we have Of(0) =0, a fact related to the infinite slope of [at 0: of course, infinite
slope can only appear at boundary points.

We also prove the following fact.

Proposition 3.2. Take two convex functions fi and fs, and suppose that fi is differentiable at a
point xo. Set f = f1+ fo. Then we have

v € Jf(xg) & v— Vii(xg) € Dfa(xg).
In other words, 0f(xo) = Vfi(xg) + 0f2(xg). As a consequence, xo minimizes f if and only if
—V fi(zo) € 0f2(xo).

Proof. If v = V fi(x¢) + w with w € 0f2(x), then clearly we have v € df(xy). On the other hand,
suppose v € Jf(xg) and take a point z7. Define z; := (1 — t)x¢ + tx;. Using x; — x¢ = t(x1 — x0), for
t € [0, 1] we have
fi(@e) + fa(we) = fi(zo) + fa(20) + tv - (71 — 0).
This can be re-written as
folai) = fa(@o) filze) = fi(wo)
t t '
Since the incremental ratios of convex functions are increasing we also obtain
fa(21) = fa(wo) > fa(we) = falwo) fi(we) = fi(wo)
1 - t t ‘
Taking the limit ¢ — 0 we then get
fo(@1) — fa(wo)
1
which shows v — V fi(z0) € 0f2(x0). O

> v (x; —x0) —

>v-(r) —x0) —

> - (v —x9) — V fi(wo) - (21 — 20),

A reasonable algorithm that one could imagine to replace the gradient descent in the case of
non-differentiable functions could be the following: given z; take v, € Jf(x;) and then update
Tky1 = T — TU,. The problem with this algorithm is that at the point # which minimizes f we have
0 € df(x), but close to this point the vectors which belong to the sudifferential are not necessarily
small. This is what happens in the case of the modulus or the norm functions, where outside the
origin all vectors in teh subdifferential have unit norm. This prevents the sequence to converge, since
we would have ||z —xy|| > c7. The correct version of the algorithm requires to use a non-constant
step 7. The convergence result (that we do not prove) is the following.

13

Theorem 3.3. Let f : R™ — R be a convex function which admits a minimizer and (73,)x a sequence
such that 7, >0, Y. 71, = 400, >, 77 < +00. Then, any sequence (xy,vy,) satisfying
k k

v
v € 0f(zr), w#0, and Tpp =% — Tkﬁ
k

is such that xp — X, where T is a minimizer of f.

The proof of this fact can be found in Theorem 9.3 of [2].

From the computational point of view, the drawback of this algorithm is that it imposes to choose
a variable step-size 7, which should tend to 0, and this implies that the algorithm is necessarily slow
(it can be proven that it cannot be as fast as the fixed-step gradient algorithm, i.e. that we cannot
have ||z;, — Z|| < CN* for A < 1). This explains the quest for alternative algorithms for non-smooth
optimization, based on different principles.

3.2 Proximal methods

Let us think at what we actually do in the fixed-step algorithm. If we want to minimize a function
f at each step we take a point zy, compute V f(zy), and then move to xxy1 = xp — 7V f(2). We
can also say that the point zj. is characterized by

Ty = argmin f(z) = f(zg) + Vf(zk) - (x — zp) + %Hx — ||?,
i.e. xxy1 minimizes a quadratic function f that is chosen as an approximation of f around z;. The
function f recalls a Taylor expansion of f, but the second-order term sD? f(xy)(x — xy) - (x — x5,) has
been replaced with a simpler second-order term. If we had used f(z) := f(xy) + Vf(xp) - (x — 1) +
1D?f(zy)(z — xx) - (x — 1) we would have found as an algorithm the Newton’s method for finding
the solution of Vf = 0 (indeed, expanding the function f at order two is the same as expanding
Vf at order one). Yet, Newton’s method requires to invert D?f(x;) and requires high regularity to
converge, which is not the first goal here. Another interesting point of not choosing the exact 2nd
order Taylor expansion is that it allows to obtain f > f. This works as soon as 7 < %, which is an
assumption we already used many times. The advantage of having f > f is that the optimality of
Tpr1 provides f(zpe1) < f(zps1) < f(xe) = f(x1), so that the algorithm let f decrease.

Now, the question is: what to do if f is not smooth? take for instance a function f of the form
f = fi + g, with f; smooth but ¢ only convex. In this case a good choice of f is given by

Flo) o=) + Vi) - (&=) + 5l = 2l P+ (o),

where we only replace with a second-order polynomial the smooth part fi. Minimizing f is equivalent
to solving
(2 — 7V f1(zp))|?
27 ’
which means applying a proximal operator. These operators are defined here.

min g(x) + [z =

Definition 3.4. Given g : R" — RU {+00} a convez function we define the proximal operator of g
as follows:
||z — o|

Prox; 4[xo] := argmin g(z) + 5 :
T T

where 7 > 0 is a parameter. Note that the minimizer of g(x) + W exists (because g is convex,
hence bounded from below by an affine function, and adding a quadratic penalization we obtain a
coercive function) and is unique (because g is convex, and adding a quadratic penalization we obtain
a strictly convex function).

14

Among the main properties of the proximal operator we cite the following.
e A point y equals Prox; 4[] if and only if —¥=* € dg(yo).

e For any 7 > 0, the map zy — Prox, j[zo| is 1-Lipschitz. This can be seen by taking xg, z;
and y; = Prox, g[z;]. We then write —¥=* € dg(y;) and use the monotonicity property of the
subdifferential, thus obtaining

(r—1—y1—x0+w0) (Y1 —y)>0.

This can be written as

1y = ol < (w0 — 21) - (%1 — o) < M1 — woll - [Ja1 — 2o
and allows to obtain |ly; — yol| < ||z1 — xol]-

e In the particular case where ¢ is the function given by

0 ifre K
g(x) = .
+oo ifz ¢ K,

for a convex set K C R™ (this function is called indicator function of K, in convex analysis,
and denoted by Ix), we have Prox, , = Pk for every 7 > 0.

