Feuille d'exercices n° 12: Application des residus, fonctions biholomorphes

Exercice 1. En utilisant la formule des résidus et en choisissant soigneusement le contour, montrer que:

$$(a) \int_{-\infty}^{+\infty} \frac{dx}{1+x^2} = \pi, \quad (b) \int_{-\infty}^{+\infty} \frac{dx}{1+x^4} = \frac{\pi}{\sqrt{2}}, \quad (c) \int_{0}^{+\infty} \frac{dx}{1+x^n} = \frac{\pi}{n \sin(\frac{\pi}{n})},$$

Exercice 2. En passant par une intégration dans le domaine complexe, montrer que : $\int_0^\infty \frac{\sin(x)}{x} dx = \frac{\pi}{2}$.

Exercice 3. Soit f une fonction holomorphe sur le disque fermé $\overline{D}(0,R)$ avec R>0. Montrer que la série entière de f a un rayon de convergence > R. En déduire qu'une fonction holomorphe dont la série entière a un rayon de convergence 1 admet une singularité sur le cercle unité.

Exercice 4. Soient f, g holomorphes sur une domaine Ω . Soit γ un lacet simple orienté dans le sens direct et U l'intérieur de γ . On suppose que $|f| > |g| \sin \gamma$. Montrer que f et f + g ont le même nombre de zéros dans U.

Exercice 5. Soient $a \in \mathbb{C}$ tel que $|a| \ge 1$ et $n \in \mathbb{N} \setminus \{0,1\}$. Montrer que l'équation $1 + z + az^n = 0$ a toutes ses racines dans le disque ouvert D(0,2).

Exercice 6. Étant donnés deux entiers n > m > 1, montrer que les zéros du polynôme $1 + 3z^m + 5z^n$ sont situés dans la couronne $\{z \in \mathbb{C}, 1/3 < |z| < 1\}$. Indication : On utilisera les fonctions f et g données par $f(z) = 1 + 3z^m$, $g(z) = 5z^n$.

1. En considérant l'application $\Gamma: z \mapsto \frac{2}{\pi} \arctan(|z|) \frac{z}{|z|}$, montrer que \mathbb{C} est homéo-Exercice 7. morphe au disque unité (ouvert) D.

2. Montrer cependant que \mathbb{C} n'est pas biholomorphe à D. On pensera au théorème de Liouville.

Exercice 8. On note D le disque unité ouvert et S le cercle unité.

Étant donné $a \in D$, on considère l'application $\varphi_a : z \mapsto \frac{z-a}{1-\overline{z}z}$.

Montrer que:

- 1. φ_a est holomorphe sur D.
- 2. $\varphi(S) \subset S$ puis que $\varphi(D) \subset D$.
- 3. φ_a est un biholomorphisme de D sur D d'inverse φ_{-a} .

Exercice 9. On note toujours D le disque unité ouvert.

Appliquer le lemme de Schwarz (exercice 1, fiche 9) et montrer que tout biholomorphisme ψ de D sur D est de la forme $\psi = e^{i\theta}\varphi_a$ avec $\theta \in \mathbb{R}$ et $a \in D$.

Indication: si ψ est un biholomorphisme de D sur D, on considère $a = \psi^{-1}(0)$ et $f = \psi \circ \varphi_{-a}$.