Calcul Différentiel et Analyse Complexe Épreuve terminale de 2e session, 28 juin 2019

Durée : 2h; calculettes interdites; seule une feuille A4 (recto-verso) de notes est autorisée; composer chaque exercice sur une feuille distincte. Les questions ne sont pas forcément en ordre de difficulté; le barème étant sur 27, il n'est pas obligatoire de tout traiter.

Exercice 1 (5 points). Soit $\Omega := \{(x,y) \in \mathbb{R}^2 : x > 0\}$. Pour une valeur donnée $m \in \mathbb{R}$, considérer la fonction $f: \Omega \to \mathbb{R}^2$ définie par

$$f(x,y) = (\ln(x^2 + y^2), m \arctan(y/x)).$$

- 1. Prouver que f est bien définie et C^{∞} .
- 2. Écrire la matrice jacobienne de f en tout point.
- 3. En identifiant \mathbb{R}^2 à \mathbb{C} , pour quelles valeurs de m la fonction f est-elle holomorphe sur Ω ?

Exercice 2 (8 points). Considérer l'ensemble $A = \{(x,y) \in \mathbb{R}^2 : f(x,y) = 0\}$, où $f: \mathbb{R}^2 \to \mathbb{R}$ est définie par

$$f(x,y) = (x^2 + y^2)^2 - 3x^2y + y^3.$$

- 1. Prouver que A est un ensemble compact contenant l'origine (0,0).
- 2. Prouver que A est localement paramétrisable par une courbe régulière en dehors de l'origine (0,0).
- 3. En utilisant évenutellement la formule $\sin(3\theta) = 3\cos^2(\theta)\sin(\theta) \sin^3(\theta)$ donner une paramétrisation de A en cordonnées polaire, en le représentant comme l'image d'un lacet $[0,\pi] \mapsto \gamma(\theta)$ et faire un dessin schématique de l'ensemble A.
- 4. En considérant A comme un lacet dans \mathbb{C} , calculer l'indice par rapport à A des points $z_k = e^{ik\pi/6}$ pour $k = 0, 1, \dots, 12$.

Exercice 3 (7 points). Calculer, en appliquant la formule des résidus à la fonction

$$f(z) = \frac{z}{(z^2+1)^2 - 16z^2},$$

la valeur de l'intégrale

$$\int_0^{2\pi} \frac{1}{4 - \cos^2(\theta)} d\theta.$$

Exercice 4 (7 points). Étant donnée une fonction holomorphe $f: \mathbb{C} \to \mathbb{C}$ avec f(0) = 0 mais non identiquement nulle, soit $\phi: \mathbb{R}_+ \to \mathbb{R}_+$ la fonction définie par

$$\phi(R) := \sup\{|f(z)| : |z| \le R\}.$$

- 1. Démontrer que ϕ est une fonction strictement croissante.
- 2. Démontrer que ϕ est une fonction continue.
- 3. Démontrer que l'on a $\phi(tR) \leq t\phi(R)$ pour tout $t \in [0,1]$
- 4. Démontrer que, si l'on a $\phi(R) \leq CR^2$ pour tout $R \geq 0$, alors on a $f(z) = az^2$ pour un certain $a \in \mathbb{C}$ et finalement $\phi(R) = |a|R^2$.
- 5. Démontrer que, si l'on a $\phi(R) \le C(R^2 + 1)$ pour tout $R \ge 0$, alors on a deux cas : soit il existe c > 0 tel que $\phi(R) = cR$ pour tout $R \ge 0$, soit il existe c > 0 tel que $\phi(R) \ge c(R^2 1)$ pour tout $R \ge 0$.