The use of the proximal operator allows to define a new algorithm, different from the subgradient
descent algorithm, in order to attack non-smooth optimization problems. The algorithm, called
proximal gradient algorithm, will work as follows: when minimizing f; + g, we take 7 > 0 and define
an iterative sequence via

T = Prox, [z, — 7V fi(z)].

We then have the following theorem.

Theorem 3.5. Let fi : R* — R be a C* function with ol < D?*f(x) < LI for two constants
L>a>0,and g: R" — RU {400} a convex function. Suppose T € (0, %) Then, the sequence
defined by the proximal gradient algorithm converges to the unique minimizer T of f := f1 + g, and
we have

|z — 2] < [|lwo — Z[|A"

where the number X is given by A = max{l — ra,7L — 1} < 1.

Proof. The idea is the same as for the projected gradient algorithm. We define F' : R® — R" via
F(x) = Prox, 4[x — 7V f1(x)]; we check that F'is a contraction, since z — x — 7V f(x) is A—Lipchitz,
and Prox; ; is 1—Lipschitz. Then the sequence converges exponentially to Z, defined as the fixed point
of F'. We now need to prove that z is the minimizer of f. The condition z = Prox, [z — 7V f1(Z)]
implies

= (z—71Vfi(x))

T

€ dy(2),
which means —V f1(Z) € dg(x). this is exactly the condition to minimize f; + g O]

As for the projected gradient algorithm (which is a particular case of the proximal algorithm,
when taking g = I), this procedure is only useful if we know how to compute the proximal operator
explicitly. This is the case, for instance, of a convex function widely used in application to data

sciences, i.e. g(z) = ||z|]1 = 3 |2'| (please note that the index 7 is a coordinate here, and not the
5

iteration step of the algorithm), as we can see in the following example.

15

Example. Suppose n = 1 and take g(z) = |z|. Given xy € R, it is clear that Prox, j[zo] and xg
shoud have the same sign (because, otherwise, changing the sign would make the point closer to x
without changing the value of g). Suppose for simplicity xo > 0. We can then find Prox, j[zo] by

. . ‘x—l’olQ
solving min x + ===
g >0 27

. Differentiating, we get 14 (v —x¢)/7. The derivative vanishes at x = xo—T.
If such a point is in the domain x > 0, then it is the minimizer. Otherwise the mnimizer is 0. So the
solution of the minimization problem is given by (xo — 7)+. More generally, we have Prox, ,[zo] =
sign(xo)(|xo| — 7)s. This procedure is called shrinkage-thresholding since we shrink xo moving it
towards the origin, with a threshold effect (if closer than T, we stop at the origin).

In higer dimension the same construction can be done componentwise: every time that a function
g is separable (i.e. it is a sum of functions of different components) we can exploit the fact that
also the quadratic penalization is separable and treat separately each variable. We then obtain, for
o(z) = llal |1 | o
(Prox-g[zo])" = sign(xg)(|zg| — 7)+-

In particular, it turns out that it is quite easy to use this algorithm to solve min f;(z)+||x||; when
f1 is smooth and elliptic. On the other hand, a typical example would be to take fi(x) = ||Az — b3,
which in many cases is not elliptic. In this case we can adapt the results of Section 2.3 (but we won'’t
prove them) and obtain the following.

Proposition 3.6. Let f; : R" — R be a C* function with D?f(x) < LI which admits a minimizer T,
and let g : R" — R U {400} be a convex function. Take T = 1/L. Then, the sequence defined by the
prozimal gradient algorithm satisfies exy1 < C/k, where ey, := f(xx) — f(Z) and C = Ll||xo — 7|2

If, instead, we fix a sequence (ty)y such that to = 0 and tzﬂ — tre1 < 12, we take a point x,
define x_1 = xo, and take a sequence (xy,yx) such that

te—1

k+1

Yk = Tp + (T — Tp-1); Trp1 = Proxy g[ye — 7V f (ur)],

setting e, = f(xx) — f(Z) we then obtain

C L
er < — where C = —||zo — Z|°.

These results are proven, for instance, in [1].

4 Convex duality and algorithms using duality

We consider here some tools from convex analysis, with the goal to associate with some classes of
optimization problems a corresponding dual problem, which could be useful to develop algorithms
to solve the primal one exploiting the dual one.

4.1 Fenchel-Legendre transform

Definition 4.1. We say that a function valued in R U {400} is proper if it is not identically equal
to +00. The set {f < +oo} is called the domain of f.

Definition 4.2. Given a proper function f : R" — R U {+oo} we define its Fenchel-Legendre
transform f*: R™ — RU {+oo} via

(€)= Slipﬁ -x — f(x).

We observe that we trivially have f*(0) = — iﬂgﬂf f

We note that f*, as a sup of affine functions, is both convex and l.s.c., as these two notions are
stable by sup. We indeed have the following lemma.

16

Lemma 4.3. Given a family of functions f, : X — RU{+o0}, define f(x) := sup fo(x). Then, if

the functions f., are all l.s.c. f is also l.s.c. If they are all convex, [is also convex.

Proof. Assume that the functions f, are all l.s.c. Take z,, — x and write
fa(z) < limninf fa(zy) < lin}linff(xn).
It is then enough to take the sup over a in the left hand side in order to obtain
f(z) < limninff(xn),

which is the desired result.
For convexity, assume that the functions f, are all convex, and take x,y and write

Jo((M=t)z +ty) < (L —t)falz) +tfaly) < (1 —1)f(x) +1f(y).
Again, taking the sup over « in the left hand side provides the desired inequality. n

We then note that, actually, not only any sup of affine functions is convex and l.s.c. but any
convex and ls.c. function is indeed a sup of affine functions. A rough proof of this fact can be
obtained by considering for every point x € R" the (or a) tangent to the graph of f at (x, f(z)). This
actually works well whenever f is finite-valued, while some attention has to be paid to the points
where f takes the value +o00, or to the boundary of the domain of f in the general case. By the
way, the assumption that f is l.s.c. is useless when f is finite-valued, since finite convex functions
are always locally Lipschitz and hence continuous.

We then consider the following characterization.

Proposition 4.4. Consider a function f: R™ — RU{+oc} which is proper, convex, and l.s.c. Then
a) there exists g : R™x — RU {+o0} such that [= g*;
b) we have f** = f.

