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An inverse problem

Find p such that

-V - (uS) = in Q,
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An inverse problem

Find p such that
V- (uS)=f inQ,
Q is a Lipschitz domain of RY

S € L%®°(Q,R9¥9) is given

e f is a given vector field (can be zero)

i is the unknown parameter function
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Medical elastography

Goal

Measure the elastic parameters of soft biological tissues

Model: linear elasticity equation

-V -(2uE(u)) = V(AV-u)=f Q
BC 0Q

Interrest:
e High contrast (for the shear modulus)

e Good discrimination between pathological states
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Medical elastography

nodule mou | nodule due

Figure: Thyroid nodules image by UF Ultrasound elatography (soft/hard)
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Inversion step 2 : recover the shear modulus

Linear elasticity:

-V -(2uE(u)) —V(AV-u)=f Q
BC 0Q

with u € RY the displacement field, £(u) = (Vu+ VuT) and
(A, p) are the Lamé coefficients.

Inverse problem

Recover (A, ) from the knowledge of u in Q.

Remark

In soft tissues, \(x) ~ Ao and assumed known.
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Available inversion methods (1)

=V (u€(u)) = f

Solving a first order transport equation in y

10P Publshing
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Reconstruction of constitutive parameters
in isotropic linear elasticity from noisy full-
Recovery of the Lamé parameter  in biological tissues field measurements

ce McLaughlin Guillaume Bal', Cédric Bellis’, Sébastien Imperiale’ and
o Poycchic I, Ty, NY 12180, USA Frangois Monard
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Available inversion methods (1)

Transport : Assume that u is smooth and known near 02 and
remark that
V- (uS)=SVu+uv-S

assume that S is a.e. invertible y is solution of the transport
problem,

Vi +u(S) V.S =—(S)7f
Vi +pb=—f
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Available inversion methods (1)

Transport : Assume that u is smooth and known near 02 and
remark that

V- (uS)=SVu+uv-S
assume that S is a.e. invertible y is solution of the transport
problem,
Vi +u(S) V.S =—(S)7f
Vi +pb=—f
Provide a proof of uniqueness and stability with several

measurements and strong smoothness hypothesis and boundary
data
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Available inversion methods (2)

Least squares : Assume knowledge of g the surface density of
force outside of Q and define

V- (uS)=f inQ,

F:u— :
. u[#]{ uS-v=g on 09,

defining F : L°(Q, [po, +00)) — HY(Q, RY) fréchet differentiable.
Then minimize

J0p) = 1F] = tmesllinco) + res(i) |
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Available inversion methods (2)

Least squares : Assume knowledge of g the surface density of
force outside of Q and define

V- (uS)=f inQ,

F: ;
u»—)u[y]{ uS-v=g on 0,

defining F : L°(Q, [po, +00)) — HY(Q, RY) fréchet differentiable.
Then minimize

J0p) = 1F] = tmesllinco) + res(i) |

e Very slow (flat problem)
e needs knowledge of g and i on the boundary

7/37



Available inversion methods (3)

Wave front traking : assuming that y is piecewise constant,

Opu — pAu =0, ae.,
Then the wave speed is ¢ := /i (locally true, ).
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Available inversion methods (3)

Wave front traking : assuming that y is piecewise constant,

Opu — pAu =0, ae.,
Then the wave speed is ¢ := /i (locally true, ).

nodule mou I nodule due

Figure: Thyroid nodules image by UF Ultrasound elatography (soft/hard)
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Available inversion methods (4)

Algebraic inversion :

Elasti _— S Shear Modulus Imaging with 2-D Transient
Zlastic modulus imaging: some exact solutions of the
compressible elastography inverse problem Elastography

Pl E Barbone! and Assad A Oberal? Laurent Sandrin, Micka#l Tanter, Stefan Catheline, and Mathias Fink

