XI

Exercice 1 (Loi(s) de réciprocité quadratique) Soit p un nombre premier impair. Soit z une racine primitive p—ième de l'unité.

- a) Montrer que le groupe de Galois de $\mathbb{Q}(z)$ sur \mathbb{Q} contient un seul sous-groupe d'indice 2.
- b) En déduire que $s \in \operatorname{Gal}(\mathbb{Q}(z)/\mathbb{Q})$ est un carré ssi $s \in \operatorname{Gal}(\mathbb{Q}(t)/\mathbb{Q})$ où $t := (-1)^{(p-1)/2}p$ (on rappelle que $\Delta = (-1)^{(p-1)/2}p^{p-2}$ est le discriminant du polynôme minimal de z sur \mathbb{Q}).
- c) Soit q un nombre premier impair différent de p. On note $s_q \in \operatorname{Gal}(\mathbb{Q}(z)/\mathbb{Q})$ l'élément qui envoie z sur z^q . Montrer que $s_q(t) = \left(\frac{q}{p}\right)t$.
- d) Montrer que $s_q(t) = t^q \mod q$ (dans $\mathbb{Z}[z]$).
- e) En déduire la loi de réciprocité quadratique :

$$\left(\frac{p}{q}\right)\left(\frac{q}{p}\right) = (-1)^{\frac{p-1}{2}\frac{q-1}{2}} .$$

f) Soit y une racine primitive 8-ième de l'unité. Montrer que $(y+y^{-1})^2=2$. En déduire que :

$$(y+y^{-1})2^{(p-1)/2} = (y^p + y^{-p}) \bmod p$$

dans $\mathbbmss{Z}[y].$ Retrouver la loi de réciprocité complémentaire :

Exercice 2 (Discriminant d'un corps de nombres) Soit K un corps de nombres de degré n sur \mathbb{Q} . On note $s_1,...,s_n$ les plongements de K dans \mathbb{C} . On suppose que $s_1,...,s_{r_1}$ sont les plongements réels et que $s_{j+r_2}=\overline{s_j}$ si $r_1+1\leq j\leq r_1+r_2$.

On pose $s(x) := (s_1(x), ..., s_{r_1+r_2}(x)) \in \mathbb{R}^{r_1} \times \mathbb{C}^{r_2} \simeq \mathbb{R}^n$.

- a) Soit A l'anneau des entiers de K. Montrer qu'il existe une base $x_1, ..., x_n$ de K sur \mathbb{Q} formée d'éléments de A. Soit $y_1, ..., y_n$ la base duale relativement à la forme bilinéaire $(x, y) \mapsto \operatorname{Tr}(xy)$. Montrer que $A \subseteq \mathbb{Z}y_1 \oplus ... \oplus \mathbb{Z}y_n$. En déduire que A est un $\mathbb{Z}-$ module libre de rang n.
- b) Si $x_1, ..., x_n$ est une \mathbb{Z} -base de A, vérifier que le discriminant : $d := \det(\operatorname{Tr}(x_ix_j)_{1 \le i,j \le n}) = \det(s_i(x_j))_{1 \le i,j \le n}$ est indépendant de la base choisie. On dit que d est le discriminant absolu de K. Quel est le discriminant absolu de $\mathbb{Q}(z)$ si z est une racine primitive p-ème de l'unité, p premier? Quel est le discriminant absolu de $\mathbb{Q}(\sqrt{d})$ où d est un entier sans facteur carré?
- c) Soit M un réseau de \mathbb{R}^n . On appelle volume de M le nombre :

$$v(M) := \operatorname{vol}\left(\left\{\sum_{i} t_{i} e_{i} : \forall i, 0 \leq t_{i} \leq 1\right\}\right)$$

pour n'importe quelle base $e_1,...,e_n$ de M. Montrer que $v(s(A))=2^{-r_2}\sqrt{|d|}$ où d est le discriminant absolu de K.

d) Soit $0 \neq x \in A$. Montrer que $|N_{K/\mathbb{Q}}(x)| = |A/Ax|$. Si I est un idéal non nul de A, on notera N(I) := |A/I| (c'est la norme de I). Montrer que $v(\sigma(I)) = 2^{-r_2} \sqrt{|d|} N(I)$.

e) Soit t > 0. On note:

$$B_t := \left\{ (y_1, ... y_{r_1}, z_1, ..., z_{r_2} \in \mathbb{R}^{r_1} \times \mathbb{C}^{r_2} : \sum_i |y_i| + 2 \sum_j |z_j| \le t \right\} .$$

On admettra que vol $(B_t) = 2^{r_1} (\pi/2)^{r_2} t^n / n!$.

Soit $0 \neq I$ un idéal de A.

On choisit t tel que $vol(B_t) = 2^n v(s(I))$.

En déduire qu'il existe $x \in I$, non nul tel que

$$N_{K/\mathbb{Q}}(x) \le (4/\pi)^{r_2} n! / n^n \sqrt{|d|} N(I)$$
.

