Examen 1 – Durée 180 min – le mercredi 25 mai 2022

La notation tiendra compte du soin apporté à la rédaction des réponses. Les réponses mal justifiées ne permettront pas d'obtenir tous les points. L'énoncé comporte 5 exercices.

Exercice 1. Une forme quadratique.

Soit
$$A = \begin{pmatrix} 0 & 1 & 2 \\ 1 & 0 & 1 \\ 2 & 1 & 0 \end{pmatrix}$$
.

- 1. Déterminer la signature de la forme quadratique associée à la matrice A.
- 2. Déterminer une matrice inversible P et une matrice diagonale D avec des coefficients ± 1 telles que :

$^{t}PAP = D.$

Exercice 2. Géométrie affine.

Soit \mathcal{E} un espace affine sur \mathbb{R} de direction E. Une application affine $s: \mathcal{E} \to \mathcal{E}$ est appelée symétrie si $s \circ s = \mathrm{Id}_{\mathcal{E}}$. Elle est dite centrale de centre I si I est son unique point fixe.

- (I) Soit Γ l'ensemble des applications affines $f: \mathcal{E} \to \mathcal{E}$ telles que $\overrightarrow{f} \in \{ \mathrm{Id}_E, -\mathrm{Id}_E \}$.
 - 1. Montrer que Γ est un sous-groupe du groupe affine de \mathcal{E} et que Γ est la réunion des translations et des symétries centrales de \mathcal{E} .
 - 2. Soient f, g deux symétries centrales de centres respectifs A et B. Montrer que $g \circ f$ est une translation et donner le vecteur de cette translation en fonction de A et B.
 - 3. Soit s une symétrie centrale de centre A et t une translation de vecteur u. Justifier que $s \circ t$ et $t \circ s$ sont des symétries centrales et donner leur centre en fonction de A et u. Donner une condition nécessaire et suffisante pour que s et t commutent.
- (II) Soient $P_1, \dots P_n$, n points de l'espace affine \mathcal{E} . On se pose le problème suivant : Peut-on trouver n points M_1, \dots, M_n de \mathcal{E} tels que pour tout $i \leq n-1$, P_i soit le milieu du segment $[M_i, M_{i+1}]$ et P_n le milieu du segment $[M_n, M_1]$? Voici une manière de répondre. Soit s_i la symétrie de centre P_i .
 - 1. En supposant le problème résolu, montrer que pour tout $i \geq 2$, $M_i = s_{i-1} \circ s_{i-2} \circ \cdots \circ s_1(M_1)$.
 - 2. En déduire que le problème admet une solution si et seulement si $s_n \circ s_{n-1} \circ \cdots \circ s_1$ admet un point fixe.
 - 3. Montrer que si n est impair alors il y a une solution unique au problème.
 - 4. Si n est pair, donner une condition nécessaire et suffisante pour qu'il existe au moins une solution. Est-elle unique?
 - 5. Illustration sur $E = \mathbb{R}^2$: Faire la construction explicite pour $P_1 = (-1, 1), P_2 = (0, 1/2), P_3 = (1, 1), P_4 = (1, -1), P_5 = (-1, -1).$
 - 6. Montrer que pour que quatre points soient les milieux des côtés d'un quadrilatère il faut et il suffit qu'ils soient les sommets d'un parallélogramme.

Exercice 3. Polynômes irréductibles.

Soit
$$P(X) = X^3 - 3X + 1$$
.

- 1. Montrer que P est irréductible sur \mathbb{Q} .
- 2. Montrer que $2\cos\frac{2\pi}{9}$ est racine de P. Indication. $\forall x \in \mathbb{R}, \cos 3x = 4\cos^3 x 3\cos x$.
- 3. Quel est la dimension du corps $\mathbb{Q}(\cos\frac{2\pi}{9})$ comme \mathbb{Q} —espace vectoriel sur \mathbb{Q} ? En donner une base.

Exercice 4. Idéaux maximaux de $\mathbb{C}[X_1,\ldots,X_n]$.

- 1. Soit $\mathbb{C}(X)$ le corps des fractions rationnelles. Montrer que la famille $\left(\frac{1}{X-z}\right)_{z\in\mathbb{C}}$ est libre.
- 2. Soit $\mathbb{C}[X_1,\ldots,X_n]$ l'anneau des polynômes en n variables avec $n\in\mathbb{N}$ non nul. Soient a_1,\ldots,a_n n nombre complexes. Montrer que (X_1-a_1,\ldots,X_n-a_n) est un idéal maximal de $\mathbb{C}[X_1,\ldots,X_n]$.

On se propose de montrer que tout idéal maximal est de ce type.

- 3. Ecrire $\mathbb{C}[X_1,\ldots,X_n]$ comme une réunion dénombrable d'espaces vectoriels de dimension finie.
- 4. Soit \mathcal{I} un idéal de $\mathbb{C}[X_1,\ldots,X_n]$. Montrer que $\mathbb{C}[X_1,\ldots,X_n]/\mathcal{I}$ est une réunion dénombrable d'espaces vectoriels de dimension finie.
- 5. Soit $\mathcal M$ un idéal maximal de $\mathbb C[X_1,\dots,X_n]$ et

$$\phi_i: \mathbb{C}[X_i] \longrightarrow \mathbb{C}[X_1, \dots, X_n]/\mathcal{M}$$
 $P \longmapsto P + \mathcal{M}$

On suppose que ϕ_i est injectif.

- 6. Montrer que ϕ_i s'étend alors en un morphisme injectif de $\mathbb{C}(X_i)$ dans $\mathbb{C}[X_1,\ldots,X_n]/\mathcal{M}$.
- 7. En utilisant les questions 1 et 3 aboutir à une contradiction. On suppose désormais que $\operatorname{Ker}(\phi_i) = (P_i)$ avec P_i polynôme unitaire.
- 8. Montrer que le degré de P_i vaut 1. On écrit $P_i = X_i z_i$ avec $z_i \in \mathbb{C}$.
- 9. Montrer que $\mathcal{M} = (X z_1, \dots, X z_n)$.

Exercice 5. Un anneau Soit $A = \mathbb{Z} + \mathbb{Z}\sqrt{2}$.

- 1. Montrer que A est un sous-anneau de \mathbb{R} .
 - 2. L'élément $1 + \sqrt{2}$ est-il inversible dans A?
 - 3. Montrer que l'application

$$N: A \to \mathbb{Z}, a + b\sqrt{2} \longmapsto a^2 - 2b^2$$

(si $a, b \in \mathbb{Z}$) est multiplicative. En déduire que si $a, b \in \mathbb{Z}$, alors :

$$a + b\sqrt{2} \in A^{\times} \Leftrightarrow a^2 - 2b^2 = \pm 1.$$

4. Soient $a, b \in \mathbb{F}_3$. Montrer que

$$a^2 - 2b^2 = 0 \Leftrightarrow a = b = 0.$$

En déduire que le quotient

$$K = A/(3)$$

est un corps. Quel est son cardinal?

- 5. Montrer que l'élément $1+\sqrt{2} \mod 3$ engendre le groupe des inversibles K^{\times} .
- 6. Montrer que l'idéal $(3, X^2 2)$ de $\mathbb{Z}[X]$ est maximal. Est-il principal?
- 7. Déterminer les polynômes unitaires irréductibles de degré 2 sur le corps \mathbb{F}_3 . En déduire la factorisation de X^9-X en produit d'irréductibles sur \mathbb{F}_3 .
- 8. Montrer que pour chaque polynôme P de degré 2 irréductible sur \mathbb{F}_3 , $\mathbb{F}_3[X]/(P) \simeq K$.