Approximation for experimental applications: If y is constant then

|01eu
|Au|

pAu = pOu = 1 = p
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Current chalenges for medical elastography

e Increase the resolution
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Current chalenges for medical elastography

Increase the resolution

e Be more quantitative
e Be more stable

e Be more practical (quasi-static with acoustic probe ?)
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A general equation

The problem takes the general form

Reduced elastography problem
V. (uS)=f

in the cases

e \is known: S :=2&(u)
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A general equation

The problem takes the general form

Reduced elastography problem
V. (uS)=f

in the cases
e \is known: S :=2&(u)
e v (Poisson ratio) is known S := a&(u) + S(V - u)/
e in plane stress approximation (sliced 2D model)

But also for conductivity equation with two internal data:

—V - (o[Vur Vo)) =f

And other problems. ..
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2. Discretization of the Reverse Weak Formulation



The Reverse Weak Formulation

Define the operator
T:12(Q) - HY{(Q,RY)
p— =V - (uS)
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The Reverse Weak Formulation

Define the operator
T:12(Q) - HY{(Q,RY)
p— =V - (uS)

or by the equivalent variational formulation

2u(11.9) = (TH V)1 ::/Qus;w W e HA QR

Reverse Weak formulation
Find p € L2(Q) s.t.

au(p,v) = <fu,v>,_,_1’,_,é Vv € H3 (Q,R9*9)

e No boundary data used
e Only smoothness hypothesis: S € L>(Q, R9*9)
e "Easy” to discretize with finite element spaces 12/37



Reverse Weak Formulation: discretization

Find p € L?(Q) s.t.

<T/’L7V>H_1,H& = <f7V>H—1,H3 VV € H&(Q,Rd)

becomes

13/37



Reverse Weak Formulation: discretization

Find p € L?(Q) s.t.

<T/’L7V>H_1,H& = <f7V>H—1,H3 VV € H&(Q,Rd)

becomes

Find up € Mj, s.t.

(Thuh,Vh>H71,H3 = <fh;Vh>H—1’H& Yv € V

where

13/37



Reverse Weak Formulation: discretization

Find p € L?(Q) s.t.

<T/’I‘7V>H_1,H& = <f7V>H—1,H& VV € H&(Q,Rd)

becomes

Find up € Mj, s.t.

(Thuh,Vh>H71,H3 = <fh;Vh>H—1’Hé Yv € V

where
e M}, approaches (L%(Q)
e Vj, approaches H}(Q,RRY)
e T, approaches T
e f, approaches f
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Approximation of the spaces

Let M be a Hilbert and M, C M a sub-Hilbert space and
7w © M — M), the orthogonal projection.

Definition

The sequence (Mp)p~o approaches M if for any € M,

li — =0.
lim [l — gy = O

For any non zero i € M, we define its relative error of
interpolation onto M, by

i e — pll g
ept(p) =
1l
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Approximation of the operator

The operator T : L?> — H™! given by

<T,u,v)H,1,H& = /Q,uS Vv, Y e Hi(Q,RI*)
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Approximation of the operator

The operator T : L?> — H™! given by

<T,u,v)H,1,H& = /Q,uS Vv, Y e Hi(Q,RI*)

is approached by Ty : My — V/

<Th:u’av>V,:7Vh = /Q,uSh Vv, WeEV,
Hence
(o= Thuvhyyy, = [ (S =): Vv
< il 15— Sy IVl

The error Ty, — T is small for the L(L*°, V/) topology weaker than
the £(L?, V})) topology
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Approximation of the operator

Definition

The interpolation error 52‘) between T and T}, is defined by

(Th = Ty y,
&% = | Th = Tllyoe,yy == sup sup e
FT ey, Dl VIl

16/37



Approximation of the operator

Definition

The interpolation error 52’) between T and T}, is defined by

(Th = Ty y,
&% = | Th = Tllyoe,yy == sup sup e
FT ey, Dl VIl

e This particular norm does not allow us to use directly the
sensitivity analysis and discretization analysis for the
Moore-Penrose generalized inverse of T when T is a closed
range operator
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Approximation of the right-hand side

