Théorie de Galois

Alexis TCHOUDJEM
Institut Camille Jordan
Université Claude Bernard Lyon I
Boulevard du Onze Novembre 1918
69622 Villeurbanne
FRANCE

Villeurbanne, le 13 mai 2014

Table des matières

In	trod	uction	2
	0.1	Courbes rationnelles	4
	0.2	Fonction Zeta	4
1	Cou	urbes affines	6
	1.1	Ensembles algébriques affines	6
		1.1.1 Topologie de Zariski	6
		1.1.2 Théorème des zéros de Hilbert	6
		1.1.3 Correspondance entre idéaux radicaux et ensembles al-	
		gébriques affines	8
	1.2	Espaces topologiques irréductibles	6
	1.3	Espaces nœthériens	10
	1.4	Dimension	10
	1.5	Degré de transcendance	11
	1.6	Autre façon de définir la dimension	12
	1.7	Définition des courbes algébriques affines	13
	1.8	Applications régulières, isomorphismes	13
	1.9	Courbes rationnelles	16
2	Sing	gularités	18
	2.1	Multiplicité	18
	2.2	Anneaux des fonctions régulières au voisinage d'un point	19
	2.3	Caractérisation intrinsèque de la lissité	19
		2.3.1 Cas général	22
	2.4	Désingularisation	23
3	Anr	neaux de valuation discrète	23
	3.1	Valuations	23
	3.2	Ordre d'annulation	24
	3.3	Développements limités	25
4	Cou	rbes projectives	2 5
	4.1	Un peu de géométrie projective	25
		4.1.1 L'espace projectif	25
		4.1.2 Cartes affines	25
5	Feri	més de l'espace projectif	26
	5.1	Idéaux homogènes	27
	5.2	Théorème des zéros	27
6	Pro	priétés topologiques	28
7	Lo f	héorème fondamental de l'élimination projective	28

8	Produits d'espaces projectifs	29
9	Morphismes	29
10	Définition des courbes projectives planes 10.1 Dimension	30 30
11	Lien courbes affine / projectives 11.1 Courbes projectivement équivalentes	31 32
12	Points lisses et fonctions rationnelles	32
13	Coniques	34
14	Fonctions rationnelles	35
15	Applications (bi)rationnelles 15.1 Description à équivalence près des applications rationnelles	36 37 38 38
16	Prolongement des applications rationnelles sur les courbes lisses	20
	nsses	39
17	Multiplicité d'un point sur une courbe	39 41
18	Multiplicité d'un point sur une courbe Théorème de Bézout 18.1 Multiplicité d'intersection dans le cas affine	41 42 42 44 45 47

Cours du mercredi 22 Janvier 2014

Introduction

À l'origine de la géométrie algébrique est l'étude des solutions des systèmes d'équations polynomiales :

$$f_1(x_1, ..., x_n) = 0$$

:
 $f_r(x_1, ..., x_n) = 0$

où les $f_i \in k[X_1, ..., X_n]$ et k est un corps. On note $V(f_1, ..., f_n)$ l'ensemble des solutions du système.

Si les f_i sont linéaires, on obtient un sous-ev et sa « taille » est donnée par sa dimension. En général, on n'a pas un sous-ev mais on peut quand même généraliser la notion de dimension. On utilisera pour cela un lien important entre la géométrie et l'algèbre :

Si $g \in (f_1, ..., f_n)$, alors $V(g, f_1, ..., f_n) = V(f_1, ..., f_n)$. Donc $V(f_1, ..., f_n)$ ne dépend que de l'idéal I engendré par les f_i .

Peut-on retrouver I à partir de l'ensemble $V(f_1, ..., f_n)$?

Presque si le corps est algébriquement clos. Le théorème des zéros de Hilbert, que l'on démontrera bientôt, a pour conséquence :

si k est algébriquement clos, alors $\sqrt{I} := \{f \in k[X_1, ..., X_n] : \exists m > 0, f^m \in I\} = \{f \in k[X_1, ..., X_n] : f|_V = 0\}$. Et on peut définir la dimension à partir de l'algèbre quotient : $k[X_1, ..., X_n]/I$.

Cas où
$$r=1$$
, $n=2$.

Une courbe algébrique plane est un ensemble des points de $\mathbb{A}^2 = k^2$ (le plan affine) dont les coordonnées (x,y) vérifient une équation

$$(1) f(x,y) = 0$$

pour un certain polynôme $f \in k[X,Y]$. On considérera d'autres espaces ambiants que le plan affine. On appellera donc une telle courbe une courbe affine plane.

Le degré de l'équation (1) est le *degré* de la courbe ; une courbe de degré 2 est une *conique*, une courbe de degré 3 est une *cubique*, *etc*.

Exemples: $x^2 + y^2 = 1$, $y^2 = x^3$, $y^2 = x^3 + x^2$, $y^2 = x^3 - x$, xy = 1, xy = 0.

Comme l'anneau k[X,Y] est factoriel, un polynôme f se factorise en

$$f = f_1^{k_1} ... f_n^{k_n}$$

en produits de facteurs irréductibles deux à deux non proportionnels (de manière unique à un facteur constant non nul près).

La courbe X d'équation f=0 est la réunion des courbes X_i d'équations $f_i=0$. On dira qu'une courbe définie par un polynôme irréductible est une courbe irréductible. La décomposition $X=\cup_i X_i$ est la décomposition de X en composante irréductibles.

Si $k = \mathbb{R}$, le point (0,0) devrait être appelé une courbe car il est défini par l'équation $x^2 + y^2 = 0$ ou par $x^6 + y^6 = 0$. Une de ces équations est irréductible, l'autre est réductible. De telles ambiguïtés n'existent pas sur un corps algébriquement clos.

Lemme 0.1 Soient k un corps quelconque, $f \in k[X,Y]$ un polynôme irréductible, $g \in k[X,Y]$ un polynôme quelconque non divisible par f. Alors le système d'équations

$$f(x,y) = g(x,y) = 0$$

a un nombre fini de solutions.

Si k est un corps algébriquement clos, si $f \in k[X,Y]$ est non constant, alors l'équation f(x,y)=0 a une infité de solutions. On en déduit, dans ce cas, grâce au lemme qu'un polynôme irréductible f est entièrement déterminé (à multiplication par une constante près) par la courbe d'équation f(x,y)=0.

Le nombre de racines d'un polynôme dans k est égal au degré. Le célèbre théorème de Bézout généralise ce résultat en donnant le nombre de points d'intersection en fonction des degrés de f et g (si k est algébriquement clos) et en comptant les points à l'infini.

Si on considère le cas des coniques, on voit qu'il faut préciser certains détails notamment, tenir compte des points à l'infini.

0.1 Courbes rationnelles

Certaines courbes peuvent être paramétrées par des fonctions rationnelles.

Par exemple : $x^2 + y^2 = 1$, $y^2 = x^3 + x^2$.

On dit que ce sont des courbes rationnelles.

Exercice: la courbe $y^2 = x^3 - x$ n'est pas rationnelle.

0.2 Fonction Zeta

Soit \mathbb{F}_q le corps de cardinal q. Soit X une courbe irréductible d'équation f(x,y)=0 où $f\in \mathbb{F}_q[X,Y]$.

Pour tout n on note N_n le cardinal de $X(\mathbb{F}_{q^n})$. Pour tenir compte de tous les N_n , on considère la série $\sum_{n>1} N_n \frac{t^n}{n}$.

Théorème 0.2 (Weil-Dwork) La série $\exp\left(\sum_n N_n \frac{t^n}{n}\right)$ est une fonction rationnelle notée $Z_X(t)$.

Exemples: Si $X = (x^2 + y^2 = 1)$, alors $Z_X(t) = (1 - t)/(1 - qt)$ si $q = -1 \mod 4$, (1 + t)/(1 - qt) si $q = 3 \mod 4$.

Certains invariants connus de X se retrouvent dans $Z_X.$ Par exemple le genre ...

1 Courbes affines

1.1 Ensembles algébriques affines

Soit k un corps quelconque (commutatif quand même! quand même ...) Si $n \ge 1$, on note $\mathbb{A}^n(k)$ ou $\mathbb{A}^n := k^n$.

1.1.1 Topologie de Zariski

Si
$$S \subseteq k[X_1,...,X_n]$$
, on note $V(S) := \{x \in \mathbb{A}^n : \forall f \in S, f(x) = 0\}$
Remarque : $V(S) = V(\langle S \rangle)$.

Proposition 1.1 Les ensembles de la forme V(I), I idéal de k[X] sont les fermés d'une topologie de \mathbb{A}^n : la topologie de Zariski.

$$\begin{array}{ll} \textbf{D\'emonstration} & : \emptyset = V((1)), \ \mathbb{A}^n = V(0), \ V(I) \cup V(J) = V(IJ), \\ \bigcap_i V(I_i) = V(\sum_i I_i). & \textbf{Q.e.d.} \end{array}$$

Les fermés de \mathbb{A}^n pour la topologie de Zariski sont appelés des ensembles algébriques affines .

Ex.: les fermés de \mathbb{A}^1 sont les ensembles finis et \mathbb{A}^1 ; les fermés irréductibles de \mathbb{A}^2 sont les réunions finies de courbes algébriques planes irréductibles et de points.

1.1.2 Théorème des zéros de Hilbert

On dit qu'un morphisme d'anneaux $\phi: B \to A$ est fini si A est un $\phi(B)$ —module de type fini i.e. si A est une $\phi(B)$ — algèbre de type fini et si tous les éléments de A sont entiers sur $\phi(B)$.

Théorème 1.2 (de normalisation de Nöther) Soit A une k-algèbre de type fini. Il existe un entier $n \geq 0$ et un morphisme fini injectif $k[T_1, ..., T_n] \rightarrow A$.

Démonstration: Dans le cas où k est fini. Soient $a_1, ..., a_r$ des générateurs de A. On raisonne par récurrence sur r. Si $0 \neq F \in k[X_1, ..., X_r]$ annule $(a_1, ..., a_r)$, alors soit F_d la composante homogène non nulle de plus haut degré (=:d) de F. Puisque k est infini, il existe $t_1, ..., t_r \in k$ non tous nuls tels que $F_d(t_1, ..., t_r) \neq 0$. Quitte à renuméroter les a_i , on peut supposer $t_r \neq 0$. Comme F_d est homogène, on peut supposer $t_r = 1$. Alors $F(a_1, ..., a_r) = \underbrace{F_d(t_1, ..., t_{r-1}, 1)}_{\neq 0} a_r^d + termes de degré < d en <math>a_r$. Donc $A = \underbrace{F_d(t_1, ..., t_{r-1}, 1)}_{\neq 0} a_r^d + termes de degré < d en <math>a_r$.

 $k[a_1,...,a_r]$ est entier sur $k[a_1,...,a_{r-1}]$ et on peut appliquer l'hypothèse de récurrence à $k[a_1,...,a_{r-1}]$. Q.e.d.

Si
$$x \in \mathbb{A}^n$$
, on note \mathfrak{m}_x l'idéal $(X_1 - x_1, ..., X_n - x_n)$.

Exercice: $\mathfrak{m}_x = \ker(f \mapsto f(x))$ est un idéal maximal de $k[X_1, ..., X_n]$. Si k est algébriquement clos, ils sont tous de cette forme:

Corollaire 1.2.1 i) Soit A un corps qui est une k-algèbre de type fini. Alors A est une extension finie de k.

ii) Si k est algébriquement clos, si \mathfrak{m} est un idéal maximal de $k[X_1,...,X_n]$, il existe $x \in k^n$ tel que $\mathfrak{m} = \mathfrak{m}_x$.

Démonstration: i) soit $k[T_1,...,T_n] \to A$ un morphisme fini injectif. Alors A corps $\Leftrightarrow k[T_1,...,T_n]$ corps. Donc n=0.

ii) on a $A/\mathfrak{m}=k$ d'après i) et on pose $x:=(x_1,...,x_n)$ où $x_i:=X_i \bmod \mathfrak{m}$. Q.e.d.

Théorème 1.3 (des zéros de Hilbert) Soit A une k-algèbre de type fini. Alors A est un anneau de Jacobson i.e. : pour tout idéal premier $\mathfrak{p} \leq A$, on a :

$$\mathfrak{p} = \bigcap_{\substack{\mathfrak{m} \geq \mathfrak{p} \ \mathfrak{m} \ \mathrm{maximal}}} \mathfrak{m} \ .$$

Démonstration: En quotientant par \mathfrak{p} , il suffit de montrer que si A est intègre, $\bigcap \mathfrak{m} = 0$ lorsque \mathfrak{m} décrit les idéaux maximaux de A. Par l'absurde : soit $0 \neq x \in \bigcap \mathfrak{m}$. L'algèbre $A[x^{-1}]$ est de type fini sur k. Soit \mathfrak{n} un idéal maximal de $A[x^{-1}]$. Le corps $A[x^{-1}]/\mathfrak{n}$ est une extension finie de k d'après le corollaire. Donc $k \leq A/\mathfrak{n} \cap A \leq A[x^{-1}]/\mathfrak{n} \Rightarrow A/\mathfrak{n} \cap A$ est une k-algèbre intègre de dimension finie donc un corps \dagger . Donc $\mathfrak{n} \cap A$ est un idéal maximal de A donc contient x. Mais alors $x \in \mathfrak{n}$ ce qui est impossible acr x est inversible dans $A[x^{-1}]$. Q.e.d.

^{†.} Soit B une k-algèbre intègre de dimension finie comme k-espace vectoriel, soit $0 \neq b \in B$, la multiplication par $b: y \mapsto by$ est injective donc surjective! donc b a un inverse.

Cours du mercredi 29 Janvier 2014

1.1.3 Correspondance entre idéaux radicaux et ensembles algébriques affines

Définition 1 Soit I un idéal d'un anneau A. On pose $\sqrt{I} := \{x \in A : \exists n > 0, x^n \in I\}$.

Exemple: $\sqrt{(x^2, y)} = (x, y)$ dans k[x, y].

Remarque : $\sqrt{\sqrt{I}} = \sqrt{I}$.

On dit que I est un idéal radical si $\sqrt{I}=I.$ Les idéaux premiers sont radicaux

Proposition 1.4

$$\sqrt{I} = \bigcap_{\substack{\mathfrak{p} \geq I \ \mathfrak{p} \, \mathrm{premier}}} \mathfrak{p} \; .$$

On en déduit :

Proposition 1.5 Si A est une k-algèbre de type fini, alors pour tout I idéal de A, on a:

$$\sqrt{I} = \bigcap_{\substack{\mathfrak{m} \geq I \\ \mathfrak{m} \text{ maximal}}} \mathfrak{m} \ .$$

Si $Z \subseteq \mathbb{A}^n(k)$, on pose $I(Z) := \{ f \in k[T_1, ..., T_n] : f|_Z = 0 \}.$

Par exemple, $I(\emptyset) = (1)$ et $I(\mathbb{A}^n) = 0$.

Les idéaux I(Z) sont toujours radicaux!

Exercice: Si $Z\subseteq \mathbb{A}^n,$ alors $\overline{Z}=V(I(Z)).$ En particulier, si Z est fermé, Z=V(I(Z)).

Deux idéaux peuvent avoir le même ensemble de zéros : on a toujours $V(I) = V(\sqrt{I})$.

Supposons k algébriquement clos.

On a : $I(Z) = \bigcap_{x \in Z} \mathfrak{m}_x$.

Proposition 1.6 Si $I \leq k[T_1,...,T_n]$, alors $I(V(I)) = \sqrt{I}$

« Les points sont des idéaux maximaux! »

Corollaire 1.6.1 Les applications :

 $\{ id\acute{e}aux \ radicaux \ de \ k[T] \} \longleftrightarrow \{ ferm\'{e}s \ alg\'{e}briques \ de \ \mathbb{A}^n \}$

$$I \longmapsto V(I)$$

$$I(Z) \leftarrow$$

sont des bijections réciproques. Les restrictions donnent des bijections réciproques :

$$\{ id\acute{e}aux \ maximaux \ de \ k[T] \} \longleftrightarrow \{ points \ de \ \mathbb{A}^n \}$$

Par cette bijection, les idéaux premiers correspondent aux fermés irréductibles.

Exercice : si $Z \subseteq \mathbb{A}^n$ est un fermé algébrique, les points de Z sont en bijection avec les idéaux maximaux de $k[T_1,...,T_n]$ qui contiennent I(Z).

1.2 Espaces topologiques irréductibles

Définition 2 Un espace topologique non vide X est irréductible si X n'est pas réunion de deux fermés propres. Un fermé de X est irréductible s'il est irréductible pour la topologie induite.

Remarque : Cela revient à dire que deux ouverts non vides s'intersectent ou que tous les ouverts non vides sont denses.

Exemples:

a) Sur R, muni de la topologie usuelle, seuls les points sont irréductibles.

Proposition 1.7 i) Soit $f: X \to Y$ une application continue. Si $Z \subseteq X$ est irréductible, alors f(Z) aussi.

ii) $Si \ Y \subseteq Z \subseteq \overline{Y} \subseteq X$, alors Y irréductible $\Leftrightarrow Z$ irréductible.

Définition 3 Un sous-espace irréductible maximal de X est une composante irréductible de X.

Remarque: par le lemme de Zorn, toute partie irréductible de X est contenue dans une composante irréductible. De plus les composantes irréductibles sont fermées.

Proposition 1.8 Soit $Z \subseteq \mathbb{A}^n(k)$ un fermé. Alors Z irréductible $\Leftrightarrow I(Z)$ idéal premier.

En particulier, \mathbb{A}^n est irréductible.

Exercice : les fermés irréductibles de \mathbb{A}^2 sont les points, \mathbb{A}^2 et les V(f) où $f \in k[X,Y]$ est un polynôme irréductible.

Exercice: Soit $f \in k[X,Y]$. On note $f = f_1^{a_1}...f_n^{a_n}$ la décomposition en facteurs irréductibles de f où les f_i sont deux à deux premiers entre eux. Alors, $I(V(f)) = (f_1...f_n)$ et les $V(f_i)$ sont les composantes irréductibles de V(f).

1.3 Espaces nœthériens

Définition 4 Un espace topologique X est næthérien si toute suite décroissante de fermés est stationnaire.

Lemme 1.9 Soit X un espace topologique næthérien. Alors :

- (i) tout sous-espace de X est næthérien;
- (ii) tout ouvert de X est quasi-compact;
- (iii) Tout fermé de X a un nombre fini de composantes irréductibles.

Tout fermé de X est donc une union finie de composantes irréductibles.

Proposition 1.10 L'espace $\mathbb{A}^n(k)$ est næthérien.

Corollaire 1.10.1 Si I est un idéal radical de k[T], alors I est l'intersection d'un nombre fini d'idéaux premiers qui ne se contiennent pas deux à deux. L'ensemble de ces idéaux premiers est déterminé par I.

