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Inverse problem in two steps

e step 1: Record the displacement field u(x) inside the domain
e step 2: Reconstruct the elastic properties of the medium
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Inversion step 1: recover the displacement

Methods used :

e Speckle correlation

e Optimal transport: minimise
J(u) = [[1(x, t + dt) = 1(x + u(x), 1)|[3 + R(u)

where R is a regularization cost. (Optical flow method)
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Inversion step 2 : recover the shear modulus

Linear elasticity:

—V-(2uE(w)) = V(AV-u) =0 QCR?
BC 09

with u € RY the displacement field, £(u) = 2(Vu + VuT) and
(A, ) are the Lamé coefficients.
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Inversion step 2 : recover the shear modulus

Linear elasticity:

—V-(2uE(w)) = V(AV-u) =0 QCR?
BC 09

with u € RY the displacement field, £(u) = 2(Vu + VuT) and
(A, ) are the Lamé coefficients.

Inverse problem

Recover (A, 1) from the knowledge of u in Q.

Remark (Plane stress approximation)

The equivalent 2D elastic model reads \op = 2 and pop = .
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Least squares approach

Assume knowledge of g the surface density of force outside of 2
and define u[u] solution of

=V (uS(u)) =0, inQ,
uVeu - v =g on 09,

Where S(u) = E(u) + (V - u)/. Then find p by minimizing

J[:u] = “U[M] _ umes”ill(ﬂ) + reg. term J

e Very slow (flat problem)

e needs knowledge of g and i on the boundary
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The Reverse Weak Formulation

A direct method : Define the operator
T:L°(Q) C [3(Q) - HY{Q,RY)
p— =V - (uS)

or by the equivalent variational formulation

a(p,v) = (Tp, V>H*1,Hé = /S2u5 Vv, Yv e H3(Q,RI*9)
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The Reverse Weak Formulation

A direct method : Define the operator
T:L°(Q) C [3(Q) - HY{Q,RY)
p—= =V - (uS)
or by the equivalent variational formulation
a(p,v) = (Tp, V>H*1,H3 = / uS Vv, Vv e H(Q,RI*)
Q
the problem takes the form

Find p € L?(Q) s.t.

a(u,v) =0 Yve H}(Q RI*)

e No boundary data used
e Only smoothness hypothesis: S € L>(Q, R9*9)
e "Easy” to discretize through the Galerkin approximation
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Reverse Weak Formulation: discretization

Find p € L?(Q) s.t.

<T:U’7V>H—1,Hg =0 Wve H&(QaRd)

becomes

Find pp € My, s.t.

(Thuh,vh),_,_ly,_,é =0 VYveV,

where
e (My, V) approaches (M, V) := (L2(Q), H}(S2, R))
e T, approaches T
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Reverse Weak Formulation: discretization

Find p € L?(Q) s.t.

<T:U’7V>H—1,Hg =0 Wve H&(QaRd)

becomes

Find pp € My, s.t.

<Thuhvvh>H—1,Hé =0 VYveV,

where
e (My, V) approaches (M, V) := (L2(Q), H}(S2, R))
e T, approaches T

In what sense?
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Questions

It is a null space determination problem.

e Continuous case: Tp =0 with [[u]| =1
Well posed problem ?
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Questions

It is a null space determination problem.

e Continuous case: Tp =0 with [[u]| =1
Well posed problem ?

e Discrete case : Tpup =0 with ||up|| =1 .
Null space of Tj 7

what conditions on My, V, and T, ?

e Is the solution s, close to p in L2(Q)?
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Stability in continuous case

Theoretical study of Tp := —V - (uS), with Ammari, Bretin and
Millien (2020):
Theorem
IfS€ WY p>d and |det S(x)| > c >0 a.e, we have
o dimN(T) < 1

e T has closed range.

e At worst T is a "gradient type" operator
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Stability in continuous case

Theoretical study of Tp := —V - (uS), with Ammari, Bretin and
Millien (2020):
Theorem
IfS€ WY p>d and |det S(x)| > c >0 a.e, we have
o dimN(T) < 1

e T has closed range.

At worst T is a "gradient type” operator

works for S " piecewise” W1P

e minimal assumption on S to have closed range property is an
open question (as far as we know)
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First numerical experiments

Choice of finite element spaces : (P%, P!) to approximate (M", V")

Figure: Shear modulus p and simulated displacement fields u

Figure: Shear modulus reconstruction u/ using TV regularization

Stability problem : how to choose better finite element spaces?
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Approximation of the spaces

Let M be a Hilbert and M, C M a sub-Hilbert space and
7w © M — M), the orthogonal projection.

Definition

The sequence (Mp)p~o approaches M if for any € M,

li — =0.
lim [l — gy = O

For any non zero i € M, we define its relative error of
interpolation onto M, by

i e — pll g
ept(p) =
1l
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Approximation of the operator

The operator T : L?> — H™! given by

<T,u7v)H,1,H& = /Q,uS Vv, Y e Hi(Q,RI*)

is approached by Tj : My — V/

<Th:“"’>v,;,v,, = /Q,uSh Vv, WweV,.
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(Th — T)M’V>V,§,Vh = /Q,u(Sh —S): Vv

< el o [15h = Slli2qy IVl

11/23



Approximation of the operator

The operator T : L?> — H™! given by

<T,u,v)H,1,H& = /Q,uS Vv, Y e Hi(Q,RI*)

is approached by Tj : My — V/

<Th:u’av>V,:7Vh = /Q,uSh Vv, WeEV,
Hence
(o= vy, = [ (S =): Vv
< ol 15— Sy IVl

The error Ty, — T is small for the L(L*°, V/) topology weaker than
the £(L?, V})) topology!
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Approximation of the operator