Proof. Once we know that f is a sup of affine functions we can write
flz) =sup(&a -z +ca)

for a family of indices a. We then set ¢(§) := sup{c, : & = £} The set in the sup can be empty,
which would mean ¢(§) = —oo. Anyway, the sup is always finite: fix a point xg with f(xy) < 400
and use since ¢, < f(z9) — (€, zo). We then define g = —c and we see f = g*.

Finally, before proving f = f** we prove that for any function f we have f > f** even if f is not
convex or l.s.c. Indeed, we have f*(&) 4+ f(x) > & - = which allows to write f(x) > & -z — f*(£), an
inequality true for every £. Taking the sup over £ we obtain f > f**. We now want to prove that this
inequality is an equality if f is convex and l.s.c. We write f = ¢g* and transform this into f* = g**.
We then have f* < g and, transforming this inequality (which changes its sign), f** > ¢* = f, which
proves f** = f. n

A nice connection between Fenchel-Legendre transforms and subdifferentials is the following.

Proposition 4.5. If f is convexr and l.s.c., the subdifferentials of f and f* are related through

§eif(x) e redf(§) e flo)+ (&) =E

17

Proof. Once we know that for convex and l.s.c. functions we have f** = f, it is enough to prove
€ € 0f(x) & f(x) 4+ f*(§) = £ - x since then, by symmetry, we can also obtain x € Jf*(§) <
f(z)+ f*(&) = & - x. We now look at the definition of subdifferential, and we have

£ €df(x) < forevery y we have f(y) > f(z)+&-(y —x)
< for every y we have £ -z — f(z) > &y — f(y)

& é-x—f(x)ngp&y—f(y)
& La—fla)= &)

This shows that & € 0f(x) is equivalent to & - x > f(x) + f*(£), which is in turn equivalent to to
£-x= f(z)+ f*(§), since the opposite inequality is always true by definition of f*. m

A corollary of the above fact is the following; take two proper, convex and l.s.c. conjugate functions
fand f* (with f = f**); then f is a real-valued C' function on R™ if and only if f* is strictly convex
and superlinear. This can be seen in the following way: f is a real-valued C* function on R™ if for
every x we find a unique £ in the set df(x); on the other hand, f* is strictly convex if for every x
we find at most one point £ such that x € 9f*(¢), and superlinear if for every x we find at least one
point £ such that = € 9f*(§).

All the above properties can be verified on the following examples.

Example. Given p > 1, consider f(z) = %||x||p. Then we have f*(§) = %||§||q, where q is the dual
exponent of p, characterized by % + % = 1. Forp =1, setting f(x) = ||z||, we have

() = {o if gl < 1,

+o0o it not.

Let us consider the last case in the one-dimensional setting (i.e. f(x) = |z|, © € R). In this case we
have Of(x) D {1} for every x > 0, and every x > 0 is such that x € Of*(1). All the other cases in
the relations described in Proposition 4.5 can be easily checked.

We also discuss a connection between proximal operators and Legendre transforms.

Proposition 4.6. We have the following equality
Prox; 4 + Prox; ,« = id.

Proof. Take a point y and call z := Prox; 4[y]. The point z is characterized by y — = € dg(x). This
implies, using Proposition 4.5, that we also have = € 0g*(y — x). Setting z = y — x we can write this
as y — z € 0g*(2), i.e. z = Proxy ¢-[y]. The condition x + z = y allows to conclude, as we wanted to
prove Proxy 4[y] + Prox; g« [y] = v. O

4.2 Dual problems

In this section we introduce the notion of dual problem of a convex optimization problem through an
inf-sup exchange procedure. This often requires to write possible constraints as a sup penalization.
We start as an example from the following problem:

(P) min{f(z) : zeR"gi(x) <¢;i=1,...,m},

where the functions f,g; (i = 1,...,m) are convex. We also consider the function g : R™ — R™ whose
components are the functions g; and we write g < ¢ (when writing inequalities involving vectors, we
mean componentwise inequalities).

18

We then observe that we have

sup A - (g(z) —¢) =

AERT +oo if not.

{0 if g(z) <c,

Since we can always replace a constraint in an optimization problem by adding a function which
takes the value 0 if it is satisfied and +o0 if not, the above optimization problem is equivalent to

min sup f(z)+ A (g9(x) —c).
z€R™ \eR™

We get now to a problem of the form

inf sup L(z, A

z€EX \ecA ()
where, in this case, L(z,\) := f(z) + X - (g(z) — ¢).

This is an inf-sup problem, and we can associate with it a second optimization problem, obtained

by switching the order of the inf and the sup. We can consider

sup inf L(z,),

AeA v€X (@A)
which means maximizing over A the function G obtained as the value of the inf over z: G(\) :=
in)f(L(z, A). We denote by F' the function obtained by maximizing first in A, i.e. F'(x) :=sup L(z, A).
z€ AEA

In this very example the function F' coincides with f if the constraint is met, otherwise it is 4-oc0.

We would like the two above optimization problems (“inf sup” and “sup inf”) to be related to each
other, and for instance their values to be the same.

Given an arbitrary function L the values of inf sup and of sup inf are in general different, as we
can see from this very simple example: take X = A = {+1} and L(z, \) = A\x. In this case we have
inf sup = 1 > supinf = —1. Here the two values are different, and the inf sup is larger than the sup
inf. Actually, this inequality is always true. Indeed, for arbitrary x, A we have by definition of F, G

F(z) > L(z,\) > G(\).

Ignoring the term in the middle we see that all the values of F' are larger than all the values of G,
hence inf F' > sup G.

We then want to discuss the connection between minimizing F', maximizing GG, and finding saddle
points of L.

Definition 4.7. Given a function L : X x A — R we say that a pair (xq, \o) is a saddle point of L
if x — L(x, A\o) is minimal for x = xo and X\ — L(xg, \) is mazimal for A = X.

We have the following theorem.
Theorem 4.8. Suppose inf F' = sup G. Then the two following conditions are equivalent:

a) (zo, No) is a saddle point of L,

b) xg is a minimizer for F' and \g a maximizer for G.

