$\label{eq:fiche de TD 2}$ Familles libres, familles génératrices, bases

Exercice 1 a) Vérifier que la famille des lignes de la matrice
$$\begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{pmatrix}$$
 est liée.

b) Même question avec les colonnes.

Exercice 2 Soit
$$\mathbb{H} = \left\{ \left(\begin{array}{cc} a & b \\ -\overline{b} & \overline{a} \end{array} \right) : a, b \in \mathbb{C} \right\}.$$

- a) Montrer que \mathbb{H} est un sous- \mathbb{R} -espace vectoriel de $\mathscr{M}_2(\mathbb{C})$. En trouver une base.
- b) Le \mathbb{R} -espace vectoriel \mathbb{H} est-il un sous- \mathbb{C} -espace vectoriel de $\mathscr{M}_2(\mathbb{C})$? Quel est le \mathbb{C} -espace vectoriel engendré (par la base touvée à la question précédente)?

Exercice 3 a) Soient $v_1, ..., v_m \in \mathbb{R}^n$. Montrer que si m > n, alors il existe $t_1, ..., t_m \in R$, non tous nuls tels que $t_1x_1 + ... + t_mx_m = 0$. (Raisonner par récurrence).

- b) Soit E est un \mathbb{R} —espace vectoriel. Soient $e_1, ..., e_n \in E$. Soient $v_1, ..., v_m \in \langle e_1, ..., e_n \rangle$ où m > n. Montrer que la famille $v_1, ..., v_m$ est liée.
- c) En déduire que toutes les bases d'un \mathbb{R} —espace vectoriel ont le même nombre d'éléments (dans le cas où E est de dimension finie).
- d) Soit E un \mathbb{R} -espace vectoriel. Soient $e_1, ..., e_n \in E$. Montrer que si $0 \neq v \in \langle e_1, ..., e_n \rangle$, alors il existe $1 \leq i \leq n$ tel que :

$$\langle e_1, ..., e_n \rangle = \langle e_1, ..., e_{i-1}, v, e_{i+1}, ..., e_n \rangle$$
.

e) Soit $e_1,...,e_n$ une famille libre de vecteurs dans un espace vectoriel E. Soit $v \in E.$ Montrer l'équivalence

$$e_1, ..., e_n, v$$
 sont linéairement indépendants $\Leftrightarrow v \notin \langle e_1, ..., e_n \rangle$.

f) Soit E un \mathbb{R} -espace vectoriel soit $\mathscr{L} \subseteq \mathscr{G}$ deux familles de vecteurs de E. On suppose \mathscr{L} libre et \mathscr{G} génératrice. Montrer qu'il existe une base \mathscr{B} de E telle que $\mathscr{L} \subseteq \mathscr{B} \subseteq \mathscr{G}$.

Exercice 4 a) Montrer que la famille

$$X^k, k \in \mathbb{N}$$

est une base de $\mathbb{R}[X]$.

- b) Montrer que la famille $\frac{1}{(X-z)^{\alpha}}$, $z \in \mathbb{C}$, $\alpha \in \mathbb{N}_{>0}$ est une base de l'espace vectoriel complexe des fractions rationnelles de degré < 0.
- c) Montrer que la famille

$$(x^n)_{n\in\mathbb{N}}, x\in\mathbb{R}$$

est libre dans le \mathbb{R} -espace vectoriel $\mathbb{R}^{\mathbb{N}}$. Est-ce une base?

d) Pour tout $x \in \mathbb{R}$, posons

$$f_x : \mathbb{Q} \to \mathbb{Q}, q \mapsto \begin{cases} 1 & \text{si } q < x \\ 0 & \text{sinon.} \end{cases}$$

Montrer que la famille des $f_x, x \in \mathbb{R}$, est libre dans le \mathbb{Q} -espace vectoriel $\mathbb{Q}^{\mathbb{Q}}$. En déduire qu'il existe une famille infinie non dénombrable de vecteurs dans le \mathbb{Q} -espace vectoriel $\mathbb{Q}^{\mathbb{N}}$.

e) Montrer que la famille $1, \sqrt{2}, \sqrt{3}, \sqrt{6}$ est libre dans \mathbb{R} vu comme \mathbb{Q} —espace vectoriel. Est-elle libre dans \mathbb{R} vu comme \mathbb{R} —espace vectoriel?

Exercice 5 a) Montrer que si $x_0, ..., x_n \in \mathbb{R}$, alors les applications $ev_{x_i} : \mathbb{R}[X]_{\leq n} \to \mathbb{R}$, $P(X) \mapsto P(x_i)$, sont \mathbb{R} -linéairement indépendantes.

b) Montrer que si $x_0, ..., x_{n+1} \in \mathbb{R}$ sont deux à deux distincts, alors il existe $t_0, ..., t_n \in \mathbb{R}$ tels que :

$$\forall P \in \mathbb{R}[X]_{\leq n}, P(x_{n+1}) = t_0 P(x_0) + \dots + t_n P(x_n)$$
.

Exercice 6 Soit $f: E \to F$ une application linéaire entre deux \mathbb{R} -espaces vectoriels c-à- $d: \forall u, v \in E, f(u+v) = f(u) + f(v), \forall t \in \mathbb{R}, \forall v \in E, f(tv) = tf(v).$

- a) Montrer que f(0) = 0.
- b) Montrer que si $W \leq F$, alors $f^{-1}(W) \leq E$.
- c) Montrer que si $V \leq E$, alors $f(V) \leq F$. En pariculier, ker $f = f^{-1}(0) \leq E$ et im $f = f(E) \leq F$.

Exercice 7 Soit E un \mathbb{R} —espace vectoriel. Soient $l_1, ..., l_m \in E^*$.

a) Soit $l \in E^*$. Montrer que

$$l \in \langle l_1, ..., l_m \rangle \Leftrightarrow \ker l_1 \cap ... \cap \ker l_m \leqslant \ker l$$
.

- b) Montrer que $\langle l_1, ..., l_m \rangle = E^* \Leftrightarrow \ker l_1 \cap ... \cap \ker l_m = 0$.
- c) Montrer que la famille $l_1,...,l_m$ est libre \Leftrightarrow l'application $E \to \mathbb{R}^m, v \mapsto (l_1(v),...,l_m(v))$ surjective.