- f) Montrer que $n = [K : \mathbb{Q}]$ est majoré indépendamment de K.
- g) Soit B l'ensemble des $(y_1,...,y_{r_2},z_1,...,z_{r_2})\in\mathbb{R}^{r_1}\times\mathbb{C}^{r_2}$ tels que :

$$|y_1| \le 2^n (\pi/2)^{-r_2} \sqrt{|d|}, \ |y_i| \le 1/2, \ 2 \le i \le r_1,$$

 $|z_j| \le 1/2, \ 1 \le j \le r_2$

si $r_1 > 0$ et tels que

$$\Im(z_1) \le 2^n (4/\pi) (\pi/2)^{-r_2} \sqrt{|d|}, \, \Re(z_1) \le 1/4,$$
$$|z_j| \le 1/2, \, 2 \le j \le r_2,$$

si $r_1=0$. Vérifier qu'il existe $0\neq x\in K$ tel que $s(x)\in B$.Montrer que $K=\mathbb{Q}(x)$ et en déduire qu'il n'y a qu'un nombre fini de corps de nombres (dans \mathbb{C}) de discriminant d donné.

Exercice 3 (Théorème des unités) Soit K un corps de nombres de degré n sur \mathbb{Q} . On note $s_1, ..., s_n$ les plongements de K dans \mathbb{C} . On suppose que $s_1, ..., s_{r_1}$ sont les plongements réels et que $s_{j+r_2} = \overline{s_j}$ si $r_1 + 1 \le j \le r_1 + r_2$. On pose $s(x) := (s_1(x), ..., s_{r_1+r_2}(x)) \in \mathbb{R}^{r_1} \times \mathbb{C}^{r_2} \simeq \mathbb{R}^n$.

On note A l'anneau des entiers de K et A^{\times} son groupe des unités.

a) Montrer que si $x \in K$, alors :

$$x \in A^{\times} \Leftrightarrow N_{K/\mathbb{Q}}(x) = \pm 1$$
.

- b) On pose $L: K^{\times} \to \mathbb{R}^{r_1+r_2}$, $x \mapsto (\log |s_1(x)|, ..., \log |s_{r_1+r_2}(x)|)$. Vérifier que c'est un morphisme de groupes.
- c) Si B est une partie compacte de $\mathbb{R}^{r_1+r_2}$, montrer que $L^{-1}(B)\cap A^{\times}$ est fini. En déduire que $G:=\ker L\cap A^{\times}$ est cyclique (fini). Montrer que G est le groupe des racines de l'unité de K.
- d) Montrer que $L(A^{\times})$ est un sous-groupe discret de $\mathbb{R}^{r_1+r_2}$ (*i.e.* son intersection avec tout compact est finie). Montrer que $L(A^{\times}) \simeq G \times \mathbb{Z}^s$ pour un $s \leq r_1 + r_2 1$ (indication: $\prod_{1 \leq i \leq r_1} |s_i(x)| \prod_{r_1+1 \leq j \leq r_1+r_2} |s_j(x)|^2 = 1$).
- e) Soit $a \geq 2^n (2\pi)^{-r_2} \sqrt{|d|}$. Soient $l := (l_1, ..., l_{r_1 + r_2}) \in \mathbb{R}^{r_1 + r_2}_{>0}$ tels que $\prod_{i=1}^{r_1} l_i \prod_{j=1}^{r_2} l_j^2 = a$. En considérant l'ensemble :

$$B := \{ (y_i, z_j) \in \mathbb{R}^{r_1} \times \mathbb{C}^{r_2} : |y_i| \le l_i, |z_j| \le l_j(\forall i, j) \},$$

montrer qu'il existe $x_l \in A$ tel que

$$1 \le |N(x_l)| \le a$$

Vérifier que :

$$0 \le \log l_i - \log |s_i(x_l)| \le \log a$$

pour tout i.

f) Soit $f: \mathbb{R}^{r_1+r_2} \to \mathbb{R}$ une forme linéaire non nulle sur l'hyperplan H d'équation $y_1+\ldots+y_{r_1}+2y_{r_1+1}+\ldots+2y_{r_1+r_2}=0$. Montrer qu'il existe $c_f>0$ tel que :

$$|f(L(x_l)) - f(\log(l_1), ..., \log(l_{r_1+r_2}))| \le c_f \log a$$
.

Soit $b>c_f\log a.$ Pour tout entier h>0, il existe des réels $l_1,...l_{r_1+r_2}>0$ tels que :

$$\prod_{i=1}^{r_1} l_i \prod_{i=1}^{r_2} l_j^2 = a, \ f(\log(l_1), ..., \log(l_{r_1+r_2})) = 2bh$$

(le justifier!). On note $x_h \in A$ un élément tel que, comme ci-dessus :

$$|f(L(x_l)) - f(\log l)| \le c_f \log a$$
.

Vérifier que :

$$(2h-1)b < f(L(x_h)) < (2h+1)b$$

pour tout h. En déduire que les $L(x_h)$ sont deux a deux distincts, h > 0.

- g) Vérifier que les idéaux Ax_h , h > 0, sont en nombre fini. En déduire l'existence d'un $u \in A^{\times}$ tel que $f(L(u)) \neq 0$.
- h) Conclure que $L(A^{\times})$ est de rang $r_1 + r_2 1$ et que :

$$A^{\times} \simeq G \times \mathbb{Z}^{r_1 + r_2 - 1}$$
.

i) Application aux corps cyclotomiques : Montrer que si p est un nombre prmeier impair, si z est une racine primitive p—ème de l'unité, alors on a un isomorphisme de groupes

$$\mathbb{Z}[z]^{\times} \simeq \mathbb{Z}/2p\mathbb{Z} \times \mathbb{Z}^{(p-3)/2}$$
.

j) Quels sont les corps pour lesquels A^{\times} est fini?