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Abstract

We give sufficient conditions for the non-triviality of the Poisson boundary of random walks
on H(Z) and its subgroups. The group H(Z) is the group of piecewise projective homeomor-
phisms over the integers defined by Monod. For a finitely generated subgroup H of H(Z), we
prove that either H is solvable, or every measure on H with finite first moment that generates
it as a semigroup has non-trivial Poisson boundary. In particular, we prove the non-triviality of
the Poisson boundary of measures on Thompson’s group F' that generate it as a semigroup and
have finite first moment, which answers a question by Kaimanovich.

Keywords— Random walks on groups, Poisson boundary, Schreier graph, Thompson’s group
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1 Introduction

In 1924 Banach and Tarski [4] decompose a solid ball into five pieces, and reassemble them into two
balls using rotations. That is now called the Banach-Tarski paradox. Von Neumann [38] observes
that the reason for this phenomenon is that the group of rotations of R? admits a free subgroup.
He introduces the concept of amenable groups. Tarski [48] later proves amenability to be the
only obstruction to the existence of "paradoxical" decompositions (like the one in Banach-Tarski’s
article [4]) of the action of the group on itself by multiplication, as well as any free actions of the
group. One way to prove the result of Banach-Tarski is to see it as an almost everywhere free action
of SO3(R) and correct for the countable set where it is not (see e.g. Wagon [50, Cor. 3.10]).

The original definition of amenability of a group G is the existence of an invariant mean. A
mean is a normalised positive linear functional on [“(G). It is called invariant if it is preserved by
translation on the argument. Groups that contain free subgroups are non-amenable. It is proven by
Ol’shanskii in 1980 [40] that it is also possible for a non-amenable group to not have a free subgroup.
Adyan [1] shows in 1982 that all Burnside groups of a large enough odd exponent (which are known
to be infinite by result of Novikov and Adyan from 1968 [39]) are non-amenable. Clearly they do
not contain free subgroups. For more information and properties of amenability, see [5],[9],[17],[50].
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It is worth noting that despite the existence of a large amount of equivalent definitions of
amenability, to our knowledge until recently all examples of non-amenable groups without free
subgroups are proven (Ol’shanskii [40], Adyan [I], Ol’shanskii [41], Ol’shanskii-Sapir [42]) to be
such using the co-growth criterion. See Grigorchuk [I8] for the announcement of the criterion,
or [19] for a full proof. For other proofs, see Cohen [I1], Szwarc [47]. The criterion is closely related
to Kesten’s criterion in terms of probability of return to the origin [29].

Monod constructs in [36] a class of groups of piecewise projective homeomorphisms H(A)
(where A is a subring of R). By comparing the action of H(A) on the projective line P!(R) with
that of PSLy(A), he proves that it is non-amenable for A # Z and without free subgroups for all
A. This can be used to obtain non-amenable subgroups with additional properties. In particular,
Lodha [31] proves that a certain subgroup of H(Z[?]) is of type Fy, (in other words, such that there
is a connected CW complex X which is aspherical and has finitely many cells in each dimension
such that m(X) is isomorphic to the group). That subgroup was constructed earlier by Moore
and Lodha [33] as an example of a group that is non-amenable, without free subgroup and finitely
presented. It has three generators and only 9 defining relations (compare to the previous example
by Ol’shanskii-Sapir [42] with 102%° relations). This subgroup is the first example of a group of
type Fy, that is non-amenable and without a free subgroup. Later, Lodha [32] also proves that the
Tarski numbers (the minimal number of pieces needed for a paradoxical decomposition) of all the
groups of piecewise projective homeomorphisms are bounded by 25.

It is not known whether the group H(Z) of piecewise projective homeomorphisms in the
case A = Z defined by Monod is amenable. One of the equivalent conditions for amenability is the
existence of a non-degenerate measure with trivial Poisson boundary (see Kaimanovich-Vershik [27],
Rosenblatt [44]). This measure can be chosen to be symmetric. It is also known that amenable
groups can have measures with non-trivial boundary. In a recent result Frisch-Hartman-Tamuz-
Vahidi-Ferdowski [16] describe an algebraic necessary and sufficient condition for a group to admit
a measure with non-trivial boundary. In the present paper we give sufficient conditions for non-
triviality of the Poisson boundary on H(Z). There are several equivalent ways to define the Poisson
boundary (see Kaimanovich-Vershik [27]). Consider a measure p on a group G and the random
walk it induces by multiplication on the left. It determines an associated Markov measure P on the
trajectory space GN.

Definition 1.1. Consider the following equivalence relation on G: two trajectories (zg,z1,...)
and (yo,y1,...) are equivalent if and only if there exist iy € N and k € Z such that for every i > i
x; = Yi+k- In other words, if the trajectories coincide after a certain time instant up to a time
shift. The Poisson boundary (also called Poisson-Furstenberg boundary) of p on G is the quotient
of (GY, P) by the measurable hull of this equivalence relation.

Note that if the support of the measure does not generate GG, in which case we say that the
measure is degenerate, this defines the boundary on the subgroup generated by the support of the
measure rather than on G. For a more recent survey on results concerning the Poisson boundary,
see [14].

Thompson’s group F' is a subgroup of H(Z), as follows from Kim, Koberda and Lodha [30].
This group is the group of orientation-preserving piecewise linear self-isomorphisms of the closed
unit interval with dyadic slopes, with a finite number of break points, all break points being dyadic
numbers (see Cannon-Floyd-Perry [§8] or Meier’s book [34, Ch. 10] for details and properties).
It is not known whether it is amenable, which is a celebrated open question. Kaimanovich [26]
and Mishchenko [35] prove that the Poisson boundary on F' is not trivial for finitely supported
non-degenerate measures. They study the induced walk on the dyadic numbers in their proofs.
However, there exist non-degenerate symmetric measures on F' for which the induced walk has



trivial boundary as proven by Juschenko and Zheng [2I]. An equivalent statement is true for
finitely generated subgroups of H(Z), see Remark . The results of the current article are inspired
by the paper of Kaimanovich. It is not hard to prove that H(Z) is not finitely generated (see
Remark , so we will consider measures the support of which is not necessarily finite.

Our main result is as follows. Consider the group H(Z) of piecewise projective homeomor-
phisms, as defined by Monod [36], in the case A = Z. For g € H(Z) denote by Br(g) the number of
break points of g, which is the ends of pieces in its piecewise definition. We will say that a measure p
on a subgroup of H(Z) has finite first break moment if the expected number of break points E[Br|
is finite. A group H is called locally solvable if all finitely generated subgroups are solvable. Then

Theorem 1.2. For any subgroup H of H(Z) which is not locally solvable and any measure p on H
with finite first break moment E[Br] and such that the support of u generates H as a semigroup,
the Poisson boundary of (H, p) is non-trivial.

For a measure i on a finitely generated group, we say that p has finite first moment if the word
length over any finite generating set has finite first moment with respect to p. This is well defined
as word lengths over different finite generating sets are bilipschitz, and in particular the finiteness
of the first moment does not depend on the choice of generating set. We remark (see Remark
that any measure p on a finitely generated subgroup H of H(Z) that has finite first moment also
has finite expected number of break points. Therefore by Theorem if o is a measure on a non-
solvable finitely generated subgroup H such that the support of u generates H as a semigroup and
w has finite first moment, the Poisson boundary of (H, p) is non-trivial. Furthermore, in the other
case we will show (Lemma that so long as H is not abelian, we can construct a symmetric
non-degenerate measure with finite 1 — ¢ moment and non-trivial Poisson boundary.

The structure of the paper is as follows. In Section [3] given a fixed s € R, to every element
g € H(Z) we associate (see Definition a configuration C,. Each configuration is a function
from the orbit of s into Z. The value of a configuration Cy at a given point of the orbit of s represents
the slope change at that point of the element g to which it is associated. There is a natural quotient
map of the boundary on the group into the boundary on the configuration space. The central idea
of the paper is to show that under certain conditions, the value of the configuration at a given point
of the orbit of s almost always stabilises. If that value is not fixed, this then implies non-triviality
of the boundary on the configuration space, and thus non-triviality of the Poisson boundary on the
group. These arguments bear resemblance to Kaimanovich’s article on Thompson’s group [26], but
we would like to point out that the action on R considered in the present article is different.

In Sectionwe obtain the first result for non-triviality of the Poisson boundary (see Lemma.
Measures satisfying the assumptions of that lemma do not necessarily have finite first break mo-
ment. In Section[5| we study copies of Thompson’s group F' in H(Z). Building on the results from it,
in Section [6] we obtain transience results (see Lemmal6.1)) which we will need to prove Theorem [1.2]
In Section [7] we prove Lemma which is the main tool for proving non-triviality of the Poisson
boundary. In the particular case of Thompson’s group, the lemma already allows us to answer a
question by Kaimanovich |26 7.A]:

Corollary 1.3. Any measure on Thompson’s group F' that has finite first moment and the support
of which generates F' as a semi-group has non-trivial Poisson boundary.