1.4 Dimension

Soit V un fermé algébrique affine de \mathbb{A}^n . On note $k[V] := \{f|_V: f \in k[T_1,...,T_n]\}$.

Remarque : $k[V] \simeq k[T_1,...,T_n]/I(V)$ est de type fini réduite.

Proposition 1.11 Si I est un idéal de k[V], on note $V_V(I) := \{x \in V : \forall f \in I, f(x) = 0\}$ et si $Z \subseteq V$, on note $I_V(Z) := \{f \in k[V] : \forall z \in Z, f(z) = 0\}$. On a:

$$I_v(V_V(I)) = \sqrt{I}$$

pour tout idéal I de k[V].

Démonstration: On utilise la bijection $J \mapsto J \mod I(V)$ entre les idéaux de $k[T_1, ..., T_n]$ contenant I(V) et les idéaux de k[V]. Q.e.d.

Définition 5

$$\dim V := \partial_k k[V]$$

 $:= \max\{r : \exists, x_1, ..., x_r \in k[V] \text{ algébriquement indépendants sur } k\}$.

Voici quelques propriétés :

Proposition 1.12 dim $V = 0 \Leftrightarrow V$ fini. Dans ce cas $|V| = \dim_k k[V]$.

Démonstration: si dim V=0, alors k[V] est de dimension finie sur k (tous les x_i , générateurs de k[V] sont lagébriques sur k). Si $\mathfrak{m}_1, ..., \mathfrak{m}_n$ sont des idéaux maximaux deux à deux distincts de k[V], alors $\dim_k k[V] \geq \dim_k k[V]/\mathfrak{m}_1 \cap ... \cap \mathfrak{m}_n = \sum_i \dim_k k[V]/\mathfrak{m}_i = n$. Donc il y a un nombre fini d'idéaux maximaux de $k[V]: \mathfrak{m}_1, ..., \mathfrak{m}_n$. Comme k[V] est réduite, $k[V] \simeq \oplus_i k[V]/\mathfrak{m}_i$ est de dimension n sur k. Q.e.d.

Proposition 1.13 *i)* $V_1 \leq V_2 \Rightarrow \dim V_1 \leq \dim V_2$;

- ii) si $F \leq V$, V irréductible, $\dim F = \dim V \Rightarrow F = V$;
- iii) si $V = V_1 \cup ... \cup V_r$ est la décomposition de V en composantes irréductibles, alors dim $V = \max \dim V_i$.

1.5 Degré de transcendance

Soit $k \leq K$ une extension de corps quelconque. si $x_1, ..., x_n \in K$ sont algébriquement indépendants sur k et si K est algébrique sur $k(x_1, ..., x_n)$, on dit que $\{x_1, ..., x_n\}$ est une base de transcendance de K sur k.

Proposition 1.14 i) Les bases de transcendance ont toutes le même cardinal : c'est le degré de transcendance de K/k;

ii) (théorème de la base incomplète) : si K est algébrique sur $k(a_1,...,a_n)$, si $a_1,....,a_m$ sont algébriquement indépendants sur k, $m \leq n$, alors il existe $1 \leq i_1 < ... < i_p \leq n$ tels que $a_1,...,a_m,a_{i_1},...,a_{i_p}$ forment une base de transcendance de K/k.

Exemple: $\operatorname{degtr}(k(X_1,...,X_n)/k) = n.$

Proposition 1.15 Soit $f \in k[T_1,...,T_n]$ non constant. Toutes les composantes irréductibles de $H_f := V(f)$ sont de dimension n-1.

Démonstration: Il suffit de traiter le cas où f est irréductible. Supposons par exemple que la variable T_n apparaît dans f. Notons $t_i := T_i \mod (f)$. Si $P \in k[T_1, ..., T_{n-1}]$, alors $P(t_1, ..., t_{n-1}) = 0$ dans $k[T_1, ..., T_n]/(f) = k[t_1, ..., t_n] \Rightarrow f|P$ dans $k[T_1, ..., T_n] \Rightarrow P = 0$ car $\deg_{T_n} f > 0$. Done $t_1, ..., t_{n-1}$ sont algébriquement indépendants. Donc $t_1, ..., t_{n-1}$ ou $t_1, ..., t_n$ est une base de transcendance de Frac $k[t_1, ..., t_n]$ sur k. Comme $f(t_1, ..., t_n) = 0$, c'est $t_1, ..., t_{n-1}$ qui est une base de transcendance. Q.e.d.

Proposition 1.16 Si V est un fermé algébrique irréductible de \mathbb{A}^n , alors $\dim V = \operatorname{degtr}_k(V)/k$ où $k(V) := \operatorname{Frack}[V]$.

En particulier si V est un sous-espace linéaire de k^n , on retrouve la dimension usuelle.

Cours du mercredi 5 février 2014

1.6 Autre façon de définir la dimension

Soit *I* un idéal de $k[T_1, ..., T_n]$. On pose $H_I(s) := \dim k[T_1, ..., T_n]_{\leq s}/I_{\leq s}$. Exemple : $H_0(s) = \binom{s+n}{n}$.

Proposition 1.17 Pour s assez grand, $H_I(s)$ est un polynôme en s.

Pour un *n*-uplet $\alpha = (\alpha_1, ..., \alpha_n)$, on notera $|\alpha| := \alpha_1 + ... + \alpha_n$.

Démonstration: Soit \leq un ordre total sur les monômes tel que si |a| < |b|, $T^a < T^b$. On note TD(f) le terme dominant d'un polynôme $f \in k[T_1,...,T_n]$ pour cet ordre et TD(I) l'idéal engendré par les TD(f), $f \in I$. Alors $H_I(s) = H_{TD(I)}(s)$ car les classes $T^\gamma \mod I$ (respectivement $\mod TD(I)$), où $|\gamma| \leq s$ et $T^\gamma \notin TD(I)$, forment une base de $k[T_1,...,T_n]_{\leq s}/I_{\leq s}$ (respectivement de $k[T_1,...,T_n]_{\leq s}/TD(I)_{\leq s}$). Or si on pose $A := k[T_1,...,T_n]$, si I,J sont des idéaux homogènes, on a une suite exacte de k-espaces vectoriels qui préserve les degrés :

$$0 \to A/I \cap J \to A/I \oplus A/J \to A/I + J \to 0$$

 $x \mapsto x \bmod I \oplus x \bmod J, \ x \oplus y \mapsto x - y$.

On montre ensuite que $H_{TD(I)}(s)$ est un polynôme en raisonnant par récurrence sur le nombre minimal de monômes générateurs de TD(I). On utilise pour cela, par exemple que si $I = \langle T^{\gamma_1}, ..., T^{\gamma_r} \rangle$ et si $J = \langle T^{\gamma} \rangle$, alors $I \cap J = \langle g_1, ..., g_r \rangle$ où $g_i = \operatorname{ppcm}(T^{\gamma_i}, T^{\gamma})$. Q.e.d.

Proposition 1.18 Si $A = k[T_1, ..., T_n]/I$ est une k-algèbre de type fini, si $k[X_1, ..., X_r] \rightarrow A$ est un morphisme injectif fini, alors $\deg H_I(s) = r = \partial_k(A)$.

Démonstration: Notons $f_1, ..., f_r$ les images respectives de $X_1, ..., X_r$. Soit $d := \max\{\deg f_i : 1 \le i \le r\}$. Alors $H_I(sd) \ge \dim k[X_1, ..., X_r]_{\le s} = \binom{s+r}{r}$. Donc $\deg H_I(s) \ge r$. Soit $B := k[f_1, ..., f_r]$. Le B-module A est de type fini donc $A = Bb_1 + ...Bb_N$ pour certains $b_i \in A$. On peut supposer, quitte à les ajouter, que parmi les b_i , il ya les $a_i := T_i \mod I$. De plus $b_i b_j = \sum_{k=1}^N b_{i,j}^k b_k$ pour certains $b_{i,j}^k \in B$. Si on note $q := \max\{b_{i,j}^k\}$, alors on a facilement par récirrence que $a_1^{\alpha_1} ... a_n^{\alpha_n} \in B_{\le |\alpha|d}b_1 + ... + B_{\le |\alpha|d}b_N$. Donc $\dim A_{\le s} \le N \dim B_{\le sd} = N\binom{sd+r}{r} = N\frac{(sd+1)...(sd+r)}{r!}$. D'où $\deg H_I(s) \le r$. Q.e.d.

Exercice: Si dim $V=d, V \leq \mathbb{A}^n$, il existe E un sous-espace de k^n de dimension d, un morphisme linéaire: $f: \mathbb{A}^n \to E$ tel que $f|_V: V \to E$ est

surjectif de fibres finies (indication: utiliser le théorème de normalisation de $N\ddot{o}ther$).

Exemple: A = k[X,Y]/(XY-1). $H_I(s) = \binom{s+2}{s} - \binom{s}{s-2} = 2s+1$. Posons $x := X \mod XY - 1$, $y := Y \mod XY - 1$. Alors x, -y sont solutions de l'équation $T^2 - (x - y)T - 1 = (T - x)(T + y) \in k[x - y][T]$; donc A est entier sur k[x-y] et x-y est algébriquement indépendant sur k. Et $\mathbb{A}^2 \to \mathbb{A}^1$, $(x,y) \mapsto x-y$ est surjective de fibres de cardinal 1 ou 2.

Définition des courbes algébriques affines

Définition 6 Soit $C \subseteq \mathbb{A}^n$ un fermé algébrique irréductible de dimension 1. On dit que C est une courbe algébrique affine irréductible. Si $f \in k[X,Y]$ est un polyn ôme non constant, on dit que V(f) est une courbe algébrique plane.

Conséquence : Les fermés propres des courbes irréductibles : points.

Exemple: $V(y^2-xy-x^2y+x^3)$ est une courbe algébrique plane, $\{(t^3,t^4,t^5):t\in\mathbb{A}^1\}=\{(x,y,z)\in\mathbb{A}^3:x^3=yz,y^2=xz,z^2=x^2y\}$ est une courbe algébrique irréductible.

Exercice: l'idéal I(C) de la courbe $C := \{(t^3, t^4, t^5) : t \in \mathbb{A}^1\}$ ne peut être engendré par moins de 3 éléments! néanmoins, la courbe C peut être définie par deux équations dans \mathbb{A}^3 !

indication: I(C) est engendré par x^3-yz, y^2-xz, z^2-x^2y car $k[x, y, z]/(x^3-y^2)$ $yz, y^2 - xz, z^2 - x^2y) = k[\overline{x}] + k[\overline{x}]\overline{y} + k[\overline{x}]\overline{z} \ donc \ k[x, y, z]/(x^3 - yz, y^2 - yz)$ $xz, z^2 - x^2y) \to k[t^3, t^4, t^5]$ est un iso. Et $C = V(g, f_2)$ où $g := \frac{f_2^3 + z^3 f_1}{y}$ (on $a:y \notin I(C) \Rightarrow g \in I(C)$).

Applications régulières, isomorphismes

Soit $f:U\to \mathbb{A}^1$ une fonction définie sur un ouvert U d'un fermé algébrique X de \mathbb{A}^n . On dit que f est régulière en $x \in U$ s'il existe un ouvert $x \in V \subseteq U$, $a, b \in k[X]$ tels que $\forall y \in V$, $b(y) \neq 0$ et f(y) = a(y)/b(y).

Notation : $\mathcal{O}_X(U)$ est l'algèbre des fonctions régulières sur l'ouvert U de X.

Voici une conséquence du théorème des zéros de Hilbert:

Proposition 1.19 Soit $X \subseteq \mathbb{A}^n$ un fermé algébrique.

- i) $\mathscr{O}_X(X) = k[X]$;
- ii) si $f \in k[X]$ est non nulle, alors $k[X_f] = k[X][f^{-1}]$ (où $X_f := \{x \in X : x \in X : x$ $f(x) \neq 0$ } et $k[X][f^{-1}]$ est l'algèbre des fonctions sur X_f engendrée par k[X] et la fonction $t \mapsto 1/f(t)$).

Contre-exemple : si $k = \mathbb{C}$, $\mathbb{A}^1 \to \mathbb{A}^1$, $x \mapsto e^x$ n'est pas régulière.

Exercice: $k[\mathbb{A}^2 \setminus \{0\}] = k[\mathbb{A}^2].$

Plus généralement, on dit que $F: U \to \mathbb{A}^n, x \mapsto (f_1(x), ..., f_n(x))$ est régulière si tous les $f_i: U \to \mathbb{A}^1$ le sont.

Définition 7 Si $X\subseteq \mathbb{A}^m$ et $Y\subseteq \mathbb{A}^n$, si $U\subseteq X$ et $V\subseteq Y$ sont des ouverts, un morphisme $f: U \to V$ est une application telle que $f: U \to \mathbb{A}^n$ est régulière. Un isomorphisme $f:U\to V$ est un morphisme bijectif dont l'application réciproque $f^{-1}: V \to U$ est aussi un morphisme.

Remarque importante : si $U = \bigcup_a U_a$ est un recouvrement ouvert, si

 $\forall a, f|_{U_a}: U_a \to \mathbb{A}^n$ est régulière, alors f est régulière. $Exemple: \mathbb{A}^1 \setminus \{0\} \to V(XY-1), t \mapsto (t, t^{-1})$ est un isomorphisme. $Contre\text{-}exemple: \mathbb{A}^1 \to V(Y^2-X^3), t \mapsto (t^3, t^2)$ est un morphisme bijectif qui n'est pas un isomorphisme.

Cours du mercredi 12 février 2014

Exercice : déterminer l'image de $f: \mathbb{A}^2 \to \mathbb{A}^2$, $(x,y) \mapsto (x,xy)$. Est-elle ouverte ? dense ? fermée ?

Remarque : Si $f:U\to V,\,g:V\to W$ sont des morphismes entre ouverts de fermés algébriques, alors $g\circ f:U\to W$ est aussi un morphisme.

Notation : soit $F:X\to Y$ un morphisme entre fermés algébriques. On note $F^*:k[Y]\to k[X],\,h\mapsto h\circ F$ le morphisme d'algèbres associé.

Proposition 1.20 (i) $F \mapsto F^*$ est une bijection entre les morphismes de variétés $X \to Y$ et les morphismes d'algèbres $k[Y] \to k[X]$;

(ii) L'application F est un isomorphisme si et seulement si $F^*: k[Y] \to k[X]$ est un isomorphisme de $k-alg\`ebres$.

Démonstration:

- i) On suppose que Y est un fermé de \mathbb{A}^N . Voici la réciproque : si ϕ : $k[Y] \to k[X]$ est un morphisme de k-algèbres, on pose $F_{\phi} := (f_1,, f_N)$ où les f_i sont les images par ϕ des fonctions coordonnées $T_i|_Y$, $1 \le i \le N$.
- ii) il suffit de vérifier que $(F \circ G)^* = G^* \circ F^*$.

Q.e.d.

 $\begin{aligned} &Exemple: \{(t^2,t^3,t^5)\,:\,t\in k\} = V(z-xy,y^2-x^3) \simeq V(y^2-x^3) \subseteq \mathbb{A}^2\\ &\text{est une courbe plane mais } \{(t^3,t^4,t^5)\,:\,t\in k\} = V(x^3-yz,y^2-xz,z^2-x^2y)\\ &\text{n'est pas isomorphe à une courbe plane}. \end{aligned}$

Exercice: on suppose k de caractéristique $\neq 2$. Montrer que $f: \mathbb{A}^1 \to X := V(Y^2 - X^2 - X^3), t \mapsto (t^2 - 1, t(t^2 - 1))$ induit un isomorphisme $f^*: k[X] \simeq A$ où A est la sous-algèbre de k[t] formé des g tels que g(1) = g(-1).

Proposition 1.21 soient U, V des ouverts de fermés algébriques affines. Soit $F: U \to V$ un morphisme. Alors F est continue et pour tout ouvert W de V, tout $f \in \mathcal{O}_V(W)$, $f \circ F \in \mathcal{O}_U(F^{-1}W)$.

Réciproquement, si $F: U \to V$ est une application continue telle que :

$$\forall f \in \mathscr{O}_V(W), f \circ F \in \mathscr{O}_U(F^{-1}W)$$

alors F est un morphisme.

Définition 8 (pôles d'une fonction rationnelle) Soit X un fermé algébrique irréductible. Soit $f \in k(X)$. On dit que f est régulière en $x \in X$ s'il existe $a, b \in k[X]$ tels que $b(x) \neq 0$ et f = a/b (dans k(X)). Dans ce cas, on pose f(x) := a(x)/b(x) (c'est indépendant du couple (a,b) choisi. Sinon, on dit que x est un pôle de f.

Exercice: Soit $X = V(x^2 + y^2 - 1)$. Alors $f := (1 + x)/y \in k(X)$ a pour pôle unique (1,0) (indication: f = y/(1-x) est régulière en (-1,0).

1.9 Courbes rationnelles

Définition 9 (Résultant) Soient $P := a_p X^p + + a_0, Q := b_q X^q + ... + b_0 \in A[X]$ où A est un anneau.

$$Soit \ \text{R\'es}_{p,q}(P,Q) := \left| \begin{array}{cccc} a_p & \dots & a_0 \\ & & \\ b_q & \dots & b_0 \end{array} \right| \in A \ \ \textit{(q lignes avec les coefficients)}$$

de P et p lignes avec ceux de Q : c'est un déterminant $p+q\times p+q$). C'est le résultant de P et Q.

 $\begin{array}{l} Remarques: \text{si } a_p = b_q = 0, \text{ alors R\'es}_{p,q} = 0 \,; \text{ si } \phi: A \to B \text{ est un morphisme} \\ \text{d'anneaux, alors } \phi(\text{R\'es}_{p,q}(P,Q)) = \text{R\'es}_{p,q}(P^\phi,Q^\phi) \,; \text{ R\'es}_{p,q}(P,Q) = a_p^q b_o^p + \\ (-1)^{(q-1)p} a_0^q b_q^p + \text{ des termes de degr\'es}$

Proposition 1.22 Soit k un corps algébriquement clos, soient P,Q de degrés $\leq p,q$. Alors :

$$R\acute{e}s_{p,q}(P,Q) = 0 \Leftrightarrow$$

P,Q ont une racine commune dans k ou $\deg P < p, \deg Q < q$.

Démonstration : Le résultant est le déterminant de la matrice de :

$$k[X]_{\leq q-1} \oplus k[X]_{\leq p-1} \longrightarrow k[X]_{\leq p+q-1}$$

$$U \oplus V \longmapsto PU + QV$$

dans les bases $(X^{q-1},...,1,X^{p-1},...,1)$ et $(X^{p+q-1},...,1)$. Q.e.d.

