FEUILLE DE TD N° 13 SUR LE THÉORÈME DES ZÉROS DE HILBERT

Exercice 1 un exemple d'anneau non nœthérien

Soit $A = \left\{ \sum_{i=0}^{n} a_i \frac{X^i}{i!} : n \in \mathbb{N}, \forall i, a_i \in \mathbb{Z} \right\}.$

- a) Montrer que l'anneau A est un sous-anneau de $\mathbb{Q}[X]$.
- b) Montrer que la suite d'idéaux $I_n = (X, ..., \frac{X^n}{n!})$ est croissante.
- c) Montrer que si p est premier, alors $I_{p-1} \neq I_p$.
- d) En déduire que A n'est pas nøthérien.
- e) Montrer que $I_5 = I_6$.

Exercice 2 nombre minimal arbitraire de générateurs

Montrer que dans $\mathbb{C}[X,Y]$, l'idéal $(X,Y)^n$ peut être engendré par n+1 éléments mais pas moins. *Indication. Considérer le* \mathbb{C} -espace vectoriel $(X,Y)^n/(X,Y)^{n+1}$.

Exercice 3 sous-ensembles algébriques affines

Si $V \subseteq \mathbb{C}^n$, on pose $I(V) = \{ f \in \mathbb{C}[X_1, ..., X_n] : \forall v \in V, f(v) = 0 \}.$

- a) Montrer que $V\subseteq \mathbb{C}^n$ est un sous-ensemble algébrique affine si et seulement si V=V(I(V)).
- b) Soit $E \leq \mathbb{C}^n$ un sous-espace vectoriel. Montrer que E est un sous-ensemble algébrique affine.
- c) Soit $V = \{(t^2, t^3) : t \in \mathbb{C}\}$. Trouver un élément non nul de l'idéal I(V) et déterminer I(V). Montrer que V est un sous-ensemble algébrique affine de \mathbb{C}^2 . Indication montrer que V = V(I(V)).

Soit $P(X,Y)=Y^2-X^3$. Soit I=(P). On a pour tout $t\in\mathbb{C},\ P(t^2,t^3)=(t^3)^2-(t^2)^3=0$. Donc $P\in I(V)$. Montrons que (P)=I(V). Soit $Q(X,Y)\in I(V)$. On peut faire une division euclidienne de Q par P dans l'anneau $\mathbb{C}[X][Y]$ (car P est unitaire vu comme polynôme en la variable Y à coefficients dans l'anneau $\mathbb{C}[X]$. On a : Q=P.A(X,Y)+R(X,Y) où R(X,Y)=a(X)Y+b(X) pour certains polynômes $a(X),b(X)\in\mathbb{C}[X]$.

On a pour tout $t \in \mathbb{C}$, $0 = Q(t^2, t^3) = P(t^2, t^3) A(t^2, t^3) + a(t^2) t^3 + b(t^2) = 0$. Donc :

$$\forall t \in \mathbb{C}, \, a(t^2)t^3 = -b(t^2) \ .$$

Le terme de gauche est une fonction impaire en t et celui de droite est une fonction paire en t. Donc les deux sont nuls :

$$a(t^2)t^3 = 0 = b(t^2)$$

Donc a=b=0 dans $\mathbb{C}[X]$ et Q=P.A(X,Y) dans $\mathbb{C}[X,Y]$ i.e. $Q\in (P)$. Montrons que V=V(P). On a bien sûr $V\subseteq V(P)$. Réciproquement, si $(x,y)\in V(P)$, alors $x^3=y^2$. Si x=0, on a y=0 donc $(x,y)=(0^2,0^3)\in V$. Si $x\neq 0$, posons $t=\frac{y}{x}$. On a :

$$y = tx \Rightarrow y^2 = t^2x^2 = x^3 \Rightarrow t^2 = x$$

 $\Rightarrow y = t^3$

donc $(x, y) = (t^2, t^3) \in V$.