We mention that the arguments of Lemma could also be applied for the action and
configurations considered in Kaimanovich’s article, giving an alternative proof of the corollary.
Combining the lemma with the transience results from Section [6] we obtain non-triviality of the
Poisson boundary under certain conditions (see Lemma , which we will use to prove the main
result. As the negation of those conditions passes to subgroups, it suffices to show that if H is



finitely generated and does not satisfy them, it is then solvable, which we do in Section [§] Remark
that the theorem generalises the result of Corollary In Section [J] we give an additional remark
on the case of finite 1 — ¢ moment.
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2 Preliminaries

2.1 PSLy(Z) and H(Z)

The projective linear group PSLy(R) is defined as SLy(R)/{Id, —Id}, which is the natural quotient
that describes the linear actions on the projective space P'(R). As the latter can be defined as
S/(x ~ —x), we can think of it as a circle for understanding the dynamics of the action of the
projective group. Remark that it is commonly understood as the boundary of the hyperbolic plane.

In this paper we will not be interested in the interior of the hyperbolic plane as we do a piecewise
definition of H(A) on P}(R). An element h € PSLy(R) is called:

1. Hyperbolic if [tr(h)| > 2 (or equivalently, t7(h)2 — 4 > 0). In this case a calculation shows
that h has two fixed points in P}(R). One of the points is attractive and the other repulsive
for the dynamic of h, meaning that starting from any point and multiplying by h (respectively
h~1) we get closer to the attractive (resp. the repulsive) fixed point.

2. Parabolic if |tr(h)| = 2. In this case h has exactly one "double" fixed point. We can identify
PY(R) with R U {00} in such a way that the fixed point is oo, in which case h becomes a
translation on R. We will go into detail about the identification below.

3. Elliptic if [tr(h)| < 2. Then h has no fixed points in P!(R) and is conjugate to a rotation.
If we consider it as an element of PSLy(C), we can see that it has two fixed points in P!(C)
that are outside P*(R).

Consider an element <§> e R2\0. If y # 0, identify it with %, otherwise with oo. This

clearly passes on P!(R), and the action of PSLy(R) becomes <Z Z) X = Zfig The conventions

for infinity are <z Z) (0) = % if ¢ # 0 and o otherwise, and if ¢ # 0, <CCL Z) .(—%) = 00. Note

that by conjugation we can choose any point to be the infinity.

Let us now look into the groups defined by Monod [36]. We define I" as the group of all
homeomorphisms of R u {oo} that are piecewise in PSLy(R) with a finite number of pieces. Take
a subring A of R. We define I'(A4) to be the subgroup of I' the elements of which are piecewise
in PSLy(A) and the extremities of the intervals are in Py, the set of fixed points of hyperbolic
elements of PSLy(A).

Definition 2.1.1. The group of piecewise projective homeomorphisms H(A) is the subgroup of
I'(A) formed by the elements that fix infinity.



It can be thought of as a group of homeomorphisms of the real line, and we will use the same
notation in both cases. We will note G = H(Z) to simplify. Note in particular that co ¢ Pz. This
means that the germs around +00 and —oo are the same for every element of G. The only elements
in PSLy(Z) that fix infinity are

[ ¢ )}

Fix g € G and let its germ at infinity (on either side) be a,,. Then ga_, has finite support.
The set of elements G = G that have finite support is clearly a subgroup, and therefore if we denote
A = {an,n € Z}, we have

G=G+A
For the purposes of this article, we also need to define:

Definition 2.1.2. Consider the elements of I' that fix infinity and are piecewise in PSLy(Z). We
call the group formed by those elements the piecewise PSLy(Z) group, and denote it as G.

Remark that in an extremity ~ of the piecewise definition of an element g € é, the left and
right germs g(y —0) and g(y + 0) have a common fixed point. Then g(y +0)"1g(y —0) € PSLy(Z)
fixes . Therefore the extremities are in Pz u Q U {o0}, that is in the set of fixed points of any (not
necessarily hyperbolic) elements of PSLy(Z). In other words, the only difference between G and
G = H(Z) is that G is allowed to have break points in Q U {c0}, that is in the set of fixed points
of parabolic elements. Clearly, G < G. This allows us to restrain elements, which we will need in
Section

Definition 2.1.3. Let f € é, and a,b € R such that f(a) = a and f(b) = b. The function f )
defined by 1) (z) = f(z) for v € (a,b) and f(z) = x otherwise is called a restriction.

Remark that f 1) € G. The idea of this definition is that we extend the restrained function

with the identity function to obtain an element of G.

The subject of this paper is G, however in order to be able to apply results from previous
sections in Section |8 we will prove several lemma for G. The equivalent result will easily follow for
G just from the fact that it is a subgroup.

2.2 Random walks

Throughout this article, for a measure pu on a group H we will consider the random walk by
multiplication on the left. That is the walk (2, )neny where 41 = ypx, and the increments y,, are
sampled by p. In other words, it is the random walk defined by the kernel p(x,y) = yz~!. Remark
that for walks on groups it is standard to consider the walk by multiplications on the right. In this
article the group elements are homeomorphisms on R and as such they have a natural action on the
left on elements of R, which is (f,z) — f(x).

We will use Definition[I.I]as the definition of Poisson boundary. For completeness’ sake we also
mention its description in terms of harmonic functions. For a group H and a probability measure
pon H we say that a function f on H is harmonic if for every g € H, f(g) = ey [(hg)p(h).
For a non-degenerate measure, the L™ space on the Poisson boundary is isomorphic to the space of
bounded harmonic functions on H, and the exact form of that isomorphism is given by a classical
result called the Poisson formula. In particular, non-triviality of the Poisson boundary is equivalent
to the existence of non-trivial bounded harmonic functions.

We recall the entropy criterion for triviality of the Poisson boundary.



Definition 2.2.1. Consider two measures p and A on a discrete group H. We denote p # A their
convolution, defined as the image of their product by the multiplication function. Specifically:

s A(A) = f,u(Ah_l)d)\(h).

Remark that p*™ gives the probability distribution for n steps of the walk, starting at the
neutral element. For a probability measure p on a countable group H we denote H (p) its entropy,
defined by

H(p) = Y, —p(g)log u(g).

geH

One of the main properties of entropy is that the entropy of a product of measures is not
greater than the sum of their entropies. Combining that with the fact that taking image of a
measure by a function does not increase its entropy, we obtain H(u* \) < H(u) + H(N). Avez [2]
introduces the following definition:

Definition 2.2.2. The entropy of random walk (also called asymptomatic entropy) of a measure p
H(p*")

on a group H is defined as lim, o —7;

Theorem 2.2.3 (Entropy Criterion (Kaimanovich-Vershik [27], Derriennic [12])). Let H be a count-
able group and p a non-degenerate probability measure on H with finite entropy. Then the Poisson
boundary of (H, ) is trivial if and only if the asymptotic entropy of u is equal to zero.

3 Some properties of groups of piecewise projective homeomor-
phisms

In Subsection we study Pz and the group action locally around points of it. In Subsection [3.2]
using the results from the first subsection, to each element g € G we associate a configuration Cj.
We then also describe how to construct an element with a specific associated configuration.

3.1 Slope change points in G = H(Z)

Let g be a hyperbolic element of PSLo(Z). Let it be represented by <z

d—at+/tr(g)2—4
c

absolute value, this number is never rational. Furthermore, it is worth noting that Q(+/tr(g)? — 4)

Z) and denote tr(g) = a+d

its trace. Then its fixed points are . As the trace is integer and greater than 2 in

is stable by PSLy(Z) and therefore by G (and G). If we enumerate all prime numbers as (p;)icn, we
have, for I # J < N finite, Q(\/] [,c; i) " Q(+/] L;c; pi) = Q. We just mentioned that P, nQ = &

so we have
Pr= || P(Q A Ie
IcN finite el

where each set in the decomposition is stable by G. Note also that the fixed points of parabolic
elements of PSLy(Z) are rational. This actually completely characterizes the set Pz, as we will now

show that Pz Q (\/M) = Q (v/Tlierpi) \Q:

Lemma 3.1.1. Take any s € Q(vk)\Q for some k € N. Then s € Py,



Remark that & is not an exact square, as Q(v/k)\Q has to be non-empty.

Proof. Note first that to have v/tr2 — 4 € Q(vk) for some matrix it suffices to find integers = > 2
and y such that z? — ky? = 1. Indeed, any matrix with trace 2z will then satisfy this, for example

2
—1 - . . . . .
<516 o - > This is known as Pell’s equality, and has infinitely many solutions for any k that is

not a square (see Mordell’s book [37, Ch. §]).

Write s = g + %\/E for some integers p,q,p’,q’. Applying Pell’s equality for (p'q'q?)%k, we

obtain integers x and a such that 2% —a?(p'q’q*)?k = 1. In other words, 22 —y%k = 1 for y = p'¢'¢?a.
/2 b ,

We construct <a: —(;Qqqzi 9@ v — ¢?pqa where b = % = p?¢®ak — ¢*p*a € aZ. The

matrix has s for a fixed point, and s is not rational, therefore the matrix is a hyperbolic element of
PSLy (7). O

Remark 3.1.2. The break points a finite number of elements of H(Z) are all contained in the sets
Q(Vk) for a finite number of k, so Lemma implies that H(Z) is not finitely generated.

In order to define configurations, we wish to study the slope changes at elements of Py.
Consider g € G and s € Pz such that g(s +0) # g(s —0). Then it is easy to see that f =
g(y —0)"tg(y + 0) € PSLy(Z) fixes s. Therefore, in order to study the slope changes we need to
understand the stabiliser of s in PSLy(Z). We prove:

Lemma 3.1.3. Fiz s € PY(R). The stabiliser Sty of s in PSLy(Z) is either isomorphic to Z or
trivial.