Théorème 1.23 Soient $F, G \in k(t)$. On suppose que F ou G est non constante. Alors il existe une unique courbe affine plane irréductible C qui contient l'image de :

$$t \mapsto (F(t), G(t))$$

de plus, « le paramétrage évite au plus un point de C »

Démonstration : Si F = A/B, G = C/D, on considère : Rés $(A - XB, C - YD) \in k[X, Y]$. Q.e.d.

 $Exemple: F(t)=(1-t^2)/(1+t^2),\ G(t)=2t/(1+t^2),\ R(X,Y)=R\acute{e}s_{2,2}(1-t^2-X(1+t^2),2t-Y(1+t^2)=4(X^2+Y^2-1),\ donc\ C=V(x^2+y^2-1)$ Seul le point (-1,0) exclu du paramétrage.

Définition 10 On dit qu'une courbe C affine plane irréductible est rationnelle s'il existe F,G tels que F ou G est non constante et telle que l'image de :

$$t \mapsto (F(t), G(t))$$

est contenue dans C.

Exemples: les droites et les graphes de fonctions rationnelles, les coniques

Théorème 1.24 Soit C une courbe affine plane irréductible. Sont équivalentes :

- (i) C est rationnelle;
- (ii) il existe $f \in k(C)$ telle que k(C) = k(f);
- (iii) le corps k(C) est k-isomorphe à k(t).

De plus, il existe dans ce cas un isomorphisme : $\mathbb{A}^1 \setminus S \to C \setminus T$ pour des parties finies S de \mathbb{A}^1 et T de C.

Pour démontrer ce théorème, on utilise le :

Théorème 1.25 (Lüroth) (Pour cet énoncé, k n'est pas forcément algébriquement clos) Soit $k \leq K \leq k(T)$ un corps tel que $k \neq K$. Alors il existe $x \in k(T)$ tel que K = k(x).

Lemme 1.26 Soit $f/g \in k(T)$ une fraction irréductible non constante. Alors $[k(T):k(f/g)] = \max\{\deg f, \deg g\}.$

Démonstration: Considérons $F := g(X)f/g - f(X) \in k(f/g)[X]$. Le polynôme F est de degré $d := \max\{\deg f, \deg g\}$, annule t et F est irréductible dans k(X)[f/g] donc dans k[X, f/g] donc dans k(f/g)[X]. Q.e.d.

Remarque: si k est algébriquement clos, le nombre $\max\{\deg f,\deg g\}$ est le cardinal maximal des fibres de l'application $\mathbb{A}^1--->\mathbb{A}^1,\,t\mapsto f(t)/g(t).$

Démonstration du théorème de Lüroth: Soit $f(X) = X^d + a_1 X^{d-1} + \ldots + a_d \in K[X]$ le polynôme minimal de t sur K. Soit i tel que $a_i \notin k$. On a $a_i = p/q$ où $p,q \in k[t]$ sont premiers entre eux. Soit $c(t) \in k[t]$ le ppcm des dénominateurs des coefficients de f écrits sous forme de fractions irréductibles $\in k(t)$. Soit $c(t) =: F(X,t) \in k[t,X]$. Posons R(X,t) := q(X)p(t) - q(t)p(X). On a f|R/q(t) dans K[X]. Donc dans k(t)[X] aussi. Donc F|R dans k(t)[X]. Puisque $R \in k[t][X]$ est de contenu 1, F|R dans k[t,X]. Mais alors $\max\{\deg p, \deg q\} \le \deg_t F \le \deg_t R = \max\{\deg p, \deg q\}$. Donc a(X)F = R pour un certain $a \in k[X]$. Comme le contenu de R dans k[X][t] est 1, a est une constante. D'où $\deg_X F = \max\{\deg p, \deg q\}$. Or, $k(p/q) \le K \le k(t)$, et :

$$[k(t):K] = \deg_X f = \max\{\deg p, \deg q\} = [k(t):k(p/q)].$$

Donc k(p/q) = K.

Q.e.d.

Démonstration : Si $k(C) \simeq k(t)$, on note x, y les fonctions coordonnées sur C. Soient $f(t), g(t) \in k(t)$ les images de x et y dans k(t). Soit $r \in k(C)$ l'antécédent de t.

Alors on a deux isomorphismes réciproques l'un de l'autre :

$$\mathbb{A}^1 \setminus S \longrightarrow C \setminus T$$

$$t \longmapsto (f(t), g(t))$$

$$r(x,y) \leftarrow (x,y)$$

où $S = \{t \in \mathbb{A}^1 : t \text{ est un pôle de } f \text{ ou de } g \text{ ou } (f(t), g(t)) \text{ est un pôle de } r\}$ et $T = \{(x, y) \in C : (x, y) \text{ est un pôle de } r\}$. Q.e.d.

Exemple : $\mathbb{A}^1 \setminus \{\pm i\} \simeq V(x^2 + y^2 - 1) \setminus \{(1,0)\}, t \mapsto ((1-t^2)/(1+t^2), 2t/(1+t^2)), y \mapsto y/(1+x).$ Exercice :

- a) les courbes $x^n + y^n = 1$, $n \ge 3$ ne sont pas rationnelles,
- b) $y^2 = x^3 x$ n'est pas rationnelle,
- c) $y^2 = x^3 x^2$ est rationnelle.

Cours du mercredi 19 février 2014

2 Singularités

2.1 Multiplicité

Soit $C \subseteq \mathbb{A}^2$ une courbe affine plane. Soit F un générateur de I(C). Soit $(x_0, y_0) \in C$. On a :

$$F = F_d + F_{d+1} + \dots$$

où $d \geq 1$ et les F_k sont des polynômes homogènes en $X - x_0, Y - y_0$:

$$F_k = \sum_{\substack{i,j \ge 0 \\ i+j=k}} a_{i,j} (X - x_0)^i (Y - y_0)^j$$

pour certains $a_{i,j} \in k$ et où $F_d \neq 0$. On dit que d est la multiplicité de C en $P := (x_0, y_0) =: m_P(C)$.

On dit que P est lisse si $m_P(C) = 1$, singulier si $m_P(C) \ge 2$. Autrement dit, le point P est lisse si et seulement si $\partial_X F(P)$ ou $\partial_Y F(P) \ne 0$.

Le polynôme F_d se factorise en $F_d = L_1...L_d$ où les L_j sont des formes linéaires (en $X-x_0, Y-y_0$). Les droites d'équations $L_j = 0$ sont les tangentes de C en P. Si toutes les tangentes sont distinctes, on dit que P est un point (double, triple, ...) ordinaire.

Exemple: (0,0) est un point double ordinaire pour la courbe d'équation $y^2 = x^3 + x^2$ et un point double non ordinaire pour $y^2 = x^3$.

Remarque: La définition ne dépend pas du générateur choisi.

Définition 11 Soit $C \subseteq \mathbb{A}^2$ une courbe affine plane. Si tous les points sont lisses, on dit que C est lisse.

Exemples : les droites affines, les graphes de polynômes, le cercle et toutes les coniques irréductibles sont lisses mais V(xy) n'est pas lisse.

Remarque : Si $0 \neq F \in I(C)$, alors $I(C) = (F) \Leftrightarrow F$ sans facteur carré et C = V(F). Et, F sans facteur carré $\Leftrightarrow \operatorname{pgcd}(F, \partial_X F, \partial_Y F) = 1$.

2.2 Anneaux des fonctions régulières au voisinage d'un point

Définition 12 Soit X un fermé d'une variété algébrique (ou simplement un ouvert d'un fermé algébrique. Si $x \in X$, on note $\mathcal{O}_{X,x}$ la k-algèbre :

$$\{(f,U): U \text{ est un voisinage ouvert de } x \text{ et } f \in \mathscr{O}_X(U)\} / \sim$$

où $(f,U) \sim (g,V)$ s'il existe un voisinage ouvert W de x tel que $W \subseteq U \cap V$ et $f|_{W} = g|_{W}$. On note $\mathfrak{m}_{X,x} := \{f \in \mathscr{O}_{X,x} : f(x) = 0\}$

Proposition 2.1 L'anneau $\mathcal{O}_{X,x}$ est local d'idéal maximal $\mathfrak{m}_{X,x}$ et $\mathcal{O}_{X,x}/\mathfrak{m}_{X,x} \simeq k$.

Exercice : vérifier que $\mathscr{O}_{X,x} \simeq k[X]_{M_x}$ où M_x est l'idéal maximal de k[X] qui s'annule en x. Rappelons que $k[X]_{M_x} = \{a/b : a,b \in k[X], b \notin M_x\}$ où a/b = a'/b' s'il existe $c \notin M_x$ tel que c(b'a - ab') = 0.

2.3 Caractérisation intrinsèque de la lissité

Lemme 2.2 Soit C une courbe affine. Soit $P \in C$. Notons M_P l'idéal maximal de k[C] définissant P. Alors pour tout $n \geq 0$, $M_P^n/M_P^{n+1} \simeq \mathfrak{m}_{C,P}^n/\mathfrak{m}_{C,P}^{n+1}$.

Remarque : si F est un générateur de I(C), si P=(0,0), alors $M_P^n/M_P^{n+1}\simeq M^n+(F)/M^{n+1}+(F)$ où $M:=(X,Y)\leq k[X,Y]$.

Exercice: vérifier que pour tout $n \ge m_P(C)$, $m_P(C) = \dim_k \mathfrak{m}_{C,P}^{n}/\mathfrak{m}_{C,P}^{n+1}$ et que pour tout $0 \le n < m_P(C)$, $\dim_k \mathfrak{m}_{C,P}^{n}/\mathfrak{m}_{C,P}^{n+1} = n+1$.

Proposition 2.3 Soit C une courbe affine plane irréductible. Soit $P \in C$. Sont équivalentes :

- (i) C est lisse en P;
- (ii) $\dim_k M_P/M_P^2 = 1$;
- (iii) $\dim_k \mathfrak{m}_{C,P}/\mathfrak{m}_{C,P}^2 = 1.$

Démonstration: $ii \Rightarrow i$: Soit f un générateur de I(C), si C n'est pas lisse en P = (0,0), alors $f \in (X,Y) \leq k[X,Y]$. Mais alors, $M_P/M_P^2 \simeq (X,Y)/(X,Y)^2$ qui est de dimension 2 absurdo! Q.e.d.

Soit C une courbe affine irréductible. Soit $x \in C$.

Lemme 2.4 Soit I un idéal premier non nul de $\mathcal{O}_{C,x}$. Alors $I = \mathfrak{m}_x$.

Démonstration: Soit I un idéal premier non nul de k[C], alors $k[C]/I = k[V_C(I)]$ est une k-algèbre de dimension finie intègre donc c'est un corps et I est maximal! Q.e.d.

Lemme 2.5 Tout idéal non nul de $\mathcal{O}_{C,x}$ contient une puissance de \mathfrak{m}_x .

Proposition 2.6 Supposons que la courbe C est plane mais non forcément irréductible. Soit $P \in C$. Alors P est lisse $\Leftrightarrow \mathfrak{m}_{C,P}$ est un idéal principal de l'anneau $\mathscr{O}_{C,P}$

Démonstration: Soit $t \in \mathfrak{m} \setminus \mathfrak{m}^2$ où $\mathfrak{m} := \mathfrak{m}_{C,P}$. Alors, $t \mod \mathfrak{m}^2$ engendre $\mathfrak{m}/\mathfrak{m}^2$. Donc $\mathfrak{m}.\mathfrak{m}/(t) = \mathfrak{m}/(t)$ d'où, par le lemme de Nakayama : $\mathfrak{m}/(t) = 0$ *i.e.* $\mathfrak{m} = (t)$. Q.e.d.

Remarque : en général, même si P est lisse, M_P n'est pas principal : par ex. : $V(y^2 - x^3 + x)$ (exo).

Lemme 2.7 Soit $P \in C$. Tout idéal propre non nul de $\mathcal{O}_{C,P}$ contient un idéal de la forme $\mathfrak{m}_{C,P}^n$, $n \geq 1$.

Théorème 2.8 Soit C une courbe affine plane. Soit $P \in C$. Sont équivalentes :

- (i) P est lisse;
- (ii) l'anneau $\mathcal{O}_{C,P}$ est principal;
- (iii) l'anneau $\mathcal{O}_{C,P}$ est intégralement clos.

Démonstration:

(i) \Rightarrow (ii) : on sait déjà que $\mathfrak{m} := \mathfrak{m}_{C,P}$ est principal. Soit t un générateur. Soit $a \in \bigcap_{n>0} \mathfrak{m}^n = \bigcap_{n>0} (t^n) = 0$. La suite d'idéaux $[t^n : a] := \{x \in A : t^n x \in (a)\}$ est croissante donc stationnaire :

$$^{\exists}\;N>0,\,\forall\,n\geq N,\,[t^{n}:a]=[t^{n+1}:a]=:I\;\;.$$

Mais alors : $It^{n+1} = [t^{n+1} : a]t^{n+1} = (a) = [t^n : a]t^{n+1} = (a)t = [t^n : a]t^nt$. Donc $(a) = (a)t \Rightarrow a = 0$.

Donc si $f, g \in \mathcal{O}_{C,p}$ sont non nuls, il existe m, n tels que $f \in (t^n) \setminus (t^{n+1})$ et $g \in (t^m) \setminus (t^{m+1})$. On a : $f = t^n u$, $g = t^m v$ avec u, v inversibles et donc $fg = 0 \Rightarrow t^{m+n}uv = 0 \Rightarrow t^{m+n} = 0 \Rightarrow t = 0 \Rightarrow f$ ou g = 0 absurde!

Soit I un idéal non nul de $\mathscr{O}_{C,p}$. Il existe n tel que $I \leq (t^n)$ et $I \not\leq (t^{n+1})$. Soit $x \in I \setminus (t^{n+1})$. On a $x = t^n u$ pour un u inversible. Donc $t^n \in I$ et $I = (t^n)$. (iii) \Rightarrow (i) : il suffit de montrer que \mathfrak{m}_P est principal. Soit $0 \neq f \in \mathfrak{m}$. Soit n tel que $\mathfrak{m}^n \leq (f)$ et $\mathfrak{m}^{n-1} \not\leq (f)$. Soit $g \in \mathfrak{m}^{n-1} \setminus (f)$. Alors $g/f \in k(C)$ et $g/f\mathfrak{m} \leq \mathscr{O}_{C,P}$. Si $g/f\mathfrak{m} \leq \mathfrak{m}$, alors l'« astuce du déterminant » permet de trouver un polynôme unitaire à coefficients dans $\mathscr{O}_{C,P}$ qui annule $g/f \Rightarrow g/f \in \mathscr{O}_{C,P}$ absurde! Donc $g/f\mathfrak{m} = \mathscr{O}_{C,P} \Rightarrow \mathfrak{m} = (g/f)$. Q.e.d.

Remarque : si C est une courbe plane quelconque, si P est un point lisse de C, alors il existe une unique composante irréductible C_1 de C qui passe par P. On a alors $\mathscr{O}_{C,P} \simeq \mathscr{O}_{C_1,P}$.

Corollaire 2.8.1 Soit C une courbe affine plane irréductible. La courbe C est lisse si et seulement si k[C] est intégralement clos.

COURS DU MERCREDI 26 FÉVRIER

Lemme 2.9 (Artin-Rees) Soit A un anneau næthérien. Soient I, I' deux idéaux de A. Il existe n_0 tel que :

$$\forall n \geq n_0, I^n \cap I' = I^{n-n_0}(I^{n_0} \cap I')$$
.

Démonstration: Soient $a_1, ..., a_r$ des générateurs de l'idéal I. Soit J l'idéal engendré par les polynômes homogènes F de $A[T_1, ..., T_r]$ tels que $F(a) \in I'$. Soient $F_1, ..., F_m \in A[T_1, ..., T_r]$ des polynômes homogènes qui engendrent J. Soient $d_i := \deg F_i$ et $n_0 ge \max\{d_i\}$. Sin $\geq n_0$ etsi $x \in I \cap I'$, alors il existe $F \in A[T_1, ..., T_r]$ homogène de degré n tel que $F(a) \in I'$. On a $F = P_1 + ... + P_N F_N$ pour certains P_i que l'on peut supposer homogènes de degrés respectifs $n - d_i$. Alors:

$$x = P_1(a)F_1(a) + ... + P_NF_N(a)$$

et pour chaque $i, P_i(a)F_i(a) \in I^{n-d_i}(I^{d_i} \cap I') = I^{n-n_0}(I^{n_0-d_i}(I^{d_i} \cap I')) \le I^{n-n_0}(I^{n_0} \cap I').$ Q.e.d.

Théorème 2.10 (d'intersection de Krull) Soit A un anneau næthérien local d'idéal maximal m. On a :

$$\bigcap_{n>0}\mathfrak{m}=0\ .$$

Démonstration: Soit $I' := \bigcap_{n>0} \mathfrak{m} = 0$. Il existe n_0 tel que :

$$\mathfrak{m}^{n_0+1}\cap I'=\mathfrak{m}(\mathfrak{m}^{n_0}\cap I')$$

$$\Leftrightarrow I' = \mathfrak{m}I' .$$

Il existe donc $x \in 1 + \mathfrak{m}$ tel que xI' = 0 mais $x \in A^{\times}$ donc I' = 0. Q.e.d.

2.3.1 Cas général

Soit X un fermé algébrique. On note $T_xX:=(\mathfrak{m}_x/\mathfrak{m}_x^2)^*$ où \mathfrak{m}_x est l'idéal maximal de l'anneau local $\mathscr{O}_{X,x}$.

Proposition 2.11 La restriction à \mathfrak{m}_x induit un isomorphisme de k-espaces vectoriels :

$$\operatorname{Der}_{k_x}(\mathscr{O}_{X,x},k_x) \to T_x X$$

où $\operatorname{Der}_{k_x}(\mathscr{O}_{X,x},k_x)$ est l'espace des formes linéaires $\delta:\mathscr{O}_{X,x}\to k$ telles que $\forall f,g,\,\delta(fg)=f(x)\delta(g)+g(x)\delta(f).$

Soient X un fermé de \mathbb{A} et $I(X) =: (f_1, ..., f_r)$. On pose $J := \left(\frac{\partial f_i}{\partial X_j}\right)_{\substack{1 \leq i \leq r \\ 1 \leq j \leq r}}$. Alors on a un isomorphisme :

$$\ker J \longrightarrow \operatorname{Der}_{k_x}(\mathscr{O}_{X,x}, k_x)$$
.

$$v \longmapsto (h \mapsto \sum_{i} v_{i} \partial_{X_{i}} h)$$

$$(\delta(X_i))_{1 \le i \le n} \longleftarrow \delta$$

D'où:

Proposition 2.12 dim $T_x X = n - \operatorname{rg}(J(x))$.

