Examen partiel vendredi 23 novembre 2012 durée: 2h

documents et calculatrices interdits

Soit D_4 le sous-groupe de $GL_2(\mathbb{R})$ engendré par les matrices :

$$S:=\left(\begin{array}{cc} 0 & 1 \\ 1 & 0 \end{array}\right), \ R:=\left(\begin{array}{cc} 0 & -1 \\ 1 & 0 \end{array}\right) \ .$$

(redaction)
1+ 2

1) Montrer que $D_4 \simeq \langle r, s : r^4 = s^2 = (sr)^2 = 1 \rangle$.

2) Montrer que tous les sous-groupes d'ordre 8 de \mathfrak{S}_4 sont isomorphes à D_4 (indication : on pourra considérer (1234) et (24)).

3) Combien y a-t-il de 2-Sylow dans \mathfrak{S}_4 ? Combien y a-t-il de 3-Sylow dans

4) Soit P un sous-groupe de \mathfrak{S}_4 d'ordre 8. On pose $N(P):=\{g\in G:gPg^{-1}=$ P}. Montrer que N(P) = P.

5) On rappelle que \mathfrak{A}_4 est le seul sous-groupe d'indice 2 de \mathfrak{S}_4 : INUTILE DE LE REDÉMONTRER. En déduire que \mathfrak{S}_4 est engendré par (1234) et (132).

6) Soit $G_1 := \langle a, b : a^4 = b^3 = (ab)^2 = 1 \rangle$. En utilisant la question précédente, montrer qu'il existe un morphisme surjectif $G_1 \to \mathfrak{S}_4$.

7) Montrer que dans G_1 , $bab = a^{-1}$ puis que $(ab^2)^4 = (b^2ab^2)^2 = 1$. 8) On note H_1 le sous-groupe de G_1 engendré par a et b^2ab^2 . Montrer qu'il existe un morphisme surjectif $D_4 \to H_1$.

4 , 5 9) Montrer que $G_1/H_1 = H_1 \cup bH_1 \cup b^2H_1$.

 $\mathcal{O}_{i} \subset 10$) En déduire que $|G_1| \leq 24$ et que $G_1 \simeq \mathfrak{S}_4$.

11) Soit H₈ le sous-groupe de SL₂(C) formé par les matrices :

$$\pm 1, \pm I, \pm J, \pm K$$

où
$$1:=\left(\begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array}\right), \ I:=\left(\begin{array}{cc} 0 & -1 \\ 1 & 0 \end{array}\right), \ J:=\left(\begin{array}{cc} i & 0 \\ 0 & -i \end{array}\right), \ K:=\left(\begin{array}{cc} 0 & \blacktriangleleft i \\ i & 0 \end{array}\right)$$

Montrer que \mathbb{H}_8 est isomorphe au groupe

$$\langle x, y : x^2 = y^2 = (xy)^2 \rangle .$$

Déterminer E l'ensemble des 6 éléments d'ordre 4 de \mathbb{H}_8 . Le groupe $\operatorname{Aut}(\mathbb{H}_8)$ agit sur E par :

 $\forall \phi \in Aut(\mathbb{H}_8), \forall x \in E, \phi.x := \phi(x)$.

tourner la page

- 3
- 13) Si $\phi \in \text{Aut}(\mathbb{H}_8)$, montrer que $\phi(-1) = -1$.

 Montrer que le stabilisateur de I est d'ordre ≤ 4 . En déduire que $|\text{Aut}(\mathbb{H}_8)| \leq 24$.
- 9
- 14) En utilisant la présentation de \mathbb{H}_8 de la question 11) ci-dessus, justifier l'existence de deux éléments $\phi_1,\phi_2\in \mathrm{Aut}(\mathbb{H}_8)$ tels que :

 $\phi_1: I \mapsto -J, J \mapsto I; \phi_2: I \mapsto -J, J \mapsto K$.

- 0
- 15) Montrer que dans $\operatorname{Aut}(\mathbb{H}_8)$, ϕ_1 est d'ordre 4, ϕ_2 d'ordre 3 et $\phi_1\phi_2$ d'ordre 2. En déduire qu'il existe un morphisme $\psi:\mathfrak{S}_4\to\operatorname{Aut}(\mathbb{H}_8)$ dont l'image contient ϕ_1,ϕ_2 .
- 16) Montrer que l'ordre de im ψ est divisible par 12. Montrer que \mathfrak{S}_4 n'a pas de sous-groupe distingué d'ordre 2 et en déduire que ψ est un isomorphisme.
 - 17) Soient $\sigma := (123)$, $\tau := (12) \in \mathfrak{S}_3$. On admet qu'il existe un morphisme de groupes $\Phi : \mathfrak{S}_3 \to \operatorname{Aut}(\mathbb{H}_8)$, tel que :

 $\Phi(\sigma): I \mapsto J, J \mapsto K \ \Phi(\tau): I \mapsto K, K \mapsto I$.

0,5

On considère le produit semidirect :

$$G := \mathbb{H}_8 \rtimes_{\Phi} \mathfrak{S}_3$$
.

quel est l'ordre de G?

18) Dans G calculer:

$$(I,\tau)^4, (J,\sigma)^3, ((I,\tau)(J,\sigma))^2$$
.

`

19) En déduire l'ordre de (I, τ) dans G et qu'il existe un morphisme surjectif : $G \to \mathfrak{S}_4$ (indication : montrer que $G/\langle (I, \tau)^4 \rangle \simeq \mathfrak{S}_4$).