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Abstract

We consider a transitive action of a �nitely generated group G and the Schreier graph Γ
de�ned by this action for some �xed generating set. For a probability measure µ on G with a

�nite �rst moment we show that if the induced random walk is transient, it converges towards

the space of ends of Γ. As a corollary we obtain that for a probability measure with a �nite �rst

moment on Thompson's group F , the support of which generates F as a semigroup, the induced

random walk on the dyadic numbers has a non-trivial Poisson boundary. Some assumption on

the moment of the measure is necessary as follows from an example by Juschenko and Zheng.

Keywords� Random walks on groups, Poisson boundary, Schreier graph, Thompson's group F

1 Introduction

Consider a �nitely generated group G acting on a space X (on the right). For a point x P X and
a generating set S, the Schreier graph Γ “ pxG,Eq is the graph the vertex set of which is the orbit
xG of x, and the edges E are the couples of the form py, y.sq for y P xG and s P S. Throughout this
article, we will assume the action to be transitive, that is for every x, xG “ X. We take a measure
µ on G and will study for which pG,Γ, µq the induced random walk on Γ converges towards an end
of the graph. We recall the de�nition of the end space. Consider an exhaustive increasing sequence
K1 Ă K2 Ă . . . of �nite subsets of X. An end of Γ is a sequence U1 Ě U2 Ě . . . where Un is an
in�nite connected component of the subgraph obtained by deleting the vertices in Kn and adjacent
edges. For more details, see De�nition 2.1. Our main result states:

Theorem 1.1. Consider a �nitely generated group G acting transitively on a space X. Fix a
generating set S and let Γ “ pX,Eq be the associated Schreier graph. Let µ be a measure on G with
a �nite �rst moment such that the induced random walk on Γ is transient. Then the random walk
almost surely converges towards a (random) end of the graph.

Notice that for measures with �nite support, the result is straightforward. The result is
also already known in the case where the action of G on X is non-amenable (this is a particular
case of [21, Theorem 21.16], which we recall as Theorem 2.5), under the condition of a �nite �rst
moment. An action is non-amenable when there is no G-invariant mean onX. Kesten's criterion [12]
states that for any symmetric non-degenerate measure on the group, the action is non-amenable if
and only if the induced random walk on X has probability of return to the origin that decreases
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exponentially (see Bartholdi [2] for a survey on the amenability of group actions). The general case
of the cited [21, Theorem 21.16] does not assume that the random walk is induced by a measure on
a group. The result is no longer true if we assume neither that the walk is induced by a measure on
a group nor that the probability of return to the origin decreases exponentially. We prove that in
Proposition 2.6, where we construct a Markov chain pX,P q that is transient, uniformly irreducible
and has uniform �rst moment, but does not converge towards an end of X.

If the action is non-amenable, the random walk induced by any non-degenerate measure is
transient (see [21, Lemma 1.9]). In the general case, transience can sometimes be obtained from
the graph geometry using a comparison Lemma 2.2 due to Baldi-Lohou�e-Peyri�ere [1]. Combining
this lemma and the theorem we obtain:

Corollary 1.2. Consider a �nitely generated group G acting transitively on a space X. Fix a
generating set S and let Γ “ pX,Eq be the associated Schreier graph. Assume that Γ is a transient
graph. Then for all measures µ on G with �nite �rst moments such that supppµq generates G as a
semigroup, the induced random walk almost surely converges towards an end of the graph.

We will also explain how this result can be applied to Thompson's group F . Let us recall
the de�nition of this group. The set of dyadic rationals Zr12 s is the set of numbers of the form
a2b with a, b P Z. Thompson's group F is the group of orientation-preserving piecewise linear self-
isomorphisms of the closed unit interval with dyadic slopes, with a �nite number of break points,
all break points being in Zr12 s. It is a �nitely generated group with a canonical generating set (with
two elements). See Cannon-Floyd-Parry [3] or Meier's book [14, Ch. 10] for details and properties.
Its amenability is a celebrated open question. It is well known that amenability is equivalent to the
existence of a non-degenerate measure with trivial Poisson boundary (see Kaimanovich-Vershik [11],
Rosenblatt [17]). The boundary of a random walk induced by an action is a quotient of the boundary
on the group.

