FICHE N°4:

Exercice 1.

- 1. Montrer que tout sous-groupe de $(\mathbb{Z}, +)$ est de la forme $n\mathbb{Z}$ avec un entier strictement positif. En déduire l'identité de Bézout.
- 2. Montrer que (\mathbb{Q}^*, \times) n'est pas de type fini.
- 3. On considère le groupe $G = (\mathbb{R}, +)$
 - (a) Montrer que les sous-groupes de G sont soit monogènes soit dense.
 - (b) Donner un exemple d'un sous-groupe de G dense et de type fini.
 - (c) Tous les sous-groupes de G sont-ils de type fini ?

Exercice 2. Soit G le groupe additif $(\mathbb{Q}, +)$.

- 1. Montrer que pour tout $a \in \mathbb{Q}^*$, l'application $\mathbb{Q} \longrightarrow \mathbb{Q}, \ x \mapsto ax$ est un automorphisme de G.
- 2. En déduire que Aut(G) est isomorphe à \mathbb{Q}^* .

Exercice 3. Soit G un groupe est G_1, \dots, G_n ses sous-groupes.

- 1. Montrer que si les sous-groupes G_1, \dots, G_n satisfont
 - (a) pour $i \neq j$, tout élément de G_i et celui de G_j commutent et
 - (b) tout élément de G peut s'écrire comme le produit $x_1 \cdots x_n$ ($x_i \in G_i$) d'une manière unique, alors l'application suivante est un isomorphisme:

$$f: G_1 \times \cdots \times G_n \longrightarrow G; \qquad (x_1, \cdots, x_n) \longmapsto x_1 \cdots x_n.$$

- 2. Montrer que G est isomorphe au produit direct $G_1 \times G_2 \times \cdots \times G_n$ si et seulement si les trois conditions suivantes sont satisfaites:
 - (a) Pour tout $1 \leq i \leq n$, $G_i \triangleleft G$.
 - (b) $G = G_1 G_2 \cdots G_n$.
 - (c) Pour tout $1 < i \le n$, $(G_1 \cdots G_{i-1}) \cap G_i = \{e\}$.

Exercice 4.

- 1. Soit n un entier tel que n > 1. Montrer que le duale de $\mathbb{Z}/n\mathbb{Z}$ est isomorphe à $\mathbb{Z}/n\mathbb{Z}$.
- 2. Soit G_1, G_2 2 groupes finis et on pose $G = G_1 \times G_2$. Montrer que le duale \widehat{G} est isomorphe à $\widehat{G}_1 \times \widehat{G}_2$.
- 3. En déduire que le duale d'un groupe abélien fini G est isomorphe à G.

Exercice 5. Soit G un groupe fini. Montrer que \widehat{G} est isomorphe à $G^{ab} := G/[G,G]$.

- 1. Dans le cas $G = \mathbb{H}_8$, montrer que \widehat{G} est isomorphe au groupe de Klein V_4 .
- 2. Dans le cas $G = D_n$, montrer que \widehat{G} est isomorphe à V_4 si n est paire et à $\mathbb{Z}/2\mathbb{Z}$ si n est impaire.

Exercice 6. Soit n un entier strictement positif et \mathbb{K} un corps commutatif. Admettons le fait que $SL_n(\mathbb{F}_q)$ est engendré par les transvections

$$x_{i,j}(t) := \mathbf{1}_n + tE_{i,j}$$
 $t \in \mathbb{K}, \ 1 \le i \ne j \le n.$