Proof. Assume that St is not trivial, and let f € St; be different from the identity. Clearly, f is
not elliptic. If f is hyperbolic, s € Pz, and if f is parabolic, s € Q u {oo}. We distinguish three
cases, that is s € Pz, s = o0 and s € Q.

We first assume s € Py. Let s = r +1r/+/k with r,7’ € Q and k € Z. Note that the calculations
in the beginning of the section yield that for every element f in Sts; that is not the identity, f is

1 _r+r'Vk
hyperbolic and the other fixed point of fis § = r—r'v/k. Let i = ( 7 1 2 > € PSLy(R) and
'k Tk

consider the conjugation of Sts by i. By choice of i we have that i(s) = 0 and i(5) = co. Therefore
the image of St is a subgroup of the elements of PSLs(R) that have zeros on the secondary diagonal.

Z), for tr = a + d the trace of the

Furthermore, calculating the image of an example matrix <CCL

matrix, we get

b VirZ—4+tr 0
. [a 1 _ T (2)
¢ c d L= 0 Vir2—4—tr
2
Thus to understand the image of Sts we just need to study the elements of the form %\/E

with 22 — ky? = 4. This appears in a generalized form of Pell’s equation, and those elements are
known [37, Ch. 8] to be powers of a fundamental solution (which is also true for the classic Pell
equation if you identify a solution 22 —y?k = 1 with a unit element =+ y+/k in Z[v/k]). This proves
that the image of Sts by this conjugation, which is isomorphic to Stg, is a subgroup of a group
isomorphic to Z. St is then also isomorphic to Z. The matrix with the fundamental solution in
the upper left corner defines a canonical generator for the group of elements of the form seen in (2)),
and its smallest positive power in the image of St defines a canonical generator for St;.



Assume now s = o0. As we described in , the stabiliser of o0 is (v, )nen, which is trivially
isomorphic to Z.
Lastly, assume that s = % € Q with p and ¢ co-prime. There exist m and n such that

m Z) € PSLy(Z) verifies i(s) = o0. Thus the conjugation by i defines

pm +qgn = 1. Then ¢ = (_
an injection from the subgroup that fixes s into Sty = A. We observe that non-trivial subgroups

of Z are isomorphic to Z, which concludes the proof. ]

Having an isomorphism between Sts (for s € Pz) and Z will be useful to us, so we wish to
know its exact form. We prove:

Lemma 3.1.4. Let s € Py. There exists ¢ps € R that remains constant on the orbit Gs of s such
that f +— log, (f'(s))) defines an isomorphism between Sty and Z.

Proof. The derivative on the fixed point is multiplicative. Therefore for a fixed s, this follows from
Lemma and the fact that subgroups of Z are isomorphic to Z (or trivial, which is impossible
here). What we need to prove is that ¢ remains constant on Gs. Fix s and consider s’ € Gs. Let
j € PSLo(Z) be such that j(s) = s’. Then the conjugation by j defines a bijection between St and
Sty . Calculating the derivative on an element f € St, we get (5£771)'(s") = 5/ (s)(G71) (j(s))f'(s) =
f'(s), which proves the result. O

We further denote 9 : A — Z (see|l) the map that associates n to au,, and 1, the conjugate
map for any r € Q. Remark that this is well defined by Lemma [3.1.3] and conjugations in Z being
trivial.

3.2 Configurations

Fix s € Pz and let ¢ = ¢ be given by Lemma [3.1.4] By the isomorphism it defines, there exists
an element gy that fixes s, such that ¢.(s) = ¢s. As s ¢ Q, g, is hyperbolic. We associate to each
element of the piecewise PSLy(Z) group G (see Definition a configuration representing the
changes of slope at each point of the orbit Gs = Gs of s, precisely:

Definition 3.2.1. To g € G we assign Cy : Gs — Z by

Cy(7) =1logy(g' (v + 0)g'(v — 0) 7).

Note that by choice of ¢ this value is well defined: indeed, g(y + 0)g(y — 0)~! € PSLy(7Z),
fixes 7, and is therefore in St,.

Remark that by definition of G each configuration in the image of the association has a finite
support. Remark also that the configuration ignores information about the changes in slope outside
the orbit of s. For s € Q we further denote Cy(vy) = ¥, (¢'(y + 0)g’(y — 0)~1), which will have
similar properties. In the rest of the paper we will consider s € Py unless otherwise specified. For
completeness’ sake, remark also that G = H(Z) < G and the orbits of G and G on s are the same
(as they are both the same as the orbit of PSLs(Z)) and therefore Definition could be done
directly for G, and what we would obtain is the same as restraining from the current definition.

Lemma 3.2.2. For every s € Py, there exists an element hs € G such that hs(s—0)"1hs(s+0) = gs
and all other slope changes of hs are outside G's. In particular, Cp, = 5.



Proof. Fix s € Py and let k = ky be the unique square-free integer such that s € Q(vk). We will
construct hg such that hg(s) = s. Note that in that case we have Ch;1 = —0,. This implies that if

we construct an element hy that verifies Bs(s - 0)_1}~13(S +0) = g*! and all other slope changes are
outside G's, choosing hy = ﬁsil gives the result. In other words, we can replace gs with g; 1. Seen
as a function on R, g, is defined in all points but —g. It is then continuous in an interval around s.
Moreover, if the interval is small enough, s is the only fixed point in it. Therefore for some €, either
gs(z) > x for every x € (s,s + €), or gs(x) < z in that interval. As we have the right to replace it
with its inverse, without loss of generality we assume that g, is greater than the identity in a right
neighbourhood of of s.

Write s = r+7/v/k with r, v’ € Q. Then the other fixed point of g, is its conjugate 5 = r—r'v/k.
Remark that it is impossible for —% to be between s and s’ as the function g is increasing where it
is continuous and has the same limits at +00 and —oo (see Figure . If ' <0, gs is greater than
the identity in (s, S) as it is continuous there. In that case, it is smaller than the identity to the left
of the fixed points, but as it is increasing and has a finite limit at —oo, this implies (see Figure [1)
that —% < s. Similarly, if s > §, g, is increasing and greater than the identity to the right of s, but
has a finite limit at +o0, so —% > s.

We will find a hyperbolic element j, verifying: the larger fixed point ¢ of js is not in Gs and
t > —%l, while the smaller fixed point ¢ is between s and 5, and js is greater than the identity
between ¢ and t. If ' < 0 consider the interval (¢,5). At its infimum, js has a fixed point while g
is greater than the identity, and at its supremum the inverse is true. By the mean values theorem,
there exists 5 in that interval such that js(5) = gs(5) (see Figure[2). If 7/ > 0, consider the interval
(s, —%). At its infimum, g, is fixed and therefore smaller than js, and at its supremum g, diverges
towards 400 while j; has a finite limit. Again by the mean values theorem, there exists s in that

interval where g5 and j, agree. As —g < t by hypothesis, in both cases we have s < § < t. We then
define
T r<s
) s<T<S§
ha(a) = 1 92
Js(x) §<x <t
T t<zx

Thus it would suffice to prove that we can construct js that verifies those properties and such
that § ¢ Gs. Note that 3 is a fixed point of g; 'js, so to prove that it is not in Gs it will suffice to
study the trace of the latter. Remark that in this definition hy is strictly greater than the identity



in an open interval, and equal to it outside (this is with the assumption on gg, in the general case
hs has its support in an open interval, and is either strictly greater then the identity on the whole
interval, or strictly smaller).

Write r = g. By Bezout’s identity, there are integers m and n such that qn — pm = 1.

Then the matrix 7 = :% Z) € PSLy(Z) verifies i.0 = g. Taking j, = i~ 'jsi it suffices to find js

with fixed points outside G's, the smaller one being close enough to 0, and the greater one large
enough. Remark that the only information we have on g; is its trace, so this does not complicate
the computations for §.
. ~ . ' +ma’ n?lsa’ —m2d P
We will define j; in the form < o A ) where 2% — n“a’“l; = 1. Its fixed

points are m + @\/E By choosing m arbitrarily large, the second condition will be satisfied. Note

igs il = (a 2«) and tr(gs)?—4 = o*k. Calculating the trace of g 'js we get tr(gs)az’ +a’b+mz +

nze with 21, 29 € Z. Then, admitting that n divides ' — 1 (which will be seen in the construction
of 2') we obtain for some z; € Z, i € N:

tr(gs 1js)? — 4 = mz3 + nzy + a?b? + 2a'l~)x'tr(gs) + 2t (gs)? — tr(gs)? + tr(gs)* — 4
= mz3 + nzs + a’?b? + 2a’l~)tr(gs) + n2ad?ltr(gs)* + 0%k (3)
= mzs + nzg + a’*b? + 2a’l~)tr(g5) + 0’k

Take a prime ps that is larger than k and b(¢r(gs) +2). There is an integer a” < ps such that
b(tr(gs) + 2)a” = —1 mod ps. Take a = 0%ka”. Then

a?b? + 2a'btr(gs) + 0%k = o*k(b(tr(gs) + 2)a” + 1)(b(tr(gs) — 1)).

As Z[ps] is a field, clearly b(tr(gs) —2)a” # —1 mod ps. As b(tr(gs) +2)a” < p?, the product
is divisible by ps but not p2. We will choose m and n divisible by p?, which will then ensure that
the value in is divisible by ps but not p?, proving that 5 ¢ G's.