The Schreier graph on Zr12 s (of a conjugate action of F ) has been described by Savchuk [18,
Proposition 1]. It is a tree that can be understood as a combination of a skeleton quasi-isometric
to a binary tree, and rays attached at each point of the skeleton (see Figure 2). Understanding the
geometry of the graph directly shows that it is transient. Kaimanovich [10, Theorem 14] also proves
this result without using the geometry of the graph. Hence by Corollary 1.2 we obtain

Corollary 1.3. Consider a measure on Thompson's group F with a �nite �rst moment, the support
of which generates F as a semigroup. Then the induced random walk on Zr12 s has non-trivial Poisson
boundary.

This extends the following previous results. Kaimanovich [10] and Mishchenko [15] prove
that the simple random walk on the Schreier graph given by that action has non-trivial boundary.
Kaimanovich [10, Section 6.A] further shows that it is non-trivial for walks induced by measures
with supports that are �nite and generate F as a semigroup. We have also shown [20] that for any
measure with a �nite �rst moment on F , the support of which generates F as a semigroup, the walk
on the group has non-trivial Poisson boundary.

The result of the corollary is false without assuming a �nite �rst moment. Juschenko and
Zheng [8] have proven that there exists a symmetric non-degenerate measure on F such that the in-
duced random walk has trivial Poisson boundary. If the trajectories almost surely converge towards
points on the end space, the end space endowed the exit measure on it is a quotient of the Poisson
boundary. However, the self-similarity of the graph implies that the exit measure cannot be trivial,
as we prove in Lemma 4.2. Combining the result of Juschenko-Zheng with this lemma we obtain:

Corollary 1.4. There exists a �nitely generated group G, a space X and a symmetric non-degenerate
measure on G such that
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• G acts amenably and transitively on X,

• the induced random walk on the Schreier graph is transient,

• the induced random walk on the Schreier graph does not converge towards an end of the graph.

In particular, the measure described by Juschenko and Zheng [8, Theorem 3] provides an example
for the action of Thompson's group F on Zr12 s.

Concerning Thompson's group F , studying the Poisson boundary of random walks on it has
been highlighted as a possible approach to proving non-amenability in the work of Kaimanovich.
The results by him and Mischenko further suggested that one could consider the boundary of
induced random walks Zr12 s, but that was shown impossible by the result of Juschenko-Zheng. In
more recent results, Juschenko [7] studied walks on the space of n-element subsets of Zr12 s and
gave a combinatorial necessary and su�cient condition for the Poisson boundary of induced walks
on that space to be non-trivial for all non-degenerate measures. In that situation, the existence a
measure with trivial boundary is due to Juschenko for n “ 2 and to Schneider and Thom [19] for a
general n.
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2 Preliminaries

Consider a �nitely generated group G acting transitively on a space X and a measure µ on G. The
random walk on G is de�ned by multiplication on the right. That is the walk with trajectories pgnq
for n P N where gn`1 “ gnhn and the increments hn are sampled by µ. In other words, the random
walk is de�ned by the kernel pg, hq ÞÑ µpg´1hq. The trajectory of the induced random walk on X
starting at a point o is the image of the trajectory of the walk on the group by the map:

pgnq ÞÑ po.gnq.

Its kernel is P px, yq “
ř

x.g“y µpgq. We now �x a generating set S of G and consider the
undirected graph Γ “ pX,Eq with vertices X and edges E “ tpx, x.sq for s P S, x P Xu. We
recall that this is called the Schreier graph, and that it is connected as we assumed the action to
be transitive. It is worth noting that the directed version of the same de�nition is also referred
to as the Schreier graph, and that in the �gures in this article, the edges will have an assigned
direction for easier visualisation. It is known that every connected regular graph of even degree is
isomorphic to a Schreier graph. It was �rst proven by Gross [6] for �nite graphs. For a detailed
proof of the in�nite case, see [13, Theorem 3.2.5]. For a more in-depth study of Schreier graphs, see
Grigorchuk-Kaimanovich-Nagnibeda [5].

