Corrigé TD3

1 Suites sous-additives

Exercice 1. Soit $x \in \mathbb{R}$, on a $F^n(x) = x + n\theta$.

Alors $F^n(x) + F^m(x) = 2x + (n+m)\theta = F^{m+n}(x) + x$. D'où la suite est additive pour x = 0 et sous-additive pour $x \ge 0$.

Exercice 2. On a $(\sqrt{m} + \sqrt{n})^2 = \sqrt{m^2} + \sqrt{n^2} + 2\sqrt{mn} \ge \sqrt{m^2} + \sqrt{n^2}$. Donc comme la fonction racine carrée est croissante, $\sqrt{m} + \sqrt{n} \ge \sqrt{m+n}$.

Exercice 3. On a $(n+m)^2 = n^2 + m^2 + 2mn \ge n^2 + m^2$. Il suffit de prendre l'opposé.

Exercice 4. Soit $(a_n)_{n\geq 1}$ additive. Par récurrence, montrons que pour tout $n\geq 1$ on a $\frac{a_n}{n}=a_1$. Pour n=1, c'est évident.

Supposons la propriété vraie au rang n. Il vient

$$\frac{a_{n+1}}{n+1} = \frac{a_n + a_1}{n+1} = \frac{n}{n+1} \frac{a_n + a_1}{n} = \frac{n}{n+1} \left(a_1 + \frac{a_1}{n} \right) = \frac{na_1}{n+1} + \frac{a_1}{n+1} = a_1$$

Ce qui prouve la propriété au rang n+1, et donc $\left(\frac{a_n}{n}\right)$ est constante.

Exercice 5. On procède par récurrence sur k. Pour k = 1, on a bien $a_l \le a_l$ pour tout $l \in \mathbb{N}$. On suppose que pour tout $l \in \mathbb{N}$, on a $a_{kl} \le ka_l$. Alors par sous-additivité de (a_n) , on a $a_{(k+1)l} \le a_{kl} + a_l$. Donc $a_{(k+1)l} \le ka_l + a_l$ par hypothèse de récurrence. Ce qui prouve la propriété au rang k + 1.

2 Nombres de rotation dans SU(1,1)

Exercice 6. Rappelons qu'une homéomorphisme est une fonction bijective continue d'inverse continue. D'après le TD2 on sait que l'inverse de F_A est $F_{A^{-1}}$. Car elle est aussi défini sur S^1 , on a que F_A est bijective. Car $A^{-1} \in SU(1,1)$, il suffit de démontrer que F_A est continue pour tout $A \in SU(1,1)$.

Or, F_A est le quotient de deux fonctions qui sont affines donc continues. Il suffit alors de démontrer que le dénominateur ne s'annule pas sur S^1 . Supposons le contraire, c'est-à-dire qu'il existe $x \in S^1$ tel que $\bar{b}x + \bar{a} = 0$. Alors $|\bar{b}||x| = |-\bar{a}|$ et |b| = |a| ce qui est impossible car $|a|^2 - |b|^2 = 1$.

Exercice 7. c.f. cours.

Exercice 8. D'après le TD2 on sait que les éléments de SU(1,1) appartient à un de trois groupes hyperboliques, paraboliques, elliptiques. Les éléments hyperboliques et paraboliques ont des points fixes donc leur nombre de rotation est 0. Pour un élément A elliptique, on a montré dans l'exercice 12 de TD2 que A est conjugué à une rotation R_{α} . Car le nombre de rotation est préservé par conjugaison, $\tau(A) = \tau(R_{\alpha}) = 2\Pi \alpha$. Il suffit de trouver α . Or, on a $tr(A) = tr(R_{\alpha})$ donc $\tau(A) = 2\Pi \arccos(\frac{tr(A)}{2})$.

3 Propriétés des nombres de rotation

Exercice 9. On a $\tau(F^m) = \lim_n \frac{(F^m)^n(x) - x}{n} = \lim_n \frac{F^{mn}(x) - x}{n} = m \lim_{m \to \infty} \frac{F^{mn}(x) - x}{mn} = m\tau(F)$ car $(mn)_{n \in \mathbb{N}}$ est une sous-suite de $(n)_{n \in \mathbb{N}}$.

Exercice 10. On va montrer d'abord le sens de droite à gauche. Supposons qu'il existe un x tel que $F^q(x) < x + p$ (les deux autres cas sont équivalents). Montrons que $F^{nq}(x) < x + np$ par récurrence sur n. On a déjà la base. On fait l'hypothèse pour n et on va montrer pour n. Alors

$$F^{nq}(x) = F^{(n-1)q}(F^{q}(x)) < F^{(n-1)q}(x+p) = F^{(n-1)q}(x) + p < x + (n-1)p + p = x + np.$$

En appliquant la définition de nombre de rotation, on obtient le résultat.