- 1. Pour i, j, k distincts, calculer $x_{i,j}(a)x_{j,k}(b)x_{i,j}(a)^{-1}x_{j,k}(b)^{-1}$. Ensuite, dans le cas n = 2, calculer $\begin{pmatrix} c & 0 \\ 0 & c^{-1} \end{pmatrix} x_{i,j}(a) \begin{pmatrix} c & 0 \\ 0 & c^{-1} \end{pmatrix}^{-1} x_{i,j}(a)^{-1}$ pour (i,j) = (1,2) et (2,1).
- 2. En déduire que $D(SL_n(\mathbb{K})) = SL_n(\mathbb{K})$ si $(n, |\mathbb{K}|) \neq (2, 2), (2, 3)$. D'ici, on suppose que $(n, |\mathbb{K}|) \neq (2, 2), (2, 3)$.
- 3. Montrer que tout morphisme de $SL_n(\mathbb{K})$ dans \mathbb{C}^* est trivial.
- 4. (a) Montrer que pour tout morphisme $\chi: GL_n(\mathbb{K}) \longrightarrow \mathbb{C}^*$, il existe un unique $\overline{\chi}: \mathbb{K}^* \longrightarrow \mathbb{C}^*$ tel que $\chi = \overline{\chi} \circ \det$.
 - (b) Décrire $\overline{\chi}$ dans le cas $\mathbb{K} = \mathbb{C}$ et \mathbb{K} fini.

Exercice 7.

- a) Soit G un groupe d'ordre 12 non abélien. Montrer que G est un produit semi-direct et qu'il y a 3 possibilités (à isomorphisme près) (compter les 2-Sylow).
- b) Montrer que $\langle a,b : a^4 = b^3 = a^{-1}bab = 1 \rangle$ est d'ordre 12 et isomorphe au sous-groupe de $\mathrm{SL}_2(\mathbb{C})$ engendré par les matrices :

$$\left(\begin{array}{cc} 0 & 1 \\ -1 & 0 \end{array}\right), \left(\begin{array}{cc} j & 0 \\ 0 & j^2 \end{array}\right) .$$

- c) Montrer que $\langle a, b : a^2 = b^2 = (ab)^6 = 1 \rangle$ est d'ordre 12 et isomorphe au groupe diédral d'ordre 12.
- d) Vérifier que le groupe A_4 est la troisième possibilité.

Exercice 8. Montrer que \mathfrak{S}_5 possède un sous-groupe d'ordre 20.

Exercice 9. Soit G un groupe d'ordre 20 et n_2 le nombre de 2-Sylow sous-groupes de G.

- 1. Montrer qu'il existe un seul 5-Sylow sous-groupe S de G et que le nombre n_2 est égal à 1 ou 5.
- 2. Supposons que $n_2 = 1$ et notons le seul 2-Sylow sous-groupe de G par T.
 - (a) Montrons que G est isomorphe à $S \times T$.
 - (b) Déterminer les possibles structures de G.
- 3. Supposons que $n_2 = 5$ et notons un 2-Sylow sous-groupe de G par T. Montrer que $G \cong S \rtimes T$.

Exercice 10. Soit p un nombre premier. On pose : $\mathbb{F}_p := \mathbb{Z}/p\mathbb{Z}$

a) Montrer que le sous-groupe U de $\mathrm{SL}_2(\mathbb{F}_p)$ engendré par la matrice :

$$\left(\begin{array}{cc} 1 & 1 \\ 0 & 1 \end{array}\right)$$

est un p-Sylow.

- b) Déterminer le normalisateur de U dans $\mathrm{SL}_2(\mathbb{F}_p)$ et en déduire le nombre de p-Sylow de $\mathrm{SL}_2(\mathbb{F}_p)$.
- c) Soit G un groupe fini et P un p-Sylow de G. Montrer que NN(P) = N(P) et vérifier que c'est bien le cas pours $SL_2(\mathbb{F}_p)$.

Exercice 11. Soit p un nombre premier et $U=\{A=(a_{i,j})_{1\leq i,j\leq n}|a_{i,i}=1,\ a_{i,j}=0\ (i>j)\}$ un sous-groupe de $GL_n(\mathbb{F}_p)$. Soit G un p-sous-groupe de $GL_n(\mathbb{F}_p)$.

- 1. Montrer que U est un p-Sylow sous-groupe de $GL_n(\mathbb{F}_p)$.
- 2. En déduire que G est isomorphe à un sous-groupe de U.

Exercice 12. Soit p un nombre premier.

- 1. Calculer le nombre des éléments de \mathfrak{S}_p d'ordre p.
- 2. En déduire le nombre de p-Sylow sous-groupe de \mathfrak{S}_p .
- 3. A l'aide du théorème de Sylow, retrouver la formule de Wilson $(p-1)! \equiv -1 \mod p$.

