Direct inversion method for quasi-static medical elastography: stability and discretization

Elie Bretin, Pierre Millien and Laurent Seppecher

May 27, 2022

IPMS2022, Malta

Elastography from internal data

Inverse problem in two steps

- step 1: Record the displacement field **u**(x) inside the domain
- step 2: Reconstruct the elastic properties of the medium

Inversion step 1: recover the displacement

Methods used :

• Speckle correlation

• Optimal transport: minimise

$$J(\mathbf{u}) = \|I(x, t + dt) - I(x + \mathbf{u}(x), t)\|_{2}^{2} + R(\mathbf{u})$$

where R is a regularization cost. (Optical flow method)

Linear elasticity:

$$\begin{cases} -\nabla \cdot (2\mu \mathcal{E}(\mathbf{u})) - \nabla (\lambda \nabla \cdot \mathbf{u}) = 0 \quad \Omega \subset \mathbb{R}^3 \\ BC \quad \partial \Omega \end{cases}$$

with $\mathbf{u} \in \mathbb{R}^d$ the displacement field, $\mathcal{E}(\mathbf{u}) = \frac{1}{2}(\nabla \mathbf{u} + \nabla \mathbf{u}^T)$ and (λ, μ) are the Lamé coefficients.

Linear elasticity:

$$\begin{cases} -\nabla \cdot (2\mu \mathcal{E}(\mathbf{u})) - \nabla (\lambda \nabla \cdot \mathbf{u}) = 0 \quad \Omega \subset \mathbb{R}^3 \\ BC \quad \partial \Omega \end{cases}$$

with $\mathbf{u} \in \mathbb{R}^d$ the displacement field, $\mathcal{E}(\mathbf{u}) = \frac{1}{2}(\nabla \mathbf{u} + \nabla \mathbf{u}^T)$ and (λ, μ) are the Lamé coefficients.

Inverse problem

Recover (λ, μ) from the knowledge of **u** in Ω .

Linear elasticity:

$$\begin{cases} -\nabla \cdot (2\mu \mathcal{E}(\mathbf{u})) - \nabla (\lambda \nabla \cdot \mathbf{u}) = 0 \quad \Omega \subset \mathbb{R}^3 \\ BC \quad \partial \Omega \end{cases}$$

with $\mathbf{u} \in \mathbb{R}^d$ the displacement field, $\mathcal{E}(\mathbf{u}) = \frac{1}{2}(\nabla \mathbf{u} + \nabla \mathbf{u}^T)$ and (λ, μ) are the Lamé coefficients.

Inverse problem

Recover (λ, μ) from the knowledge of **u** in Ω .

Remark (Plane stress approximation)

The equivalent 2D elastic model reads $\lambda_{2D} = 2\mu$ and $\mu_{2D} = \mu$.

Assume knowledge of ${\bf g}$ the surface density of force outside of Ω and define ${\bf u}[\mu]$ solution of

$$\begin{cases} -\nabla \cdot (\mu S(\mathbf{u})) &= 0 , & \text{in } \Omega, \\ \mu \nabla^{s} \mathbf{u} \cdot \nu &= \mathbf{g} & \text{on } \partial \Omega, \end{cases}$$

Where $S(\mathbf{u}) = \mathcal{E}(\mathbf{u}) + (\nabla \cdot \mathbf{u})I$. Then find μ by minimizing

$$J[\mu] = \|\mathbf{u}[\mu] - \mathbf{u}_{mes}\|_{H^1(\Omega)}^2 + \text{ reg. term}$$

- Very slow (flat problem)
- needs knowledge of ${f g}$ and μ on the boundary

The Reverse Weak Formulation

A direct method : Define the operator

$$egin{aligned} \mathcal{T}: L^\infty(\Omega) \subset L^2(\Omega) &
ightarrow H^{-1}(\Omega, \mathbb{R}^d) \ \mu &\mapsto -
abla \cdot (\mu \mathcal{S}) \end{aligned}$$

or by the equivalent variational formulation

$$\mathsf{a}(\mu,\mathbf{v}):=\langle T\mu,\mathbf{v}
angle_{H^{-1},H^1_0}:=\int_\Omega\mu S:
abla\mathbf{v},\quadorall\mathbf{v}\in H^1_0(\Omega,\mathbb{R}^{d imes d})$$