All that is left is choosing n and m. As we just noted, we need them to be multiples of p2.
Aside from that n needs to satisfy /> —n?a’?l; = 1, [, must not be a square times k and we need to be
able to make m —n+/ls arbitrarily small. Write m = p?m/ and n = p?n/. Then m/ can be anything so
long as m — n+/l; becomes arbitrarily small. In other words, we are only interested in the fractional
part of n/4/l;. We choose ' = n'2a’?p3 — 1 and will prove that the conditions are satisfied for n’
large enough. Then 22 — n2a’?l; = 1 is satisfied for Iy = ps(n'?a’?p> — 2). In particular, ps divides

I but its square does not, so l5 is not equal to a square times k. Moreover, v/Is = 1/ (n/a’p3)2 — 2p;

and as the derivative of the square root is strictly decreasing, /(n'a’p?)? — 2ps — n'a’p? — 0 for

n’ — oo. Its factorial part then clearly converges towards 1, which concludes the proof. 0

For a product inside the group CNT’, by the chain rule we have

(9291)'(7) = 95(91(7))g1(7)
and thus

Co291(7) = Cou (7) + Cg5 (91(7)) (4)

That gives us a natural action of G on ZC% by the formula (g, C) — Cy+59C where S9C(y) =
C(g(7)). It is easy to check that it also remains true for s € Q.
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Lemma 3.2.3. There is no configuration C : Gs — Z such that C = Cj,, + S"C.

Indeed, applying and taking the value at s we get a contradiction.
1 Consider g and h such Cy = Cp,. We have Cpg = Cy1 + Sg_ng and thus Cpg1 = Cy1 +
SS9 Ch = Crg = 0. We denote

Hy={geG:C, =0}
Then:

Lemma 3.2.4. The element hs and the subgroup H, generate G for every s € Py.

Proof. We show for g € G by induction on |Cy[1 = > cqs |Cg(x)] that it is in the group generated
by {hs} U Hs . The base is for |Cy[1 = 0, in which case we have Cy = 0 and the result is part of
the statement hypothesis. We take g € G and assume that every element with smaller [' measure of
its configuration is in the group generated by {hs} U H,. We take any o € supp(Cy). Without loss
of generality, we can assume that Cy(a) > 0. As g(«) € G's, by Lemma there exists h € Hy
such that h(s) = g(a) and Cj, = 0. Let § = hhsh™!. As hy € {hs} U Hy, we have g € ({hs} U Hy).
Applying the composition formula we obtain Cy(z) = 0 for z # g(a) and Cjz(g(a)) = 1. We
consider g = g 'g. If z # g(a), by the composition formula (4) we get Cj(z) = C,y(x), and at o we
have Cg(a) = Cy(a) — 1. By hypothesis we then have g € ({hs} U Hy), and as § is also included in
this set, so is g. O

Lemma 3.2.5. For any g € PSLs(Z) and v € R there exists h € Hy such that g(y) = h(y).

Proof. By Monod’s construction in [36, Proposition 9], we know that we can find h € G that agrees
a b+ra
c d+rc
contains infinity and the identity otherwise. To have this result, what is required is that either r or
—r (depending on the situation) be large enough. Clearly, Cj, = 0 would follow from slope change
points of ¢ being outside Gs (as neither of them is infinity). In particular, it is enough to prove

that for some infinitely large r, the fixed points of <CCL Zi::i) are outside Q(v/k). The trace of

that matrix is (a + d) + rc. Let p be a large prime number that does not divide 2, k or ¢. As ¢ and
p are co-prime, there exists 9 such that a + d + roc = p + 2 (mod p). Then for every i € Z, we
have (a + d + (ro + p%i)c)? — 4 = 4p(modp?). As p and 4 are co-prime, this implies that for each
r = ro + p%i the fixed points of that matrix are not in Q(+v/k) as p does not divide k. O

with g on «y of the form ¢~ 'g where g = > in the interval between its fixed points that

4 Convergence condition

Fix s € Pz and let us use the notations from Subsection . For a measure p on G we denote
C, = Ugesupp(u) supp(Cy) its "support" on G's. That is, C;, < G's is the set of points in which at
least one element that is inside the support of p in the classical sense changes slope. We thus obtain
the first result

Lemma 4.1. Consider the piecewise PSLy(Z) group G (see Definition . Let p be a measure
on a subgroup of G such that C,, is transient with respect to p for the natural action of G on R and
hs is in the semigroup generated by supp(u). Then the Poisson boundary of u on the subgroup is
not trivial.
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Proof. Consider a random walk g, with g,1+1 = hng,. For a fixed v € G's we have

Ogn-%—l(’)/) = an (7) + Chn (gn(’y))

By the hypothesis of transiency this implies that C,, () stabilises. In other words, C,,
converges pointwise towards a limit Cw. This defines a hitting measure on Z%* that is a quotient
of u’s Poisson boundary. Moreover, it is p-invariant by the natural action on Z&. It remains to
see that it is not trivial. Assume the opposite, which is that there exists a configuration C' such
that for almost all walks, the associated configuration Cy, converges pointwise to C'. By hypothesis
there are elements hq, ..., hy, with positive probability such that Aphm—1...h1 = hs. There is a
strictly positive probability for a random walk to start with A hm—1...h1. Applying we get
C = Cp, + S"C, which is contradictory to Lemma . O

This lemma, along with Lemma [3.2.4] implies:

Lemma 4.2. Fiz s € Py. Let u be a measure on G = H(Z) that satisfies the following conditions:
(i) The element hg belongs to the support of p,
(i) The intersection of the support of p with the complement of Hs is finite,
(iii) The action of 1 on the orbit of s is transient.
Then the Poisson boundary of u is non-trivial.

We will now show how measures satisfying whose assumptions can be constructed. Remark
that the question of existence of a measure with non-trivial boundary has already been solved by
Frisch-Hartman-Tamuz-Vahidi-Ferdowski [I6]. In our case, notice that A < H (see (1)), and it
is isomorphic to Z. We can then use a measure on A to ensure transience of the induced walk
on the orbit. To prove that, we use a lemma from Baldi-Lohoué-Peyriere [3] (see also Woess [51],
Section 2.C,3.A]). Here we formulate a stronger version of the lemma, as proven by Varopoulos [49]:

Lemma 4.3 (Comparison lemma). Let Pi(z,y) and Py(x,y) be doubly stochastic kernels on a
countable set X and assume that Py is symmetric. Assume that there exists € = 0 such that

Py(z,y) = ePa(x,y)
for any x,y. Then

1. For any 0 < f e l*(X)

PNGUNOEED WO TS

neN neN

2. If Py is transient then so is Py (for any point x € X, it follows from (1) applied to f = ;).

Here, doubly stochastic kernels means that the operators are reversible and the inverse is also

Markov. It is in particular the case for P(x,y) = pu(yz~!) for some measure on a group (as the
inverse is (z,y) — p(ry=1)).
Remark 4.4. If X is a transient measure on A and p satisfies conditions (i) and (ii) of Lemma [4.2]
then the comparison lemma by Baldi-Lohoué-Peyriere (Lemma implies that e\ + (1 — e)p
satisfies all the conditions of the lemma for any 0 < € < 1. In other words, this is a way to construct
non-degenerate symmetric measures on GG with non-trivial Poisson boundary.

For completeness’ sake, we show that there exist measures positive on all of G that have
non-trivial boundary.
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Lemma 4.5. Let p be a measure on a group H with finite entropy and non-zero asymptotic entropy
and which generates H as a semigroup. Then there exists a measure i with support equal to H that
also has finite entropy and non-zero asymptotic entropy. Furthermore, if u 1s symmetric, so is [i.

Proof. Define i = 1 DieN “Tﬂ,” By a result of Kaimanovich [23] Corollary to Theorem 4| we get

e

_ i

ieN
Moreover, as the entropy of i*” is not smaller than the entropy of i, finite asymptotic entropy
implies finite entropy. O

From this lemma and the entropy criterion Theorem it follows that to have a measure
positive on all of G with non-trivial boundary it suffices to construct a measure verifying the

conditions of Lemma [d.2] with finite asymptotic entropy, which we can achieve with the construction
presented in Remark [4.4]

5 Thompson’s group as a subgroup of G = H(Z)

In [30] Kim, Koberda and Lodha show that any two increasing homeomorphisms of R the supports
of which form a 2-chain (as they call it) generate, up to taking a power of each, a group isomorphic
to Thompson’s group F. Let us give the exact definition of this term. For a homeomorphism f of
R we call its support supp(f) the set of points x where f(z) # x. Remark that we do not define
the closure of that set as support, as it is sometimes done. Consider four real numbers a, b, ¢, d with
a < b < ¢ < d. Take two homeomorphisms f and g such that supp(f) = (a, c) and supp(g) = (b,d).
In that case we say that their supports form a 2-chain, and the homeomorphisms generate a 2-
prechain group. In other words, two homeomorphisms generate a 2-prechain if their supports are
open intervals that intersect each other but neither is contained in the other.

Clearly, there exist many such pairs in G. We will give a simple example. Fix s and find
positive rational numbers 7 and 7 such that 7 < s < 7 4 7',/ps < t. Recall that p; is a prime larger
than k. Then choose a hyperbolic element g that fixes 7 + 7 /ps and define

i (z) = gs(x) T—7\/ps <z <T+7./Ds
° T otherwise.