Définition 13 On dit qu'une courbe algébrique affine C est lisse en un point $x \in C$ si dim $T_xC = 1$ i.e. si C est un fermé de \mathbb{A}^n , C est lisse en x si $\operatorname{rang}(J(x) = n - 1)$.

Exercice : quels sont les points singuliers de la courbe $C=\{(t^3,t^4,t^5):t\in\mathbb{A}^1\}$?

Proposition 2.13 Une courbe C est lisse en $x \in C \Leftrightarrow \mathscr{O}_{C,x}$ intégralement $clos \Leftrightarrow \mathscr{O}_{C,x}$ principal.

2.4 Désingularisation

On dira qu'une courbe C est lisse si k[C] est intégralement clos.

Proposition 2.14 Soit C une courbe affine irréductible. Il existe une courbe lisse C' et un morphisme fini $\pi: C' \to C$ qui induit un isomorphisme : $\pi^{-1}C_{\text{rég}} \to C$.

Démonstration: Soit C' tel que $k[C'] \simeq \widetilde{k[C]}$ la fermeture intégrale de k[C] dans k(C).

Exemple de désingularisation: $\mathbb{A}^1 \to V(y^2 - x^3), t \mapsto (t^2, t^3)$.

Exercice: trouver une désingularisation de $y^2 = x^3 - x^4$.

On dit que deux fermés algébriques X,X' sont birationnels s'il existe un ouvert $U\subseteq X$, un ouvert $U'\subseteq X'$ (non vides) et un isomorphisme $\phi:U\simeq U'$.

Exercice. X, X' sont birationnels si et seulement si $k(X) \simeq k(X')$.

Proposition 2.15 Toute courbe algébrique plane irréductible est birationnelle à une courbe algébrique plane dont les éventuelles singularités sont des points ordianires.

Proposition 2.16 Toute courbe algébrique irréductible est birationnelle à une (et une seule à isomorphisme près) courbe projective lisse.

3 Anneaux de valuation discrète

3.1 Valuations

Une valuation discrète sur un corps K est une application $v:K\to \mathbb{Z}\cup\{\infty\}$ telle que :

- (i) $\forall x \in K, v(x) = \infty \Leftrightarrow x = 0$;
- (ii) $v|_{K^{\times}}: K^{\times} \to \mathbb{Z}$ est un morphisme de groupes surjectif;
- (iii) $\forall x, y \in K, v(x+y) \ge \min\{v(x), v(y)\}.$

Exemples: \mathbb{Q} , v_p avec p premier; k(T) et l'ordre d'annulation en t_0 , k((t)) et la valuation usuelle des séries, k(t) et $v_{\infty}(f/g) := \deg g - \deg f$.

Remarque : l'ensemble $\mathscr{O}_v := v^{-1}(\mathbb{N} \cup \{\infty\})$ est un sous-anneau intègre de K et K est son corps des fractions. C'est l'anneau de valuation de (K, v).

Un anneau de valuation discrète est un anneau intègre A tel qu'il existe une valuation v sur le corps K des fractions de Atel que $A = \mathcal{O}_v$.

Proposition 3.1 (Propriétés) Soit v une valuation discrète sur un corps K. L'anneau \mathcal{O}_v vérifie :

- (i) $O_v^{\times} = v^{-1}(1)$;
- (ii) \mathcal{O}_v est local d'idéal maximal $\mathfrak{m} := v^{-1}(\{1,...,\infty\})$;
- (iii) \mathfrak{m} est principal et $\mathfrak{m} = t \Leftrightarrow v(t) = 1$;
- (iv) $\forall n \geq 1, \ \mathfrak{m}^n = v^{-1}(\{n, ..., \infty\});$
- (v) l'anneau \mathcal{O}_v est principal et ses idéaux sont les \mathfrak{m}^n , $n \geq 0$.

On dit que $k := A/\mathfrak{m}$ est le corps résiduel de \mathcal{O}_v . Un générateur de \mathfrak{m} est une uniformisante de \mathcal{O}_v .

Remarque: $t \in \mathcal{O}_v$ est une uniformisante si et seulement si $t \in \mathfrak{m} \setminus \mathfrak{m}^2$. Exercices:

- 1) si v est une valuation sur un corps K et si $x, y \in K$, alors $v(x) \neq v(y) \Rightarrow v(x+y) = \min\{v(x), v(y)\}.$
- 2) \mathcal{O}_v est un sous-anneau maximal de K.
- 3) Un anneau principal, local qui n'est pas un corps est un anneau de valuation discrète.

3.2 Ordre d'annulation

Soit C une courbe. Soit $P \in C$ un point lisse au sens où $\mathcal{O}_{C,p}$ est principal. Si $f \in \mathcal{O}_{C,P}$, on note :

$$\operatorname{ord}_P(f) := \sup\{n \ge 0 : f \in \mathfrak{m}^n\}$$

où $\mathfrak{m} = \mathfrak{m}_{C,P}$; c'est l'ordre d'annulation en P.

Remarque : si $f \in \mathfrak{m}^n \setminus \mathfrak{m}^{n+1}$, alors $\operatorname{ord}_P(f) = n$.

Théorème 3.2 Si P est un point lisse, alors on peut prolonger ord_P à k(C) en posant : $\operatorname{ord}_P(f/g) := \operatorname{ord}_P f - \operatorname{ord}_P g$. On obtient ainsi une valuation discrète sur k(C) dont l'anneau des valuations est $\mathcal{O}_{C,P}$.

Exemples:

- a) si $C = \mathbb{A}^1$, si $x_0 \in k$ et si $f \in k(C) = k(t)$, alors $\operatorname{ord}_{x_0} f$ est la multiplicité de x_0 comme zéro de f (ou -l'ordre de x_0 comme pôle de f). L'élément $(t x_0)$ est une uniformisante.
- b) Si $C = (y^2 = x^3 x)$, si P = (0,0), alors $\operatorname{ord}_P x = 2$ et $\operatorname{ord}_P y = 1$: donc y est une uniformisante.
- c) Si $C = (y^2 + y = x^3 + x)$, si P = (0,0), alors $\operatorname{ord}_P x = 1$ et $\operatorname{ord}_P y = 1$: donc x, y sont des une uniformisantes.

Exercice: Montrer que pour une courbe plane C et pour un point lisse $P = (x_0, y_0) \in C$, si f est un générateur de I(C), si $\partial_X f(P) \neq 0$, alors $y - y_0$ est une uniformisante (indication: dans $\mathcal{O}_{C,P}$, on a $\mathfrak{m}_{C,P} = (x - x_0, y - y_0)$ et $\partial_X f(P)(x - x_0) + \partial_Y f(P)(y - y_0) = 0 \mod \mathfrak{m}_{C,P}^2$ donc $\mathfrak{m}_{C,P}/\mathfrak{m}_{C,P}^2$ est engendré par $y - y_0$...).

COURS DU MERCREDI 12 MARS 2014

Développements limités

Soit C une courbe et P un point lisse de C. Soit t une uniformisante pour $\mathcal{O}_{C,P}$.

Notation : si $f, g \in k(C)$, si $n \ge 0$, on écrit $f = g + O(t^n)$ si $f - g \in \mathfrak{m}^n$.

Théorème 3.3 Soit $0 \neq f \in k(C)$. Si $n_0 := \operatorname{ord}_P f$, alors il existe une unique série de Laurent $\sum_{n>n_0} a_n t^n \in k((t))$ telle que :

$$f = \sum_{n=n_0}^{r} a_n t^n + O(t^{r+1})$$

pour tout $r \geq 0$. En associant 0 à 0, on obtient un morphisme de corps $k(C) \to k((t)).$

La série $\sum_{n\geq n_0} a_n t^n$ est le développement limité de f en P relativement à t.

Exercice: Soit $C = (y^2 = x^3 - 1)$. En P = (1,0) et pour l'uniformisante t=y, le développement limité de x ne contient que des puissances paires de y.

4 Courbes projectives

Un peu de géométrie projective

4.1.1L'espace projectif

Soit V un k-espace vectoriel. On pose $\mathbb{P}(V) := V \setminus \{0\} / \sim \text{où } x \sim y \text{ si}$ $y = \lambda x$ pour un certain $\lambda \in k^{\times}$.

Si $V = k^{n+1}$, on note $\mathbb{P}^n(k) := \mathbb{P}(k^{n+1})$.

Notation: $\pi: V \setminus \{0\} \to \mathbb{P}(V), v \mapsto [v]$ est la surjection canonique.

Remarque: on peut identifier $\mathbb{P}(V)$ à l'ensemble des droites vectorielles de V. Si $W \leq V$, on dit que $\pi(W \setminus \{0\})$ est un sous-espace projectif de dimension dim W-1.

Exercice: Si P_1, P_2 sont des sous-espaces projectifs de \mathbb{P}^n de dimension n_1, n_2 avec $n_1 + n_2 \ge n$, alors $P_1 \cap P_2 \ne \emptyset$. En particulier, deux droites projectives se rencontrent toujours.

4.1.2Cartes affines

Soit $n \geq 1$. Pour tout i, soit $U_i := \{[x_0 : \dots : x_n] \in \mathbb{P}^n : x_i \neq 0\}$. L'application $j_0 : \mathbb{A}^n \to U_0 \subseteq \mathbb{P}^n$, $(x_1, \dots, x_n) \mapsto [1 : x_1 \dots : x_n]$ est

Complétion projective : soit $D \subseteq \mathbb{A}^n$ une droite affine. Il existe une unique droite projective \overline{D} dans \mathbb{P}^n telle que $j_0^{-1}\overline{D} = D$.

Par exemple si n = 2, si D est la droite d'équation :

$$(x,y) \in \mathbb{A}^2$$
: $ax + by + c = 0$

 \overline{D} est la droite projective d'équation :

$$[x:y:z] \in \mathbb{P}^2 : ax + by + cz = 0$$
.

On a dans ce cas : $\overline{D} = j_0(D) \cup \{\infty_D\}$ où $\infty_D := [-b : a : 0]$.

On dit qu'on a ajouté à D un point à l'infin $i : \infty_D$.

Exercice : deux droites affines $d_1, d_2 \subseteq \mathbb{A}^2$ sont parallèles si et seulement si $\infty_{d_1} = \infty_{d_2}$.

Rappel : si k est un corps, $\mathbb{P}^n(k) := k^{n+1} \setminus \{0\}/\sim \text{où } x \sim y \text{ si } \exists \lambda \in k^{\times}, \ x = \lambda y.$

Notation: $\pi: k^{n+1} \setminus \{0\} \to \mathbb{P}^n(k), x \mapsto [x] := x \mod \sim.$

Une carte affine de \mathbb{P}^n est la donnée de H un hyperplan de k^{n+1} et d'une application bijective de la forme :

$$k^n \to \mathbb{P}^n \setminus \pi(H \setminus \{0\})$$

$$v \mapsto [e_0 + \phi(v)]$$

où $e_0 \notin H$ et $\phi : k^n \simeq H$ est un isomorphisme linéaire. Pour une carte affine fixée, on appelle points à l'infini les points de $\pi(H \setminus \{0\})$.

Exemples : soit $C := \{[x:y:z] \in \mathbb{P}^2(\mathbb{R}) : x^2 + y^2 = z^2\}$. Pour la carte affine $i_1 : \mathbb{R}^2 \to \mathbb{P}^2(\mathbb{R}), (x,y) \mapsto [x:y:1]$, vérifier que $i_1^{-1}C$ est un cercle et que C n'a pas de point à l'infini. Pour la carte affine $i_2 : \mathbb{R}^2 \to \mathbb{P}^2(\mathbb{R}), (x,y) \mapsto [1:x:y]$, vérifier que $i_2^{-1}C$ est une hyperbole avec deux points à l'infini.

Exercice: trouver une carte affine $i: \mathbb{R}^2 \to \mathbb{P}^2(\mathbb{R})$ telle que $i^{-1}C$ est une parabole. Pour l'exemple trouvé, déterminer l'unique point à l'infini.

5 Fermés de l'espace projectif

Soient $P_i \in k[X_0, ..., X_n]$ des polynômes homogènes. L'ensemble :

$$V(P_i : i) := \{ [x] \in \mathbb{P}^n : \forall i, P_i(x) = 0 \}$$

est bien défini. De plus $V(P_i:i)=V(I)$ où I est l'idéal de $k[X_0,...,X_n]$ engendré par les P_i .

Dorénavant, on suppose k algébriquement clos.

5.1 Idéaux homogènes

Proposition 5.1 Soit I un idéal de $k[X_0,...,X_n]$. Sont équivalentes :

- (i) pour tout $P \in I$, tout $t \in k^{\times}$, $P(tX_0, ..., tX_n) \in I$;
- (ii) pour tout $P \in I$, les composantes homogènes de P sont dans I;
- (iii) l'idéal I est engendré par des polynômes homogènes;
- (iv) l'idéal I est engendré par un nombre fini de polynômes homogènes;
- (v) on $a: I = \bigoplus_d I \cap k[X_0, ..., X_n]_d$.

Un tel idéal est dit homogène.

Remarque : tout idéal homogène strict est contenu dans $(X_0, ..., X_n)$. Un fermé de \mathbb{P}^n est un ensemble de la forme :

$$V(I) := \{ [x] \in \mathbb{P}^n : \forall P \in I, P(x) = 0 \}$$
.

Proposition 5.2 Les V(I) sont les fermés d'une topologie sur \mathbb{P}^n .

Soit $\pi: \mathbb{A}^{n+1} \setminus \{0\} \to \mathbb{P}^n$ la surjection canonique.

Proposition 5.3 Un $F \subseteq \mathbb{P}^n$ est fermé si et seulement si $\pi^{-1}F \cup \{0\}$ est fermé dans \mathbb{A}^{n+1} .

Exercice: on note U_i les ouverts $(x_i \neq 0)$ et $j_i : \mathbb{A}^n \to U_i, (x_0, ..., \hat{x_i}, ...x_n) \mapsto [x_0 : ... : 1 : ... : x_n]$. Vérifier que les U_i recouvrent \mathbb{P}^n et que $F \subseteq \mathbb{P}^n$ est fermé si et seulement si pour tout $i, j_i^{-1}F$ est fermé dans \mathbb{A}^n .

Si A est un fermé de \mathbb{A}^{n+1} , on note $\widetilde{I}(A)$ l'idéal correspondant dans $k[X_0,...,X_n]$. Si I est un idéal homogène de $k[X_0,...,X_n]$, on note $\widetilde{V}(I)$ le fermé correspondant dans \mathbb{A}^{n+1} .

Exercice: $V(I) = \pi(V(I) \setminus \{0\}).$

Notation : si A est un fermé de \mathbb{P}^n , alors $I(A) := \widetilde{I}(\pi^{-1}A \cup \{0\})$.

Proposition 5.4 L'idéal I(A) est un idéal homogène strict de $k[X_0,...,X_n]$.

Exercice : soit $p:=[p_0:...:p_n]\in\mathbb{P}^n$. Alors $I(\{p\})=(p_iX_j-p_jX_i:0\le i,j\le n)=(X_j-p_j/p_0X_0:j>0)$ si $p_0\ne 0$.

Proposition 5.5 Si F est un fermé de \mathbb{P}^n , alors V(I(F)) = F.

5.2 Théorème des zéros

Théorème 5.6 (version projective du théorème des zéros) Si I est un idéal homogène strict de $k[X_0,...,X_n]$, alors $I(V(I)) = \sqrt{I}$.

Corollaire 5.6.1 Soit I un idéal homogène de $k[X_0,...,X_n]$. Alors :

$$V(I) = \emptyset \Leftrightarrow \sqrt{I} \supseteq (X_0, ..., X_n)$$

$$\Leftrightarrow \forall i, \exists d \ge 1, X_i^d \in I$$

 $\Leftrightarrow \exists N \geq 1, I \text{ contient tous les monômes de degré } N$ $\Leftrightarrow \exists N \geq 1, \oplus_{d \geq N} k[X_0, ..., X_n]_d \subseteq I.$

6 Propriétés topologiques

Tout fermé de \mathbb{P}^n est un espace topologique nœthérien, on a donc comme dans le cas affine une décomposition en fermés irréductibles et une notion de composantes irréductibles.

Exercice : si F est un fermé de \mathbb{P}^n , alors F est irréductible $\Leftrightarrow I(F)$ est premier.

Exercice : soit F un fermé non vide de \mathbb{P}^n . Alors F est irréductible $\Leftrightarrow I(F)$ est premier $\Leftrightarrow \pi^{-1}F \cup \{0\}$ est un fermé irréductible de \mathbb{A}^{n+1} .

Exercice: l'application $\mathbb{P}^m \times \mathbb{P}^n \to \mathbb{P}^{mn+m+n}$, $([x], [y]) \mapsto [x_i y_j]_{\substack{0 \leq i \leq m \\ 0 \leq j \leq n}}$ est une bijection sur son image, le fermé $V((X_{i,j}X_{k,l} - X_{il}X_{k,j})_{\substack{0 \leq i,k \leq m \\ 0 \leq j,l \leq n}})$.

7 Le théorème fondamental de l'élimination projective

On dira que $F \subseteq \mathbb{P}^m \times \mathbb{A}^n$ est un fermé si F est défini par des polynômes $P_i(x,y)$ homogènes en les x_i .

Remarque : $F \subseteq \mathbb{P}^m \times \mathbb{A}^n$ est fermé $\Leftrightarrow (\pi \times \mathrm{Id})^{-1} F \cup \{0\} \times \mathbb{A}^n \subseteq \mathbb{A}^{m+1} \times \mathbb{A}^n$ est fermé $\Leftrightarrow \forall i, j_i \times \mathrm{Id}^{-1} F$ est fermé dans $\mathbb{A}^m \times \mathbb{A}^n$.

Théorème 7.1 Si $F \subseteq \mathbb{P}^m \times \mathbb{A}^n$ est fermé, alors $pr_2(F)$ est un fermé de \mathbb{A}^n .

Contre-exemple : $pr_2(V(xy-1))$ n'est pas un fermé de \mathbb{A}^1 .

8 Produits d'espaces projectifs

On dira qu'une partie $F \subseteq \mathbb{P}^{m_1} \times ... \times \mathbb{P}^{m_r}$ est fermée si elle définie par des équations polynômiales $F_i(x^{(1)},...,x^{(r)})$ homogènes en les $x^{(i)}$.

Exercice: il existe bien une topologie sur $\mathbb{P}^{m_1} \times ... \times \mathbb{P}^{m_r}$ dont les parties de la forme ci-dessus sont les fermés. Attention, ce n'est pas la topologie produit!

9 Morphismes

Soient $X\subseteq \mathbb{P}^m,\,Y\subseteq \mathbb{P}^n$ des fermés projectifs. Soient $U\subseteq X,\,V\subseteq Y$ des ouverts.

