Examen partiel nº 1

sujet bis

durée : 1h documents interdits

Question de cours

Soient v_1, v_2, v_3 des vecteurs de \mathbb{R}^4 . La famille $\{v_1, v_2, v_3\}$ est-elle génératrice dans \mathbb{R}^4 ?

Exercice 1 Soit
$$A = \begin{pmatrix} -1 & 1 \\ 0 & -1 \end{pmatrix}$$
.

a) Exprimer A^n en fonction de n pour tout $n \in \mathbb{N}$.

2pts

b) Si A est inversible, calculer A^{-1} et A^n pour tout $n \in \mathbb{Z}$.

2pts

Exercice 2 Soit
$$A = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 0 \\ 1 & 0 & 0 \end{pmatrix}$$
.

a) Calculer A^2 et A^3 . Calculer $A^3 - 2A^2 - A$.

3pts

b) Exprimer A^{-1} en fonction de A^2 , A, I_3 .

3pts

Exercice 3

Soit $E = \{(x, y, z, t) \in \mathbb{R}^4 : x + y = 0 \text{ et } y + z + t = 0\}.$

On admettra que E est un sous- \mathbb{R} -espace vectoriel de \mathbb{R}^4 .

Soient $u_1 = (0, 2, 2, 0), u_2 = (1, 1, 1, 1), u_3 = (3, 0, 0, 3).$ Soit $F = \text{Vect}\{u_1, u_2, u_3\}.$

- a) Déterminer une base de E et en déduire sa dimension. 3pts
- b) Déterminer une base de F. 3pts
- c) Montrer que $\mathbb{R}^4 = E \oplus F$. 3pts