By definition of 7 and 7/, hs and hs clearly form a 2-prechain, and thus up to a power they
generate a copy of Thompson’s group (see [30, Theorem 3.1]). We will denote a4 the action F' —~ R
this defines. To obtain the convergence results, we need to prove that the induced random walks
on the Schreier graphs of certain points are transient. By the comparison lemma by Baldi-Lohoué-
Peyriere (Lemma it would suffice to prove it for the simple random walk on the graph, which
is why we will study its geometry. In the dyadic representation of Thompson’s group, the geometry
of the Schreier graph on dyadic numbers has been described by Savchuk [45, Proposition 1]. It is a
tree quasi-isometric to a binary tree with rays attached at each point (see Figure 4)), which implies
transience of the simple random walk. For a different proof of transience see Kaimanovich [20,
Theorem 14]. We will see that the Schreier graph has similar geometry in the case of as (see
Figure [3).

Lemma 5.1. Consider two homeomorphisms f and g of R the supports of which are supp(f) = (a, )
and supp(g) = (b,d) with a < b < ¢ < d. Denote H the group generated by f and g. Then the
simple random walk on the Schreier graph of H on the orbit of b is transient.
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Proof. Up to replacing f or g with its inverse, we can assume without loss of generality that f(z) > x
for x € supp(f) and g(z) > x for x € supp(g). Denote by I' the Schreier graph of H on the orbit of
b. The vertices of this graph are the points of the orbit Hb of b by H, and two points are connected
by an edge if and only if f, g, f~* or g~ sends one point into the other. Denote by T the subgraph
defined by the vertexes that belong to the closed interval [b,c]. At every point x of I' such that
x ¢ [b,c|, in a neighbourhood (z — &,z + €) of z, one of the two elements f and g acts trivially,
and the other one is strictly greater than the identity map. Without loss of generality, let f act
trivially. Let i be the largest integer such that g (z) € [b,¢]. Then the set of points (g*(z))i>i,
is a ray that starts at an element of I'. As the simple random walk on Z is recurrent (see [13]
Chapter 3, Theorem 2.3]), the walk always returns to [ in finite time, and that part of the graph
() is what we need to study.

Replacing, if necessary, f or g by its power, we can assume that g~'(c) < f(b). Denote
A= [b,g7e)] = g M [byel), B = [f(b),e] = F(lbye]) and € = (g71(c), S(B)) = [b,c]\(A U B),
Consider z € I' with z # b and = ¢ C. Consider a reduced word c,c,_1...c1 with ¢; € {fil,gil}
that describes a path in T’ from b to z. In other words ¢,cn_1 ... c1(b) = z and the suffixes of that
word satisfy c;ci—1...c1(b) € T for every ¢ < n. The fact that the word is reduced means that
c # c;ll for every i. We claim that if 2 € A, this word ends with ¢! = ¢,, and if z € B, ¢, = .

We prove the latter statement by induction on the length of the word n. If a word of length
one, it is g since f fixes b and since g71(b) ¢ [b, c]. As g(b) € B this gives the base for the induction.

Assume that the result is true for any reduced word of length strictly less than n whose
suffixes, when applied to b, stay in [b,c]. We will now prove it for x = ¢,cp—1 ... c1(b). We denote
Y = Cp—1Cp—2 ...c1(b) the point just before x in that path. We first consider the case x € B (as we
will see from the proof, the other case is equivalent). We distinguish three cases: y € A, y € B and
yeC.

If y € A, by induction hypothesis we have ¢,_1 = g~'. As the word is reduced we thus have
¢, # g. However, from y € A and z € B we have y < x. Therefore, ¢, ¢ {f~%,¢g7!}, and the only
possibility left is ¢, = f.

If y € B, by induction hypothesis we have ¢,—1 = f. Therefore, as the word is reduced,
cn # f71 From g=1(c) < f(b) it follows that g(B) N [b,c] = &. As x € B, this implies that ¢, # g.
Similarly, g~ (B) = A, therefore ¢, # g~1. The only possibility left is ¢, = f.

If y € O, consider the point 3/ = ¢,_2...c1(b). If ¥ € A, by induction hypothesis ¢, 5 = g7 1.
Then ¢,—1 # g. Asy > ¢/, this implies that ¢,,_1 = f. However, g(A) < B, which is a contradiction.
In a similar way, we obtain a contradiction for ¢/ € B. However, both f~1(C) and g(C) are outside
[b,c], while f(C) € B and ¢g~'(C) = A. Therefore the case y € C is impossible by induction
hypotheses on ¢,—o...c1.

This completes the induction. Remark that we also obtained T' n C' = &, so the result holds
for all points of I'. In particular, if two paths in T described by reduced words arrive at the same
point, the last letter in those words is the same, which implies that T is a tree. Remark also that
the result implies that ¢ ¢ I as ce B and f~'(¢) = c.

Moreover, for a vertex € A, we have that f(x), g(x) and g~ (z) also belong to T. Similarly,
for z € B, g~ (x), f(x) and f~'(z) are in I". Therefore every vertex aside from b has three different

neighbours. The simple walk on I' is thus transient. O

By the comparison lemma by Baldi-Lohoué-Peyriere (Lemma , this implies transience on
the Schreier graph of s for any measure on G such that h, and hg are in the semigroup generated
by the support of the measure. If the support of a given measure generates G as a semigroup,
conditions (¢) and (7i7) in Lemma are then automatically satisfied. In particular, any measure
pon G that generates it as a semigroup and such that there exists s for which supp(u) n (G\Hj)
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is finite has a non-trivial Poisson boundary.
In the proof of Lemma [5.1] we obtained a description of the graph of ag, which is similar to
the one by Savchuk [45] in the case of the dyadic action:

Remark 5.2. Consider two homeomorphisms f and g of R the supports of which are supp(f) = (a, ¢)
and supp(g) = (b,d) with a < b < ¢ < d. Denote H the group generated by f and g. Then the
Schreier graph of H on the orbit of b is described in Figure [3| (solid lines are labelled by f and
dashed lines by g).

Figure 3: Schreier graph of aj
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Proof. In the proof of Lemma we have shown that for every vertex = € I that is not b, z has
exactly three different neighbours in T'. We also proved that T is a tree. It is therefore a binary
tree. Furthermore, if z € A, it is equal to g~ 1(y) where y is closer to b than x (in the graph), and if
x € B, x = f(y) where y is again closer to b. We think of y as the parent of z. Then every vertex x
has two children: left child ¢g~!(z) and right child f(z). Furthermore, if z is a left child, 2 € A and
f~Y(z) ¢ T. Equivalently, if z is a right child, g(z) ¢ T. O

Compare to the Schreier graph of the dyadic action as described by Savchuk [45 Proposi-
tion 1|(see Figure []).

Figure 4: Schreier graph of the dyadic action of F' for the standard generators

6 Schreier graphs of finitely generated subgroups of H(Z) and G

We will build on the result from Remark In a more general case, the comparison lemma by
Baldi-Lohoué-Peyriere (Lemma implies that the existence of a regular subtree (like I') is enough
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to ensure transience on the Schreier graph. To obtain such a tree, we only need the assumptions of
the remark inside the closed interval [b, ¢]. We will now prove a lemma that ensures transience while
allowing the graph to be more complicated outside [b, c]. This will help us understand subgroups
of G for which the supports of their generators are not necessarily single intervals.

Lemma 6.1. Let f,g be homeomorphisms on R and assume that there exist b < ¢ such that g(b) = b,
f(e) =c¢, (b,c]  supp(g) and [b,c) < supp(f). Assume also that there exists s € R with s < b such
that for some n € Z, f"(s) € [b,c]. Let H be the subgroup of the group of homeomorphisms on R
generated by f and g. Then the simple walk of H on the Schreier graph I of H on the orbit s is
transient.

Proof. Without loss of generality, f(x) > x and g(z) > z for z € (b, ¢) (and the end point that they
do not fix). In that case clearly n > 0. We will apply the comparison lemma by Baldi-Lohoué-
Peyriere (Lemma with P; defined on I' as the kernel of the simple random walk of H on I'. In
other words, Pi(z, f(z)) = Pi(z, f~}(x)) = Pi(z,g(z)) = Pi(z,97(x)) = % for every z € I'. Let us
now define P5. Let a be the largest fixed point of f that is smaller than b, and d the smallest fixed
point of g that is larger than c. For z € (a,b) we define n(z) = min(n|f"(x) € [b,c]). Similarly, we
define for x € (¢, d), m(x) = min(m|g~™ € [b,c]). We define

1 zelb 1 zelb

1 . 3 .

+ x € (a,b) and n(x) is odd _ 2 zx€(a,b) and n(x) is odd
Paa fay) = {1 7€ (@D endnle) Pae, f M) = {1 7€ (@D and o)

7 7€ (a,b) and n(z) is even 7 € (a,b) and n(zx) is even

0 otherwise. \ 0 otherwise.

(1 (1

7 zelbc] 7 zelbc]

3 - 1 .

2 x€(c,d) and m(z) is odd _ z x€(c,d) and m(x) is odd
Palag(a)) = {2 “E o andmr)isodd p oy Yy we(ed andmla)}

7 z€(c,d) and m(z) is even 7 z€(c,d) and m(z) is even

0 otherwise. | 0 otherwise.