On va faire maintenant l'autre sens. Soit $\tau(F) = p/q$. D'après l'exercice précédent on a $\tau(F^q) = p$. On sait qu'on peut considérer le nombre de rotation modulo 1 quitte à choisir le relèvement. Ici, on va faire un choix explicite. Soit $\tilde{F} = F^q - p$ une autre relèvement de f^q . Alors $\tau \tilde{F} = 0$ et d'après exercice 7 il a un point fixe, soit x. On a donc $\tilde{F}(x) = x$ donc $F^q(x) = x + p$.

Soit $\tau(F) < p/q$. Considérons la fonction $G(x) = F^q(x) - x - p$. Car $\tau(F) \neq p/q$, G ne s'annule pas. Car elle est continue, elle est donc soit positive pour tout x, soit négative pour tout x. Mais si elle était positive pour tout x, on aurait G(x) < 0 donc $F^q(x) < x + p$ donc $\tau(F) > p/q$, contradiction. Donc elle est négative pour tout x, ce qui implique le résultat. Le cas $\tau(F) > p/q$ est équivalent.

Exercice 11. Considérons deux cas. Si $\tau(F) = p/q$, il existe un x tel que $F^q(x) = x + p$. Alors $F^{-q}(x+p) = x = x + p - p$, et donc $\tau(F^{-1}) = -p/q$.

Sinon, soit $\tau(F) = \omega$ irrationnel. Considérons p et q tel que $\tau(F) < p/q$. Alors pour tout x, $F^q(x) < x + p$ et donc $F^{-q}(x+p) > x = x + p - p$ et $\tau(F^{-1}) > -p/q$. De façon équivalent, si $\tau(F) > p/q$, $\tau(F^{-1}) < -p/q$. En considérant les approximations décimales de ω cela implique le résultat.

Exercice 12. Sens perdre de généralité, supposons que m est le plus petit période pour f. Soit F le relèvement de f tel que $\tau(F) \in [0,1[$. Car $f^m(x) = x$, on a $F^m(x) = x + p$ pour un $p \in \mathbb{Z}$. Alors $\tau(F) = p/m$.

Supposons que $PGCD(p, m) \neq 1$. Alors pour p' = p/PGCD(p, m) et m' = m/PGCD(p, m) on a $\tau(F) = p'/m'$. Il existe alors y tel que $F^{m'}(y) = y + p'$ et donc $f^{m'}(y) = y$, contradiction avec le minimalité de m. Alors PGCD(p, m) = 1.

Considérons une point périodique y de période m'. Soit $F^{m'}(y) = y + p'$. Alors $\tau(F) = p'/m'$ et p'/m' = p/m. Car PGCD(p, m) = 1 cela implique que m divise m'. Alors y est périodique pour f^m . Alors sens perdre de généralité on peut supposer que m = 1.

Soit donc F un relèvement tel que $\tau(F)=0$ et x un point non-fixe de F. On va montrer que x n'est pas périodique. Soit $m=\sup\{y< x|F(y)=y\}$. Par continuité de F, F(m)=m. Soit $M=\inf\{y>x|F(y)=y\}$. Alors m et M sont des points fixes pour F et donc l'intervalle m, m est préservé par F. L'orbite de x est alors contenu dans cet intervalle. De plus, $x\mapsto F(x)-x$ ne s'y annule pas. Alors soit $F^m(x)>F^n(x)$ pour tout m>n, soit $F^m(x)<F^n(x)$ pour tout m>n. Dans les deux cas, x n'est pas périodique.

Exercice 13. Supposons le contraire, c'est-à-dire qu'il existe un intervalle]a,b[tel que $\Lambda \cap]a,b[=\emptyset$. Remarquons que si $x \in \Lambda$, alors $kx \in \Lambda$ pour tout $k \in \mathbb{Z}$. En effet, si $x = n\omega + m$, $kx = kn\omega + km$. Alors pour chaque $x \in \Lambda$, $\{kx, k \in \mathbb{Z}\} \cap]a,b[=\emptyset$. Cela implique que $|x| > \frac{a+b}{2}$. Autrement dit $\Lambda \cap]0,\frac{a+b}{2}[=\emptyset$.

Soit $x = \inf(\Lambda \cap \mathbb{R}^+)$. D'abord, montrons que $x \in \Lambda$. Sinon, on aurait qu'il existe $y_1, y_2 \in \Lambda$ tels que $x < y_1 < x + \frac{a+b}{2}$ et $x < y_2 < y_1$. Donc $y_1 - y_2 \in \Lambda \cap]0, \frac{a+b}{2}[$, contradiction.

Montrons maintenant que x engendre Λ , c'est-à-dire $\bar{\Lambda} = \{kx | k \in \mathbb{Z}\}$. En effet, si $y \in \Lambda$ et $y \neq kx$, soit k le plus grand entier tel que xk < y. Alors $y - xk \in \Lambda$ est plus petit que x, contradiction.

Alors $\Lambda = \{kx | k \in \mathbb{Z}\}$. Soit k_1 et k_2 les entiers tel que $k_1x = 1$ et $k_2x = \omega$. Alors $\omega = k_2/k_1 \in \mathbb{Q}$, contradiction.

Exercice 14. c.f. cours Lemme 2.37.

Exercice 15. c.f. cours Théorème 2.38.