Exercice 13. Soit G un groupe abélien fini et \widehat{G} le groupe des caractères de G. Pour $f \in \mathbb{C}G$, on définit la **transformée de Fourier** $\widehat{f} \in \mathbb{C}\widehat{G}$ par

$$\widehat{f}(\chi) := \sum_{x \in G} f(x) \chi(x) = |G| \langle f, \chi^{-1} \rangle.$$

Rappelons que l'on a relations d'orthogonalité:

I. Pour $\chi, \chi' \in \widehat{G}$, on a

$$\sum_{x \in G} \chi(x) \overline{\chi'(x)} = |G| \delta_{\chi, \chi'}, \quad \text{en particulier,} \quad \sum_{x \in G} \chi(x) = \begin{cases} |G| & \chi = 1, \\ 0 & \chi \neq 1. \end{cases}$$

II. Pour $x, y \in G$, on a

$$\sum_{\chi \in \widehat{G}} \chi(x) \overline{\chi(y)} = \begin{cases} |G| & x = y, \\ 0 & x \neq y \end{cases} \quad \text{ en particulier, } \quad \sum_{\chi \in \widehat{G}} \chi(x) = \begin{cases} |G| & x = 1, \\ 0 & x \neq 1. \end{cases}$$

3

On remarque que II. est un corollaire de I. grâce à la bidulaité $\widehat{\hat{G}}\cong G$. (Montrer-le.)

1. Soit N un entier tel que N > 1. Expliciter \hat{f} dans le cas $G = \mathbb{Z}/N\mathbb{Z}$. D'ici, on considère un groupe abélien fini général.

2. Montrer la formule d'inversion

$$f = \sum_{\chi \in \widehat{G}} \langle f, \chi \rangle \chi = \frac{1}{|G|} \sum_{\chi \in \widehat{G}} \widehat{f}(\chi) \chi^{-1}.$$

3. Montrer la formule de Plancherel

$$\langle \widehat{f}, \widehat{g} \rangle_{\widehat{G}} = |G| \langle f, g \rangle_{G}.$$

4. Pour $f,g\in\mathbb{C} G$, on définit le **produit de convolution** f*g de f et g par

$$(f*g)(x) = \sum_{y \in G} f(xy^{-1})g(y) = \sum_{y \in G} f(y)g(y^{-1}x).$$

Montrer la formule suivante:

$$\widehat{f * g} = \widehat{f} \ \widehat{g}.$$

Indication: Calculer $\langle f * g, \chi \rangle$ pour $\chi \in \widehat{G}$.

Soit H un sous-groupe de G. L'orthogonal de H, noté H^{\perp} , est défini par

$$H^{\perp} := \{ \chi \in \widehat{G} | \chi(H) = 1 \}.$$

- 5. Montrer que H^{\perp} est un sous-groupe de \widehat{G} et que $H^{\perp} \cong \widehat{G/H}$. En particulier, $|H^{\perp}| = |G|/|H|$.
- 6. Soit $f \in \mathbb{C}G$ et H un sous-groupe de G. Montrer la formule de Poisson

$$\sum_{x \in H} f(x) = \frac{1}{|H^{\perp}|} \sum_{\chi \in H^{\perp}} \widehat{f}(\chi).$$

Indication: Appliquer la formule de Plancherel en prenant pour g la fonction indicatrice de H.

Exercice 14. Soit G_i, H_i $(1 \le i \le 3)$ groupes abéliens. Supposons que les morphismes $f_i : G_i \longrightarrow H_i$ et le diagramme commutatif suivant avec les deux lignes exactes sont données:

$$G_1 \xrightarrow{a_1} G_2 \xrightarrow{a_2} G_3 \longrightarrow 0$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$0 \longrightarrow H_1 \xrightarrow{b_1} H_2 \xrightarrow{b_2} H_3$$

- 1. Montrer que $a_1(\operatorname{Ker} f_1) \subset \operatorname{Ker} f_2$ et que $a_2(\operatorname{Ker} f_2) \subset \operatorname{Ker} f_3$.
- 2. Posons $a_1':=a_1|_{\mathrm{Ker}f_1}$ et $a_2':=a_2|_{\mathrm{Ker}f_2}$. Montrer que la suite suivante est exacte:

$$\operatorname{Ker} f_1 \xrightarrow{a_1'} \operatorname{Ker} f_2 \xrightarrow{a_2'} \operatorname{Ker} f_3.$$

Montrer aussi que si a_1 est injectif, a'_1 l'est aussi.