Definition

The relative error of interpolation 5;,h5 between f £ 0 and f}, is
defined by

1 (fn —f,v) Vi, Vs 15 — f||v,;
= sup =
Il vev,  llvllv €1l

E;]hs .
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Questions

e Is Ty = f invertible with stability ?
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Questions

e Is Ty = f invertible with stability ?
o Is Thup = fp invertible with stability ? (Condition on My, V},
and Tp)

o Is the solution yup, close to p in L%(Q)?
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3. inf-sup constant and inf-sup condition



A model problem

When S(x) =/, then Ty := -V - (uS) = —Vu. ie. T =-V
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A model problem

When S(x) =/, then Ty := -V - (uS) = —Vu. ie. T =-V
Proposition

If Q is Lipschitz, then V : L?> — H™! has closed range. i.e. there
exists C > 0 s.t.

lalliz) < ClIVallg-1q) Vg€ LX(@Q NNV, (1)

equivalently

B = inf quV-v

sup >0 (2
qeL2(QNN(V)* veHL(Q,RY) HVHHg(Q) HqHL2(Q)

Operator V satisfies the inf-sup condition.
It has a continuous inverse in N(V)*.

19/37



A model problem: discretization

Problem: the constant S may not behave well in finite element

spaces!
Take My, C L3(Q) and V}, C H3(Q,RY) the discrete inf-sup
constant

V-v
By = inf sup qu
9EMhvev, ||V||Hg(§z) HqHLZ(Q)

may not satisfy the discrete inf-sup condition (of inf-sup condition
for Ladyzhenskaya-Babuska-Brezzi):

Discrete inf-sup condition
Vh>0, B8, >8>0 J
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A model problem: discretization

Problem: the constant S may not behave well in finite element
spaces!

Take My, C L3(Q) and V}, C H3(Q,RY) the discrete inf-sup
constant

V.v
By = inf sup qu
qEMs vev, ||V||H3(Q) HQHLz(Q)

may not satisfy the discrete inf-sup condition (of inf-sup condition
for Ladyzhenskaya-Babuska-Brezzi):

Discrete inf-sup condition

Vh>0, B8, >8>0

Pairs of finite element spaces that satisfy the discrete inf-sup

condition are known as inf-sup stable elements and play an

important role in the stability of the Galerkin approximation for the
Stokes problem. 20/37



Inf-sup constant for the operator T

Theoretical study of Tp := —V - (uS), with Ammari, Bretin and
Millien (2020):
Theorem
If S€ WP p> d and |det S(x)| > c > 0 a.e, we have
o dimN(T) < 1
e if dimN(T) =1, T has closed range.
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Inf-sup constant for the operator T

Theoretical study of Tp := —V - (uS), with Ammari, Bretin and
Millien (2020):

Theorem
If S€ WY p>d and |det S(x)| > c >0 a.e, we have

dimN(T) < 1
if dimN(T) =1, T has closed range.

At worst T is a "gradient type” operator
extension to S " piecewise” WP

minimal assumption on S to have closed range property is an
open question (as far as we know)
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Generalized inf-sup constant

M, V two Hilbert spaces and T € L(M, V'),
Definition (classic constants )

T y Tl
a(T) := inf T elly and p(T):= sup 17 el

weM |ty pem Ny
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Generalized inf-sup constant

M, V two Hilbert spaces and T € L(M, V'),
Definition (classic constants )

T ; Tl
a(T) = inf T elly and p(T):= sup 17 el

weM |ty pem Ny

Definition (Generalized inf-sup constant)

The generalized inf-sup constant 3(T) is built as follows:

Be(T) := inf 1T el B(T):= sup Be(T).

nem lplly ech
nle lellw=1
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Correspondance

Proposition

If N(T) # {0}, consider any z € N(T) such that ||z||,, = 1. Then
we have B(T) = B,(T).
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Correspondance

Proposition

If N(T) # {0}, consider any z € N(T) such that ||z||,, = 1. Then
we have B(T) = B,(T).