Of course, we have Ps(z,y) = 0 otherwise. This clearly defines a stochastic kernel (as the
sum of probabilities at each x is 1), and it follows directly from the definition that it is symmetric.
It is therefore doubly stochastic and symmetric.

We now check that it is transient similarly to Lemma Indeed, take a point x € [f(b), ]
(respectively z € [b, g~ '(c)]). Consider the subgraph I'(z) of the vertices of the form ¢,cp_1 . .. c1(x)
with cic;_1...c1(z) € [b,c] for every i and ¢ € {f~1, g7 !} (respectively ¢; € {g, f}). Equivalently
to Lemma , ['(x) is a binary tree. Moreover, the graph T'(z) defined by the vertices of the form
& (y) e T with ée {g, f~'}, n e Nand y € ['(z) is equivalent to the one in Lemma . In particular,
the simple random walk on it is transient. Take any y € I' n (a,d). Then either f™(y) € [f(b), ]
for some n, or g~ € [b,g~*(c)]. In either case, there is z such that y belongs to ['(z). By the
comparison lemma by Baldi-Lohoué-Peyriere (Lemma, we have Y (P3'0y, 6y) < 0. Therefore
Ps is transient. We apply Lemma again for Py > 3P, which concludes the proof. O

Remark that with this result we can apply the comparison lemma by Baldi-Lohoué-Peyriere
(Lemma to obtain transience for a random walk induced by a measure on a subgroup of the
piecewise PSLy(Z) group G (see Definition , the support of which contains two such elements
and generates that subgroup as a semi-group.

For the sake of completeness, we will also consider amenability of Schreier graphs of subgroups
of G. A locally finite graph is called amenable if for every € there exists a finite set of vertices S
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such that |0S|/|S| < € where 05 is the set of vertices adjacent to S. This closely mirrors Folner’s
criterion for amenability of groups. In particular, a finitely generated group is amenable if and
only if its Cayley graph is. In his article, Savchuk [45] shows that the Schreier graph of the dyadic
action of Thompson’s group F' is amenable. He also mentions that it was already noted in private
communication between Monod and Glasner. The amenability of the graph comes from the fact
that sets with small boundary can be found in the rays (see Figure[d). We will prove that for finitely
generated subgroups of G we can find sets quasi-isometric to rays.

Remark 6.2. Consider a point s € R and a finitely generated subgroup H of the piecewise PSLs(Z)
group G (see Definition . Let a = sup(Hs). Let S be a finite generating set and consider the
Schreier graph I' defined by the action of H on Hs. Then there is b < a such that the restriction
of T to (b,a) is a union of subgraphs quasi-isometric to rays.

Proof. As all elements of H are continuous (when seen as functions on R), they all fix a. Therefore
they admit left germs at a. By definition, the germs belong to the stabiliser St, of a in PSLy(Z).

By Lemma St, is cyclic. Let h € PSLa(Z) be a generator of St,. Then the left germ
at a of any element s; € S is equal to h™ for some n; € Z. Up to replacing h with RGCD(nizsieS})
we can assume that there exists g € H such that the left germ at a of g is h. Let (b,a) be a small
enough left neighbourhood such that the restrictions of all elements of S U {g} to (b,a) are equal
to their left germs at a. For example, one can choose b to be the largest break point of an element
of S u {g} that is smaller than a.

Consider the following equivalence relation on Hs N (b,a): = ~ y if and only if there exists
n € Z such that h™(x) = y. As the restriction of h to (b, a) is an increasing function, an equivalence
class is of the form (h"(x))nen for some x € (b, a). We will prove that this set is quasi-isometric to a
ray (when seen as a subgraph of I'). It is by definition of b preserved by elements of S. Furthermore,
the graph distance d is bilipschitz to the standard distance d’ on N. Indeed, on one hand, we have
d> ——L1—d. On the other hand, d < |g|d’ where |g| is the word length of g. This proves the

max(|n;|:s,€S5)

result. O

This implies:

Remark 6.3. Consider a point s € R and a finitely generated subgroup H < G. The Schreier graph
defined by the action of H on Hs is amenable.

As mentioned in the introduction, the result of Juschenko and Zheng holds true not only for
the Schreier graph of Thompson’s group F', but also for the Schreier graphs of finitely generated
subgroups of G:

Remark 6.4. Consider a point s € R and a finitely generated subgroup H < G. There is a non-
degenerate measure such that the induced random walk on Hs has trivial Poisson boundary.

This follows from the results of a recent paper by Schneider and Thom [46], Section 6]. We will
adapt their result on Thompson’s group F. In that section, they consider a topological subgroup
of Sym(X) for a countable set X. If the action is strongly transitive, Corollary 6.2(3) states that
the subgroup is amenable (as a topological group, with the induced topology from Sym(X)) if
and only if for any n, there is a non-degenerate probability measure such that the induced walk
on n-element subsets of X has trivial Poisson boundary. The considered action of F' is strongly
transitive. It also makes F a subgroup of the group of order-preserving automorphisms of the
dyadic numbers, which we will denote Aut(Z[$], <). The latter has been proven to be (extremely)
amenable as a topological group by Pestov [43]. A more detailed presentation of extreme amenability
can be found in Kechris-Pestov-Todorcevic [28], where they provide the theory allowing to obtain
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extremely amenable groups from structural Ramsey theory. In particular, the extreme amenability
of Aut(Z[3],<) is shown [28] 6(A)(iv)] to follow from the classical theorem of Ramsey.

Schneider and Thom thus obtain that for any n, there is a non-degenerate probability measure
on F' such that the induced random walk on n-element sets of dyadic numbers has trivial boundary.
It is worth noting that this result extends previous work by Juschenko [20], who proved it for n = 2.
Schneider and Thom also point out that since there is a free non-abelian group that is a subgroup
of Aut(Z[}],<), and that the latter acts strongly transitively, Aut(Z[}], <) provides an example of
an action of a non-amenable group (in the discrete sense of amenablhty) such that for every n there
is a measure with trivial boundary of the walk on n-element subsets, which confirms Juschenko’s
expectations.

For H < é, its action on Hs presents an embedding into Aut(Hs,<). Applying [46, Corol-
lary 6.2(1)], Remark follows. Notice that the remark only treats the case n = 1. To obtain the
result for n-element subsets we would need to prove strong transitivity.

7 Convergence conditions based on expected number of break points

The aim of this section is to describe sufficient conditions for convergence similar to Theorem
that do not assume leaving C, (which is potentially infinite). The ideas presented are similar
to the arguments used in studies of measures with finite first moment on wreath products (see
Kaimanovich [24, Theorem 3.3], Erschler |15, Lemma 1.1|). Consider the piecewise PSL2(Z) group
G (see Definition |: and a measure p on it. We think of the measure as something that could
be positive on all pomts of G. Fix s € Py U Q and denote, for g € G Ay = supp(Cy) (for s € Q,
see discussion after Deﬁmtlo and after the proof of Lemma (3.1.4] u Take x € Gs and consider
a random walk (g, )neny with increments hy, that is g,4+1 = hpgn. Then by ,

an (l') # an+1 (‘,I’.) — gn(fE> € Ahn'

In other words, Cj, (x) converges if and only if g, (z) € Ay, only for a finite number of values
of n. For a fixed n, the probability that g,(z) belongs to Ay, is

(P "0z, Y 1(h)x A,

heG

where p is the induced kernel on Gs. Taking the sum over n we get:

Lemma 7.1. Fiz 0 € Gs. For a random walk g, on G with law w, the value Cy, (0) converges with
probability 1 if and only if

S0 80, Y plh)xa,) < o0

neN hely

where p is the induced kernel on Gs.

We define f, as

fu = Z :U’(h)Xsupp(Ch) (5)
heG

and show that it suffices for f, to be I' and p transient :
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Lemma 7.2. Let s € Pz u Q be fixred. Take a measure pu on G such that the induced random walk
on the Schreier graph on Gs is transient and f, € I'(Gs) (as defined in (@)} Then for a random
walk g, on G with law p, the associated configuration Cy, converges pointwise with probability 1.

Remark in particular that E[Br] < co implies f, € I1(G), where Br(g) is the number of break
points of g. Indeed, for any fixed s, | full1 is the expected number of break points inside the orbit
G's, which is smaller than the total expected number of break points. This is, of course, also true
for measures on H(Z) as H(Z) < G.

Proof. Fix a point o0 in the Schreier graph on Gs. We denote by p the induced kernel on Gs and
write f = f,. We have

2P0 [y =3 D P o) f(@) = Y flx) Y p*"(0,7) (6)

neN neN zeG's zeGs neN
where we will have the right to interchange the order of summation if we prove that the right-
hand side is finite. We write p*”(0,z) = p*"(x,0) where p is the inverse kernel of p. Let P(x,y)
be the probability that a random walk (with law p) starting at = visits y at least once. Then
Dnen DMz, y) = P(z,y) Dnen Py, ). Indeed, > . p*"(x,y) is the expected number of visits of
y of a walk starting at z and random walk that starts from x and visits y exactly k times is the
same as the concatenation of a walk that goes from x to y and a walk that starts from y and visits

it k times. Thus

Y 5 (o,2) = 3 5 (,0) = Pl,0) 3 5 (0,0) < 3 57" (0, 0). (7

neN neN neN neN

Then if we denote c(p,0) = >, yp*"(0,0),

>, f@) Y (e,2) < e(p, o)y < 0. (8)

z€Gs neN

Applying Lemma we obtain the result. O

Combining this result with the result of Lemma [6.I] which gives transience of the induced
random walk on Gs under certain conditions, we obtain:

Lemma 7.3. Consider the piecewise PSLo(Z) group G (see Definition . Let H be a subgroup
of G. Assume that there exist b < ¢ such that g(b) = b, f(c) = ¢, (b,c] < supp(g) and [b,c) <
supp(f) for some f,g € H (see Figure E‘S] on page . Assume also that there exists s € Py u Q
and €5 > 0 with s < b such that for some n € Z, f"(s) € [b,c], and also g(s —¢) = s — e and
g(s +¢€) # s+e¢ for every 0 < € < 5. Then for any p on H with finite first break moment
(E[Br] < o) such that supp(p) generates H as a semigroup, the Poisson boundary of p on H is
non-trivial.

