Feuille de TD no 2

Exercice 1 un polynôme de groupe de Galois $\mathbb{Z}/4\mathbb{Z}$ Soit $x = \sqrt{2 + \sqrt{2}}$.

- a) Déterminer le polynôme minimal P de x sur \mathbb{Q} .
- b) Déterminer toutes les racines de P. On les note x_1, x_2, x_3, x_4 , où $x_1 = x$.
- c) Montrer que $Q(x) = \mathbb{Q}(x_1, x_2, x_3, x_4)$
- d) Montrer que le groupe $\operatorname{Aut}\mathbb{Q}(x)$ est cyclique d'ordre 4 engendré par l'automorphisme $\theta: x \mapsto \sqrt{2-\sqrt{2}}$.

Exercice 2 un polynôme de groupe de Galois \mathfrak{S}_3

On pose
$$x_1 = \sqrt[3]{2}$$
, $x_2 = j\sqrt[3]{2}$, $x_3 = j^2\sqrt[3]{2}$.
Soit $G = \text{Aut}\mathbb{Q}(x_1, x_2, x_3)$.

- a) Montrer que $\mathbb{Q}(x_1, x_2, x_3) = \mathbb{Q}(\sqrt[3]{2}, j)$ et en déduire $[\mathbb{Q}(x_1, x_2, x_3) : \mathbb{Q}]$.
- b) Montrer que l'application $G \to \mathfrak{S}_{x_1,x_2,x_3}$, $g \mapsto g|_{\{x_1,x_2,x_3\}}$ est bien définie et que c'est un morphisme injectif de groupes.
- c) Justifier l'existence de $\sigma \in G$ tel que $\sigma(\sqrt[3]{2}) = j\sqrt[3]{2}$ et $\sigma(j) = j$ et de $\tau \in G$ tel que $\tau(j) = j^2$ et $\tau(\sqrt[3]{2}) = \sqrt[3]{2}$.
- d) Après avoir déterminé les images de σ, τ dans $\mathfrak{S}_{\{x_1, x_2, x_3\}}$, montrer que $G = \langle \sigma, \tau \rangle$.
- e) Trouver un polynôme rationnel P de degré 6 qui annule $\sqrt[3]{2} + j$.
- f) Montrer que les $g(\sqrt[3]{2}+j)$, $g \in G$ sont deux à deux distincts et que ce sont les racines de P!. En déduire que P est irréductible et que $\mathbb{Q}(\sqrt[3]{2}+j) = \mathbb{Q}(x_1, x_2, x_3)$.

Exercice 3 un polynôme de groupe de Galois \mathfrak{S}_n Soit $P(X) = X^n - X - 1$.

- a) Montrer que P n'a pas de racine dans \mathbb{Q} .
- b) Montrer que les racines complexes de P sont simples.
- c) Si Q est un polynôme à coefficients entiers qui divise P, on pose $S(Q) = \sum_{z} (z \frac{1}{z})$ où z décrit les racines de Q. Montrer que $S(Q) \in \mathbb{Z}$.
- d) Soit z une racine de P. On pose $z = re^{i\theta}$ où r > 0 et $\theta \in \mathbb{R}$. Montrer que $r \neq 1$ puis que $2\text{Re}(z \frac{1}{z}) > \frac{1}{r^2} 1$.
- e) Montrer que $S(Q) \geq 1$.
- f) En déduire que P est irréductible sur \mathbb{Q} .

Exercice 4 le corps $\mathbb C$ est algébriquement clos

 (H_n) tout polynôme réel de degré $2^n q$ où q est impair a une racine dans \mathbb{C} .