Définition 14 Une application $f: U \to V$ est régulière en $x \in U$ s'il existe un voisinage ouvert U_x de x et des fonctions polynomiales homogènes $f_0, ..., f_n \in k[T_0: ...: T_m]$ de même degré tels que $: \forall t \in U_x, \exists i, f_i(t) \neq 0$ et $f(t) = [f_0(t): ...: f_n(t)]$. Si f est régulière sur U, on dit que f est un morphisme

Exemple: l'application $\mathbb{P}^1 \to V(Y^2 - XZ) \subseteq \mathbb{P}^2$, $[u:v] \mapsto [u^2:uv:v^2]$ est un isomorphisme mais la réciproque n'est pas définie par une seule formule.

Exercice: la composée de deux morphismes est un morphisme.

Corollaire 9.0.1 (du théorème d'élimination) Soit $f : \mathbb{P}^m \to \mathbb{P}^n$ une application régulière, alors f(F) est fermé dans \mathbb{P}^n , pour tout fermé F de \mathbb{P}^m .

Notation : si U est un ouvert de X un fermé de \mathbb{P}^n , on note $\mathscr{O}_X(U)$ la k-algèbre des fonctions régulières $f:U\to\mathbb{A}^1$.

Exercice: $\mathcal{O}_X(X) = k$.

Exercice: Une application $f: U \to V$ est régulière si et seulement si f est continue et si pour tout ouvert W de V, pour tout $g \in \mathscr{O}_Y(W)$, $g \circ f \in \mathscr{O}_X(f^{-1}W)$).

Exercice : généraliser la notion de morphismes aux applications $f:U\to V$ où U et V sont des ouverts de fermés de produits d'espaces projectifs et vérifier que :

$$\mathbb{P}^m \times \mathbb{P}^n \to \mathbb{P}^{mn+m+n}$$

$$([x_i]_i, [y_j]_j) \mapsto [x_i y_j]_{i,j}$$

est un isomorphisme sur son image qui est fermée.

Exercice: l'application $\pi: \mathbb{A}^{n+1} \setminus \{0\} \to \P^n$ est un morphisme.

10 Définition des courbes projectives planes

Une hypersurface projective est un fermé de \mathbb{P}^n défini par une équation H = V(P) où P est un polynôme homogène de degré ≥ 1 . Si deg P = 1, c'est un hyperplan, si deg P = 2, c'est une quadrique (ou conique si n = 2), si deg P = 3, c'est une cubique, etc

Le degré de l'hypersurface H est le degré de P un générateur de I(H). Une courbe projective plane est une hypersurface de \mathbb{P}^2 de la forme V(P) où $P \in k[X_0, X_1, X_2]$ est un polynôme homogène de degré ≥ 1 .

Exercice: si P est irréductible, la courbe est irréductible.

Exercice : les fermés propres d'une courbe irréductible sont finis.

Lemme 10.1 Soit $F \in k[X, Y, Z]$ un polynôme homogène non nul. Si $F = F_1F_2$, alors F_1, F_2 sont aussi homogènes.

Lemme 10.2 Si C est une courbe projective plane, alors I(C) est un idéal principal engendré par un polynôme homogène.

Proposition 10.3 Une courbe C est irréductible $\Leftrightarrow I(C)$ est premier.

Proposition 10.4 Un fermé propre non vide de \mathbb{P}^2 est une réunion finie de courbes irréductibles et de points.

Exercice: plus généralement, on a l'équivalence: un fermé $F \subseteq \mathbb{P}^n$ est irréductible $\Leftrightarrow I(F)$ est premier $\Leftrightarrow \pi^{-1}F \cup \{0\}$ est irréductible dans \mathbb{A}^{n+1} .

Une courbe projective irréductible est un fermé C de \mathbb{P}^n , pour un certain n tel que $A(C) := k[X_0, ..., X_n]/I(C)$ est intègre de degré de transcendance 2

Attention! les éléments de A(C) sont seulement des fonctions sur $\pi^{-1}C \subseteq \mathbb{A}^{n+1} \setminus \{0\}$.

Problème~ouvert : une courbe de \mathbb{P}^3 peut-elle être définie par deux polynômes homogènes ?

Exercice : les idéaux homogènes irréductibles et propres de k[X,Y,Z] sont :

0, (F), où F est homogène irréductible, $I(\{[x_0:y_0:z_0]\})$ pour un $[x_0:y_0:z_0]\in\mathbb{P}^2$.

indication: si F,G sont homogènes premiers entre eux dans k[X,Y,Z], alors ils le sont aussi dans k(X,Y)[Z] et on peut trouver $A,B \in k[X,Y,Z]$ homogènes tels que $0 \neq AF + BG \in k[X,Y]$.

En déduire les fermés irréductibles de \mathbb{P}^2 .

10.1 Dimension

Si $F \subseteq \mathbb{P}^n$ est un fermé non vide , on pose dim $F := \dim \pi^{-1} F \cup \{0\} - 1 = \partial_k k[X_0, ..., X_m]/I(F) - 1$.

Proposition 10.5 Soit F un fermé irréductible de \mathbb{P}^n . Si $F_1 \subseteq F$ est un fermé strict, alors $\dim F_1 < \dim F$.

11 Lien courbes affine / projectives

On identifie \mathbb{A}^m et l'ouvert $U_0 := \{[1:x_1:...:x_m] \in \mathbb{P}^m\}$. Si $P_1,...,P_n \in k[X_0,...,X_m]$ sont des polynômes homogènes, alors $V(P_1,...,P_n) \cap \mathbb{A}^m = V(\widetilde{P_i})$ où $\widetilde{P_i} = P_i(1,X_1,...,X_m)$.

Si $P \in k[X_0, ..., X_m]$ est homogène de degré d, \widetilde{P} est de degré $\leq d$ avec égalité si et seulement si X_0 ne divise pas P. On dit que \widetilde{P} est le déshomogénéisé de P.

Remarque : Si F est un fermé (irréductible) de \mathbb{P}^m , alors $F \cap \mathbb{A}^m$ est un fermé irréductible de \mathbb{A}^n .

Si $F \in k[X_1,...,X_m]$, on note $\overline{F} := X_0^d F(X_1/X_0,...,X_m/X_0)$, où $d = \deg F$. C'est *l'homogénéisé* de F.

On identifie \mathbb{A}^2 et l'ouvert $(z \neq 0) = \{ [x : y : 1] : x, y \in k \}.$

Si $F \in k[X,Y]$ est de degré d, on pose $\overline{F} := Z^d F(X/Z,Y/Z)$, c'est l'homogénéisé de F.

Exemple: l'homogénéisé de $y^2 - x(x-1)(x-\lambda)$ est $y^2z - x(x-z)(x-\lambda z)$.

Proposition 11.1 a) si F est de degré d, alors \overline{F} est homogène de degré d;

- b) $\overline{FG} = \overline{FG}$;
- c) si H est homogène premier à X_0 , alors $H = \overline{\widetilde{H}}$.

Soit $Z\subseteq \mathbb{A}^m$ un fermé algébrique. Soit I:=I(Z). On pose $\overline{I}:=(\overline{F}:F\in I)$ et $Z^*:=V_{\mathbb{P}^m}(\overline{I})$.

Exemple: si $I = (Y - X^2, Z - X^3)$, alors $(\overline{Y - X^2}, \overline{Z - X^3}) \subseteq \overline{I}$ car $ZW - XY \in \overline{I} \setminus (\overline{Y - X^2}, \overline{Z - X^3})$.

Proposition 11.2 Z^* est l'adhérence de Z dans \mathbb{P}^m . De plus, si $Z = Z_1 \cup \ldots \cup Z_l$ est la décomposition de Z en composantes irréductibles, alors $Z^* = Z_1^* \cup \ldots \cup Z_l^*$ est la décomposition de Z^* en composantes irréductibles.

Proposition 11.3 Si C = V(F) est une courbe affine plane, alors $V(\overline{F}) = \overline{C}$.

On dit que \overline{Z} est la complétion projective de Z.

 $Remarque : \overline{C}$ ne dépend que de C (non de F).

On dit que les points de $\overline{Z} \setminus Z$ sont les points à l'infini. Ce sont les points de $\overline{Z} \cap H_{\infty}$ où $H_{\infty} = (x_0 = 0)$.

Lemme 11.4 Si C est une courbe projective affine plane de degré d, alors C a au plus d points à l'infini et au moins 1.

Exercice: quels sont les points à l'infini de $x^2 + y^2 = 1$.

Théorème 11.5 L'application $C \mapsto \overline{C}$ est une bijection entre les courbes algébriques de \mathbb{A}^2 et les courbes projectives planes ne contenant pas la droite à l'infini z=0. Cette bijection préserve l'irréductibilité. La réciproque est donnée par $\mathbf{C} \mapsto \mathbf{C} \cap \mathbb{A}^2$.

 $Exercice: Z \mapsto \overline{Z}$ est une bijection entre les fermés algébriques de \mathbb{A}^m et les fermés de \mathbb{P}^m qui n'ont aucune composante irréductible contenue dans H_{∞} . De plus cette bijection préserve l'irréductibilité et la dimension.

Corollaire 11.5.1 Les fermés de \mathbb{P}^2 sont \mathbb{P}^2 , les unions finies de courbes irréductibles et de points et \emptyset .

11.1 Courbes projectivement équivalentes

On dit que deux courbes projectives $C_1, C_2 \subseteq \mathbb{P}^2$ sont projectivement équivalentes s'il existe $g \in GL_3(k)$ tel que $gC_1 = C_2$.

Remarque : l'action de GL_{n+1} sur \mathbb{P}^n préserve les fermés.

Exercice: trouver deux courbes affines planes non isomorphes dont les complétions projectives sont projectivement équivalentes. $(x^2 + y^2 = 1) \not\simeq (y = x^2)$.

Exercice: trouver deux courbes affines planes isomorphes dont les complétions projectives ne sont pas isomorphes. $(y = x^2) \simeq (y = x^3)$.

Exercice: si C = V(F), alors $I(\overline{C}) = I(\overline{F})$.

Cours du mercredi 2 avril 2014

12 Points lisses et fonctions rationnelles

Soit $C \subseteq \mathbb{P}^2$ une courbe algébrique plane. Soit H un générateur de $I(C) \leq k[X,Y,Z]$.

On dit que $P \in C$ est lisse si $(\partial_X H, \partial_Y H, \partial_Z H)(P) \neq (0, 0, 0)$. On dit que P est singulier sinon.

Remarque: cette définition ne dépend pas du générateur choisi ni des coordonnées homogènes choisies pour P.

Proposition 12.1 Si C est une courbe projective plane de degré d et si la caractéristique de k ne divise pas d, alors $C^{\text{sing}} = V(\partial_X H, \partial_Y H, \partial_Z H)$.

Démonstration : On utilise l'identité d'Euler :

$$X\partial_X H + Y\partial_Y H + Z\partial_Z H = dH$$

pour tout $H \in k[X, Y, Z]_d$.

Q.e.d.

Si $P \in C$, une courbe projective plane, est lisse, la tangente à C en P est la droite (projective) d'équation :

$$\partial_X H(P)X + \partial_Y H(P)Y + \partial_Z H(P)Z = 0$$

où
$$(H) = I(C) \le k[X, Y, Z].$$

Proposition 12.2 Soient $C \subseteq \mathbb{A}^2$ une courbe et $\overline{C} \subseteq \mathbb{P}^2$ sa complétion projective. Si $P \in C$, alors P est un point lisse de C si et seulement si P est un point lisse de \overline{C} .

Exemple: La courbe d'équation $y^2 = f(x)$, où $f \in k[X]$ est unitaire de degré $d \geq 3$ et n'est pas un carré, a pour complétion projective \overline{C} . L'unique point à l'infini de \overline{C} est lisse si d = 3 et singulier si d > 3.

Exercice: $T_P\overline{C}$ est la complétion projective de T_PC .

Germes de fonctions au voisinage d'un point

Soit C une courbe projective ou un ouvert d'une courbe. Soit $P \in C$. Soient U, V des voisinages ouverts de P dans C. Si $f \in \mathcal{O}_C(U)$, $g \in \mathcal{O}_C(V)$, on note $f \sim g$ s'il existe un voisinage ouvert W de P dans $U \cap V$ tel que $f|_W = g|_W$.

L'anneau des germes de fonctions régulières au voisinage de P est l'anneau :

$$\mathscr{O}_{C,P} := \{(f,U) : P \in U \text{ ouvert } \subseteq C, f \in \mathscr{O}_C(U)\}/\sim$$
.

Proposition 12.3 L'anneau $\mathcal{O}_{C,P}$ est local d'idéal maximal $\mathfrak{m}_{C,P}$, idéal des germes f qui s'annulent en P.

Remarque : $\mathfrak{m}_{C,P}$ est le noyeau du morphisme surjectif $\mathscr{O}_{C,P} \to k, (f,U)$ mod $\sim \mapsto f(P)$.

Remarque: si V est un voisinage ouvert de P, alors la restriction à V induit un isomorphisme:

$$\mathcal{O}_{C,P} \simeq \mathcal{O}_{C \cap U,P}$$
.

Exercice : on a

 $\mathscr{O}_{C,P} = \left(k[\widehat{C}]_{M_P}\right)_0 := \left\{a/b : a, b \text{ sont homogènes de même degré dans } k[\widehat{C}] \text{ et } b(P) \neq 0\right\},$

les éléments homogènes de degré 0 du localisé en M_P l'idéal homogène des fonctions dans $k[\widehat{C}]$ qui s'annullent en P (en n'importe lequel de ses représentants dans \widehat{C} .

On en déduit grâce au cas affine :

Proposition 12.4 Soit C une courbe projective plane. Si $P \in C$, alors sont équivalentes :

- i) P est lisse;
- ii) $\dim_k \mathfrak{m}_{C,P}/\mathfrak{m}_{C,P}^2 = 1$;
- iii) $\mathcal{O}_{C,P}$ est principal;
- iv) $\mathcal{O}_{C.P}$ est intégralement clos;
- v) $\mathscr{O}_{C,P}$ est un anneau de valuation discrète.

On peut donc définir l'ordre d'annulation en $P \in C$ si P est lisse et on dispose de la notion de développement limité en un point lisse.

Définition 15 Une courbe projective est lisse en P si $\dim_k \mathfrak{m}_{C,P}/\mathfrak{m}_{C,P}^2 = 1$.

13 Coniques

Proposition 13.1 Soit $H \in k[X, Y, Z]$ homogène de degré 2 irréductible. Alors V(H) est une courbe projective lisse.

Démonstration: Soit P un point singulier. Supposons par exemple que P = [0:0:1]. Alors

$$H = aX^2 + bY^2 + cZ^2 + dXY + eYZ + fXZ$$

on a forcément c = e = f si $H(P) = \partial_X H(P) = \partial_Y H(P) = 0$. Donc H est homogène de degré 2 en X, Y donc réductible absurde!. Q.e.d.

Théorème 13.2 Toute conique projective irréductible est projectivement équivalente à la conique d'équation $yz = x^2$ i.e. si $C \subseteq \mathbb{P}^2$ est une conique irréductible, il existe $g \in GL_3(k)$ tel que $g(C) = V(YZ - X^2)$.

C'est évident en caractéristique $\neq 2$ car toutes les formes quadratiques non dégénérées sont équivalentes. Nous allons donner une démonstration qui marche en toute caractéristique.

Lemme 13.3 Le groupe GL_3 agit transitivement sur les triplets de points non alignés de \mathbb{P}^2 .

Lemme 13.4 Soit C une conique projective irréductible. Pour tout $P \in C$, $T_PC \cap C = \{P\}$.

Démonstration : On peut supposer P = [0:0:1]. Mais alors H est de la forme

$$H = aX^{2} + bY^{2} + cZ^{2} + dXY + (eY + fX)Z$$

et la tangente a pour équation eY + fX = 0. S'il y a un point d'intersection autre que P, alors $eY + fX|aX^2 + bY^2 + cZ^2 + dXY$ dans k[X,Y] donc divise H: absurde! Q.e.d.

Exercice : soit C une conique projective irréductible. En caractéristique 2, il existe $Q \in \mathbb{P}^2$ tel que toutes les tangentes de C passent par Q.

Exercice : En caractéristique $\neq 2$, si $P \notin C$, une conique irréductible, alors il existe 2 tangentes à C qui passent par P.

Démonstration du théorème : soit $P_1 \neq P_2 \in C$. Soit P_3 tel que $T_{P_1}C \cap T_{P_2}C = \{P_3\}$. Il existe $g \in \operatorname{GL}_3(k)$ tel que $g(P_1), g(P_2), g(P_3) = [0:0:1], [0:1:0], [1:0:0]$. On peut donc supposer que $P_1, P_2, P_3 = [0:0:1], [0:1:0], [1:0:0]$. Alors $H = aX^2 + dYZ + eXZ + fXY$. La droite $T_{P_1}C$ a pour équation : dY + eX = 0. La droite $T_{P_2}C$ a pour équation : dZ + fX = 0. Comme ces équations s'annulent en P_3 , on a : e = f = 0. Donc $H = aX^2 + dYZ$ avec $a, d \neq 0$ car H irréductible. On a

alors
$$g(C)=V(X^2-YZ)$$
 pour un $g=\begin{pmatrix}\lambda&0&0\\0&\mu&0\\0&0&\nu\end{pmatrix}\in\mathrm{GL}_3(k)$ bien choisi. Q.e.d.

Théorème 13.5 Toute conique projective irréductible est isomorphe à \mathbb{P}^1 .

Démonstration : Il suffit de vérifier que $V(X^2-YZ)\simeq \mathbb{P}^1.$ C'est bine le cas! Q.e.d.

Corollaire 13.5.1 Si C est une conique, alors $\mathbb{P}^2 \setminus C$ est une variété affine.

Démonstration: Soit $\phi: \mathbb{P}^2 \to \mathbb{P}^5$, $[x:y:z] \mapsto [x^2:y^2:z^2:yz:xz:xy]$. C'est un iso sur son image et si $C=V(x^2-yz)$, $\phi(\mathbb{P}^2 \setminus C) = \phi(\mathbb{P}^2) \cap \mathbb{P}^5 \setminus V(x_0-x_3)$. Q.e.d.

14 Fonctions rationnelles

Soit C un fermé irréductible de \mathbb{P}^n . On note $\widehat{C} := \pi^{-1}C \cup \{0\} \subseteq \mathbb{A}^{n+1}$ le cône au-dessus de C. On a $k[\widehat{C}] = k[X_0, ..., X_m]/I(C)$.

Pour tout $d \geq 0$, on note $k[\widehat{C}]_d := k[X_0, ..., X_n]_d / I(C) \cap k[X_0, ..., X_n]_d$. Exercice: en utilisant que l'idéal I(C) est homogène, vérifier que $k[\widehat{C}] = \bigoplus_{d \geq 0} k[\widehat{C}]_d$.