Proof. By Lemma the simple random walk on the Schirer graph of s by {(f,g) is transient.
By the comparison lemma by Baldi-Lohoué-Peyriere (Lemma , as the support of p generates
H as a semigroup, the random walk by u on the Schreier graph of s is then transient. Applying
Lemmal7.2] the associated configurations converge as u has finite first break moment. However, by
hypothesis on s, g(s) = s and Cy(s) # 0. Therefore, as g € H, the limit configuration cannot be
singular. Thus the Poisson boundary of u on H is non-trivial. O

For finitely generated subgroups of é, from Lemma we have:
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Remark 7.4. The amount of break points is subadditive in relation to multiplication. In particular,
if a measure p has finite first moment, then it has finite first break moment.

Corollary 7.5. Consider a measure | on é, the support of which generates a finitely generated
subgroup, and such that p has a finite first moment on that subgroup. Assume that there exists
s € Py such that the random walk on the Schreier graph on Gs of this subgroup is transient. Then,
for almost all random walks on G with law 1, the associated configuration converges pointwise.

Proof. Follows from Remark [7.4] and Lemma O

In such cases it is enough to prove that the associated limit configuration is not always the
same, which can require case-specific arguments. We already have it in the case of Thompson’s

group:

Proof of Corollary[1.3. Fix s € Pz and consider the action as of Thompson’s group F on R as
defined in Section [l Take a measure p on F that generates it as a semigroup. From Lemma
and the comparison lemma by Baldi-Lohoué-Peyriere (Lemma the walk p induces on the orbit
of s is transient. Applying Corollary this implies that the associated configuration stabilises,
and by Lemma [3.2.3] it cannot always converge towards the same point. Therefore the Poisson
boundary of p is not trivial. O

We remark that arguments similar to the ones in this section can also be made for the action
of Thompson’s group considered in Kaimanovich’s article [26].

In a more general case, we can use the stronger result by Varopoulos of the comparison
Lemma in order to prove that if the transient walk diverges quickly enough, we can also have
the result for f, € [*(Gs) (and not necessarily in I!):

Lemma 7.6. Fiz s € P. Consider a measure pg such that f = fuo € 12(Gs). Consider \ on Hy
such that 3, (N f, f) <00, Let = el + (1 —e)puo with 0 <e < 1. Then for almost all random
walks on G with law p, the associated configuration converges pointwise.

Proof. Clearly, f, = (1 — ¢)f. Then by the comparison Lemma we get:

Z<M*nfuafu> 2 Z<)\*nf f> < 00.

neN neN

Denote f = f,. Consider x € Pz such that it is possible for the value of the associ-
ated configuration at x to change. In other words, there is ng € N and y € Pz such that = €
supp(u*™)y and f(y) > 0. Denote by p the probability to reach = from y. Then Y _(u*"dy, f) >
P e ™00, f). In particular, if the first is finite, so is the second. However, we clearly have

Donenu oy, ) < ﬁ DonenW* ™ £, f) which concludes the proof. O

In particular, if for any s all associated configurations cannot be stable by all the elements of
{supp(u)), we obtain a non-trivial boundary.

Corollary 7.7. Fiz s € P;. Consider a measure pio such that hs € supp(o)*™ for some ng and
f = fuo € 1’(Gs). Consider X\ on Hy such that Y N, fy < 0. Let = e\ + (1 — &)po with
0 <e < 1. Then the Poisson boundary of p on the subgroup generated by its support is non-trivial.

Proof. Follows from Lemma [7.6] and Lemma [3.2.3 O

Remark that there always exists a symmetric measure A satisfying those assumptions as
A c H, (A was defined in (1))).
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Fi%ure 5: Graphs of f and g and positions of b Figure 6: Graphs of f and g in (a, )
and ¢
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8 An algebraic lemma and proof of the main result

Consider the piecewise PSLy(Z) group G (see Definition . Take a subgroup H of G. In
Lemma we proved that if there are f,g € H and b, ¢, s € R that satisfy certain assumptions, for
every measure i on H the support of which generates H as a semigroup and that has finite first break
moment E[Br], (H, 1) has non-trivial Poisson boundary. To prove the main result (Theorem [1.2))
we will study subgroups that do not contain elements satisfying those assumptions.

Lemma 8.1. Let H = {hy, ..., hg) be a finitely generated subgroup of G. Then either H is solvable,
or the assumptions of Lemma are satisfied for some f,ge H, b,c,s € R.

We recall that for f € G, and a,b € R such that f(a) = a and f(b) = b, we defined (see
Definition flap) € G by flay(r) = f(z)for x € (a,b) and = otherwise.

Proof. We first check that with the appropriate assumptions on (f, g,b,¢), s always exists:

Lemma 8.2. Let H be a subgroup of G. Assume that there exist b < c such that g(b) =0, f(c) =c,
(b,c] < supp(g) and [b,c) < supp(f) for some f,g € H. Then there exist f',g',V',c and s that
satisfy the assumptions of Lemma[7.3,

The assumptions of the lemma are illustrated in Figure 5] Recall that we defined supp(f) =
{reR: f(x) # z}.

Proof. Without loss of generality assume that b is minimal among all b for which there exists ¢ such
that either (f,g,b,c) or (g, f,b,c) satistfy the assumptions of this lemma. We can assume without
loss of generality that f(x) > x and g(z) > x for z € (b, ¢) (otherwise, we can replace either or both
with their inverse). Let a be the largest fixed point of f that is smaller than b.

By minimality of b we clearly have that g(a) = a. The stabiliser St, of a in PSLs(Z) is
cyclic by Lemma Therefore there exist k& and [ such that f*(z) = ¢'(z) for = € (a,a + €)
for some € > 0. Take (f',¢') = (f, f*4'). By our assumption, f* and ¢ are strictly greater then
the identity function in (b,¢). As they are continuous and each fixes an end of the interval, by
the mean values theorem there exists b’ € (b,c) such that f*(¥') = ¢!(t'). Then (f',4’) and (¥, ¢)
satisfy the assumptions of this lemma. Furthermore, f~%¢' is the identity in a small enough right
neighbourhood of a, which implies that there exists an element s that satisfies the assumptions of
Lemma, [7.3 O
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We now assume that the assumptions of Lemma [7.3] and therefore also the assumptions of
Lemma [8.2] are not satisfied by any couple of elements in H. We will prove that H is solvable. For
any element in g € G, its support supp(g) is a finite union of (not necessarily finite) open intervals.
The intervals in the support of h; we denote Ij’: = (a],b]) for j < r; where r; is the number of
intervals in the support of h;. In terms of those intervals, the negation of Lemma means that
for every (i,7) and (¢, '), either Ij@ N Ijlj = (&, or I} c I;;, or IJZ; c I; We further check that if the
inclusion is strict, it must be strict at both extremities. Specifically:

Lemma 8.3. Let H be a subgroup of G. Assume that there exist a <b <V € R U {—o0} such that

fla) = g(a) = a, f(b) =b, g(t') =V, (a,b) = supp(f) and (a,V') = supp(g) for some f,g€ H (see
Figure [61) Then the assumptions of Lemma are satisfied by some elements of the group.

Proof. In a small enough right neighbourhood of a there are no break points of f and g. Let ¢ be
a point in that neighbourhood. Clearly, a < ¢ < b. Without loss of generality, we can assume that
f(x) > z for x € (a,b), and idem for g (otherwise, we can replace them with their inverse). For some
keN, f7%(b) < c. Denote ¢’ = f~*gf*. Consider the elements ¢’ and g~ '¢’. As the stabiliser of a in
PSLy(Z) is cyclic (by Lemma, g7 '¢'(x) = x for € (a, f7%(c)). However, g~ '¢'(z) = g~ (z)
for x € (f7%(b),b), and in particular ¢g~'¢’(x) # = in that interval. Let ¢’ be the largest fixed
point of g~'¢’ that is smaller than f~*(b). Consider now ¢'. It is the conjugate of g, therefore it is
different from the identity in (a, f~%(b)) and fixes f~%(b) < c. Clearly, ¢ < f=%(b). Then ¢’,g"'¢’
and ¢, f7%(b) satisfy the assumptions of Lemma Observe that the same arguments can be used
for two elements with supports (a,b) and (a’,b) with a # o’ O

Consider the natural extension of the action of G on R U {+00, —o0}, which is that every
element of G fixes both —oo and +00. We make the convention that +oo is considered to be a break
point of f € G if and only if for every M € R there is # > M such that f(z) # z (and idem for —o0).
In other words, if the support of an element is equal to an interval (a,b), a and b are break points
even if one or both are infinite. We now prove that H is solvable by induction on the number of
different orbits of H on R u {#o0} that contain non-trivial break points of elements of H. Remark
that the number of orbits of H that contain non-trivial break points of elements of H is the same
as the number of orbits that contain non-trivial break points of hy,..., hg. In particular, it is finite.