- a) Montrer que (H_0) est vraie. On suppose que (H_{n-1}) est vraie, $n \ge 1$.
- b) Soit P un polynôme réel de degré $d=2^nq$, q impair irréductible sur \mathbb{R} . On note $x_1, ..., x_d$ ses racines dans K une extension de \mathbb{C} . Montrer que les x_i sont deux à deux distinctes et que pour tout $c \in \mathbb{R}$, il existe $1 \le i < j \le d$ tel que $z_c = x_i + x_j + cx_i x_j \in \mathbb{C}$.
- c) En déduire l'existence d'un couple $1 \le i < j \le d$ tel que $x_i + x_j$ et $x_i x_j \in \mathbb{C}$. En déduire que l'un des $x_i \in \mathbb{C}$.
- d) Montrer que C est algébriquement clos.

Exercice 5 $\cos\left(\frac{2\pi}{17}\right)$

Soit $\zeta=e^{\frac{2i\pi}{17}}.$ On note $G=\operatorname{Aut}(\mathbb{Q}(\zeta))$ et θ l'automorphisme

$$\mathbb{Q}(\zeta) \longrightarrow \mathbb{Q}(\zeta)$$

$$\zeta \longmapsto \zeta^3$$
.

Si $H \leq G$ est un sous-groupe, on posera

$$\zeta_H = \sum_{h \in H} h(\zeta) .$$

On notera H_d l'unique sous-groupe de G d'ordre d si d|16.

- a) Déterminer le polynôme minimal de ζ sur \mathbb{Q} . En déduire que θ est bien défini et que c'est un automorphisme.
- b) Montrer que $G = \langle \theta \rangle$.
- c) Exprimer ζ_{H_8} et $\theta(\zeta_{H_8})$. Indication : $(X \zeta_{H_8})(X \theta(\zeta_{H_8})) = X^2 + X 4$.
- d) Exprimer ζ_{H_4} et $\theta^2(\zeta_{H_4})$. Indication : $(X \zeta_{H_4})(X \theta^2(\zeta_{H_4})) = X^2 \theta(\zeta_{H_8})X + 1$. En déduire $\theta(\zeta_{H_4})$.
- e) Exprimer ζ_{H_2} et $\theta^4(\zeta_{H_2})$. Indication : $(X \zeta_{H_2})(X \theta^4(\zeta_{H_2})) = X^2 \zeta_{H_4}X + \theta(\zeta_{H_4})$.
- f) Montrer que $2\cos\left(\frac{2\pi}{17}\right) =$

$$-\frac{1}{8} + \frac{1}{8}\sqrt{17} + \frac{1}{8}\sqrt{34 - 2\sqrt{17}} + \frac{1}{4}\sqrt{17 + 3\sqrt{17} - \sqrt{34 - 2\sqrt{17}} - 2\sqrt{34 + 2\sqrt{17}}} \ .$$

Exercice 6 construction d'une clôture algébrique

- a) Soit $K \leq L$ une extension algébrique. On suppose que tout polynôme irréductible sur $\mathbb K$ a une racine dans L. Montrer que L est algébriquement clos.
- b) En déduire que $\overline{\mathbb{Q}}=\{x\in\mathbb{C}:x \text{ est algébrique sur }\mathbb{C}\}$ est un corps algébriquement clos.
- c) Soit K un corps. On note I l'ensemble des polynômes irréductibles unitaires sur K. Pour tout $f \in I$ soit X_f une variable. Montrer que dans l'anneau $A = K[X_i : i \in I]$, l'idéal \Im engendré par les polynômes $f(X_f)$, $f \in I$ est propre.
 - Indication. Si (*) $\sum_{i=1}^{n} p_i f_i(X_{f_i}) = 1$ pour une certaine famille finie $p_1, ..., p_n \in A$ et $f_1, ..., f_n \in I$, alors considérer une extension K' de K où tous les f_i ont une racine $z_i \in K'$. Obtenir une contradiction en remplaçant dans l'égalité (*) chaque variabe X_{f_i} par z_i et les autres variables par 0 ...
- d) Soit m un idéal maximal de A qui contient \mathfrak{I} . Montrer que A/m est une extension algébrique de K. En déduire l'existence d'une extension algébrique algébriquement close pour tout corps K (théorème de Steinitz).