Proof. If (zq, A\o) is a saddle point of L, this means G(\o) = L(x, Ag) (since x — L(z, Ag) is minimal
for x = xp) and F(xo) = L(zo, A\o) (since A — L(zp, A) is maximal for A = \g). Hence we have
F(z9) = G(\g) but we also know that for every = we have F(x) > G()g), hence ¢ is a minimizer
for F'; and for every A we have G(\) < F'(zg), hence Ay a maximizer for G.

If on the contrary z(is a minimizer for F' and Ay a maximizer for GG, then we have

inf F' = F(z0) > L(xg, A\o) > G(N\g) =supG = inf F,

and all inequalities are equalities. Hence, we obtain F'(z¢) = L(xg, o), thus A — L(x, \) is maximal
for A = Ao, and G(X\g) = L(xg, \o), thus = — L(z, A¢) is minimal for z = z. Then (z, \o) is a saddle
point of L. O

19

We note that in the above statement, the implication 1. implies 2. does not need the assumption
inf ' =supG.

The idea of duality is then that we can solve at the same time the primal problem min F' and the
dual problem max G if we are able to find all saddle points of L. Moreover, we can solve min F' if
we are able to solve the dual problem max &, find a maximizer \g, and then find all saddle points of
L of the form (zg, Ag). This requires to solve the optimization problem min L(z, Ag). The interest is
that, in many cases, this helps in getting rid of the constraints. For instaflce, in the case of problem
(P) where L(z, \) := f(z) + A - (9(x) — ¢), instead of considering the “hard” optimization problem

min {f(z) : v € R" g(x) < ¢},
where the constraints could be very annoying, we have to solve
max {G(\) : A >0},

which is also a constrained optimization problem (because of A > 0), but with a much nicer constraint
(the set being A := R, and the projection on it is explicit: Py(z',...,2™) = («1,...,2"}), which
allows to efficiently use the projected gradient algorithm), and then the unconstrained problem
mxin f(x) + Ao - (g(x) — ¢). This construction also corresponds to finding the good value of the

Lagrange multiplier A, and the optimality condition V f(xzq) + Ag - Dg(z¢) = 0 is exactly what we
expect from the Lagrange multipliers theory.

We need now to prove that, in the case of problem (P), we have inf F' = sup G, at least under
suitable assumptions.

Theorem 4.9. Consider L(z,\) = f(x)+Xo- (9(x) —c), with X =R" and A = R, so that we have

Pla) = {f<as> if g(v) <c,

+oo if not,

and

GO\ = inf f(z) + Ao - (9(z)).

reR”

Suppose that f is a coercive convex function, and that all g; are convex. Then we have inf ' = sup G.

Proof. We define a function h : R™ — R via

h(p) = inf{f(z) : g(z) +p < c}.

We compute h*:
h*(A\) =supA-p—h(p)= sup A-p— f(z).
p p@:g(x)+p<c

We note that we can subract arbitrary positive numbers from the components of p and still satisfy
the constraints, so that if A is not a positive vector the sup on the right-hand side will be +o00, by
choosing a vector p with a very negative component correponding to a A; < 0. Then we consider the
case where A > 0 and in this case in the optimization it is convenient to choose p as large as possible,
hence p = ¢ — g(z). We then obtain

B = sup A+ (¢ = g(7)) = fz) = =G(A) A =0,

+00 if not.
We then use f*(0) = —inf f applied to h*, thus obtaining

h(0) =inf F'; h™(0) = —inf —G = supG,

20

and the proof is concluded if we have h = h**. For this, we need to prove that h is convex and l.s.c.
Let us start from convexity, and fix pg, p1, together with the corresponding minimizers zy, x; (which
exist since f is coercive and the set {x : g(z) + p < ¢} is closed), satisfying h(p;) = f(z;) and
g(xj)+ P; < cfor j =0,1. We then define x; := (1 — t)xo + tz1 and p; := (1 — t)po + tp1. For every
1 we use

gi(ze) + pr < (1= 1)gi(2o) + tgi(x1) + (L = t)po + tp1 < (1 —t)c+tc=c,

so that x; is admissible in the optimization problem defining h(p;). Then we have

h(pe) < flae) < (L —=1)f(xo) +tf(21) = (1 = t)h(po) + th(p),

which proves convexity.

For lower semicontinuity, we consider a sequence p, — po and the corresponding sequence of
optimizers x,. If h(p,) = f(x,) is unbounded there is nothing to prove, otherwise we can extract a
converging subsequence from z,,, say ,, — zo. The condition g(z,)+ p, < ¢ passes to the limit and
gives g(zo) + po < ¢, so that xg is admissible in the optimization problem defining h(py) and we have

h(po) < flxo) < limkinff(xnk) = limkinf h(pn,).

which proves the semicontinuity. O

This is a nice application of the notion of Fenchel-Legendre transform to convex duality, but there
are cases where this notion appears even more.
Consider for instance the case of linear equality constraints:

min{f(z) : z € R", Az = b},

where A is a linear map between R™ and R™, b € R™ is a fixed vector and f : R" — RU {400} is a
given convex and Ls.c. function. We will denote by A! the transpose operator of A, a linear mapping
defined on R™, valued into R", and characterized by

Az =€ Axforall € € R™ and x € R".

We can see that the above problem is equivalent to
min{f(x)+ sup £ - (Az —b) x E]R"}.
¢eRm
In this case, in order to enforce an equality constraint, we do not need to impose a sign on the dual

variable £. Setting L(z,€) := f(x) + & - (Az — b), we then consider the dual problem

supinf L(z,§).
5 xX

We can then give a better expression to this new problem, that we will call dual problem. Indeed
we have
supinf L(z,&) = sup —& - b+ inf f(x) 4+ £ - Ax.
& 7 3 r

We then rewrite & - Az as A'¢ - x and change the sign in the inf so as to write it as a sup. We do
obtain

supinf L(z, &) = sup —€ - b — sup — f(z) + —A'¢ - 2.
& = 13 T

We now recognize in the sup over = the form of a Fenchel-Legendre transform and we finally obtain

supinf L(z,§) = sup —¢ - b — f*(—A%).
¢ ® 3

21

This is a convex optimization problem in the variable ¢ (the maximization of the sum of a linear
functional and the opposite of a convex function, f*, applied to a linear function of), involving the
Legendre transform of the original objective function f.