Définition 16 On note $k(C) := k(\widehat{C})_0 := \{f/g : \exists d \geq 0, f, g \in k[\widehat{C}]_d\}$. C'est un corps : le corps des fonctions rationnelles sur C.

Exemple: $k(\mathbb{P}^1) = k(t)$ où t = y/x.

Remarque: pour toute fermé projectif irréductible, X, dim $X = \operatorname{degtr}_k(k(X))$.

Proposition 14.1 Si U_i est une carte affine $(x_i \neq 0)$ de \mathbb{P}^n telle que $U_i \cap C \neq \emptyset$, alors l'application :

$$k[C \cap U_i] \to k(C), f \mapsto f \circ \pi$$

induit un k-isomorphisme de corps : $k(C \cap U_i) = \operatorname{Frack}[C \cap U_i] \simeq k(C)$.

Concrètement, si $U_i = (x \neq 0)$, alors $f \circ \pi(x, y, z) = f(1 : y/x : z/x)$. Exemple : soit $C = V(Y^2Z - X^3 - Z^3)$. C'est une courbe irréductible. On a :

$$k(C) = k(x, y) = k(s, t) = k(u, v)$$

où $x=X/Z,y=Y/Z\,;\,s=X/Y,t=Z/Y\,;\,u=Y/X,v=Z/X.$ On a les relations suivantes :

 $y^2 = x^3 + 1$, $t = s^3 + t^3$, $u^2v = 1 + v^3$; s = x/y, t = 1/y, u = y/x, v = 1/x dans k(C).

Définition 17 Soient $f \in k(C)$ et $P \in C$. On dit que f est régulière en P s'il existe $p, q \in k[\widehat{C}]$ de même degré tels que $q(P) \neq 0$ et f = p/q. Dans ce cas, on pose f(P) := p(P)/q(P)

Exercice: vérfier que f(P) est bien défini i.e. si f = p/q = p'/q' dans k(C) comme dans la définition, alors p(P)/q(P) = p'(P)/q'(P) dans k.

On obtient un morphisme injectif:

$$\mathcal{O}_{C,P} \to k(C), (f,U) \mapsto f$$

et $\operatorname{Frac}(\mathcal{O}_{C,P}) = k(C)$. L'image du morphisme ci-dessus est exactement la sous-algèbre des fonctions rationnelles régulières en P.

Exercice: pour tout ouvert U de C, $\mathscr{O}_C(U) := \bigcap_{P \in U} \mathscr{O}_{C,P}$ (intersection dans k(C)).

Exercice: $\bigcap_{P \in C} \mathscr{O}_{C,P} = k$.

 $Exercice: k(C) = \operatorname{Frac}\mathscr{O}_C(U) = \operatorname{Frac}\mathscr{O}_{C,P}$ pour tout ouvert non vide de C et tout $P \in C$.

15 Applications (bi)rationnelles

Exemple: Soient C = V(H), C' = V(H') deux courbes projectives planes irréductibles. Soit un triplet $F_0, F_1, F_2 \in k[\widehat{C}]$ de même degré tel que $H'(F_0, F_1, F_2) = 0$. Alors si U est l'ouvert des $[x] \in C$ tels que $\exists i, F_i(x) \neq 0$, $U \to C', x \mapsto [F_0(x) : F_1(x) : F_2(x)]$ est un morphisme. Soit un triplet

 $(f_0, f_1, f_2) \in k(C)^3$ tel que $H'(f_0, f_1, f_2) = 0$. Soit U l'ouvert des $P \in C$ tels que f_i est régulière en P, i = 0, 1, 2, et pour un certain i, $f_i(P) \neq 0$. Alors $U \to C'$, $P \mapsto [f_0(P) : f_1(P) : f_2(P)]$ est un morphisme (exo : vérifier que U est bien un ouvert non vide de C).

Cours du mercredi 9 avril 2014

Rappel: si X est une variété projective irréductible, on note $\widehat{X}:=\pi^{-1}X\cup\{0\}$ et $k(X):=k(\widehat{X})_0$. Si $f\in k(X)$, on dit que f est régulière en $P\in X$ s'il existe $a,b\in k[\widehat{X}]$ homogènes de même degré tels que f=a/b et $b(P)\neq 0$ On note $\mathrm{Dom}(f):=\{P\in X: f \text{ est régulière en } P\}$. C'est un ouvert non vide de de X.

Valeurs d'une fonction rationnelle : si $f \in k(X)$ et si $P \in \text{Dom}(f)$, on pose f(P) = a(P)/b(P) si f = a/b avec $a, b \in k[\widehat{X}]$ de même degré et $b(P) \neq 0$.

Exercice: l'application $f: Dom(f) \to \mathbb{A}^1$, $P \mapsto f(P)$ est un morphisme.

Soit $P \in X$. Soit A le sous-anneau des fonctions $f \in k(X)$ régulières en P. L'application :

$$A \to \mathcal{O}_{X,P}, f \mapsto (f, \text{Dom}(f)) \mod \sim$$

est un isomorphisme d'anneaux (la réciproque est définie ainsi : soit $f: U \to \mathbb{A}^1$ un morphisme où U est un ouvert contenant P; quitte à prendre un plus petit ouvert, on peut supposer qu'il existe $a,b \in k[\widehat{X}]$ homogènes de même degré tels que $\forall x \in U, b(x) \neq 0$ et $\forall x \in U, f(x) = a(x)/b(x)$; alors on associe à f la fraction a/b; si $(f,U) \sim (g,V)$, alors la fraction associée à g est la même (dans k(X))). Donc $\operatorname{Frac}(\mathscr{O}_{X,P}) \simeq k(X)$

Soient X, X' des variétés quasiprojectives irréductibles (*i.e.* des ouverts de fermés d'espaces projectifs).

Une application rationnelle f: X - --> X' est un morphisme $f: U \to X'$ où U est un ouvert non vide de X.

On dit que deux applications rationnelles f, g: X - --> X' sont équivalentes si elles coïncident sur un ouvert non vide.

Exercice: c'est bien une relation d'équivalence!

15.1 Description à équivalence près des applications rationnelles

Exercice:

a) une application rationnelle $f: X - --> \mathbb{P}^n$ où X est un fermé irréductible de \mathbb{P}^m est équivalente à une application rationnelle de la forme $[F_0: \ldots: F_n]$ pour certains $F_i \in k[\widehat{X}]$ homogènes de même degré, non

tous nuls et aussi à une application rationnelle de la forme $[f_0 : ... : f_n]$ où les $f_i \in k(X)$ ne sont pas tous nuls.

- b) Deux applications rationnelles $[F_0 : ... : F_n]$ et $[G_0 : ... : G_n]$ sont équivalentes si et seulement si pour tous $i, j, F_iG_j = F_jG_i$ dans $k[\hat{X}]$.
- c) Si $f = [f_0 : ... : f_n] : X \to \mathbb{P}^n$ est une application rationnelle avec $f_i \in k(C)$, pour tout i, alors $f \sim [hf_0 : ... : hf_n]$ pour tout $0 \neq h \in k(C)$.

Soit $f: X - --> \mathbb{P}^n$ un morphisme. Si $P \in X$, on dira que f est régulière en P s'il existe un voisinage ouvert V de P dans X, un morphisme $g: V \to \mathbb{P}^n$ tel que $f \sim g$. Dans ce cas, on peut sans ambiguïté définir f comme une fonction sur V exo!.

15.2 Applications birationnelles

Une application rationnelle f: X - --> X' est dominante s'il existe un ouvert U où f est un morphisme tel que f(U) est dense dans X'.

Exercice : c'est indépendant de l'ouvert U choisi i.e. si $f:U\to X'$ est un morphisme tel que $\overline{f(U)}=X',$ si $\emptyset\neq V\subseteq U,$ alors $\overline{f(V)}=X'.$ Propriétés :

- a) si $\varphi_1, \varphi_2 : C --> \mathbb{P}^n$, où C est une courbe irréductible, coïncident sur une partie infinie de C, alors $\varphi_1 = \varphi_2$;
- b) si $\varphi: X --> Y$ est dominante, où X,Y sont des fermés projectifs, alors on peut définir $\varphi^*: k(Y) \to k(X), \ h \mapsto h \circ \varphi$; on obtient une bijection :

$$\left\{\begin{array}{c} \text{Applications rationnelles dominantes}: X - - - > Y \end{array}\right\}$$

$$\stackrel{*}{\longrightarrow}$$

$$\left\{k\text{-morphismes de corps } k(Y) \to k(X) \right\};$$

c) $(\varphi_1 \circ \varphi_2)^* = \varphi_2^* \circ \varphi_1^*$.

Remarque : si Y est une courbe irréductible, f: X - --> Y est dominante si et seulement si f est non constante.

15.3 Application birationnelles

Une application birationnelle f: X - --> X' est un isomorphisme $f: U \stackrel{\simeq}{\to} V$ où U est un ouvert de X et V un ouvert de X'. Dans ce cas, on dit que X, X' sont birationnellement équivalentes.

 $\it Exemple$: toute variété est birationnellement équivalente à tous ses ouverts non vides.

Proposition 15.1 Si X, X' sont des fermés projectifs irréductibles, alors X, X' sont birationnelles si et seulement si $k(X) \simeq k(X')$.

Exercice: Aut $\mathbb{P}^1 = \operatorname{PGL}_2$ indication: déterminer d'abord les k-automorphismes du corps $k(\mathbb{P}^1) \simeq k(t)$.

Définition 18 Une courbe rationelle est une courbe birationnelle à \mathbb{P}^1 .

Corollaire 15.1.1 Une courbe projective irréductible C est rationnelle si et seulement s'il existe une application rationnelle $f: \mathbb{P}^1 - --> C$ non constante.

Démonstration: Cela résulte du théorème de Lüroth. Q.e.d.

Exercice: Montrer que pour toute courbe irrréductible C, il existe toujours une application rationnelle $f: C - --> \mathbb{P}^1$ non constante.

16 Prolongement des applications rationnelles sur les courbes lisses

Exercice: soit $f: \mathbb{P}^1 - --> \mathbb{P}^n$ une appplication rationnelle, montrer que f se prolonge en un morphisme $\mathbb{P}^1 \to \mathbb{P}^n$ (indication: soient $f_0, ..., f_n \in k[X,Y]$ des polynômes homogènes de même degré tels que $f = [f_0: ...: f_n]$ sur un ouvert non vide de \mathbb{P}^1 . Quitte à diviser par leur pgcd, on peut supposer que les f_i sont premiers entre eux. Alors ils n'ont aucun zéro commun!)

Exemple: l'application rationnelle $\mathbb{P}^1 - --> \mathbb{P}^2$, $[x:y] \mapsto [1:y/x:y^2/x^2]$ se prolonge à \mathbb{P}^1 .

Si X est une courbe projective lisse irréductible, alors c'est pareil!

Proposition 16.1 Soit C une courbe projective irréductible. Soit $f: C - --> \mathbb{P}^n$ une application rationnelle. Alors si P est un point lisse de P, f est régulière en P (i.e. il existe un ouvert U contenant P tel que $f: U \to \mathbb{P}^n$ est un morphisme). En particulier, si C est lisse f est un morphisme sur C.

Démonstration: Il existe $f_0, ..., f_n \in k(C)$, un ouvert non vide U de C tels que pour tout $P \in U$, f_i est régulière en P, il existe i tel que $f_i(P) \neq 0$ et $f(P) = [f_0(P) : ... : f_n(P)]$. Soit $P \in C$ (non forcément dans Q). Soit $P \in C$ une uniformisante de $\mathcal{O}_{C,P}$ (il en existe vu que P0 est lisse en P1. Soit $P \in C$ 1 est lisse en P2. Soit $P \in C$ 3 est lisse en P3. Soit $P \in C$ 4 est lisse en P5 est régulière sur un voisinage ouvert de P6 et est équivalente à P6. Q.e.d.

Corollaire 16.1.1 Une courbe projective rationnelle lisse est isomorphe à \mathbb{P}^1 .

Exercice: montrer que $y^2 = x^3 - x$ n'est pas rationnelle en utilisant qu'elle est lisse et que $(x,y) \mapsto (x,-y)$ est un automorphisme avec 4 points fixes.

Théorème 16.2 Toute courbe projective est birationnellement équivalente à une courbe plane.

Démonstration: Soit X une courbe fermée dans un \mathbb{P}^n . Alors le corps des fractions rationnelles k(X) est de degré de transcendance 1 sur k. Donc il existe $x \in k(X)$ tel que l'extension k(X)/k(x) est algébrique séparable. Donc il existe $y \in k(X)$ telle que k(X) = k(x,y). Soit R un polynôme dans k[X,Y] de degré minimal qui annule x,y. Soit C la courbe projective plane $V(\overline{R}(X,Y,Z)) \subseteq \mathbb{P}^2$. Alors $k(C) \simeq \operatorname{Frac}(k[X,Y]/(R)) \simeq k(X)$ où $d := \deg R$ et $\overline{R}(X,Y,Z) = Z^d R(X/Z,Y/Z)$. Q.e.d.

Théorème 16.3 Toute courbe irréductible est birationnelle à une courbe projective lisse, unique à isomorphisme près (mais non nécessairement plane).

Démonstration : Unicité : soit $\varphi: C_1 - --> C_2$ un isomorphisme birationnelle entre courbes lisses. Alors φ est un isomorphisme. Q.e.d.

Soit un triplet $(f_0, f_1, f_2) \in k(C)^3 \setminus \{(0, 0, 0)\}$ tel que $H'(f_0, f_1, f_2) = 0$. Soit U l'ouvert des $P \in C$ tels que $\forall i, f_i \in \mathscr{O}_{C,P}$ et $\exists i, f_i(P) \neq 0$. L'application $U \to C', P \mapsto [f_0(P): f_1(P): f_2(P)]$ est un morphisme.

Exercice: si C, C' = V(H') sont des courbes projectives planes irréductibles, si un triplet $(f_0, f_1, f_2) \in k(C)^3 \setminus \{(0, 0, 0)\}$ est tel que $H'(f_0, f_1, f_2) = 0$, on note $(f_0: f_1: f_2)$ l'application rationnelle correspondante. Toutes les applications rationnelles C - --> C' sont de cette forme.

Proposition 16.4 Soit $\phi = (f_0 : f_1 : f_2)$ une application rationnelle. Il existe S une partie finie de C telle que $P \mapsto (f_0(P) : f_1(P) : f_2(P))$ est une vraie application $C \setminus S \to C'$.

Soit f: X - --> Y une application rationnelle, le domaine de f est la réunion des ouverts U_a de X tel qu'il existe un morphisme $f_a: U_a \to Y$ dans la classe de f.

Exercice: si f: X - --> Y est une application rationnelle, si U_a est un ouvert tel qu'il existe un morphisme $f_a: U_a \to Y$ dans la classe de f, on pose $f(P) := f_a(P)$ si $P \in U_a$. C'est indépendant de l'ouvert U_a choisi. L'application $f: \text{Dom}(f) \to Y$ est un morphisme.

Proposition 16.5 Le domaine de définition de $\phi = (f_0 : f_1 : f_2)$ est l'ouvert des $P \in C$ tel qu'il existe $h \in k(C)^{\times}$ vérifiant :

- (i) $\forall i, h f_i$ est régulière en P.
- (ii) $\exists i, h f_i(P) \neq 0.$

Si P est dans le domaine de ϕ , on peut définir $\phi(P)$ sans ambiguïté.

Si le domaine de ϕ est C, on dit que ϕ est un morphisme.

Exemple: soient $C = (y^2 = xz)$, $C' = \mathbb{P}^1$. L'application rationnelle $(1: y/x): C - --> \mathbb{P}^1$ est un morphisme mais on ne peut pas trouver $f_0, f_1 \in k(C)$ telles que $(f_0: f_1) = (1: y/x)$ et $\forall P \in C, f_0(P)$ ou $f_1(P) \neq 0$.

Exercice: montrer que $(1:y/x):C\to\mathbb{P}^1$ est un isomorphisme en donnant sa réciproque.

Cours du mercredi 16 avril 2014

17 Multiplicité d'un point sur une courbe

Soit $F \in k[X, Y, Z]$ un polynôme homogène sans facteur carré non constant. Soit $P = (x_0 : y_0 : z_0)$ un point de la courbe C := (F = 0). On dira que P est de multiplicité d si en X, Y, Z, la composante homogène non nulle de $F(x_0 + X, y_0 + Y, z_0 + Z)$ de plus petit degré est de degré d.

Supposons que F ne contient pas la droite (z = 0) et que $P = (x_0, y_0, 1)$ est sur la courbe défini par F de multiplicité d. Alors (x_0, y_0) est de multiplicité d sur la courbe affine $(F(X, Y, 1) = 0) = C \cap (z \neq 0)$.

On en déduit :

Proposition 17.1 Soit C une courbe plane projective. Soit F un générateur de I(C). Alors si $P \in C$, $m_P(C) \ge 1$. De plus, P est lisse si et seulement si sa multiplicité est 1.

Exemple: si $n \geq 3$, la courbe $y^2 = x^n$ a un seul point à l'infini. Ce point est de multiplicité n-2.

Proposition 17.2 Une courbe de degré d, irréductible avec un point de multiplicité d-1 est rationnelle.

Démonstration: On peut supposer que $d \geq 3$. On peut supposer que C est une courbe de degré d dans \mathbb{P}^2 telle que $C \cap (z \neq 0) \neq \emptyset$. Alors si (F) = I(C), on a :

$$F(x, y, 1) = F_{d-1}(x, y) + F_d(x, y)$$

où F_i sont homogènes de degré i. Comme $F(x, y, 1) \in k[x, y]$ est irréductible, $F_{d-1}, F_d \neq 0$ et donc $F_{d-1}(1, t), F_d(1, t) \neq 0$ dans k[t].

On résout $F(x, tx, 1) = 0 \Leftrightarrow x = 0$ ou $F_{d-1}(1, t) + xF_d(1, t) = 0$.

On obtient une application rationnelle non constante :

$$\mathbb{A}^1 - --> C, \ t \mapsto [-F_{d-1}(1,t): -tF_{d-1}(1,t): F_d(1,t)].$$

Q.e.d.

En particulier, toute cubique irréductible admettant un point singulier est rationnelle.

Exercice: soit C une cubique irréductible avec un point singulier. Si ce point est de rebroussement, alors C est projectivement équivalente à $y^2 = x^3$; si ce point est double ordinaire, alors C est projectivement équivalente à $xy = x^3 + y^3$.

Exercice: une cubique avec 3 points singuliers est la réunion de 3 droites : par ex. : $x^3 + y^3 + z^3 = 3xyz$.

Proposition 17.3 Toute quartique projective irréductible admettant 3 points singuliers est rationnelle.