For example, if T =V, the classic definition of 5(V) given in the
literature matches the definition the generalized inf-sup constant.

Proposition

If there exists z € M such that ||z||,, =1 and || Tz||,,, = a(T),
Then we have 5(T) = ,(T).

True for any finite rank (and finite dimensional) operator
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Upper semi-continuity of the inf-sup constant

What is the behavior of 3(T},) with respect to 3(T) ?
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Upper semi-continuity of the inf-sup constant

What is the behavior of 3(Tp) with respect to 3(T) ?
Theorem

If if the problem Tz = 0 admits a non zero solution z € L*°(Q)
and if ;P — 0 when h — 0 then

limsupa(Th) < oT).
h—0

and

limsup 8(Tp) < B(T).
h—0

e 5(Tp) is never asymptotically better than 3(T).

e It might be a possible way to show that T as closed range.

24/37



4. Stability estimates



Discrete stability estimate (case f = 0)

Let z € L*°(R2) be a solution of T z =0 with ||z||,, = 1. Consider
zp € My a solution of

||Thzh||v,; =a(Ty) with |z4||y, =1 and (zn,2)y, >0. (3)
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Discrete stability estimate (case f = 0)

Let z € L*°(R2) be a solution of T z =0 with ||z||,, = 1. Consider
zp € My, a solution of

||Thzh||v,; =a(Ty) with |z4||y, =1 and (zn,2)y, >0. (3)

Theorem (1)
If 5(Th) > 0 we have

c [¢] in
1zh = 7hzll 2(q) < m( I2ll (o) €8 + £(T)eR(2))-

Moreover, if B(Ty) > * > 0 and if i’ — 0, then z, — z.

where eiMt(2) := ||z — z| -
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Discrete stability estimate general case

Let p € L*°(Q2) be a solution of Ty = f. Consider z, € My, a
solution of

| Thzh”vf; =a(Ty) with |zp|l, = 1.

Consider now p, € My, a solution of p, = argmin || Tpm — fi ||,/ .
meM, h
mJ_zh
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Discrete stability estimate general case

Let p € L*°(Q2) be a solution of Ty = f. Consider z, € My, a
solution of

| Thzh”vf; =a(Ty) with |zp|l, = 1.

Consider now pp € Mp, a solution of pup = argmin || Tpm — fh”v,; .

meM,
mJ_zh

Theorem (2)
Fix r > 0 such that ||p|| ;e < r||pllj2- If B(Th) > 0, there exits

t € R such that ji; = t z, + 1, Satisfies

||Mh,t—7ThMHLz< 4
el = B(Th)

e+ o) (4 ) + 24

a(Th)

|

<

26/37



5. The honeycomb finite element pair



honeycomb finite element

Figure: Honeycomb space discretization. In plain black, the hexagonal
subdivision and in dashed blue, the triangular subdivision.

M,, := PO (QP/;ex) — {N c LZ(Qh) ‘ Vj IU’|Q';7er Is constant} o J

Vi = P} (I R2) = {v € H3(Qp, RY) | Vk v]gu s nnear} :
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Figure: Support and graph of basis test function ¢;.

Why does it work ?

28/37



Figure: Support and graph of basis test function ¢;.
Why does it work ?

e Case T = V: We show that this pair satisfies the inf-sup
condition.

28/37



Figure: Support and graph of basis test function ¢;.

Why does it work ?

e Case T = V: We show that this pair satisfies the inf-sup
condition.

e General case: We show that for each internal node, we have a
system of 2 independent equations for 3 values of the
parameters.

28/37



Figure: Support and graph of basis test function ¢;.

Why does it work ?

e Case T = V: We show that this pair satisfies the inf-sup
condition.

e General case: We show that for each internal node, we have a
system of 2 independent equations for 3 values of the
parameters.