De�nition 2.1. For a compact K Ă X denote by π0pXzKq the set of connected components of
XzK. There is a natural partial order de�ned by K1 ď K2 if and only if K1 Ď K2. That order gives
rise to a natural morphism π1,2 : π0pXzK2q ÞÑ π0pXzK1q which sends a connected component into
the connected component of which it is a subset. This forms an inverse system indexed by K Ă X
(see [16, Section 3.1.2]). The end space is then the inverse limit
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lim
KĂΓ

π0pXzKq “ tpxKq P
ź

KĂX

π0pXzKq|π1,2x2 “ x1, K1 Ă K2u.

In our case, the end space can be described using an increasing exhaustive sequence of �nite
sets Kn, as such sequences are co�nal in the set of all compact subsets. That is, any compact set is
included in Kn for n large enough.

We use the following comparison lemma by Baldi-Lohou�e-Peyri�ere [1].

Lemma 2.2 (Comparison lemma). Let P1px, yq and P2px, yq be doubly stochastic kernels on a
countable set X and assume that P2 is symmetric. Assume that there exists ε ě 0 such that

P1px, yq ě εP2px, yq

for any x, y. Then if P2 is transient then so is P1.

Here doubly stochastic kernels means that the operators are reversible and the inverse of each
is also Markov. Equivalently, they preserve the counting measure; it is worth noting that the result
holds true more generally for operators with any common stationary measure, see Kaimanovich [10,
Section 3.C]; see also Woess [21, Section 2.C,3.A]. For the walks considered in this article, it is direct
to verify that, for all probability measures, ppx, yq “ µpx´1yq is doubly stochastic (as the inverse
operator is de�ned by px, yq ÞÑ µpy´1xq).

We recall that a random walk is called transient if, for any point, almost every trajectory
leaves that point after �nite time. Otherwise, the walk is called recurrent and there is a point that
the walk almost surely visits an in�nite amount of times. A graph is called transient (recurrent)
if the simple random walk on it is transient (recurrent). The Green function G is de�ned by
Gzpx, yq “

ř

nPN p
pnqpx, yqzn where ppnq is the n-time transition probability of p. In other words,

ppnqpx, yq is the probability that a random walk starting in x is at y after n steps. We will write
Gpx, yq “ G1px, yq. A walk is transient if and only if Gpx, xq ă 8 for all x P X.

Remark that recurrent walks do not converge to the end space. However, it is possible for a
measure on a group to induce a transient walk even if the uniform measure is recurrent, in which
case we can apply Theorem 1.1. Here we give an example of that situation in which the graph has
in�nitely many ends.

Example 2.3. Consider the graph Ψ in Figure 1. Consider the action of the free group on two
generators F2 on it where the �rst generator a sends each vertex to the right, and the second generator
b sends a vertex to the vertex above if possible, and to itself otherwise. The graph is recurrent.
Consider the measure µpaq “ 3

8 , µpa
´1q “ 1

8 , µpbq “ µpb´1q “ 1
4 . It is transient and converges

towards the ends de�ned by the right rays.