$$egin{aligned} \mathcal{T}: L^\infty(\Omega) \subset L^2(\Omega) o H^{-1}(\Omega,\mathbb{R}^d) \ \mu \mapsto -
abla \cdot (\mu \mathcal{S}) \end{aligned}$$

or by the equivalent variational formulation

$$\mathsf{a}(\mu,\mathbf{v}):=\langle T\mu,\mathbf{v}
angle_{H^{-1},H^1_0}:=\int_\Omega\mu\mathcal{S}:
abla\mathbf{v},\quadorall\mathbf{v}\in H^1_0(\Omega,\mathbb{R}^{d imes d})$$

the problem takes the form

Find $\mu \in L^2(\Omega)$ s.t. $a(\mu, \mathbf{v}) = 0 \quad \forall \mathbf{v} \in H^1_0(\Omega, \mathbb{R}^{d imes d})$

$$egin{aligned} \mathcal{T}: L^\infty(\Omega) \subset L^2(\Omega) o H^{-1}(\Omega,\mathbb{R}^d) \ \mu \mapsto -
abla \cdot (\mu \mathcal{S}) \end{aligned}$$

or by the equivalent variational formulation

$$\mathsf{a}(\mu,\mathbf{v}):=\langle T\mu,\mathbf{v}
angle_{H^{-1},H^1_0}:=\int_\Omega\mu S:
abla\mathbf{v},\quad orall\mathbf{v}\in H^1_0(\Omega,\mathbb{R}^{d imes d})$$

the problem takes the form

Find $\mu \in L^2(\Omega)$ s.t. $a(\mu, \mathbf{v}) = 0 \quad \forall \mathbf{v} \in H^1_0(\Omega, \mathbb{R}^{d \times d})$

• No boundary data used

$$egin{aligned} \mathcal{T}: L^\infty(\Omega) \subset L^2(\Omega) o H^{-1}(\Omega,\mathbb{R}^d) \ \mu \mapsto -
abla \cdot (\mu \mathcal{S}) \end{aligned}$$

or by the equivalent variational formulation

$$\mathsf{a}(\mu,\mathbf{v}):=\langle T\mu,\mathbf{v}
angle_{H^{-1},H^1_0}:=\int_\Omega\mu\mathcal{S}:
abla\mathbf{v},\quadorall\mathbf{v}\in H^1_0(\Omega,\mathbb{R}^{d imes d})$$

the problem takes the form

Find $\mu \in L^2(\Omega)$ s.t.

$$a(\mu, \mathbf{v}) = 0 \quad orall \mathbf{v} \in H^1_0(\Omega, \mathbb{R}^{d imes d})$$

- No boundary data used
- Only smoothness hypothesis: $S \in L^\infty(\Omega, \mathbb{R}^{d imes d})$

$$egin{aligned} \mathcal{T}: L^\infty(\Omega) \subset L^2(\Omega) o H^{-1}(\Omega,\mathbb{R}^d) \ \mu \mapsto -
abla \cdot (\mu \mathcal{S}) \end{aligned}$$

or by the equivalent variational formulation

$$\mathsf{a}(\mu,\mathbf{v}):=\langle T\mu,\mathbf{v}
angle_{H^{-1},H^1_0}:=\int_\Omega\mu\mathcal{S}:
abla\mathbf{v},\quadorall\mathbf{v}\in H^1_0(\Omega,\mathbb{R}^{d imes d})$$

the problem takes the form

Find $\mu \in L^2(\Omega)$ s.t.

$$a(\mu, \mathbf{v}) = 0 \quad orall \mathbf{v} \in H^1_0(\Omega, \mathbb{R}^{d imes d})$$

- No boundary data used
- Only smoothness hypothesis: $S \in L^{\infty}(\Omega, \mathbb{R}^{d imes d})$
- "Easy" to discretize through the Galerkin approximation

Reverse Weak Formulation: discretization

Find $\mu \in L^2(\Omega)$ s.t.