Definition

The interpolation error €} between T and T}, is defined by

((Th— Tt Wy
e = || Th— Tl vy == sup sup o
T ewtvevs Nl VI
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Approximation of the operator

Definition

The interpolation error €} between T and T}, is defined by

<(Th - T)H7V>V' V
ey = Th = Tllieo,ys := sup sup w2
n uemyvevy il IV

e This error contains both the data noise and the interpolation
error over (Mp, Vj).
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Approximation of the operator

Definition

The interpolation error €} between T and T}, is defined by

<(Th - T)M7V>V' V
ey = Th = Tllieo,ys := sup sup w2
n uemyvevy il IV

e This error contains both the data noise and the interpolation
error over (Mp, Vj).

e This particular norm does not allow us to use directly the
sensitivity analysis and discretization analysis for the
Moore-Penrose generalized inverse of T when T is a closed
range operator
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Generalized inf-sup constant

M, V two Hilbert spaces and T € L(M, V'),

Definition (classic constants )

a(T) := inf T pllve and p(T):= sup HT'MHVI.
peM ||l py pem el
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Generalized inf-sup constant

M, V two Hilbert spaces and T € L(M, V'),
Definition (classic constants )

I T pllve ITpllve

a(T) := inf and p(T):= sup

peM ||l py pem Nelly

Definition (Generalized inf-sup constant)

The generalized inf-sup constant 3(T) is built as follows:

T /
B(T):= sup Be(T) where Be(T) := inf I Tkl
ecM neM |||y

llell =1 ple
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Discrete inf-sup constant

Definition (Discrete inf-sup constant)

<Th/l,V> 0
B(Tp) := inf sup Vi Vi

neMyvev, il lvily
plzy

where

_ (Thi V) v v,
zp = arg min sup ————"
zem, vev, l1zllp lIvily
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Discrete stability estimate

Theorem

Let z € L*°(Q2) be a solution of T z =0 with ||z||,, = 1. Fix
r > ||z||, and consider z;, € My, a solution of

HThZth,; =a(Ty) with |zs||y =1 and (zn,2)y >0. (1)

If 5(Th) > 0 we have

C
Iz — 2l < grees (r 11Th = Tllgso v + llmnz = 2ly).

B(Th)

Moreover, if B(Tp) > * > 0 and if i’ — 0, then z, — z.
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Algorithm

Write Tp, as a matrix 7 in the basis of the chosen M), and V.
Define the matrix

M = BT B}

where By, and By are the basis matrix of M, and V},. Then
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Algorithm

Write Tp, as a matrix 7 in the basis of the chosen M), and V.

Define the matrix

M = BT B}
where By, and By are the basis matrix of M, and V},. Then
e «Ty) is the smallest singular value of M
e 3(Tp) is the second smallest singular value of M
e 4 is the first singular vector of M.
= Main algorithm: partial svd of M.
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Quasistatic elastography
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Fi1G. 5. First line, from left to right: The exact map fiezact, the two components of the data
field u = (u1,u2) computed via (5.6), the only data used to inverse the problem.
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F1G. 6. Behavior of the contants a(T}y), B(Th) and the ratio o(Ty)/B(Th) for the inverse static
elastography problem in the unit square Q := (0, 1)2, for various choices of pair of discretization
spaces.
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First singular vector various pairs of spaces
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Figure: Reconstruction of the shear modulus map p using various pairs of

finite element spaces in the subdomain of interest (0.1,0.9)2. 1823



honeycomb finite element

Figure: Honeycomb space discretization. In plain black, the hexagonal
subdivision and in dashed blue, the triangular subdivision.

M,, := PO (QP/;ex) — {N c LZ(Qh) ‘ Vj IU’|Q';7er Is constant} o
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honeycomb finite element

Figure: Honeycomb space discretization. In plain black, the hexagonal
subdivision and in dashed blue, the triangular subdivision.

M,, := PO (QP/;ex) — {N c LZ(Qh) ‘ Vj IU’|Q';7er Is constant} o J

Vi = P} (I R2) = {v € H3(Qp, RY) | Vk v]gu s nnear} :
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Figure: Support and graph of basis test function ¢;.

Why does it work ?
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Figure: Support and graph of basis test function ¢;.

Why does it work ?

e Case T = V: We show that this pair satisfies the so called
inf-sup condition.
e General case: We show that for each internal node, we have a

system of 2 independent equations for 3 values of the
parameters.

One value is given = all the other are fixed. = null-space is at
most of dimension 1 = ((T,) > 0
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Reconstruction for the honeycomb

Figure: Reconstruction of the shear modulus map p using the honeycomb
pair.
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Quasi-static elastography
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Figure: Shear modulus image of phantom from quasi-static data (data
from E. Brusseau and L. Pretrusca - CREATIS/INSA)
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In vivo quasistatic elastography
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Figure: Reconstruction of the shear modulus of in-vivo malignant breast
tumor from quasi-static elastography (data from E. Brusseau -
INSA/CREATIS) h = 0.7 mm.

Open questions:
e Minimal conditions on S such that p +— V - (uS) has closed
range.
e Behavior of 5(T,) when h — 0.
e Som sort of optimality of the honeycomb pair of spaces for
this class of problems.
Thank you for your attention

23/23