It is possible to prove in a very similar way to what done in Theorem 4.9 that we indeed have
equality between the inf in the primal and the sup in the dual, or even to see it as a particular case
of Theorem 4.9, writing the equality Az = b as two inequalities Ax < b and —Ax < —b. We now
discuss some consequences and some other variants.

A first consequence concerns the necessary optimality conditions. If xy and &, are optimal, then
we have

flxg) = =& -b— f*(—A') and Axg =b.

This can be re-written as

f(@o) + [H(—A"&) = =& - b= —& - Azg = —A’& - w0,

i.e. we have equality in the inequality f(z) + f*(y) > = - y. This is equivalent to
v € 0f*(=A'&) and — A% € 9f (o).

We can note once more the similarity with Lagrange multipliers, where optimizing a function f under
a linear constraint of the form Az = b can be translated into the fact that V f should belong to a
subspace, orthogonal to the affine space of the constraints, which is indeed the image of A?.

The main variant that we want to consider is the following one:

min { f(z) + g(Az)},

where g = Iy corresponds to the previous example, or g = Ik, for K = {y € R™ : y < b}
corresponds to the inequality constrait case.

In the case where we use a generic function g, we do not have constraints to write as a sup,
but we can decide to write one of the two functions f or g as a sup thanks to the double Legendre
transform. We then set

L(x, &) := f(x) + & Ax — g"(§)

and we easily see that we have
min { f(x) + g(Ax)} = inf sup L(z, §).
rog
We then interchange inf and sup thus obtaining the dual problem

supinf L(z,£) = sup —¢* (&) + inf f(z) + £ - Az
£ v 3 *

= sup —g" (&) —sup—f(2) + —A¢ -z = sup —g" (&) — [H(—A%).

As we said, the equality constraint Az = b corresponds to g = Iy, and indeed we have g*(§) = & - b.
The duality between

min {f(z) + g(Az) : x € X} and sup {—g* (&) — fF(—A%) : £€V'}

(where A is a linear and continuous operator from a space X to a space))) is a classical object in
convex analysis and a theorem guaranteeing, under some conditions, that the the values are actually
equal is known as Fenchel-Rockafellar theorem. See, for instance, Chapter 6 in [3].

22

4.3 Uzawa and Augmented Lagrangian algorithms

We consider here how to turn the ideas from convex duality into a way to produce algorithms whose
aim is to solve an optimization problem which is complicated, for instance because of the presence
of constraints, but manage to do it by exploiting its dual problem. We will consider three cases:

e the case of linear equality constraints:
min{ f(z) : Az = b};
in this case the dual problem is

max{G(\) == inf f(z) + A (Az —0) : AER™}

we will not necessarily use the fact that G can be expressed in terms of f* as we explained
above;

e the case of linear inequality constraints:
min{ f(z) : Az < b},

where, as usual, the inequality is to be considered component-wise; in this case the dual problem
is

max{G(A\) :=inf f(z) + - (Az —b) : A e R},
e the case of non-linear inequality constraints:
min{f(x) : gi(x) < ¢ fori=1,...,m};

in this case the dual problem is

m

max{G(X) == inf f(z) + D> N(gi(x) —) : AeR™}

i=1

We do not consider non-linear inequality constraints because this would give raise to non-convex
optimization problems.

The general idea is to run a fixed-step gradient algorithm on G. It is then necessary compute
VG()N). In order to do this, we exploit a general idea for the differentiation of functions expressed as
the result of on optimization problem: G(\) = mxin L(z,). In this case we compute V,L(x,\) and

we obtain, for fixed A, a vector depending on z; we then need to choose the poit x = x(A) which is
the one which realizes the minimal value in the definition of G(\). It is possible to prove that, if such
a point is unique and L is C', then G is also differentiable at A and we have VG(\) = V,\L(x(\), \);
moreover, independently of the uniqueness of x(\), if G is differentiable at A we necessarily have
VG(A) = VL(z(N), A), which also implies that if many minimizers exist, their gradients should be
the same.

Then, in the case of linear equality constraints the algorithms reads as follows: we define a
sequence (A, zx) with

X =0, m:=argmin f(z) + A\ - (Ax —b), g1 := N\ + 7(Axy — b),
where 7 > 0 is a fixed step, the vector Azy — b represents VG()\;), and the positive sign in front of
7 is due to the fact that G is maximized and not minimized. If we can prove convergence, then the

sequence x;, converges to the minimizer of the primal problem, and the sequence)\ to the maximizer
of the dual.

23

For the case of linear inequality constraints the only difference is given by the update in A\, as we
should impose the positivity constraints. We then define

X =0, xz:=argmin f(x) + A\ - (Ax —b), Aeg1 := (Mg + 7(Axg — b)) 4,

T

where the positive part is to be applied componentwise and corresponds to projecting on the set R’
In this case, we are running a projected gradient algorithm.

Finally, in the case of non-linear inequality constraints the only difference is given by the update
in A, as we should impose the positivity constraints. We then define

=0, @ = argmin f2) + 3 A(i(@) —). Al = N+ 7(g(@) — i)

x

These algorithms, in particular in the last case, are called Uzawa algorithm.
We provide a proof of convergence in the case of linear equalities or inequalities.

Theorem 4.10. If f is a—elliptic and 7 < 2a//|||A|||* then the sequence xy defined by the Uzawa
algorithms in the case of linear equality constraints converges to the unique solution T of the primal
problem.

Proof. Using Lagrange multipliers, the point 7 is such that there exists a vector A such that V f(z) +

A'A = 0 and Az = b. Moroever, using the optimality conditions at each step of the Uzawa algorithm
we have V f(x;,) + A\, = 0. We then compute

[Merr = A2 = [\ = AlI? + 27(Azg, — b) - (A = A) + 77| Az — b
Replacing b with Az this gives
[Mker = AP < A = AP+ 27 Az — 7) - (A = A) + P[] | — 2]
We then use
Alzg = 7) - (M = A) = (1 = 7) - A"\ = A) = —(a — T) - (V@) = V(@) < —allz, — 2|

and obtain B)
Ao = AP < e = AP = 2ra = 72(||Al|]?) ||y, — 2.