$$\langle T\mu, \mathbf{v}
angle_{H^{-1}, H^1_0} = 0 \quad orall \mathbf{v} \in H^1_0(\Omega, \mathbb{R}^d)$$

becomes

Find $\mu_h \in M_h$ s.t. $\langle T_h \mu_h, \mathbf{v}_h
angle_{H^{-1}, H_0^1} = 0 \quad \forall \mathbf{v} \in V_h$

where

- (M_h, V_h) approaches $(M, V) := (L^2(\Omega), H_0^1(\Omega, \mathbb{R}^d))$
- T_h approaches T

Reverse Weak Formulation: discretization

Find $\mu \in L^2(\Omega)$ s.t.

$$\langle T\mu, \mathbf{v}
angle_{H^{-1}, H^1_0} = 0 \quad orall \mathbf{v} \in H^1_0(\Omega, \mathbb{R}^d)$$

becomes

Find $\mu_h \in M_h$ s.t. $\langle T_h \mu_h, \mathbf{v}_h
angle_{H^{-1}, H_0^1} = 0 \quad \forall \mathbf{v} \in V_h$

where

- (M_h, V_h) approaches $(M, V) := (L^2(\Omega), H_0^1(\Omega, \mathbb{R}^d))$
- T_h approaches T

In what sense?

• Continuous case: $T\mu = \mathbf{0}$ with $\|\mu\| = 1$ Well posed problem ?

- Continuous case: $T\mu = \mathbf{0}$ with $\|\mu\| = 1$ Well posed problem ?
- Discrete case : $T_h \mu_h = \mathbf{0}$ with $\|\mu_h\| = 1$. Null space of T_h ?

- Continuous case: $T\mu = \mathbf{0}$ with $\|\mu\| = 1$ Well posed problem ?
- Discrete case : $T_h \mu_h = \mathbf{0}$ with $\|\mu_h\| = 1$. Null space of T_h ?

what conditions on M_h , V_h and T_h ?

- Continuous case: $T\mu = \mathbf{0}$ with $\|\mu\| = 1$ Well posed problem ?
- Discrete case : $T_h \mu_h = \mathbf{0}$ with $\|\mu_h\| = 1$. Null space of T_h ?

what conditions on M_h , V_h and T_h ?

• Is the solution μ_h close to μ in $L^2(\Omega)$?

Theoretical study of $T\mu := -\nabla \cdot (\mu S)$, with Ammari, Bretin and Millien (2020):

Theorem

If $S \in W^{1,p}$ p > d and $|\det S(x)| \ge c > 0$ a.e, we have

- $dimN(T) \leq 1$
- T has closed range.
- At worst T is a "gradient type" operator

Theoretical study of $T\mu := -\nabla \cdot (\mu S)$, with Ammari, Bretin and Millien (2020):

Theorem

If $S \in W^{1,p}$ p > d and $|\det S(x)| \ge c > 0$ a.e, we have

- $dimN(T) \leq 1$
- T has closed range.
- At worst T is a "gradient type" operator
- works for S "piecewise" $W^{1,p}$

Theoretical study of $T\mu := -\nabla \cdot (\mu S)$, with Ammari, Bretin and Millien (2020):

Theorem

If $S \in W^{1,p}$ p > d and $|\det S(x)| \ge c > 0$ a.e, we have

- $dimN(T) \leq 1$
- T has closed range.
- At worst T is a "gradient type" operator
- works for S "piecewise" $W^{1,p}$
- minimal assumption on S to have closed range property is an open question (as far as we know)

First numerical experiments

Choice of finite element spaces : $(\mathbb{P}^0, \mathbb{P}^1)$ to approximate (M^h, V^h)

Figure: Shear modulus μ and simulated displacement fields ${\bf u}$

Figure: Shear modulus reconstruction μ^h using TV regularization

Stability problem : how to choose better finite element spaces?

Let M be a Hilbert and $M_h \subset M$ a sub-Hilbert space and $\pi_h : M \to M_h$ the orthogonal projection.