Comme $b_1 \circ f_1(G_1) \subset \operatorname{Im} f_2$ et $b_2 \circ f_2(G_2) \subset \operatorname{Im} f_3$, ils induisent les morphismes

$$\overline{b_1}: \operatorname{Coker} f_1 \longrightarrow \operatorname{Coker} f_2, \qquad \overline{b_2}: \operatorname{Coker} f_2 \longrightarrow \operatorname{Coker} f_3.$$

3. Montrer que la suite suivante est exacte:

$$\operatorname{Coker} f_1 \xrightarrow{\overline{b_1}} \operatorname{Coker} f_2 \xrightarrow{\overline{b_2}} \operatorname{Coker} f_3.$$

Montrer aussi que si b_2 est surjectif, $\overline{b_2}$ l'est.

Maintenant, on va construire $\delta: \operatorname{Ker} f_3 \longrightarrow \operatorname{Coker} f_1$. Soit $z \in \operatorname{Ker} f_3$. Alors, il existe $y \in G_2$ tel que $z = a_2(y)$. Comme $0 = f_3(z) = f_3 \circ a_2(y) = b_2 \circ f_2(y)$, $f_2(y) \in \operatorname{Ker} b_2 = \operatorname{Im} b_1$. Donc, il existe un unique $x' \in H_1$ tel que $b_1(x') = f_2(y)$ car b_1 est injectif. Notons $\overline{x'}$ l'image de x' par la projection canonique $H_1 \twoheadrightarrow \operatorname{Coker} f_1$ et on pose $\delta(z) := \overline{x'}$.

4. Montrer que δ est bien-défini et que la suite suivante est exacte:

$$\operatorname{Ker} f_2 \xrightarrow{a_2'} \operatorname{Ker} f_3 \xrightarrow{\delta} \operatorname{Coker} f_1 \xrightarrow{\overline{b_1}} \operatorname{Coker} f_2.$$

5. En déduire que la suite suivante est exacte:

$$\operatorname{Ker} f_1 \xrightarrow{a_1'} \operatorname{Ker} f_2 \xrightarrow{a_2'} \operatorname{Ker} f_3 \xrightarrow{\delta} \operatorname{Coker} f_1 \xrightarrow{\overline{b_1}} \operatorname{Coker} f_2 \xrightarrow{\overline{b_2}} \operatorname{Coker} f_3.$$

En particulier, si a_1 est injectif a'_1 l'est aussi, et si b_2 est surjectif $\overline{b_2}$ l'est aussi.

Ce résultat est connu comme le lemme du serpent.

Exercice 15. Un groupe fini G qui possède une suit de sous-groupes

$$1 = H_0 \subset H_1 \subset \cdots \subset H_{n-1} \subset H_n = G$$

telle que $H_i \triangleleft H_{i+1}$ et que le groupe H_{i+1}/H_i soit abélien pour chaque i, est appelé **résoluble**.

- 1. Soit $1 \to G_1 \to G_2 \to G_3 \to 1$ une suite exacte. Montrer que G_2 est résoluble si et seulement si G_1 et G_3 le sont.
- 2. Montrer que les groupes suivants sont résolubles: \mathfrak{S}_n $(n \leq 4)$, D_n , \mathbb{H}_8 , p-groupes, groupes d'ordre pq, p^2q et pqr, où p, q et r sont nombres premiers distincts.
- 3. Montrer que tous les groupes d'ordre < 60 sont résolubles. Indication: On pourra utiliser Exercice 13 de la Fiche N°1.