If 2ra — 72|||A]||> > 0 this shows that the series of the terms ||z; — Z||* is bounded above by a
telescopic series, and hence converges. We deduce ||z — z||*> — 0. O

The variat for the case of inequality constraints is the following;:

Theorem 4.11. If f is a—elliptic and 7 < 2a/|||A|||? then the sequence xy, defined by the Uzawa
algorithms in the case of linear inequality constraints converges to the unique solution T of the primal
problem.

Proof. First, let us assume that the point Z is such that there exists a vector A€ R’ such that
V(@) + AN =0, Az <band \- (AZ — b) = 0. This means

Indeed, for each component i such that A’ = 0 we have (A+7(Az — b))’ < 0 and for each component
i such that A’ > 0 we have (A + 7(Az — b))" = \".

We then use this condition together with the fact that projections are 1-Lipschitz to obtain
[Akt — Al)? = || Prm [Ax + 7(Az), — b)] — PRT[/_\ +7(Az = b)]||* < || M +T(Axy — b) — A — 7(AZ - b)||

24

and then the computation goes almost as in the previous theorem. Indeed, we obtain
[Nerr = AP < A = AP+ 72 ANP | — Z* + 27 Aze — 7) - (A = V),

so that we have B B
Ao = AP < 1A = AP = (2ra = 72(||A]|]?) ||y, — 2.

Why can we say that we have a vector A € R™ such that Vf(zZ) + A'A = 0, A7 < b and
M- (AZ —b) = 07 if we use Lagrange multipliers we easily get Vf(z) 4+ A*A = 0, Az < b and, for each
component 7 such that (AZ — b)" < 0, we have X’ = 0 (since such a constraint would not be active).
The only remaining fact to prove is that we can assume A > 0. This can be seen as a particular case
of Kuhn-Tucker conditions (Lagrange multipliers with sign constraints), or as a consequence of the

duality result (but we need in this case to prove that the dual problem admits a solution, which will
be \). O

We finish this section with a variant of the Uzawa algorithm for equality constraints. We keep
in mind that the goal of such an algorithm is to find the saddle points of the Lagrangian L(x, \) =
f(z) + A (Ax — b). The variant we consider, called Augmented Lagrangian, considers instead the
Lagrangian function L(z,\) := f(z) + A - (Az — b) + Z||Az — b||%. The important point is that the
saddle points of L and of L are the same. Indeed, the sadle points of L are characterized by

Vi(x)+ AN =0,
Ax —b=0,

while those of L by
Vi(z)+ AN+ 1A (Az —b) = 0,
Ax —b=0,

which has the same sets of solutions since the second equation imposes that the extra term in the
first vanishes.
The algorithm then becomes looking for a sequence (Ax, xx) with

) T
X =0, x:=argmin f(x)+ N\, - (Az —0) + §||A:c —b|%, Mg = M+ T(Azp — b).
The extra quadratic term in the minimization defining z; makes the function to be minimized more
convex, and eases the use of fast-converging fixed step gradient algorithms for this. We omit the
proof of convergence, but it could be done without the ellipticity assumption on f (coercivity would
be enough to obtain convergence, up to a subsequence, to a saddle point for L) .

5 Stochastic gradient descent

We consider here the case where we adapt the procedure of a gradient descent algorithm in order to
include random effects. More precisely, we consider an iterative algorithm of the form

Xk+1 = Xj — TkY;m

where Y}, is any random variable such that E[Y;|Xy] = Vf(Xy). Even if we take Xy = x¢ to be a
deterministic initial point (for instance zy = 0), starting from the first iterations the algorithm will
give as an output a random variable and not a precise value. The goal is to provide conditions such
that X}, or some other r.v. built out of the sequence (X}); converges (for instance in L?, or a.s.) to
the minimizer z of f.

Before proving any convergence result, let us analyze some examples of application.

25

Example. Suppose that we have f(x) := Elg(x,w)], where w is a random variable. Under suitable
assumptions so as to apply the differentiation under the integral sign we have V f(x) = E[V,g(x,w].
This means that we can choose Yy, = V. g(Xy, w), where (wy)x is a sequence of independent random
variable distributed as w. In practice, we want to optimize the average value of something which
depends on a parameter x and on a random effect w. At each step we are in a certain x (= Xj)
and we move to a new point by choosing to follow the opposite gradient computed according to one
realization of w instead of the average over all ws. This is particularly useful when the distribution
of the variable w s not actually known but we only know a sequence of samples wy,.

Example. Suppose that f is a detrministic function of the form f(z) = >_ fi(z). We can consider
i=1

it as an expectation of the form f(z) = El[g(z,w)], where w is a r.v. uniformly distributed over
{1,...,n}, and g(z,w) = nf,(x). We can then move from X to X1 using the gradient of one
only function f; choosing the index i at random. It is also possible to select once for all an order (a
permutation) of the indices at random, and then cycle accoring to this order.

Example. It is also possible to exploit the fact that a gradient is a sum of vectors of the form %ei,

where the vectors e; are the vectors of the canonical basis. In this case we use Yy, = n%(Xk)ei, where
the index i is uniformly drawn from {1,... n}.