Definition

The sequence $(M_h)_{h>0}$ approaches M if for any $\mu \in M$,

$$\lim_{h\to 0} \|\pi_h\mu-\mu\|_M=0.$$

For any non zero $\mu \in M$, we define its relative error of interpolation onto M_h by

$$\varepsilon_h^{\text{int}}(\mu) := \frac{\|\pi_h \mu - \mu\|_M}{\|\mu\|_M}$$

The operator $T: L^2 \to H^{-1}$ given by

$$\langle T\mu, \mathbf{v}
angle_{H^{-1}, H_0^1} := \int_{\Omega} \mu S : \nabla \mathbf{v}, \quad \forall \mathbf{v} \in H_0^1(\Omega, \mathbb{R}^{d imes d})$$

is approached by $T_h : M_h \to V'_h$

$$\langle T_h \mu, \mathbf{v}
angle_{V'_h, V_h} := \int_{\Omega} \mu S_h :
abla \mathbf{v}, \quad orall \mathbf{v} \in V_h.$$

The operator $T: L^2 \to H^{-1}$ given by

$$\langle \mathcal{T}\mu, \mathbf{v}
angle_{H^{-1}, H^1_0} := \int_\Omega \mu \mathcal{S} :
abla \mathbf{v}, \quad orall \mathbf{v} \in H^1_0(\Omega, \mathbb{R}^{d imes d})$$

is approached by $T_h: M_h \to V_h'$

$$\langle T_h \mu, \mathbf{v} \rangle_{V'_h, V_h} := \int_{\Omega} \mu S_h : \nabla \mathbf{v}, \quad \forall \mathbf{v} \in V_h.$$

Hence

$$\langle (T_h - T)\mu, \mathbf{v} \rangle_{V'_h, V_h} = \int_{\Omega} \mu(S_h - S) : \nabla \mathbf{v}$$

$$\leq \|\mu\|_{L^{\infty}} \|S_h - S\|_{L^2(\Omega)} \|\mathbf{v}\|_{H^1_0}$$

The operator $T: L^2 \to H^{-1}$ given by

$$\langle \mathcal{T}\mu, \mathbf{v}
angle_{H^{-1}, H_0^1} := \int_{\Omega} \mu \mathcal{S} :
abla \mathbf{v}, \quad orall \mathbf{v} \in H_0^1(\Omega, \mathbb{R}^{d imes d})$$

is approached by $T_h: M_h \to V'_h$

$$\langle T_h \mu, \mathbf{v} \rangle_{V'_h, V_h} := \int_{\Omega} \mu S_h : \nabla \mathbf{v}, \quad \forall \mathbf{v} \in V_h.$$

Hence

$$\langle (T_h - T)\mu, \mathbf{v} \rangle_{V'_h, V_h} = \int_{\Omega} \mu(S_h - S) : \nabla \mathbf{v}$$

$$\leq \|\mu\|_{L^{\infty}} \|S_h - S\|_{L^2(\Omega)} \|\mathbf{v}\|_{H^1_0}$$

The error $T_h - T$ is small for the $\mathcal{L}(L^{\infty}, V'_h)$ topology weaker than the $\mathcal{L}(L^2, V'_h)$ topology!

Definition

The interpolation error $\varepsilon_h^{\text{op}}$ between T and T_h is defined by

$$\varepsilon_h^{\mathsf{op}} := \|T_h - T\|_{L^{\infty}, V_h'} := \sup_{\mu \in M_h} \sup_{\mathbf{v} \in V_h} \frac{\langle (T_h - T)\mu, \mathbf{v} \rangle_{V_h', V_h}}{\|\mu\|_{L^{\infty}} \|\mathbf{v}\|_{H_0^1}}$$

Definition

The interpolation error $\varepsilon_h^{\text{op}}$ between T and T_h is defined by

$$\varepsilon_h^{\mathsf{op}} := \|T_h - T\|_{L^{\infty}, V_h'} := \sup_{\mu \in M_h} \sup_{\mathbf{v} \in V_h} \frac{\langle (T_h - T)\mu, \mathbf{v} \rangle_{V_h', V_h}}{\|\mu\|_{L^{\infty}} \|\mathbf{v}\|_{H_0^1}}$$

• This error contains both the data noise and the interpolation error over (M_h, V_h) .