If we do not require the measure on F2 to have a �nite �rst moment, it can be chosen symmetric
while the induced walk remains transient. This can be done on any graph containing an in�nite
array, see [4, Lemma 7.1]. Furthermore, we can construct recurrent graphs for which it is possible
to have symmetric measures (on the acting group) with �nite �rst moments that induce transient
walks:

Example 2.4. Consider the graph Ψ1 obtained by Ψ by replacing the horizontal lines with Z2 planes.
It is a recurrent graph. Consider the free product Z˚Z2 with generators a P Z and b, c P Z2. Consider
its action on Ψ1 where a moves a vertex to the vertex above if possible, and to itself otherwise, and b
and c act horizontally. There is a symmetric transient measure µ on Z2 with a �nite �rst moment.
Consider µ1 “ 1

4pδa ` δa´1q ` 1
2µ. It induces a transient walk on Ψ1, which by Theorem 1.1 almost

surely converges to an element of end space.
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Figure 1: A recurrent graph with in�nitely many ends
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Let us recall the exact statement of Theorem 21.16 from the book of Woess [21]. For a graph
X and a Markov operator P on it, the theorem states:

Theorem 2.5 ([21, Theorem 21.16]). If pX,P q is uniformly irreducible and has a uniform �rst
moment, and ρpP q ă 1, then the random walk de�ned by pX,P q converges almost surely to a
random end of X.

Let us de�ne the concepts in the statement. The walk is uniformly irreducible if there exists
c ą 0 and �nite K P N such that for all neighbouring vertices x and y, there exists k ď K such
that ppkqpx, yq ě c. The step distribution on a point x P X is de�ned as σxpnq “

ř

y:dpx,yq“n ppx, yq.
The step distributions are tight if there is a distribution σ on N0, such that for all x and all
n, the tails σxprn,`8qq are bounded by the tails of σ. The walk has uniform �rst moment if
the step distributions are tight with some σ that has �nite �rst moment. The spectral radius is
ρpP q “ lim supnÑ8 p

pnqpx, yq1{n (this quantity does not depend on x and y). It is straightforward
to check that if ρpP q ă 1, then the random walk is transient. Moreover, applying the de�nition
for x “ y we see that ρpP q ă 1 if any only if the probability of return to the origin decreases
exponentially. We will show that the result of Theorem 2.5 is not true without the assumption
ρpP q ă 1. By sgn we denote the sign function on Z: sgnpzq “ 1 if x ě 0 and sgnpxq “ ´1 if x ă 0.

Proposition 2.6. 1. There is a graph X and a Markov operator P on it such that pX,P q is
transient, uniformly irreducible and has a uniform �rst moment, but the random walk de�ned
by pX,P q doesn't converge almost surely to a random end of X.

2. Consider the Markov chain pZ, Ppn,εnq which, given pn ě 0 and εn ě 0, is de�ned as

P px, yq “

$

’

’

’

’

&

’

’

’

’

%

p1´ pnq
1`εn

2 for y “ sgnpxqp|x| ` 1q

p1´ pnq
1´εn

2 for y “ sgnpxqp|x| ´ 1q

pn for y “ ´x

0 otherwise.

There is a choice of pn ě 0 and εn ě 0 such that pZ, Ppn,εnq is transient, uniformly irreducible,
has uniform �rst moment and has an in�nite expected number of steps where the sign changes.
In particular, it veri�es the conditions of (1).

The exact values that appear in the proof are pn “
1

n2plnnq2
and εn “

pn`1qplnpn`1qq2´nplnnq2

pn`1qplnpn`1qq2`nplnnq2
.

5



Proof. We will �nd su�cient su�cient conditions on pn ě 0 and εn ě 0 under which pZ, Ppn,εnq

veri�es the conditions we seek, and then provide a choice that satis�es those conditions. Speci�cally,
the su�cient conditions are (1),(2),(3) and (4).

The tails σxprn,`8qq are bounded by the tail of the distribution σ on N0 de�ned by σp0q “
σp1q “ 1, σp2nq “ pn for n ě 1 and σpxq “ 0 otherwise. The Markov chain pZ, Ppn,εnq has uniform
�rst moment if and only if σ has �nite �rst moment, or equivalently

ÿ

nPN
npn ă 8. (1)

For pZ, Ppn,εnq to be uniformly irreducible, it would su�ce that there should exist c ą 0 such
that p1´ pnq

1´εn
2 ě c for all n. If we have

pn
nÑ8
ÝÝÝÑ 0 and εn

nÑ8
ÝÝÝÑ 0 (2)

then p1 ´ pnq
1´εn

2
nÑ8
ÝÝÝÑ 1

2 . In that case, replacing if necessary the values a �nite number of pn
and/or εn with 0, we can have p1´ pnq

1´εn
2 ě c.

