Arithmétique et groupes

L3 Parcours Mathématiques pour l'enseignement Université Claude Bernard (Lyon 1) 12 janvier 2023 Contrôle Terminal Durée : **2 heures**

Corrigé du CT1

I (7 points)

1. Comme $\alpha + \beta = 1$ et $\alpha\beta = -1$, pour tout $n \in \mathbb{N}$, on a

$$L_{n+2} - L_{n+1} = \alpha^{n+1}(\alpha - 1) + \beta^{n+1}(\beta - 1) = (-\alpha\beta)\alpha^n + (-\alpha\beta)\beta^n = L_n.$$

- 2. Par la relation de récurrence ci-dessus, on obtient $L_0 = 1 + 1 = 2$, $L_1 = \alpha + \beta = 1$ et déduit que $L_n \in \mathbb{N}^*$ par reurrence.
- 3. Comme $\alpha\beta=-1,\ L_2=L_0+L_1=3,\ L_3=L_1+L_2=4,\ L_4=L_2+L_3=7$ et $L_5=L_3+L_4=11,$ on a

$$(1 - \alpha^5 x^5)(1 - \beta^5 X^5) = 1 - (\alpha^5 + \beta^5)X^5 + (\alpha\beta)^5 X^{10} = 1 - 11X^5 - X^{10}$$

4. De même on a $P(X) = -(\alpha\beta)^5(X^5 - \alpha^{-5})(X^5 - \beta^{-5}) = (X^5 + \alpha^5)(X^5 + \beta^5)$. On rappelle que $X^5 - 1 = \prod_{k=0}^4 (X - \xi^k)$ avec $\xi = e^{2\pi i/5}$. D'où, les factorisations en produit de polynômes unitaires et irréductibles dans $\mathbb{C}[X]$:

$$P(X) = \prod_{k=0}^{4} (X + \alpha \xi^{k})(X + \beta \xi^{k})$$

et dans $\mathbb{R}[X]$:

$$P(X) = (X + \alpha)(X + \beta)(X^2 + 2\alpha\cos\frac{2\pi}{5}X + \alpha^2)(X^2 + 2\alpha\cos\frac{4\pi}{5}X + \alpha^2)$$
$$\times (X^2 + 2\beta\cos\frac{2\pi}{5}X + \beta^2)(X^2 + 2\beta\cos\frac{4\pi}{5}X + \beta^2).$$

Soit n un entier ≥ 3 . On note A_n le sous-groupe de S_n formé par les permutations paires.

- a) Soient $\alpha = (i,j)$ et $\beta = (k,l)$ deux transpositions distinctes. Si elles ne sont pas disjointes, disons k = j, alors (i,j)(j,l) = (l,i,j), sinon, on a (i,j)(l,k) = (l,j,i)(l,k,i).
- b) Par définition, chaque permutation dans A_n est un produit d'un nombre pair de transpositions, on déduit de a) qu'elle peut s'écrire comme un produit de 3-cycles.
- c) Si i,j,k sont deux à deux distincts et ≥ 3 , on a

$$(1 2 i) (2 j k) (1 2 i)^{-1} = (12i)(2jk)(21i) = (ijk);$$

$$(1 2 j) (1 2 k) (1 2 j)^{-1} = (12j)(12k)(21j) = (2jk).$$

d) D'après b) et c) le group A_n est engendré par les 3-cycles dans la liste :

$$(123), (124), \ldots, (12n)$$

et leurs inverses. D'où le résultat.

III (10 points)

- 1. Si $a \equiv 0 \pmod{2}$, alors il existe un $m \in \mathbb{N}$ tel que $a^2 = (2m)^2 \equiv 0 \pmod{4}$, si $a \equiv 1 \pmod{2}$, alors il existe un $m \in \mathbb{N}$ tel que $a^2 = (2m+1)^2 \equiv 1 \pmod{4}$.
- 2. Soit $d = \operatorname{pgcd}(x_0, y_0, z_0)$ et u, v, w des entiers tels que $x_0 = du$, $y_0 = dv$ et $z_0 = dw$. Comme $d \ge 1$, il est clair que $(du)^2 = (dv)^2 + (dw)^2$ implique que $u^2 = v^2 + w^2$. Soit $\operatorname{pgcd}(u, v, w) = \delta$, qui est ≥ 1 . Alors δd est un diviseur de d, ce qui implique que $\delta = 1$.
- 3. Supposons le contraire, disons que u et v sont pairs, alors $w^2 = u^2 v^2$ est un multiple de 4 et puis w est pair. Ce qui contredit le point 2. De même, on montre que u et w (ou v et w) ne peuvent pas être pairs.
- 4. Si v et w sont impairs, alors v² ≡ w² ≡ 1 (mod 4), ce qui implique que u² ≡ 2 (mod 4). C'est impossible d'après le point 1.
 (On montre de même que si pgcd(u,v,w) = 1, alors u,v et w sont deux à deux premiers entre eux.)
- 5. On note $\delta = \operatorname{pgcd}(u v, u + v)$. Comme u et v sont impairs, u + v et u v sont tous pairs, on pose $\delta = 2\delta'$. Soient $u + v = \delta\alpha$ et $u v = \delta\beta$, où α et β sont des nombres naturels premiers entre eux.
 - i) On a $u = \delta'(\alpha + \beta)$ et $v = \delta'(\alpha \beta)$.
 - ii) De $u+v=2\delta'\alpha$ et $u-v=2\delta'\beta$, on déduit $u^2-v^2=4\delta'^2\alpha\beta=4w^2$, et puis $w^2=\delta'^2\alpha\beta\Longrightarrow\delta'^2|w^2\Longrightarrow\delta'|w.$ D'où $\delta'=1$ car $\operatorname{pgcd}(u,v,w)=1$. Ceci montre que $\operatorname{pgcd}(u-v,u+v)=2$.

Chaque diviseur premier de $w^2 = \alpha \beta$ ne peut diviser à la fois α et β ; comme w^2 est un carré, l'exposant de ce diviseur premier est pair dans celui des deux nombres où ce diviseur premier figure. Il résulte que α et β sont effectivement des carrés d'entiers naturels, puisque chacun de leurs diviseurs premiers a un exposant pair. On a donc $\alpha = m^2$ et $\beta = n^2$ avec m et n premiers entres eux. Il s'en suit que

$$u + v = 2m^2$$
, $u - v = 2n^2$, $w = 2mn$

avec m et n premiers entre eux.

6. On vérifie que les triplets (x,y,z), où

$$x = m^2 + 1$$
, $y = m^2 - 1$, $z = 2m$ $(m \ge 2)$,

vérifient $x^2 = y^2 + z^2$ et pgcd(x, y, z) = 1.