VII — Anneaux euclidiens, exemples et contre-exemples

Exercice 1 Soit \mathbb{K} un corps commutatif et $A = \mathbb{K}[[X]]$ l'anneau des séries formelles d'une variable. Notons la valuation standard de A par ν .

- a) Quel sont les inversibles de A?
- b) Soit $P, Q \in \mathbb{K}[[X]]$ tels que $\nu(P) \leq \nu(Q)$. Montrer que P divise Q.
- c) En déduire que A est principal. L'anneau A est-il euclidien ?
- d) Montrer qu'il existe un et un seul idéal maximal. On le note par m.
- e) Montrer que pour tout idéal \mathfrak{a} de A, il existe $n \in \mathbb{N}^{\times}$ tel que $\mathfrak{a} = \mathfrak{m}^n$.
- f) Notons $\mathbb{K}((X))$ le corps des fractions de $\mathbb{K}[[X]]$.
 - (a) Montrer que $\mathbb{K}((X)) = \{ \sum_{k \in \mathbb{Z}} a_k X^k : \exists i \text{ t.q. } a_k = 0 \ (\forall k < i) \}.$
 - (b) En déduire que, pour tout $f \in \mathbb{K}((X))\setminus\{0\}$, $f \in \mathbb{K}[[X]]$ ou $f^{-1} \in \mathbb{K}[[X]]$.

Exercice 2 On sait que l'anneau $A = \mathbb{Z}\left[\frac{1+\sqrt{-19}}{2}\right]$ n'est pas euclidien. L'objectif est de montrer que A est principal.

- 1. Montrer que si a et b sont non nuls dans A, alors on peut trouver $q, r \in A$ tels que a = bq + r, ou 2a = bq + r, avec N(r) < N(b).
- 2. a) Montrer que $A \cong \mathbb{Z}[X]/(X^2 X + 5)$.
 - b) En déduire que $A/(2) \cong \mathbb{Z}/2\mathbb{Z}[X]/(X^2 + X + 1)$.
 - c) Montrer que (2) est un idéal maximal de A.
- 3. Soit I un idéal de A et b un élément non nul de I de norme minimale. Soit $a \in I$. On suppose que a = bq + r. Montrer que $a \in (b)$.
- 4. On suppose ici que 2a = qb + r.
 - a) Montrer que 2a = qb.
 - b) On suppose que 2 divise q. Montrer que $a \in (b)$.
 - c) On suppose maintenant que 2 ne divise pas q.
 - a) Montrer que 2 divise b. On pose $b' := \frac{1}{2}b$.
 - b) Montrer que 2 et q engendrent A comme idéal. En déduire que $b' \in I$.
 - c) Conclure.

Exercice 3 Montrer que $\mathbb{Z}[\sqrt{-2}], \mathbb{Z}\left[\frac{1+\sqrt{-3}}{2}\right]$ et $\mathbb{Z}\left[\frac{1+\sqrt{-7}}{2}\right]$ sont des anneaux euclidiens.

Exercice 4 Calculer le reste de la division euclidienne de $(\cos \theta + X \sin \theta)^n$ par $X^2 + 1$ dans $\mathbb{R}[X]$.

Exercice 5 Soit A un anneau euclidien et ν un stathme associé. Soit $S \subseteq A$ une partie qui ne contient pas 0, qui contient 1 et qui est stable par produit. Montrer que l'anneau

$$S^{-1}A := \{a/s : a \in A, s \in S\}$$

est euclidien pour $\nu'(x) := \inf \{ \nu(kx) : k \in S, kx \in A \}.$

Exercice 6 Soit A un anneau intègre.

Montrer que si A est euclidien, il existe $x \in A$ non inversible tel que $A^{\times} \cup \{0\} \to A/(x)$, $a \mapsto a \mod x$ est surjective (indication : si A n'est pas un corps, si ν est un stathme pour A, choisir x non inversible avec $\nu(x)$ minimal).

Exercice 7 Soit $A := \mathbb{R}[X, Y]/(X^2 + Y^2 + 1)$.

- a) Montrer que si $P \in \mathbb{R}[X,Y]$, alors $P = a(X)Y + b(X) \mod X^2 + Y^2 + 1$ pour certains $a,b \in \mathbb{R}[X]$.
- b) Montrer que l'on peut toujours trouver une solution $(x,y) \in \mathbb{C}^2$ au système :

$$\begin{cases} x^2 + y^2 + 1 = 0 \\ a(x)y + b(x) = 0 \end{cases}$$

si b est non constant ou a non nul et en déduire que $A^{\times} = \mathbb{R}^{\times}$.

- c) Montrer que A n'est pas euclidien.
- d) Montrer que tous les idéaux premiers non nuls de A sont principaux et maximaux (indication : montrer qu'un idéal premier \mathfrak{p} de $\mathbb{R}[X,Y]$ qui contient strictement $X^2 + Y^2 + 1$ est de la forme $\mathfrak{p} = (X^2 + Y^2 + 1, aX + bY + c)$ pour certains $a, b, c \in \mathbb{R}$ avec a ou b non nul).
- e) Soit I un idéal non principal tel que dim A/I soit minimale. Montrer que $I \subseteq (p)$ pour un certain p premier et que $J := \{x \in A : xp \in I\}$ est un idéal contenant I strictement (indication : soit $x \in I$ non nul tel que dim A/x est minimale, montrer que $x/p \in J \setminus I$). En déduire que J est principal engendré par un certain $a \in A$. Trouver une contradiction (indication : I = (pa)).
- f) Conclusion?