Démonstration: Soit $H = \sum_{\substack{i,jk \geq 0 \\ i+j+k=4}} a_{i,jk} X^i Y^j Z^k$ irréductible homogène de degré 4. On peut supposer que les 3 points singuliers sont [1:0:0], [0:1:0], [0:0:1]. Donc: pas de terme en X^4, Y^4, Z^4 . On peut supposer que les multiplicités en ces points sont 2: donc $H = aX^2Y^2 + bX^2Z^2 + cY^2Z^2 + dXYZ^2 + eXZY^2 + fYZX^2$. On considère:

$$\phi: \mathbb{P}^2 - --> \mathbb{P}^2, [x:y:z] \mapsto [x^{-1}:y^{-1}:z^{-1}]$$
.

qui envoie V(H) sur une conique.

Q.e.d.

Exercice: soit C une quartique avec 4 points singuliers. Alors C est la réunion de 2 coniques.

18 Théorème de Bézout

18.1 Multiplicité d'intersection dans le cas affine

On commence par le cas affine.

Soit $P \in \mathbb{A}^2$. On note $\mathscr{O}_P = \mathscr{O}_{\mathbb{A}^2,P}$.

Si $f, g \in \mathcal{O}_P$, on pose $I_P(f, g) := \dim_k \mathcal{O}_P/(f, g)$.

Proposition 18.1 i) $I_P(f,g) < \infty$ si et seulement si f,g sont sans facteurs communs dans \mathcal{O}_P .

- ii) $I_P(f,gh) = I_P(f,g) + I_P(f,h)$ si f,g,h sont deux à deux sans facteurs communs dans \mathcal{O}_P .
- iii) $I_P(f,g) \ge mult_P(f)mult_P(g)$ avec égalité si les premières composantes homogènes non nulles du développement de Taylor de f,g au voisinage de P sont premières entre elles (on note $mult_P(f)$ le degré de la première composante homogène non nulle du développement de Taylor de f au voisinage de P).
- iv) $I_P(f,g) > 0 \Rightarrow f(P) = g(P) = 0.$

Démonstration: Du premier point : on peut supposer $f, g \in k[X, Y]$. Soit h leur pgcd. Comme f,g sont premiers entre eux dans \mathcal{O}_P , $h \notin \mathfrak{m}_P$ est inversible et dans \mathcal{O}_P , (f,g)=(f/h,g/h) on peut donc supposer f,gpremiers entre eux dans k[X,Y]. Mais alors, $V(f,g) \subseteq \mathbb{A}^2$ est fini. Notons $Q_1,...,Q_N$ les points de $V(f,g) \setminus \{P\}$. On a :

$$V(f,g) = V(M_P M_{Q_1} ... M_{Q_N})$$

donc d'après le théorème des zéros, $\sqrt{(f,g)}=M_PM_{Q_1}...M_{Q_N}$. Soit N>0tel que $(M_P M_{Q_1} ... M_Q)^N \leq (f, g)$. Comme $M_{Q_i} \mathscr{O}_P = \mathscr{O}_P$, on a :

$$(M_P M_{Q_1} ... M_Q)^N \mathscr{O}_P = M_P^N \mathscr{O}_P = \mathfrak{m}_P^N \le (f, g) \mathscr{O}_P$$

d'où un morphisme surjectif:

$$\mathscr{O}_P/\mathfrak{m}_P^N \to \mathscr{O}_P/(f,g)$$

et $I_P(f,g) \leq \dim_k \mathscr{O}_P/\mathfrak{m}_P^N = \sum_{i=0}^{N-1} \dim_k \mathfrak{m}_P^i/\mathfrak{m}_P^{i+1} = \sum_{i=0}^{N-1} \dim_k (X,Y)^i/(X,Y)^{i+1} = \sum_{i=0}^{N-1} \dim_k (X,Y)^i/(X,Y)^i/(X,Y)^{i+1} = \sum_{i=0}^{N-1} \dim_k (X,Y)^i/(X,Y$ $N(N+1)/2 < \infty$.

Démontrons l'inégalité $mult_P(f,g) \ge mult_P(f)mult_P(g)$: on peut supposer P = (0,0). On note $m := \operatorname{mult}_{P}(f)$, $n := \operatorname{mult}_{P}(g)$ et M := (x,y).

On a $\dim_k \mathcal{O}_P/(f,g) \geq \dim_k \mathcal{O}_P/(f,g) + M^{m+n}$. Or on a une suite exacte:

$$\mathscr{O}_P/M^n \oplus \mathscr{O}_P/M^m \longrightarrow \mathscr{O}_P/M^{m+n} \longrightarrow \mathscr{O}_P/(f,g) + M^{m+n} \longrightarrow 0$$

$$A \oplus B \longmapsto Af + Ba$$

$$C \longmapsto C \mod (f,g) + M^{m+n}$$

donc $\dim_k \mathscr{O}_P/(f,g) \ge \dim_k \mathscr{O}_P/(f,g) + M^{m+n} \ge \dim_k \mathscr{O}/M^{m+n} - \dim_k \mathscr{O}_P/M^m - \dim_k \mathscr{O}_P/M^n = \binom{m+n+1}{m+n-1} - \binom{m+1}{m-1} - \binom{n+1}{n-1} = mn.$ Q.e.d.

Exemple: $I_{(0,0)}(y-x^2, y-ax) = 1$ si $a \neq 0$, 2 si a = 0. Exercice: Calculer $I_P(f,g)$ où P = (0,0), $f = (x^2 + y^2)^2 + 3x^2y - y^3$, $g = (x^2 + y^2)^3 - 4x^2y^2.$

Soient C, C' deux courbes affines sans composante commune. Si $P \in \mathbb{A}^2$, on note:

$$I_P(C,C') := I_P(f,f')$$

où
$$I(C) = (f), I(C') = (f').$$

Exercice: on suppose que P est un point lisse de C. Soit f un générateur de I(C) et soit f' un générateur de I(C'). Montrer que $I_p(C,C')$ $\operatorname{ord}_{P \in C}(f'|_C)$. (indication : vérifier que $\mathscr{O}_P/(f,g) \simeq \mathscr{O}_{C,P}/(g|_C)$).

Exercice: Soit C = V(f) une courbe plane avec f sans facteur carré. Montrer que si D = (y = ax + b) est une droite qui n'est pas contenu dans C, si $P = (x_0, y_0) \in C \cap D$, alors $I_P(C, D)$ est la multiplicité de la racine x_0 dans f(x, ax + b). Montrer que pour toute droite D, $I_P(C, D) \geq \text{mult}_P(C)$ avec égalité pour toutes les droites excepté un nombre fini d'entre elles.

En déduire que si D est une droite qui rencontre C en $P_1,...,P_n$ et si :

$$\sum_{i} \operatorname{mult}_{P_{i}}(C) > \operatorname{deg} f$$

alors D est une composante de f.

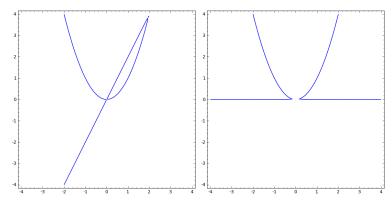
18.2 Intersection transverse

Soient C, C' deux courbes affines planes. Soit $P \in C \cap C'$. On dit que C et C' s'intersectent transversalement en P si P est un point lisse de C et de C' et si $T_PC \neq T_PC'$.

Exemple : en (0,0), $y=x^2$ et y=ax s'intersectent transversalement si et seulement si $a\neq 0$.

Proposition 18.2 *Soit* $P \in C \cap C'$. *On a*:

C, C' s'intersectent transversalement $\Leftrightarrow I_P(C, C') = 1$.



Démonstration: \Rightarrow : supposons P=(0,0). Comme les parties homogènes de degré 1 de f,g sont linéairement indépendantes, il existe $a,b\in k,\ c,d\in k$ tels que $r:=af+bg=X\ \mathrm{mod}\ (X,Y)^2,\ s:=cf+dg=Y\ \mathrm{mod}\ (X,Y)^2$. Mais alors, $(X,Y)/(X,Y)^2$ est engendré par r,s. Donc (X,Y) aussi (par Nakayama!). Donc $\mathscr{O}_P/(f,g)$ est l'image de $\mathscr{O}_P/(r,s)\simeq \mathscr{O}_{(0,0)}/(X,Y)\simeq k$. Et la multiplicité est 1.

 \Leftarrow : On écrit $f = f_1 + ..., g = g_1 + ...$ où f_1, g_1 sont homogènes de degré 1 non nuls si $I_P(f,g) = 1$ avec P = (0,0). Si $f_1 = \lambda g_1$, alors $(f,g) = (f - \lambda g, g) = (f_2 - \lambda g_2 + ..., g_1 + ...)$. Donc $I_P(f,g) = I_P(f - \lambda g, g) \geq 2$ contradiction.

Q.e.d.

Lemme 18.3 Si $f, g \in k[X, Y]$ sont premiers entre eux, alors $\dim_k k[X, Y]/(f, g) < \infty$ et on a:

$$\dim_k k[X,Y]/(f,g) = \sum_{P \in \mathbb{A}^2} I_P(f,g) .$$

Démonstration:

si $a \in k[X,Y]$, on notera pour tout P a_P l'image de a dans $\mathcal{O}_P/(f,g)$. Vérifions que l'application :

$$k[X,Y]/(f,g) \to \bigoplus_{P \in \mathbb{A}^2} \mathscr{O}_P/(f,g) \,, \ a \mapsto \bigoplus_{P \in \mathbb{A}^2} a_P$$

est un isomorphisme. *Injectivité* : si $a \in k[X,Y]$ est tel que $\forall P \in \mathbb{A}^2, a_P \in (f,g)\mathcal{O}_P$, alors soit J l'idéal $\{h \in k[X,Y] : ha \in (f,g)\}$. Si $J \neq k[X,Y]$, alors J est dans un idéal maximal M_P de k[X,Y], $P \in \mathbb{A}^2$. Mais il existe $h \notin M_P$ tel que $ha \in (f,g)$ i.e. $h \in J$ d'où la contradiction. Donc $a \in (f,g)$.

Surjectivité : soient $P_1, ..., P_N \in \mathbb{A}^2$ tels que $\{P_1, ..., P_N\} = V(f,g)$. On a $\bigoplus_{P \in \mathbb{A}^2} \mathscr{O}_P/(f,g) = \bigoplus_{i=1}^N \mathscr{O}_{P_i}/(f,g)$. Il suffit de montrer que $0 \oplus ... \oplus 1 \oplus ... \oplus 0$ avec 1 en iième position est atteint. Soit $h \in k[X,Y]$ tel que $h(P_i) \neq 0$ et $h(P_j) = 0$ si $j \neq i$. Il existe N tel que $M_{P_j}^N \leq (f,g)\mathscr{O}_{P_j}$ pour tout j. Alors quitte à considérer h^N , on peut supposer que $h_{P_j} = 0 \mod (f,g)$ pour tout $j \neq i$. Comme $(M_{P_i}^N, h) = (1)$, il existe $a \in k[X,Y]$ tel que $ah = 1 \mod (f,g)$ dans k[X,Y]. Alors ah a pour image $0 \oplus ... \oplus 1 \oplus ... \oplus 0$ dans $\bigoplus_{P \in \mathbb{A}^2} \mathscr{O}_P/(f,g)$. Q.e.d.

18.3 Multiplicité d'intersection dans le cas projectif

Soient $C, C' \subseteq \mathbb{P}^2$ deux courbes projectives planes sans composante commune de degrés d, d' respectivement. Si $P \in \mathbb{P}^2$, on note $I_P(C, C') := \dim_k \mathscr{O}_{\mathbb{P}^2, P}/(I_{C,P} + I_{C',P})$ où $I_{C,P}$ est l'idéal de $\mathscr{O}_{\mathbb{P}^2, P}$ engendré par F où F est un générateur de I(C):

 $I_{C,P} := \{a/b : a, b \in k[X, Y, Z] \text{ homogènes de même degré, } b(P) \neq 0, a \in (F)\}.$

Exercice: si
$$P$$
 est de la forme $[x:y:1]$, alors $I_P(C,C')=m_{(x,y)}(C\cap \mathbb{A}^2,C'\cap \mathbb{A}^2)=I_{(x,y)}(f,g)$ où $f(X,Y):=F(X,Y,1)$ et $g(X,Y):=G(X,Y,1)$.

Théorème 18.4 (Bézout) Soient $C, C' \subseteq \mathbb{P}^2$ deux courbes projectives planes sans composante commune de degrés d, d' respectivement. On a l'égalité :

$$\sum_{P \in \mathbb{P}^2} I_P(C, C') = dd' .$$

Démonstration: L'ensemble $C \cap C'$ est fini donc il existe H une forme linéaire sur k^3 telle que $\forall P \in C \cap C'$, $H(P) \neq 0$. Quitte à faire un changement linéaire de coordonnées, on peut supposer que H = Z. Mais alors:

$$\sum_{P \in \mathbb{P}^2} I_P(C, C') = \sum_{P \in \mathbb{A}^2} I_P(f, f') = \dim_k k[X, Y] / (f, f')$$

où f := F(X, Y, 1), f' := F'(X, Y, 1) avec $(F) = I(C), (F') = I(C'), F, F' \in$ k[X,Y,Z] homogènes de degrés d,d'. Remarquons que F,F' sont premiers avec Z donc f, f' sont de degrés d, d' et premiers entre eux. Vérifions que dans ce cas $\dim_k k[X,Y]/(f,f') = dd'$.

Si $n \ge 0$, on pose $k[X,Y]_{\le n} :=$ l'espace des polynômes de degrés $\le n$ et $(f, f')_{\leq n} := (f, f') \cap k[X, Y]_{\leq n}.$

Si $n \ge d + d'$, on a une suite exacte courte :

$$0 \longrightarrow k[X,Y]_{\leq n-d-d'} \stackrel{j}{\longrightarrow} k[X,Y]_{\leq n-d} \oplus k[X,Y]_{\leq n-d'} \stackrel{p}{\longrightarrow} (f,f')_{\leq n} \longrightarrow 0$$

$$A \longmapsto Af' \oplus -Af$$

$$B \oplus C \longmapsto Bf + Cf'$$

 $i.e.\ j$ est injective, p est surjective et im $j=\ker p.$ On en déduit que $\dim_k(f,f')_{\leq n}=\binom{n-d+2}{n-d}+\binom{n-d'+2}{n-d'}-\binom{n-d-d'+2}{n-d-d'}.$ Donc :

$$\dim_k k[X,Y]_{\leq n}/(f,f')_{\leq n} = \binom{n+2}{n} - \binom{n-d+2}{n-d} - \binom{n-d+2}{n-d'} + \binom{n-d-d'+2}{n-d-d'} + \binom{n-d-d'+2}{n-d-d'}$$

$$= dd'$$

pour tout $n \geq d, d'$. Donc :

$$\dim_k k[X,Y]/(f,f') = dd'.$$

Q.e.d.

18.4 Conséquences de Bézout

18.4.1 Équations des cubiques planes

Section non traitée en cours ...

Soit C une courbe projective plane irréductible. On dit que $P \in C$ est un point d'inflexion de C si $I_P(T_PC, C) \geq 3$.

Soit F un générateur de I(C) dans $k[X_1, X_2, X_3]$. On note $H_F := \det(\partial_{X_i X_j} F)_{1 \le i, j \le 3}$. Exercice: si deg F = n, alors deg $H_F = 3(n-2)$.

Proposition 18.5 (car(k) = 0) On suppose que C est de degré ≥ 3 . Le point $P \in C$ est d'inflexion ou singulier si et seulement si $H_F(P) = 0$.

Démonstration: Quitte à faire un changement linéaire de coordonnées, on peut supposer que P=[0:0:1] et que $T_PC=(y=0)$. Alors $F(X,Y,1)=:f(X,Y)=Y+aX^2+bXY+cY^2+dX^3+eX^2Y+....$ Or, $\operatorname{mult}_P(F,H_F)=\operatorname{mult}_0(f,g)$ où $g=\partial_y f^2\partial_{xx}f+\partial_x f^2\partial_{yy}f-2\partial_x f\partial_y f\partial_{xy}f$ et $g=2a+6dx+(8ac-2b^2+2e)y+....$ Q.e.d.

Proposition 18.6 (car(k) = 0) Soit C une courbe projective plane irréductible de degré 3. Alors, C est projectivement équivalente à $Y^2Z = X^3$, $Y^2Z = X^2(X+Z)$ ou $Y^2Z = X(X-Z)(X-\lambda Z)$, $\lambda \in k$, $\lambda \neq 0, 1$.

Démonstration: D'après Bézout C a 9 points d'inflexions. On peut supposer que l'un d'eux est P = [0:1:0]. Quitte à faire un changement linéaire de variables, on peut aussi supposer que $T_PC = (z=0)$. Q.e.d.

18.4.2 Le théorème de Chasles pour les cubiques

Théorème 18.7 Soit $C \subseteq \mathbb{P}^2$ une cubique irréductible. Soient $P_1, ..., P_8$ 8 points distincts de C. Il existe un 9ième point de C P_9 tel que :

- ou bien $P_9 \notin \{P_1, ..., P_8\}$ et toute cubique Y qui passe par $P_1, ..., P_8$ passe aussi par P_9 ;
- ou bien $P_9 \in \{P_1, ..., P_8\}$ et toute cubique Y qui passe par $P_1, ..., P_8$ vérifie : $mult_{P_0}(Y, C) \ge 2$.

Démonstration: Le théorème est vrai mais on ne fera la démonstration que pour le cas où P_1 , P_2 , P_3 sont sur deux droites distinctes et (P_1P_2) , (P_2P_3) ne rencontrent pas $\{P_4, ..., P_8\}$.

Soit $S_3:=k[X,Y,Z]_3$. On a $\dim_k S_3=10$. Chaque P_i définit un hyperplan de $S_3:\{F\in S_3:F(P_i)=0\}$. On a donc :

$$\dim_k \{ F \in S_3 : \forall 1 < i < 8, F(P_i) = 0 \} > 2$$
.

S'il y a égalité, soient $F_1, F_2 \in S_3$ une base de $\{F \in S_3 : \forall 1 \leq i \leq 8, F(P_i) = 0\}$. On peut choisir pour F_1 l'équation de C donc on peut supposer que F_1, F_2 sont sans composante commune. Soit P_9 le 9ème poihnt d'intersection de $(F_1 = 0)$ et $(F_2 = 0)$. Si Y est une cubique qui passe par $P_1, ..., P_8$, alors $F = \lambda F_1 + \mu F_2$, donc $\text{mult}_{P_9}(F_1, F) \geq \text{mult}_{P_9}(F_1, F_2)$.

