Feuille de TD no 8

Exercice 1 sur les corps cyclotomiques Soient m, n des entiers > 0. On note $m \wedge n$ et $m \vee n$ leurs pgcd et ppcm.

- a) Montrer que $\mathbb{Q}(\zeta_m, \zeta_n) = \mathbb{Q}(\zeta_{m \vee n})$. Indication. Montrer qu'il existe $u, v \in \mathbb{Z}$ tels que $\frac{u}{m} + \frac{v}{n} = \frac{1}{m \vee n}$.
- b) On suppose que $m \wedge n = 1$. Montrer que $[\mathbb{Q}(\zeta_m, \zeta_n) : \mathbb{Q}(\zeta_m)] \leq \varphi(n)$. En utilisant la question précédente, montrer que $[\mathbb{Q}(\zeta_m, \zeta_n) : \mathbb{Q}(\zeta_m)] = \varphi(n)$.
- c) Sous les hypothèses précédentes, montrer que le morphisme de restriction

$$\operatorname{Gal}\left(\mathbb{Q}(\zeta_m,\zeta_n)/\mathbb{Q}(\zeta_m)\right) \to \operatorname{Gal}\left(\mathbb{Q}(\zeta_n)/\mathbb{Q}(\zeta_m)\cap\mathbb{Q}(\zeta_n)\right)$$

est injectif. En déduire que $\mathbb{Q}(\zeta_m) \cap \mathbb{Q}(\zeta_n) = \mathbb{Q}$.

- d) Montrer que $\mathbb{Q}(\zeta_m) \cap \mathbb{Q}(\zeta_n) = \mathbb{Q}(\zeta_{m \wedge n}).$
- e) Donner un exemple de corps K où $K(\zeta_m) \cap K(\zeta_n) \neq K$ pour certains entiers m, n premiers entre eux. Par exemple considérer $K = \mathbb{Q}(\sqrt{3}), m = 3, n = 4$.

Exercice 2 toute extension quadratique est dans une extension cyclotomique

- a) Montrer que $\mathbb{Q}(\sqrt{2})$ est contenu dans une extension cyclotomique de \mathbb{Q} .
- b) Soit p un nombre premier impair. Montrer que $\Delta_{\Phi_P(X)} = \pm p^{p-2}$.
- c) En déduire que pour tout nombre premier impair p, $\mathbb{Q}(\sqrt{p})$ et $\mathbb{Q}(\sqrt{-p})$ sont contenus dans des extensions cyclotomiques de \mathbb{Q} .
- d) Montrer que toute extension quadratique de \mathbb{Q} est contenue dans une extension cyclotomique de \mathbb{Q} .