To study the transience of pZ, Ppn,εnq we consider rP on N0 de�ned by rP pk, k ` 1q “ p1 ´

pnq
1`εn

2 , rP pk, k ´ 1q “ p1 ´ pnq
1´εn

2 and rP pk, kq “ pn. It is a nearest neighbour random walk on
N0 and its transience is equivalent to the transience of pZ, Ppn,εnq. Nearest neighbour random walks

on N0 are well understood. As seen in [21, Section 2.16], pN0, rP q is transient if and only if

8
ÿ

k“1

rpekq ă 8 (3)

where rpekq “
rP pk´1,k´2q... rP p1,0q
rP p0,1q... rP pk´1,kq

. We have
rpek`1q

rpekq
“

1´εk
1`εk

and therefore de�ning εk is equivalent to

de�ning rpekq.

Finally, if the Green function of rP is Gp
rP q, then the expected number of "jumps" between

n and ´n is Gp
rP qpn, nqpn. We wish to obtain

ř

nG
p rP qpn, nqpn “ 8. From the results of [21,

Example 2.13, Section 2.16] it follows that Gp
rP qpn, nq “ 1

rpenq rP pn,n´1q

ř8
k“n`1 rpekq. If

rP pn, n´1q ě

c, it would su�ce to have

ÿ

nPN
pn

1

rpenq

8
ÿ

k“n`1

rpekq “ 8. (4)

We now de�ne rpekq and pk and claim that those choices verify conditions (1),(2),(3) and (4).
Let

rpekq “
1

kpln kq2
and pk “

1

k2pln kq2
.

We �rst prove condition (1). It su�ces to observe that

ÿ

ně2

npn ď

ż 8

1

x

x2plnxq2
dx “ ´

1

lnx

ˇ

ˇ

ˇ

ˇ

ˇ

8

1

,

which is �nite. As rpekq “ kpk, this also proves condition (3). Condition (2) is straightforward.
We now only need to prove condition (4). Similarly, we have

8
ÿ

k“n`1

rpekq ě

ż 8

n`1

1

xplnxq2
dx “ ´

1

lnx

ˇ

ˇ

ˇ

ˇ

ˇ

8

n`1
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and thus
1

rpenq

8
ÿ

k“n`1

rpekq ě
nplnnq2

lnpn` 1q
« n lnn.

Then

ÿ

nPN
pn

1

rpenq

8
ÿ

k“n`1

rpekq ě
ÿ

nPN

1

n lnpn` 1q
ě

ż 8

2

1

x lnx
dx “ lnplnpxqq

ˇ

ˇ

ˇ

ˇ

ˇ

8

2

which is not �nite.

3 Proof of main Theorem 1.1

Consider a �nite set K Ă X and denote Γ1, . . . ,Γk the connected components of its complement.
We will study the probability to change the component at step n and prove that the sum over n is
�nite.

Consider x P XzK and g P G. We will study the probability that x.g is not in the same
component. Let g “ s1s2 . . . sn where |g| “ n and si P S. If x and x.g are in di�erent components, by
de�nition the path x, x.s1, . . . , x.g passes trough K. Therefore there is i such that x.s1s2 . . . si P K.
Equivalently, x

ř

iďn τs1s2...siδx,
ř

kPK δky ě 1 where δy is the characteristic function at a given point
y and τf is the translation de�ned by τfδy “ δy.f . We observe

x
ÿ

iďn

τs1s2...siδx,
ÿ

kPK

δky “ xδx,
ÿ

iďn

ÿ

kPK

τs´1
i ...s´1

2 s´1
1
δky.