Consider all maximal (for inclusion) intervals Ij’: over all couples (i,7). We denote them

Iy, 1s,...,1I,. By our hypothesis we have that they do not intersect each other. We denote hg = h;l;

and H; = <h{, hg, . ,hi) for every j < n. As the intervals I; do not intersect each other, H is a
subgroup of the Cartesian product of H;:

H<[]H;. (9)
j=1

Moreover, for every j, the amount of orbits with non-trivial break points of H; is not greater
than that of H. Indeed, the orbits with break points of H; inside I; coincide with those of H, and
it has only two other orbits containing break points, which are the singletons containing the end
points of I;. We just need to prove that H has at least two other orbits containing non-trivial break
points. If I; = Ii];/, then the supremum and infimum of the support of h; are break points, and by
definition of I; their orbits by H do not intersect the interior of I;. The convention we chose assures
that our arguments are also correct if one or both of the end points is infinite. It is thus sufficient
to prove the induction step for H; for every j. Therefore without loss of generality we can assume
n = 1. Remark that in this case the end points of I; are both non-trivial break points, and both
clearly have trivial orbits.
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We denote (a,b) = I = I;. Consider the germs g; € St, of h; at a right neighbourhood of a.
As St, is cyclic, there exist m; € Z such that [, g;"" generates a subgroup of St, that contains g;
for all 4. Specifically, the image in Z of this product is the greatest common divisor of the images
in Z of g;. We denote h =[], h;"" and let, for every i, n; satisfy (][, g;"")™ = g;. For every i <k,
we consider b = h;h™ ™.

Clearly, H = (h, h}, hl, ..., h}), and there exists € such that for every ¢, supp(h}) < (a+¢e, b—e)
(as the assumptions of Lemma are not satisfied by h,h}). Consider the set of h~'hih! for
1 < k,l € Z and their supports. They are all elements of H. Furthermore, there is a power n such
that h"(a +€) > b — . Therefore, for every point x € (a,b), the number of elements of that set
that contain x in their support is finite. Considering the intervals that define those supports, we
can therefore choose a maximal one (for the inclusion). Let z¢ be the lower bound of a maximal
interval. By our assumption, xq is then not contained in the support of any of those elements, and
neither is 2; = h'(xg) for [ € Z. We denote h") = hIh.h=7 (20, 21). For i < k, let J; be the set of
J € Z such that h"z # Id. Then H is a subgroup of

h Uh’g>;<h>z U Uh’g>. (10)
i<k jed; i<k jed;

For a group F, Z F denotes the wreath product of Z on F. It is a group, the elements of
which are pairs (n, f) with n € Z and f € [ [, F with finite support. The group multiplication
is defined as (n, f)(n/, f) = (n +n/, T f + f'), where T" f(k) = f(k —n’). It is a well known
property of wreath products that if F' is solvable, so is Z  F'. '

Denote H' = {{J, ;. UjeJi h'?. The non-trivial break points and supports of h"} are contained
in (xo, 1), and they fix that interval. Therefore the orbits that contain those break points are the
same in relation to (h, H') and to H'. On the other hand, (h, H') and H act the same way locally,
which means that they have the same orbits. Those two facts imply that H' has at least two less
orbits containing non-trivial break points than H (as it does not have non-trivial break points in
the orbits of the end points of I). That group also does not contain elements that satisfy the
assumptions of Lemma Indeed, assume that there are two words on | J; ;. e k' and a,be R
that satisfy those assumptions. Their supports are also contained in (z, z1), therefore so are a and
b. Then the same words in (J; 4, ;e h; are equal inside (a,b), and they satisfy the conditions of
Lemma . However, h/ are elements of H and this is contradictory to our assumptions.

This provides the induction step. The induction basis is the trivial group, which is solvable.
Therefore H is solvable. ]

We can now prove the main result, that is that for any subgroup H of H(Z) which is not
locally solvable and any measure pu on H such that the support of y generates H as a semigroup
and has finite first break moment E[Br], the Poisson boundary of (H, u) is non-trivial.

Proof of Theorem[1.3. Fix H and take p on H with finite first break moment and the support of
which generates H as a semigroup. We distinguish two cases.

Assume first that there exist f,g € H and b, ¢, s € R that satisfy the assumptions of Lemma|7.3|
By the result of the lemma, the Poisson boundary of (H, i) is non-trivial.

We now assume that no such f,g,b,c, s exist and will prove that H is locally solvable. Any
finitely generated subgroup Hof H clearly also does not contain such f and g for any b,c,s € R.
Furthermore, H(Z) is a subgroup of the piecewise PSLs(Z) group G (see Deﬁnition, and thus
Hisa subgroup of G. Therefore by Lemma we obtain that H is solvable, which proves that H
is locally solvable. O
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9 A remark on the case of finite 1 — ¢ moment

Remark that in the proof of Lemma [B.1] for a finitely generated subgroup that does not satisty
the assumptions of Lemma we obtained more than it being solvable. If the subgroup is also
non-abelian, we have proven that it contains a wreath product of Z with another subgroup (see
(10)). In particular, it is not virtually nilpotent, which implies (as it is finitely generated) that
there exists a measure on it with non-trivial boundary by a recent result of Frisch-Hartman-Tamuz-
Vahidi-Ferdowski [16]. Furthermore, it is known that on the wreath products Z 1 Z it is possible to
obtain a measure with finite 1 — ¢ moment and non-trivial Poisson boundary for every € > 0 (see
Lemma and discussion before and after it). The same arguments can be used in G:

Lemma 9.1. For every finitely generated subgroup H = (hy,..., hg) of G that is not abelian and
every € > 0 there exists a symmetric non-degenerate measure p on H with non-trivial Poisson
boundary such that §,, |g|*~*du(g) < o0, where |g| is the word length of g.

We recall that every measure on an abelian group has trivial Poisson boundary (see Black-
well [7], Choquet-Deny [10]).

Proof. As there is always a non-degenerate symmetric measure with finite first moment, we can
assume that the assumptions of Lemma [7.3| are not satisfied in H. We will use the results on the
structure of H seen in the proof of Lemma [8.1] It is shown (see (9)) that H is a subgroup of a
Cartesian product ]_[?:1 Hj. Specifically, there exist disjoint intervals Iy, Is,..., I, such that the

supports of elements of H are included in the union of those intervals. Taking h{ = h;l; to be the
restriction on one of those intervals (as defined in Definition , the group Hj is then equal to
<h{, h%, cel h@ For any 7, consider the composition of the projection of ]_[?:1 Hj onto H; and the
inclusion of H in 1_[;”:1 H;. Then Hj is the quotient of H;‘:l H; by the kernel of this composition,
which is equal to {h € [[;_, H;, hl; = 0}.

We can therefore separately define measures on H; and on the kernel, and the Poisson bound-
ary of their sum would have the Poisson boundary of the measure on H; as a quotient. In particular,
it suffices to show that for some j we can construct a measure on H; with non-trivial boundary
satisfying the conditions of the lemma. As H is non-abelian, so is at least one H;. Without loss of
generality, let that be Hj. In the proof of Lemma we have shown (see ) that in Hp there
are elements h' and h1;- for j =1,2,...,k such that H; = (h!, hlll, hlé, ..., h'}) and is isomorphic
to a subgroup of the wreath product of h' on a group H’ defined by the rest of the elements.
Remark that Hi not being abelian implies that H' is not trivial. Furthermore, by taking the group
morphism of Hy into Z{ H', we see that the image of h! is the generator (1,0) of the active group,
while for every j, the image of h1; is of the form (0, f;) where f; has finite support. The following
result is essentially due to Kaimanovich and Vershik [27, Proposition 6.1],[22], Theorem 1.3], and
has been studied in a more general context by Bartholdi and Erschler [6]:

Lemma 9.2. Consider the wreath product Z.! H' where H' is not trivial, and let u be a measure
on it such that the projection of p on Z gives a transient walk and the projection of u on H'? i
finitary and non-trivial. Then the Poisson boundary of p is not trivial.

In the article of Kaimanovich and Vershik, it is assumed that the measure is finitary, and
the acting group is Z* for k > 3, which assures transience. The proof remains unchanged with our
assumptions. Remark that those results have also been generalised in the case of a measure with
finite first moment that is transient on the active group, see Kaimanovich [24, Theorem 3.3],[25)
Theorem 3.6.6], Erschler [I5, Lemma 1.1].
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Proof. Take a random walk (g, )neny on Z ! H' with law p. Let p be the projection of the wreath
product onto the factor isomorphic to H’ that has index 0 in H'”. By the assumptions of the
lemma, p(h,) stabilises, and is not almost always the same. This provides a non-trivial quotient of
the Poisson boundary of u. d

All that is left is constructing a measure that verifies the assumptions of Lemmal[9.2] Consider
a symmetric measure g1 on (h') that has finite 1 — ¢ moment and is transient. Let o be defined
by being symmetric and by ug(hI;) = ﬁ for every j. Then u = %(Nl + p2) is a measure on Hy with
non-trivial Poisson boundary. O
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