Definition

The interpolation error $\varepsilon_h^{\text{op}}$ between T and T_h is defined by

$$\varepsilon_h^{\mathsf{op}} := \|T_h - T\|_{L^{\infty}, V_h'} := \sup_{\mu \in M_h} \sup_{\mathbf{v} \in V_h} \frac{\langle (T_h - T)\mu, \mathbf{v} \rangle_{V_h', V_h}}{\|\mu\|_{L^{\infty}} \|\mathbf{v}\|_{H_0^1}}$$

- This error contains both the data noise and the interpolation error over (M_h, V_h) .
- This particular norm does not allow us to use directly the sensitivity analysis and discretization analysis for the Moore-Penrose generalized inverse of *T* when *T* is a closed range operator

Generalized inf-sup constant

M, V two Hilbert spaces and $T \in \mathcal{L}(M, V')$,

Generalized inf-sup constant

 $M, \ V$ two Hilbert spaces and $\mathcal{T} \in \mathcal{L}(M, V')$,

Definition (classic constants) $\alpha(T) := \inf_{\mu \in M} \frac{\|T\mu\|_{V'}}{\|\mu\|_{M}} \text{ and } \rho(T) := \sup_{\mu \in M} \frac{\|T\mu\|_{V'}}{\|\mu\|_{M}}.$

Definition (Generalized inf-sup constant)

The generalized *inf-sup* constant $\beta(T)$ is built as follows:

$$\beta(T) := \sup_{\substack{e \in M \\ \|e\|_M = 1}} \beta_e(T) \text{ where } \beta_e(T) := \inf_{\substack{\mu \in M \\ \mu \perp e}} \frac{\|T\mu\|_{V'}}{\|\mu\|_M}$$

Definition (Discrete inf-sup constant)

$$\beta(T_h) := \inf_{\substack{\mu \in M_h \\ \mu \perp z_h}} \sup_{\mathbf{v} \in V_h} \frac{\langle T_h \mu, \mathbf{v} \rangle_{V'_h, V_h}}{\|\mu\|_M \|\mathbf{v}\|_V}$$

where

$$z_h = \operatorname*{arg\,min}_{z \in M_h} \sup_{\mathbf{v} \in V_h} \frac{\langle T_h \mu, \mathbf{v} \rangle_{V'_h, V_h}}{\|z\|_M \|\mathbf{v}\|_V}.$$

Theorem

N

- Let $z \in L^{\infty}(\Omega)$ be a solution of $T z = \mathbf{0}$ with $||z||_{M} = 1$. Fix $r \geq ||z||_{\infty}$ and consider $z_{h} \in M_{h}$ a solution of
 - $\|T_h z_h\|_{V'_h} = \alpha(T_h) \quad \text{with} \quad \|z_h\|_M = 1 \quad \text{and} \quad \langle z_h, z \rangle_M \ge 0.$ (1)

If $\beta(T_h) > 0$ we have

$$\|z_h - \pi_h z\|_{L^2(\Omega)} \leq \frac{C}{\beta(T_h)} (r \|T_h - T\|_{L^{\infty}, V'_h} + \|\pi_h z - z\|_M).$$

Noreover, if $\beta(T_h) \geq \beta^* > 0$ and if $\varepsilon_h^{op} \to 0$, then $z_h \to z$.

Write T_h as a matrix T in the basis of the chosen M_h and V_h . Define the matrix

$$\mathcal{M} := \mathcal{B}_V^{-1} \mathcal{T} \mathcal{B}_M^{-1}$$

where \mathcal{B}_M and \mathcal{B}_V are the basis matrix of M_h and V_h . Then

Write T_h as a matrix T in the basis of the chosen M_h and V_h . Define the matrix

$$\mathcal{M} := \mathcal{B}_V^{-1} \mathcal{T} \mathcal{B}_M^{-1}$$

where \mathcal{B}_M and \mathcal{B}_V are the basis matrix of M_h and V_h . Then

• $\alpha(T_h)$ is the smallest singular value of \mathcal{M}

Write T_h as a matrix T in the basis of the chosen M_h and V_h . Define the matrix

$$\mathcal{M} := \mathcal{B}_V^{-1} \mathcal{T} \mathcal{B}_M^{-1}$$

where \mathcal{B}_M and \mathcal{B}_V are the basis matrix of M_h and V_h . Then

- $\alpha(T_h)$ is the smallest singular value of \mathcal{M}
- $\beta(T_h)$ is the second smallest singular value of \mathcal{M}

