Fiche 6 9 avril 2014

Exercice 1 (Polynômes de Tchebytcheff).

On définit par récurrence les polynômes de Tchebytcheff dans $\mathbb{Z}[X]$.

$$T_0 = 1 \; ; \; T_1 = X \; ; \; \text{pour tout} \; \; n \in \mathbb{N} \; , \; T_{n+2} = 2XT_{n+1} - T_n \; \; .$$

I. Propriétés élémentaires :

Montrer les propriétés suivantes :

- 1. Pour tout $n \in \mathbb{N}^*$, T_n est un polynôme de degré n et de coefficient dominant 2^{n-1} . Pour tout $n \in \mathbb{N}$, $T_n(-X) = (-1)^n T_n(X)$.
- 2. Pour tout $z \in \mathbb{C}^*$ et tout $n \in \mathbb{N}$, $z^n + z^{-n} = 2T_n(\frac{z+z^{-1}}{2})$.
- 3. Pour tout $n \in \mathbb{N}$ et tout $\theta \in \mathbb{R}$, $\cos(n\theta) = T_n(\cos(\theta))$.
- 4. Pour tout $n \in \mathbb{N}^*$, les racines de T_n sont les $\cos((2k+1)\pi/(2n))$ où $0 \le k \le n-1$.

II. Sous-corps réels des extensions cyclotomiques : On fixe $n \in \mathbb{N}^*$ et définit $u = e^{2i\pi/n}$.

- 1. Montrer que $\mathbb{Q}(u)/\mathbb{Q}$ est une extension galoisienne.
- 2. Montrer que

$$\mathbb{Q}(u) \cap \mathbb{R} = \mathbb{Q}(u + u^{-1}) = \mathbb{Q}(\cos(2\pi/n)).$$

Si n est premier, alors montrer que $\mathbb{Q}(\cos(2\pi/n))/\mathbb{Q}$ est l'unique sous-extension de de $\mathbb{Q}(u)/\mathbb{Q}$ de degré $\frac{n-1}{2}$.

III. Polynôme minimal de $cos(2\pi/n)$ pour $n \ge 3$:

- 1. Soit $P \in \mathbb{C}[X]$ non constant et de terme constant non nul. Alors, les deux conditions suivantes sont équivalentes :
 - (a) Pour tout $z \in \mathbb{C}$, z est racine de P si et seulement si z^{-1} est racine de P;
 - (b) Soit pour tout $0 \le k \le n$, $a_{n-k} = a_k$, soit pour tout $0 \le k \le n$, $a_{n-k} = -a_k$.
- 2. Montrer que pour $n \geq 3$, $\Phi_n(X)$ satisfait la première condition de (b) dans le point précédent et que son degré, $\varphi(n)$, est pair.
- 3. Montrer alors que si $\Phi_n(X)$ est de la forme

$$X^{\varphi(n)} + 1 + b_{\varphi(n)-1}(X^{\varphi(n)-1} + X) + \dots + b_{\frac{\varphi(n)}{2}+1}(X + X^{-1}) + b_{\frac{\varphi(n)}{2}}X^{\frac{\varphi(n)}{2}}$$

alors le polynôme minimal de $\cos(2i\pi/n)$ est

$$\frac{1}{2^{\frac{\varphi(n)}{2}}} \sum_{i=0}^{\varphi(n)/2} \left(b_{(\varphi(n)/2)-i} \ T_i(X) \right) ,$$

ou encore

$$\frac{1}{2^{\frac{\varphi(n)}{2}}} \left(b_{\frac{\varphi(n)}{2}} + \sum_{i=1}^{\varphi(n)/2} 2b_{(\varphi(n)/2)+i} T_i(X) \right) .$$

Exercice 2 (Extensions cyclotomiques : degré non premier).

- 1. Calculer $\Phi_{15}(X)$ et montrer que le polynôme minimal de $\cos(2\pi/15)$ sur \mathbb{Q} est le polynôme : $X^4 \frac{1}{2}X^3 X^2 + \frac{1}{2}X + \frac{1}{16}$.
- 2. Déterminer $\cos(2\pi/5)$. En déduire que $\mathbb{Q}(\sqrt{5})/\mathbb{Q}$ est une sous-extension de $\cos(2\pi/15)$.
- 3. Déterminer le polynôme minimal de $\cos(2\pi/15)$ sur $\mathbb{Q}(\sqrt{5})$.

Exercice 3 (Polynômes cyclotomiques : degré premier).

On fixe p premier et définit $u = e^{2i\pi/p}$. Soit p un nombre premier. Soient $u = e^{2i\pi/p}$ et H_f l'unique sous-groupe d'ordre f de $(\mathbb{Z}/p\mathbb{Z})^*$. On définit une f-période comme la somme :

$$u_{f,l} = \sum_{a \in lH_f} u^a$$

pour tout l premier à p.

1. Soient e, f des entiers positifs tels que ef = p-1. Soient $u_{f,l_1}, ..., u_{f,l_e}$ les différentes f-périodes. Montrer que

$$(X - u_{f,l_1}) \dots (X - u_{f,l_e})$$

est le polynôme minimal de toute f-période sur \mathbb{Q} .

2. Si $u_{(f,l)}, u_{(f,m)}$ sont des f-périodes avec p premier l, m alors vérifier que :

$$u_{(f,l)}u_{(f,m)} = \sum_{l' \in lH_f} u_{(f,l'+m)}$$
.

- 3. Dans le reste de l'exercice, on supposera que p=17. Montrer que 3 est un générateur de $(\mathbb{Z}/p\mathbb{Z})^*$ pour la multiplication.
- 4. Exprimer $u_{8,1}$ et $u_{8,3}$ en fonction de u et montrer que :

$$u_{8,1} + u_{8,3} = -1$$
 et $u_{8,1}u_{8,3} = -4$.

En déduire $u_{8,1}$ et $u_{8,3}$.

5. De même, montrer que les 4-périodes sont les racines des polynômes :

$$X^2 - u_{8,1}X - 1$$
 et $X^2 - u_{8,3}X - 1$

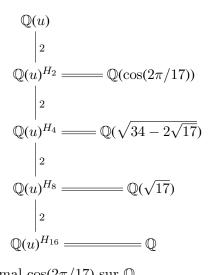
et en particulier que :

$$u_{4,1} = 1/4 \left(-1 + \sqrt{17} + \sqrt{34 - 2\sqrt{17}} \right) , \quad u_{4,2} = 1/4 \left(-1 + \sqrt{17} - \sqrt{34 - 2\sqrt{17}} \right) ,$$

$$u_{4,3} = 1/4 \left(-1 - \sqrt{17} + \sqrt{34 + 2\sqrt{17}} \right) .$$

6. Montrer que $u_{2,1}$ et $u_{2,4}$ sont racines de l'équation $X^2 - u_{4,1}X + u_{4,3} = 0$. En déduire que $\cos(2\pi/17) =$

$$-\frac{1}{16} + \frac{1}{16}\sqrt{17} + \frac{1}{16}\sqrt{34 - 2\sqrt{17}} + \frac{1}{8}\sqrt{17 + 3\sqrt{17} - \sqrt{34 - 2\sqrt{17}} - 2\sqrt{34 + 2\sqrt{17}}} .$$



7. Déterminer le polynôme minimal $\cos(2\pi/17)$ sur \mathbb{Q} .