One value is given = all the other are fixed.

28/37



Figure: Support and graph of basis test function ¢;.

Why does it work ?

e Case T = V: We show that this pair satisfies the inf-sup
condition.

e General case: We show that for each internal node, we have a
system of 2 independent equations for 3 values of the
parameters.

One value is given = all the other are fixed. = null-space is at
most of dimension 1

28/37



Figure: Support and graph of basis test function ¢;.

Why does it work ?

e Case T = V: We show that this pair satisfies the inf-sup
condition.

e General case: We show that for each internal node, we have a
system of 2 independent equations for 3 values of the
parameters.

One value is given = all the other are fixed. = null-space is at
most of dimension 1 = ((T,) > 0

28/37



6. Numerical and experimental applications



Inverse gradient problem

In Q = (0,1)? we approach —Vu = f. Here T; := —V|p, and
then £3” = 0. Moreover p(V) < 1. In the absence of noise, the
result of Theorem 2 reads,

ln = mnpiliz 4 (IF=Fullyy i — a2
Imnullz = B(Tw) \ (Il Il 2

Note that we know 3(V) = 1/1/2 — 1/x as a conjecture.
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Inverse gradient problem: behavior of 5( T)

0.3

0.1 |-

3

—— honeycomb pair

——
=
—h
——
——
—

1072

107t
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Inverse gradient problem: result

S SR—
08 X A
05
0
04
02 ot
oy - . -2

02 04 06 08 1

1
1
0
02
-1

DU 02 04 06 08 1

Figure: Numerical stability of the reconstruction of maps i1 and po
using method given by Theorem 2 with resolution h = 0.01. From left to
right: column 1: exact map to recover, 2. reconstruction with no noise,
column 3: reconstruction with noise level ¢ = 1, column 4:
reconstruction with noise level o = 2.
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Quasistatic elastography

Hexact uy u2
2 1 1
. 08 1 o8| 1
15
X 0.6 0.6
o o
. 0.4 04|
1
. 02 -1 02 -1
0 05 0 0
0 02 04 06 08 1 0 02 04 06 08 1 0 02 04 06 08 1

Fi1G. 5. First line, from left to right: The exact map fiezact, the two components of the data
field u = (u1,u2) computed via (5.6), the only data used to inverse the problem.
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F1G. 6. Behavior of the contants a(T}y), B(Th) and the ratio o(Ty)/B(Th) for the inverse static
elastography problem in the unit square Q := (0, 1)2, for various choices of pair of discretization
spaces.
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Algorithm

Approach the solution of Ty = 0:

Write Tp, as a matrix in the basis of the chosen spaces (Mp, Vp,).

Define the matrix

M =B, TpB}!

where By, and By are the basis matrix of M and V). Then
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Algorithm

Approach the solution of Ty = 0:

Write Tp, as a matrix in the basis of the chosen spaces (Mp, Vp,).
Define the matrix

M =B, TpB}!
where By, and By are the basis matrix of M and V). Then
o «(Ty) is the smallest singular value of M
e 3(Tp) is the second smallest singular value of M

e 1 is the first singular vector of M.
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Reconstruction for the honeycomb

Figure: Reconstruction of the shear modulus map p using the honeycomb
pair.
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Reconstruction for various pairs of spaces
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Figure: Reconstruction of the shear modulus map p using various pairs of

finite element spaces in the subdomain of interest (0.1,0.9)2. 35/37



Quasi-static elastography
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Figure: Shear modulus image of phantom from quasi-static data (data
from E. Brusseau and L. Pretrusca - CREATIS/INSA)
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In vivo quasistatic elastography
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Figure: Reconstruction of the shear modulus of in-vivo malignant breast
tumor from quasi-static elastography (data from E. Brusseau -
INSA/CREATIS) h = 0.7 mm.

Thank you for your attention
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