- d) Soit $V = \{(t, t^2, t^3) : t \in \mathbb{C}\}$. Montrer que $V = V(Y X^2, Z X^3)$. Montrer que $\mathbb{C}[X, Y, Z]/(Y X^2, Z X^3) \simeq \mathbb{C}[T]$. En déduire I(V).
- e) Soit $V=\{(t^3,t^4,t^5):t\in\mathbb{C}\}$. Montrer que $V=V(Y^2-XZ,X^2-YZ,X^2Y-Z^2)$. Montrer que $I(V)=(Y^2-XZ,X^2-YZ,X^2Y-Z^2)$.
- f) Montrer que $V = \{(x, xy) : x, y \in \mathbb{C}\}$ n'est pas un sous-ensemble algébrique affine de \mathbb{C}^2 .
- g) Montrer que $V = \{(t, \sin t) : t \in \mathbb{C}\}$ n'est pas un sous-ensemble algébrique de \mathbb{C}^2 . Indication. Montrer que si $P \in I(V)$, alors P(X,0) = 0. Supposons que $P \in \mathbb{C}[X,Y]$ vérifie $\forall t \in \mathbb{C}$, $P(t, \sin t) = 0$. Alors $\forall n \in \mathbb{Z}$, $P(n\pi,0) = 0$. Donc le polynôme $P(X,0) \in \mathbb{C}[X]$ s'annule une infinité de fois sur \mathbb{R} . Donc P(X,0) = 0. On a donc Y|P dans $\mathbb{C}[X,Y]$. Si V était un ensemble algébrique, on aurait V = V(I) pour un certain idéal I de $\mathbb{C}[X,Y]$. On au aurait alors $\forall P \in I$, $P \in (Y)$. Donc :

$$I \le (Y) \Rightarrow V(Y) = \mathbb{C} \times \{0\} \subseteq V(I) = V$$
.

Or, $(\frac{\pi}{2}, 1) \in V$ et $(\frac{\pi}{2}, 1) \notin V(Y)$. Absurde!

h) Montrer qu'un sous-ensemble algébrique affine de $\mathbb{A}^1=\mathbb{C}$ est soit \mathbb{A}^1 , soit fini, soit vide.

Exercice 4

Soit $I = \langle X^2 Y^3, XY^4 \rangle \leq \mathbb{C}[X, Y].$

- a) Déterminer V(I) et I(V(I).
- b) Déterminer \sqrt{I} .

Exercise 5 Soit $I = (X - Y, (X + Y)^2) \le \mathbb{C}[X, Y]$

- a) En utilisant le théorème des zéros de Hilbert, montrer que $X \in \sqrt{I}$. On a $V(I) = \{(x,y) \in \mathbb{C}^2 : x = y, (x+y)^2 = 0\} = \{(0,0)\}$. En particulier, le polynôme X s'annule sur V(I). D'après le théorème des zéros de Hilbert : $X \in I(V(I) = \sqrt{I}$.
- b) A-t-on $X \in I$? Indication. Non. Si $X \in I$, on aurait

$$X = A(X,Y).(X - Y) + B(X,Y).(X + Y)^{2}$$

pour certains polynômes $A,B\in\mathbb{C}[X,Y].$ Mais alors en remplaçant Y par X, on aurrait :

$$X = A(X,X).0 + B(X,X).(2X)^{2} = 4B(X,X)X^{2}$$

dans $\mathbb{C}[X]$. Absurde! car $X^2 \not| X$.

Exercice 6

Soit $P \in \mathbb{C}[X,Y]$.

Montrer que $X^2 + Y^2 - 1|P \text{ dans } \mathbb{C}[X,Y] \Leftrightarrow$

$$\forall t \in \mathbb{R}, P(\cos t, \sin t) = 0$$
.

^{†.} On peut montrer que I(V) ne peut pas être engendré par strictement moins de trois éléments. Cependant V peut être défini par deux équations : $V = V(XZ - Y^2, X^5 - 2X^2YZ + Z^3)$.

Exercice 7 Soit I un idéal de $\mathbb{C}[X_1,...,X_n]$. En utilisant le théorème des zéros de Hilbert, montrer que \sqrt{I} est l'intersection des idéaux maximaux qui contiennent I.

Exercice 8 une version du théorème des zéros de Hilbert pour les corps non algébriquement clos

Soit k un corps. Soit $B=k[x_1,...,x_n]$ une k-algèbre de type fini qui est un corps. Montrons par récurrence sur n que $x_1,...,x_n$ sont algébriques sur k.

- a) Montrer le résultat dans le cas où k est algébriquement clos (en utilisant le théorème des zéros de Hilbert).
- b) Montrer le cas n = 1.
- c) On suppose que le résultat est vrai pour $n-1, n \geq 1$. En particulier $x_2,...,x_n$ sont algébriques sur $k(x_1)$. Montrer qu'il existe $0 \neq f \in k[x_1]$ tel que $x_2,...,x_n$ sont entiers sur $k[x_1]_f = \{\frac{a}{f^N} : N \geq 0, a \in k[x_1]\}^{\dagger}$.
- d) En déduire que $k[x_1]_f$ est un corps.
- e) En déduire que x_1 est algébrique sur k et conclure!
- f) En déduire qu'une Z-algèbre de type fini qui est un corps est un corps fini.

^{†.} on dit que x est entier sur un anneau A s'il existe un polynôme unitaire dans A[X] qui annule x.