We suppose f to be convex. The main computation that we do is the following

E[|Xin1 — 2|1 = E[| Xk — Z|"] = 2nE[Ys - (Xx — 2)] + RE[|[Yx|).
We then use E[Y;| X;| = V f(X},) and assume E[||Y;||?] < M. Suppose D?f > al. We will distinguish
later the case a > 0 and o« = 0. We use the inequality
. _ _ .
min f = f(z) > f(z) + V(@) - (z —2) + S[lz — 2l

and apply it to x = X, and take expectations. In this way we obtain

El|Xen — 2|P7) < (1 — o) E[|| Xy — 2[]°] — 2nE[f(Xk) — min f] + 7M. (5.1)
We then state the two following results:

Theorem 5.1. Suppose that f is convex; let Yy satisfy E[Yy|Xy] = Vf(Xi) and E[||Y:]?] < M.
Let the sequence of random variables X be defined via the stochastic gradient algorithm as described
above. Define

k
ZOTij

k
Vi 1= ZTJ’ and X = 1——.
=0 Tk

Then we have

k
E[|Xo — Z|]?] + M) 77
E[f(X}) — min f] < =0

2%

and, in particular, if Ty = \/k;ﬁ’ we obtain E[f (X)) — min f] <~ Ct}%gk_

Proof. We use (5.1) with @ = 0, sum over k. This gives

k k
2> nE[f(X;) — min f] < E[||Xo — 7l[%) — E[|| Xpps — 72+ MY 72
j=0

J=0

26

We divide by 7, ignore the positive term E[||Xyi1 — Z||?], and use f(X3) < 32 4%f(X;), which

J=0%<,
is a consequence of the convexity of f, since X}, is a convex combination of the variables X;. This
gives the desired estimate.

We can then choose suitably the coefficients 7; so as to make the right-hand side tend to 0. If we

k k k k
choose 7; &~ j /2 we have) 77 Z % logk and > 75~ > % ~ vk, which gives the result. [
7=0 7=0 =0

It is possible to check that other choices of 7; of the form 7; =~ j~« provide a less good result,

k k
since we would have in this case > 77 ~ k'">* and) 7; & k'~*. In case o < 1/2, the ratio would be
J=0 Jj=0

of the order of k=%, which is a power strictly worse that £~'/2 and hence of %. In case o > 1/2

the dominant term of the numerator would be the constant one and the ratio would be of order k1.
Again, the exponent would be worse than —1/2.

In the case o > 0 it is possible to give a differnt result, in terms of E[|| X} — Z||] instead of the
value of the function. This is not surprising, if we think at the case of the gradient descent and of
the different results that we obtain in the elliptic case or in the case where f is only convex.

Theorem 5.2. Suppose that f is convexr with D*f > ol; let Yy, satisfy E[Yy|Xi] = Vf(Xk) and
E[||Y:]|?)] < M. Let the sequence of random variables X; be defined via the stochastic gradient

algorithm as described above. Suppose > 1, = +00 but ZTk < 400. Then we have
k

E[|| Xy — z|[*] = 0

When we choose 1, = we have more precisely

1
(k+1)

_ Mlogk

~~ a2k .

Proof. We use (5.1) with o > 0, and ignore the positive term E[f(X})) — min f]. We then obtain,
setting uy, := E[|| X}, — z||%];

E[l| X5 — z|"] <

Ups1 < (1 — amp)ug + 77 M.
We can write this as arup < up — ugpy1 + 77 M. With our assumptions, the right hand side is

summable, since a part is telescopic and we asumed > 77 < +00. We deduce that we have > mpuy, <

k i
+o00. If we suppose that we have liminf u; > 0 we havea contradiction with the non-summability of
7x. Hence there exists a subsequence ug, — 0. If we fix € > 0 we can choose h such that uy, < e/2

00 m—1
and M > 72 < 9. Using u, < u,, + Y, 72M, which is true for any n > m, we deduce u,, < ¢ for
k=kj, k=n
every n > kj, which exactly means lilgn u, = 0.

In the particular case 7, = m we can make an explicit computation. We have
< (1 Juk M
u — Up + -
= T e T @2k 1 1)
Multiplying by k£ 4 1 we obtain
k+1 <k —_
(k + Dugsr < kug, + 220k + 1)
and hence i
M M log k
(k+1uk+1§a_zo PO
which proves the claim. O

27

We can observe that in this estimate there is no depdence on the initial datum and in particular
on E[||Xo — Z||?]. Yet, our assumptions imply E[||V f(X})||?] < M and, since f is elliptic, we have
IVA(X)|? > o?|| X — Z||*. Tt is then necessary to choose M large enough so as to bound all
the terms of the form E[|| X}, — Z||*], and in particular E[|| X, — Z||?]. Hence, this result should
rather be understood as an information on the asymptotic rate of convergence rathern than a precise
non-asymptotic bound.

We finish this section with few words about the notion of importance sampling. Let us stick, for
instance, to the example where f = > f; and imagine that the orders of magnitude of the different

functions f; and/or of their gradients are not at all comparable. We can write f = > f;, but also

f=>N f;, where f; = f; /Ai, for arbitrary numbers A; > 0 such that > A; = 1. Hence, fhte function

f is also the expected value of the f;, when we do not use the uniform distribution on the values of
i but we use a probability such that P(w = i) = A;. If we then take Y, = Vf, (Xx) we stille have
E[Y:| Xk] = Vf(Xk) but we have

Vfi(X
BN = S MV = Z“ fil

DI

This quantity is not independent of the A; and is minimized when each \; is proportional to V fl(X k)
As a consequence, if one has bounds of the form ||V f;|| < L;, it could be convenient to use \; = Z i

The expected value of the gradient does not change, but

6 Complementary material

We discuss here some examples of optimization problems coming from data analysis, essentially taken
from [3].

6.1 Point clouds separation

Suppose that we have some points z; € R” for ¢ = 1,...,m, in the space and for every point we have
a label y; = £1. We want to find a separation between points with y; = +1 and points with y; = —1
so that when new data arrive we know how to classify them. For simplicity, we hope to find a linear
separation, i.e. a vector v € R™ and a constant ¢ € R such that y; should have the same sign as
v-x; + c. We consider all pairs (v, ¢) such that, for every i, we have y;(v-x; +¢) > 0 and we look for
the one which maximizes te distance between the points and the separation subspace {v-x + ¢ = 0}.