We denote

f “
ÿ

s1s2...snPG

µps1s2 . . . snq
ÿ

iďn

ÿ

kPK

τs´1
i ...s´1

2 s´1
1
δk.

Then the probability that x and x.g are in di�erent components is not greater than xδx, fy. Further-
more, the l1 norm of f satis�es }f}1 ď |K|}µ}1 where }µ}1 is the �rst moment of µ. In particular,
it is �nite.

Take a random walk starting at a �xed point o and consider n large enough so that the
transient walk has left K. The probability of changing component at step n` 1 is then not greater
than

xppnqδo, fy.

We have

ÿ

nPN
xppnqδo, fy “

ÿ

nPN

ÿ

xPX

ppnqpo, xqfpxq “
ÿ

xPX

fpxqGpo, xq

where we will have the right to interchange the order of summation if we prove that the right-hand
side is �nite. Let p̌ be the kernel induced by the inverse measure µ̌ : g ÞÑ µpg´1q, and Gpp̌q the
Green function corresponding to that kernel. Then Gpo, xq “ Gpp̌qpx, oq. It is a known property of
the Green function that for all x, y P X, we have Gpp̌qpx, yq ď Gpp̌qpy, yq. This follows from the fact
that the left hand side is the expected number of visits of y of a walk starting at x, while the right
hand side is the expected number of visits starting at y. Thus
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ÿ

xPX

fpxqGpo, xq ď Gpp̌qpo, oq}f}1 ă 8.

This proves that after �nite time, the walk almost surely stays in the same connected compo-
nent of the complement of K. Applying this for an increasing exhaustive sequence of K, we obtain
the result of Theorem 1.1.

It is worth mentioning that this approach is similar to the one used by Kaimanovich [9,
Theorem 3.3] to prove pointwise convergence of the con�guration of walks on lamplighter groups
with a �nite �rst moment.

4 Thompson's group F

We now apply Theorem 1.1 to Thompson's group F . The Schreier graph on the dyadic numbers has
been described by Savchuk [18, Proposition 1](see Figure 2). We have the following self-similarity
result:

Figure 2: Schreier graph of the dyadic action of F for the standard generators
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Lemma 4.1. Consider the Schreier graphs of F for its action on Zr12 s (see Figure 2). We denote
left (respectively right) branch the subgraph of the vertices v for which any geodesic between v and
5
8 passes trough 13

16 (respectively 9
16). On the �gure, those are the left and right branches of the tree,

along with the rays starting at them. Then each branch can be embedded as a labelled graph into the
other.

Remark that stronger results of self-similarity of this graph have already been observed, see
for example [10, Section 5.F].

Proof. Each branch is a labelled tree, and thus an equivariant embedding is uniquely de�ned by
the image of the root. We choose the image of 13

16 to be 25
32 . This de�nes an embedding of the left

branch into the right one. Similarly, choosing 11
16 as the image of 9

16 de�nes an embedding of the
right branch into the left one.

This implies:

Lemma 4.2. Fix a measure on F , the support of which generates F as a semi-group such that the
induced random walk on he dyadic numbers almost surely converges towards an end of the graph.
Then the exit measure on the end space is not trivial.
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Proof. We decompose the end space into �ve sets: two sets containing respectively the ends of the
left or the right branch, and three sets that are the singletons corresponding to the rays at 5

8 and
3
4 . The rays have equivariant embeddings into the branches. Combining with Lemma 4.1, this
means that any of those �ve sets can be equivariantely embedded into another one. In particular,
if the restriction of the exist measure on one of them has non-zero mass, then by transitivity the
restriction on the embedding also has non-zero mass.

References

[1] Paolo Baldi, No�el Lohou�e, and Jacques Peyri�ere. Sur la classi�cation des groupes r�ecurrents.
C. R. Acad. Sci. Paris S�er. A-B, 285(16):A1103�-A1104, 1977.