Write T_h as a matrix T in the basis of the chosen M_h and V_h . Define the matrix

$$\mathcal{M} := \mathcal{B}_V^{-1} \mathcal{T} \mathcal{B}_M^{-1}$$

where \mathcal{B}_M and \mathcal{B}_V are the basis matrix of M_h and V_h . Then

- $\alpha(T_h)$ is the smallest singular value of \mathcal{M}
- $\beta(T_h)$ is the second smallest singular value of \mathcal{M}
- μ is the first singular vector of \mathcal{M} .
- \Rightarrow Main algorithm: partial svd of $\mathcal{M}.$

Quasistatic elastography

FIG. 5. First line, from left to right: The exact map μ_{exact} , the two components of the data field $\mathbf{u} = (u_1, u_2)$ computed via (5.6), the only data used to inverse the problem.

FIG. 6. Behavior of the contants $\alpha(T_h)$, $\beta(T_h)$ and the ratio $\alpha(T_h)/\beta(T_h)$ for the inverse static elastography problem in the unit square $\Omega := (0, 1)^2$, for various choices of pair of discretization spaces.

First singular vector various pairs of spaces

Figure: Reconstruction of the shear modulus map μ using various pairs of finite element spaces in the subdomain of interest $(0.1, 0.9)^2$.

honeycomb finite element

Figure: Honeycomb space discretization. In plain black, the hexagonal subdivision and in dashed blue, the triangular subdivision.

$$M_h := \mathbb{P}^0\left(\Omega_h^{\mathsf{hex}}
ight) = \left\{ \mu \in L^2(\Omega_h) \mid orall j \mid \mu|_{\Omega_{h,j}^{\mathsf{hex}}} ext{ is constant}
ight\}.$$

honeycomb finite element

Figure: Honeycomb space discretization. In plain black, the hexagonal subdivision and in dashed blue, the triangular subdivision.

$$M_h := \mathbb{P}^0\left(\Omega_h^{\mathsf{hex}}
ight) = \left\{ \mu \in L^2(\Omega_h) \mid orall j \mid \mu|_{\Omega_{h,j}^{\mathsf{hex}}} \text{ is constant}
ight\}.$$

$$V_h := \mathbb{P}^1_0\left(\Omega_h^{\operatorname{tri}}, \mathbb{R}^2\right) = \left\{ \mathbf{v} \in H^1_0(\Omega_h, \mathbb{R}^d) \mid \forall k \, \, \mathbf{v}|_{\Omega_{h,k}^{\operatorname{tri}}} \, \text{ is linear} \right\}.$$

Figure: Support and graph of basis test function φ_i .

Why does it work ?

Figure: Support and graph of basis test function φ_i .

Why does it work ?

 Case T = ∇: We show that this pair satisfies the so called inf-sup condition.

Figure: Support and graph of basis test function φ_i .

Why does it work ?

- Case T = ∇: We show that this pair satisfies the so called inf-sup condition.
- General case: We show that for each internal node, we have a system of 2 independent equations for 3 values of the parameters.

One value is given \Rightarrow all the other are fixed. \Rightarrow null-space is at most of dimension $1 \Rightarrow \beta(T_h) > 0$

Reconstruction for the honeycomb

Figure: Reconstruction of the shear modulus map μ using the honeycomb pair.

Quasi-static elastography

Figure: Shear modulus image of phantom from quasi-static data (data from E. Brusseau and L. Pretrusca - CREATIS/INSA)

In vivo quasistatic elastography

Figure: Reconstruction of the shear modulus of *in-vivo* malignant breast tumor from quasi-static elastography (data from E. Brusseau - INSA/CREATIS) h = 0.7 mm.

Open questions:

- Minimal conditions on S such that $\mu \mapsto \nabla \cdot (\mu S)$ has closed range.
- Behavior of $\beta(T_h)$ when $h \rightarrow 0$.
- Som sort of optimality of the honeycomb pair of spaces for this class of problems.

Thank you for your attention