This distance is given by min % We would like to solve
7

max{(min%) cveR" ceRy(v-z; +¢) >O}.
i v

We can always replace a pair (v,c¢) with (tv,tc) for ¢ > 0 and nothing changes, so we can add the
condition min |v-z; + ¢| = 1 or, keeping into account the sign condition min y;(v - x; +¢) = 1. In this

case, we have to minimize the norm of v or, equivalently, the square of the norm. This becomes
min § S[[of[: v € R c € Rminy,(v-a; +¢) =15
(2

We can also replace min y;(v-x; +¢) = 1 with miny;(v-x; +¢) > 1 since it is clear, by rescaling again
(3 (3

v and ¢ by a same factor, that the minimizer under the condition min |v-z; 4+ ¢| > 1 would satisfy the
(2

28

equality. The condition min y;(v-x; +¢) > 1 can be written as “for every i we have y;(v-x; +¢) > 17,
T

so that we get
1
miﬂ{§||v\|2 v €eR" ceRy(v-z;+¢) > 1}~

How to solve this optimization problem under constraints? the projected gradient algorithm does
not seem a good idea since the whole problem indeed consists in projecting 0 onto the constraints,
and in general we do not have a formula for the projection. Uzawa’s algorithm is a better choice,
since we only have to solve a sequence of problems of the form

1
min §||UH2 + Z)\i(l —yi(v-x; + ¢)),

for which we can have an explicit expression of the minimizers.

All the analysis above starts from the assumption that a separating hyperplane {v -z + ¢ = 0}
exists. It is not always the case, but it is possible that it “almost” exists in the sense that few outliers
are the only exception. In this case a possibility is to solve the following problem:

1 m
min{§||v||2—|—2|€,~| cveR ceR,eeR™, y(v-z;+c¢) > 1—@},
=1

which consists in admitting violations of the constraint y;(v - x; +¢) > 1 but penalizing them. Again,
it is possible to solve this problem via the Uzawa algorithm. In this case, for A; > 0 one has to solve
the problem

1 m
min§||v||2 + Z lei| + Z)\i(yi(l —& — (v +0)).
i=1 i

If we look at the dependence in €; we see that we have min |e| —\;e = 0if A; € [0, 1] while inf |¢|—\;e =

—oo if A; > 1. Hence, the iterations of the Uzawa algorithm require the extra constraint A; € [0, 1]
instead of only A; > 0; at every step of the projected gradient algorithm on the variable A it is then
necessary to project onto such a constraint, i.e. taking the positive part and truncating at 1.

6.2 Inverse problems

In many applications we cannot observe directly the parameters x € R™ of a model but only their
output after applying an operator A € M™*™ and we want to find a reasonable estimation of z. We
want then to solve an equation Ax = b; in many cases A is neither injective nor surjective, and it is
also possible that, because of noise, the observation b that we have does not belong to the image of
A. We are then lead to solve an optimization problem of the form min ||Az — b||* and to add possible
regularization terms on X in order to select a “better” solution. We list here some observations on
this problem.

e If b € Im(A) and we solve min || Az —b||*> +&F(x) we obtain (if they exist, which is the case if F
is coercive, and if they are unique, which is the case if F' is strictly convex) a solution x.. Then,
if we have a sequence z., — o, we can say that z, is a solution of Az = b which minimizes,
among solutions, the quantity F. This is a consequence of Lemma 6.1. If F' is strictly convex
and coercive the whole sequence z. is bounded and converges to x.

e When we take F(z) = ||z||* this is a way of finding the solution of Az = b of minimal norm.
Since we have (A'Az+¢el)z. = A'b we can see that x. depends linearly on b, so g also depends
linearly on b. This defines a map A" such that AATH = b and A'b = argmin{||z|| : Az = b}.
Note that the matrix A'A is always symmetric positive semidefinite, and becomes positive
definite when adding /.

29

e If b ¢ ImA the problem is invariant if replacing b with b := Ppaalb], since ||[Az — b|]> =
[|Az — b||* + ||b — b||?, using the fact that b — b is orthogonal to Im(A).

e We can consider F'(z) = ||z||;, which is often used to select solutions of Ax = b which are
sparse. As we saw in Section 1.2 we should use a different quantity, that we called Ay(z), but
Lemma 6.2 justifies the fact that we use the norm ||z||;.

e A problem that we are hence often lead to solve is therefor
min || Az — b||* + ||z

For this problem, the use of proximal gradient descent, maybe in accelerated versions (as in
[1], see also Section 3.2), is the best option. Note that when A'A is not positive definite the
function decomposes into f(z)+ g(z) with f smooth but no elliptic and g non-smooth, and the
convergence rate is 1/k (for the non-accelerated version) or 1/k?.

Lemma 6.1. Let F',G be two l.s.c. functionals bounded from below on a space X and z. € argmin G+
eF. Suppose x.;, — xg. Then xy € argmin{F(z) : x € argminG}. If either G or F is coercive and
the problem min{ F'(x) : x € argmin G} has a unique solution, then the whole sequence x. converges
to such a solution.

Proof. Writing . for x.,, for every x we have G(z.) + einf F' < G(x.) +eF(2.) < G() + eF ().
Passing to the limit as ¢ — 0 we obtain G(zy) < G(x). Which shows z € argmin G. We then choose
x € argmin G. We then obtain

G(x)+eF(z.) < G(z:) +ecF(z.) < G(x) +eF(z).
This implies F(x.) < F(x) and, at the limi, F'(xy) < F(z), which shows the claim. O
Lemma 6.2. Consider the problem
min{||z||; : Az = b}.
This problem admits at least a solution T such that #{i : z; # 0} < dim(I/mA).

We do not prove this last result, which van be found as Theorem 8.4 in |?|

Bibliographie

[1] A BECK, M TEBOULLE A fast iterative shrinkage-thresholding algorithm for linear inverse
problems SIAM journal on imaging sciences 2 (1), 183-202, 2009

[2] J.F. BonNANS, J.C. GILBERT, C. LEMARECHAL AND C. SAGASTIZABAL, Numerical Opti-
muzation, 2nd Edition, Springer-Verlag, Heidelberg, 2006.

[3] G. CARLIER, Classical and Modern Optimization, World Scientific, London, 2022.

[4] Y.E.NESTEROV, A method for solving the convex programming problem with convergence
rate O(1/k?), Dokl. Akad. Nauk SSSR,269(1983), pp. 543-547 (in Russian).

30