[2] Laurent Bartholdi. Amenability of Groups and G-Sets. In Val�erie Berth�e and Michel Rigo,
editors, Sequences, Groups, and Number Theory, pages 433�544. Springer International Pub-
lishing, Cham, 2018.

[3] James W. Cannon, William J. Floyd, and Walter R. Parry. Introductory notes on Richard
Thompson's groups. Enseignement Math�ematique, 42:215�256, 1996.

[4] Anna Erschler. Boundary behavior for groups of subexponential growth. Annals of Mathemat-
ics, 160(3):1183�1210, nov 2004.

[5] Rostislav Grigorchuk, Vadim A. Kaimanovich, and Tatiana Nagnibeda. Ergodic properties of
boundary actions and the Nielsen-Schreier theory. Advances in Mathematics, 230(3):1340�1380,
2012.

[6] Jonathan L. Gross. Every connected regular graph of even degree is a Schreier coset graph. J.
Combinatorial Theory Ser. B, 22(3):227�232, 1977.

[7] Kate Juschenko. A remark on Liouville property of strongly transitive actions. preprint,
arXiv:1806.02753, jun 2018.

[8] Kate Juschenko and Tianyi Zheng. In�nitely supported Liouville measures of Schreier graphs.
Groups, Geometry, and Dynamics, 12:911�918, 2018.

[9] Vadim A. Kaimanovich. Poisson boundaries of random walks on discrete solvable groups. In
Herbert Heyer, editor, Probability Measures on Groups X, pages 205�238. Springer US, Boston,
MA, 1991.

[10] Vadim A. Kaimanovich. Thompson's group F is not Liouville. In Tullio Ceccherini-Silberstein,
Maura Salvatori, and Ecaterina Sava-Huss, editors, Groups, Graphs and Random Walks, Lon-
don Mathematical Society Lecture Note Series, pages 300�342. Cambridge University Press,
Cambridge, 2017.

[11] Vadim A. Kaimanovich and Anatoly M. Vershik. Random walks on discrete groups: boundary
and entropy. The Annals of Probability, 11(3):457�490, 1983.

[12] Harry Kesten. Symmetric random walks on groups. Transactions of the American Mathematical
Society, 92(2):336�336, 1959.

[13] Paul-Henry Leemann. On subgroups and Schreier graphs of �nitely generated groups. PhD
thesis, Univ. Gen�eve, aug 2016.

9

https://arxiv.org/abs/1806.02753


[14] John Meier. Groups, Graphs and Trees. Cambridge University Press, Cambridge, 2008.

[15] Pavlo Mishchenko. Boundary of the action of Thompson group F on dyadic numbers. preprint,
arXiv:1512.03083, 2015.

[16] John Rhodes and Benjamin Steinberg. The q-theory of Finite Semigroups. Springer Monographs
in Mathematics. Springer US, Boston, MA, 2009.

[17] Joseph Rosenblatt. Ergodic and mixing random walks on locally compact groups. Mathema-
tische Annalen, 257(1):31�42, 1981.

[18] Dmytro Savchuk. Some graphs related to Thompson's group F . In Oleg Bogopolski, Inna
Bumagin, Olga Kharlampovich, and Enric Ventura, editors, Combinatorial and geometric group
theory, pages 279�296, Basel, 2010. Birkh�auser Basel.

[19] Friedrich Martin Schneider and Andreas Thom. The Liouville property and random walks on
topological groups. Commentarii Mathematici Helvetici, 95(3):483�513, 2020.

[20] Bogdan Stankov. Non-triviality of the Poisson boundary of random walks on the group HpZq
of Monod. Ergodic Theory and Dynamical Systems, pages 1�30, 2019.

[21] Wolfgang Woess. Random Walks on In�nite Graphs and Groups. Cambridge Tracts in Math-
ematics. Cambridge University Press, 2000.

10

https://arxiv.org/abs/1512.03083

	Introduction
	Preliminaries
	Proof of main Theorem 1.1
	Thompson's group F