Supposons donc maintenant que $\dim_k \{ F \in S_3 : \forall 1 \leq i \leq 8, F(P_i) = \}$ $\{0\}$ > 2. Soient x, y deux points distincts dans $\{P_1P_2\} \setminus X$. Notons L une équation de (P_1P_2) . On peut trouver une cubique Y d'équation G=0 qui passe par $x, y, P_1, ..., P_8$ car $\dim_k \{ F \in S_3 : F(x) = F(y) = 0, \forall 1 \le i \le 1 \}$ $\{S, F(P_i) = 0\} \geq 1$. Mais alors $(L = 0) \cap (G = 0)$ contient ≥ 4 points. Par Bézout, L|G. Soit B := G/L. Le polynôme B est l'équation d'une conique C qui passe par $P_3, ..., P_8$. On trouve de même une conique $C' \neq C$ d'équation B' qui passe par $P_2, P_4, ..., P_8$. Mais alors $C \cap C'$ contient au moins 5 points. Par Bézout, il existe L'' une équation linéaire qui définit une composante commune de C et C'. On a : $B = L''L_1$, $B' = L''L_2$ pour certaines équations linéaires L_1, L_2 . On en déduit qu'une des droites $(L^{"} = 0), (L_1 = 0)$ ou $(L_2=0)$ contient 4 points parmi $\{P_2,...,P_8\}$ (en effet, si $L''(P_2)=0$, alors ou bien (L"=0) contient 3 points de $\{P_3, ..., P_8\}$ et donc au moins 4 avec P_2 ou bien $(L_2=0)$ contient au moins 4 points de $\{P_3, ..., P_8\}$. De même si $L''(P_3) = 0$. Si $L''(P_2)$ et $L''(P_3) \neq 0$, quitte à renuméroter, on peut supposer que L" s'annule en P_4, P_5, P_6 (si l'annulation a lieu en moins de 3 points, L_1 s'annule en au moins 4 points). Mais alors si $L_1 \neq L_2$, L_1 et L_2 ont au plus un point en commun donc $L''(P_7)$ ou $L''(P_8) = 0$. Si $L_1 = L_2$, c'est facile). Absurde car C est une cubique irréductible! Q.e.d.

Corollaire 18.7.1 (Loi de groupes sur une cubique) $Soit X \subseteq \mathbb{P}^2$ une cubique irréductible lisse. $Soit \ e \in X$. $Si \ x,y \in X$, on note xy le troisième point d'intersection de la droite (xy) avec X. On note $x \oplus y$ le troisième point d'intersection de la droite e(xy) avec X. L'application $X \times X \to X$, $(x,y) \mapsto x \oplus y$ est une loi de groupes commutative de neutre e.

Remarque : si x = y, on remplace (xy) par la tangente à X en x. Exercice : $X \times X \to x$, $(x,y) \mapsto x \oplus y$ est un morphisme.

Démonstration : Le seul point délicat est l'associativité. Soient x,y,z 3 points distincts de X. On considère les 8 points $e,x,y,xy,zy,x\oplus y,y\oplus z$. ils sont sur 3 cubiques :

$$X, \langle x, y \rangle \cup \langle yz, y \oplus z \rangle \cup \langle z, x \oplus y \rangle, \langle y, z \rangle \cup \langle xy, x \oplus y \rangle \cup \langle x, y \oplus z \rangle$$
.

On suppose que $e, x, y, xy, zy, x \oplus y, y \oplus z$ sont deux à deux distincts. D'après le théorème de Chasles, $(x \oplus y)z = x(y \oplus z) \Rightarrow (x \oplus y) \oplus z = x \oplus (y \oplus z)$.

Pour le cas général, l'ensemble des x, y, z tels que $e, x, y, xy, zy, x \oplus y, y \oplus z$ sont deux à deux distincts est un ouvert non vide de $X \times X \times X$. De plus,

 $\{(x,y,z)\in X\times X\times X: (x\oplus y)\oplus z=x\oplus (y\oplus z)\}$ est fermé dans $X\times X\times X$ c'est donc tout! Q.e.d.

19 Diviseurs

Soit X une courbe projective lisse.

Définition 19 On note DivX le groupe abélien libre ayant pour base les points de X. Un diviseur est un élément de DivX

Un diviseur de X est donc une somme formelle

$$D := \sum_{x \in X} n_x x$$

où $\forall x \in X$, $n_x \in \mathbb{Z}$ et $n_x = 0$ sauf pour un nombre fini de $x \in X$. On notera $n_x(D)$ le coefficient devant x de D. Le degré de D est l'entier deg $D := \sum_x n_x(D)$. Un diviseur est positif si tous ses coefficients $n_x(D) \geq 0$. On notera $D' \geq D$ si D' - D est positif.

19.1 Diviseurs principaux

Soit $f \in k(X)$. On pose $\operatorname{ord}_P(f) := \infty$ si f = 0.

Lemme 19.1 Si $f \neq 0$, alors il n'y a qu'un nombre fini de $x \in X$ tel que $\operatorname{ord}_x(f) \neq 0$.

Démonstration: Soit $U := \text{Dom}(f) \cap \text{Dom}(f^{-1})$. C'est un ouvert non vide et si $x \in X \setminus U$, qui est fini, $\text{ord}_x f \geq 0$ et $\text{ord}_x (f^{-1}) = -\text{ord}_x f \geq 0 \Rightarrow \text{ord}_x f = 0$. Q.e.d.

On peut donc définir si $f \in k(X) \setminus \{0\}, \div f := \sum_{x \in X} \operatorname{ord}_x(f)x$.

On dit qu'un tel diviseur est principal.

On a un morphisme de groupes :

$$\div: k(X)^{\times} \to \text{Div}X$$
.

On dit que $D, D' \in \text{Div}X$ sont équivalents, on le note $D \sim D'$, si $D - D' \in \div(k(X)^{\times})$.

On note $ClX := DivX/ \div (k(X)^{\times})$.

Si $D \in \text{Div}X$, on pose :

$$D_{+} := \sum_{\substack{x \\ n_{x}(D) > 0}} n_{x}(D)x, \ D_{-} := \sum_{\substack{x \\ n_{x}(D) < 0}} -n_{x}(D)x.$$

Les diviseurs D_+ , D_- sont positifs et $D = D_+ - D_-$.

Zéros et pôles

Si $f \in k(X)^{\times}$, on pose $\div(f)_0 := (\div f)_+$ et $\div(f)_{\infty} := (\div f)_-$. Ce sont le diviseur des zéros et le diviseur des pôles de f.

19.2 les espaces L(D)

Soit $D \in \text{Div}X$. On note :

$$L(D) := \{ f \in k(X) : \forall x \in X, \operatorname{ord}_x f + n_x(D) \ge 0 \}$$
.

Proposition 19.2 (i) L(D) est un sous-k-espace vectoriel de dimension finie de k(X);

- (ii) L(0) = k;
- (iii) si $D' \leq D$, alors $L(D') \leq L(D)$;
- (iv) $\forall f \in k(X)^{\times}, L(D) \simeq L(D + \div f), h \mapsto hf.$

Démonstration: (i): il suffit de traiter le cas où $D \geq 0$; dans ce cas, on choisit pour tout $x \in X$ une uniformisante t_x de $\mathscr{O}_{X,x}$; l'application linéaire $L(D) \to \bigoplus_x \mathscr{O}_{X,x}/\mathfrak{m}_x^{n_x(D)}$, $h \mapsto \bigoplus_x t_x^{n_x(D)} h \mod \mathfrak{m}_x^{n_x(D)}$ a pour noyau les $h \in k(X)$ tels que ord $_x h \geq 0$ pour tout x i.e. k. De plus, l'espace d'arrivée est de dimension finie!

Q.e.d.

19.3 Théorème de Riemann-Roch : énoncé

Théorème 19.3 Il existe une unique classe de diviseurs $K_X \in ClX$ telle que :

$$\dim_k L(D) = \deg D + \dim_k L(K_X - D) + 1 - g$$

pour tout diviseur $D \in \text{Div}X$, où $g := \dim_k L(K_X)$ est appelé le genre de X.

Démonstration unicité:

On a forcement $g = \max\{\deg D - l(D) + 1 : D \in \text{Div}X\}$. Donc si K' convient aussi, on a : l(K - K') = l(K' - K) = 1. Soit $f \in L(K - K')$. Soit $f' \in L(K' - K)$. Alors $\forall x \in X$, $\operatorname{ord}_x f \geq n_x(K') - n_x(K)$, $\operatorname{ord}_x f' \geq n_x(K) - n_x(K') \Rightarrow \forall x$, $\operatorname{ord}_x(ff') \geq 0 \Rightarrow ff' = c \in k^{\times}$ par exemple, ff' = 1. Mais alors $K' = K + \div f$.

Voici quelques conséquences directes du théorème de Riemann-Roch :

Corollaire 19.3.1 $deg(K_X) = 2g - 2$.

Corollaire 19.3.2 $\forall D \in \text{Div} X$, $\deg D > 2g - 2 \Rightarrow l(D) = \deg D + 1 - g$

Corollaire 19.3.3 $g(X) = 0 \Leftrightarrow X \simeq \mathbb{P}^1$.

Démonstration: \Rightarrow : soit $x \in X$. On a dim l(x) = 2. Donc il existe $f \in K$ non constante telle que $f \in L(x)$. Forcément, $\operatorname{ord}_x f = -1$. Donc $\div_{\infty} f = x$ et [K:k(f)] = 1 i.e. K = k(f) donc $f: X \to \mathbb{P}^1$ induit un isomorphisme birationnel donc un isomorphisme : $f: X \simeq \mathbb{P}^1$. Q.e.d.

Corollaire 19.3.4 Soit $X \subseteq \mathbb{P}^2$ une courbe projective plane lisse et irréductible de degré d. Alors $g(X) = \frac{(d-1)(d-2)}{2}$.

Démonstration: Soit F un générateur de I(X). Soit D une droite qui rencontre X en d points distincts. On peut supposer que cette droite est la droite à l'infini $X_0 = 0$. Soient $D = x_1 + ... + x_d$ où les x_i sont les points de $D \cap X$. Alors $L(mD) = k[X_1, X_2]_{\leq m}/(f)$ où $f(X_1, X_2) = F(1, X_1, X_2)$ est de degré d. Mais alors, on trouve :

$$l(mD) = \frac{(m+1)(m+2)}{2} - \frac{(m-d+1)(m-d+2)}{2}$$
$$= md + 1 - g$$
$$\Rightarrow g = \frac{(d-1)(d-2)}{2} .$$

Q.e.d.

20 Démonstration du théorème de Riemann-Roch

20.1 Quelques résultats d'algèbre commutative

Lemme 20.1 Soit k un corps algébriquement clos. Soit A une k-algèbre intègre de type fini de corps des fractions K. Soit L/K une extension finie de corps. Alors l'ensemble des éléments de L entiers sur A est un anneau qui est un A-module de type fini.

Démonstration : On commence par le cas où L=K. D'après le lemme de normalisation de Nœther, il existe $x_1,...,x_r\in A$, algébriquement indépendants sur k tels que A est entier sur $k[x_1,...,x_r]$. On peut même choisir les x_i tels que $K/k(x_1,...,x_r)$ soit une extension séparable (exo). Soit $\omega_1,...,\omega_N$ une base de K comme $k(x_1,...,x_r)$ —espace vectoriel. On peut choisir les ω_i entiers sur $k[x_1,...,x_r]$. Soit B l'anneau des éléments de K entiers sur $k[x_1,...,x_r]$. L'application :

$$K \to k(x_1, ..., x_r)^N, \ u \mapsto (\text{Tr}_{K/k(x_1, ..., x_r)}(u\omega_i))_{i=1}^N$$

envoie B dans $k[x_1,...,x_r]^N$. C'est une application injective car $\forall i \operatorname{Tr} u\omega_i = 0 \Rightarrow \forall x \in K, \operatorname{Tr} ux = 0 \Rightarrow \forall x \in K, \operatorname{Tr} x = 0$ absurde car $K/k(x_1,...,x_r)$ est

séparable. Donc B est un $k[x_1,...,x_r]$ — module de type fini en tant que sous- $k[x_1,...,x_r]$ —module d'un $k[x_1,...,x_r]$ — module de type fini. Si $K \neq L$, notons encore B l'anneau des éléments de L entiers sur A; soient $y_1,...,y_d \in L$ entiers sur A qui forment une base de L comme K—espace vectoriel. Alors B est un $A[y_1,...,y_d]$ —module de type fini d'après le cas précédent. Donc B est un A—module de type fini. Q.e.d.

Lemme 20.2 Soit $t \in k(X)$ un élément non nul. Soit R_t l'anneau des éléments de k(X) entiers sur k[t]. Alors il existe un ouvert affine U de X tel que $k[U] = R_t$.

Démonstration: L'anneau R_t est de type fini sur k d'après le lemme précédent. Il existe donc une variété affine $\Omega \leq \mathbb{A}^N$ et un isomorphisme $\phi: R_t \stackrel{\simeq}{\to} k[\Omega]$. Forcément, Ω est une courbe affine irréductible et lisse (car $k[\Omega] = R_t$ est intégralement clos. Comme $k(\Omega) \simeq \operatorname{Frac}(R_t) = k(X)$, il existe un isomorphisme birationnel $f: \overline{\Omega}^{\mathbb{P}^N} --- > X$ tel que $f^* = \phi$. Il existe donc $U \subseteq \Omega$ et $V \subseteq X$ des ouverts affines non vides tels que $f: U \simeq V$. Comme Ω est lisse, f se prolonge à Ω ; comme X est lisse f^{-1} se prolonge à X. On en déduit que $f(\Omega)$ est un ouvert affine de X et que $k[f(\Omega)] = (f^{-1})^* k[\Omega] = R_t$. Q.e.d.

20.2 Degré des diviseurs principaux

Théorème 20.3 Soit K := k(X). Pour tout $x \in K \setminus k$, on a :

$$[K: k(x)] = \sum_{P \in X} \max\{ \text{ord}_P(x), 0 \}$$
.

Démonstration: Soit U un ouvert affine de X tel que $R_x = k[U]$. L'anneau R_x est de Dedekind donc:

$$xR_x = \prod_{P \in U} M_P^{n_x(P)} \ .$$

on vérifie facilement que $n_x(P) = \operatorname{ord}_P(x)$. De plus si $P \in X$, $\operatorname{ord}_P(x) \geq 0 \Rightarrow P \in U$. En effet, soit un tel P. Alors $\operatorname{ord}_P x \geq 0 \Rightarrow x \in \mathcal{O}_P \Rightarrow k[x] \leq O_P \Rightarrow R_x \leq O_P$ car O_P est intégralement clos. Si $\mathfrak{m}_P \cap R_x = 0$, alors $k[x] \setminus 0 \leq O_P^{\times} \Rightarrow k(x) \leq O_P \Rightarrow K \leq O_P$ car K/k(x) est entier. C'est absurde car $\operatorname{ord}_P : K \to \mathbb{Z}$ ne serait plus surjective. Donc il existe $Q \in U$ tel que $M_Q = \mathfrak{m}_P \cap R_x$. Forcément Q = P. En effet, écrivons $Q = [q_0 : \ldots : q_N]$, $P = [p_0 : \ldots : p_N]$. Choisissons h une forme linéaire sur \mathbb{A}^{N+1} telle que $h(P) \neq 0$, $h(Q) \neq 0$. Alors pour tous $i, j, X_i q_j - X_j q_i/h^2 \in k(U)$ s'annule en Q. Donc $X_i q_j - X_j q_i/h^2 = a/b$ avec $a \in M_Q$ et $0 \neq b \in k[U]$ et donc a(P) = 0 et $p_i q_j = p_j q_i$ pour tous i, j i.e. P = Q. En particulier, $P \notin U \Rightarrow \operatorname{ord}_P(x) < 0$.

Comme k[x] est principal, R_x est un k[x]-module libre de rang fini (c'est de type fini et sans torsion). Comme $\operatorname{Frac} R_x = K$, le rang est n := [K : k(x)].

Donc $R_x/xR_x \simeq k[x]^n/xk[x]^n \simeq k^n$. D'après le théorème des restes chinois :

$$R_x/\prod_{p\in U}M_P^{n_p}\simeq\prod_{P\in U}k[U]/M_P^{n_p}$$

et $k[U]/M_P^{n_p}$ est de dimension n_p (exo).

Q.e.d.

Il y a autant de zéros que de pôles, comptés avec multiplicité :

Corollaire 20.3.1 Si $x \in K \setminus k$, alors $\deg(\div_0(x)) = \deg(\div_\infty(x)) = [K : k(x)]$. En particulier, $\deg(\div x) = 0$.

20.3 Les adèles et l'inégalité de Riemann

Nous allons montrer que $l(D) \ge \deg D - g + 1$ pour une certaine constante g qui dépend de K.

Définition 20 (anneau des adèles) On pose \mathbb{A}_K le produit restreint de K par rapport aux points P de X et aux anneaux O_P :

 $\mathbb{A}_K := \{(x_P)_{P \in X} : \forall P, x_P \in K \text{ et } x_P \in O_P \text{ sauf au plus pour un nombre fini de } P \in X\}.$

On a un plongement diagonal de K dans $\mathbb{A}_K : x \mapsto (x, x, ...)$. Si D est un diviseur de X, on pose $\mathbb{A}_K(D) := \{(x_P) : \forall P, \operatorname{ord}_P(x) + n_D \geq 0\}$.

Lemme 20.4 Soient $D := \sum_{P} n_{P}P$, $E := \sum_{P} n'_{P}P$ deux diviseurs. On a :

- (i) si $D \leq E$, alors $A_K(D) \leq A_K(E)$;
- (ii) $\mathbb{A}_K(\min\{D,E\}) = \mathbb{A}_K(D) \cap \mathbb{A}_K(E)$;
- (iii) $\mathbb{A}_K(\max\{D, E\}) = \mathbb{A}_K(D) + \mathbb{A}_K(E)$;
- (iv) $K \cap \mathbb{A}_K(D) = L(D)$.

Lemme 20.5 Si $D \leq E$ sont des diviseurs, alors $\dim_k \mathbb{A}_K(E)/\mathbb{A}_K(D) =$ $\deg E - \deg D$.

Démonstration: Par récurrence sur deg E – deg D. Si deg E – deg D = 0, alors $D \leq E \Rightarrow D = E$ et c'est évident!

Si deg E-deg D=1, alors E=D+P où $P\in X$. Soit t une uniformisante de O_P . L'application :

$$A_K(D) \to O_P/\mathfrak{m}_P, \ (x_Q) \mapsto t^{n_D+1} x_P \bmod \mathfrak{m}_P$$

est surjective de noyau $A_K(D)$.

Si deg $E - \deg D > 1$, alors il existe un diviseur E' tel que $D \le E' \le E$ et $\deg E - \deg E' = 1$. On a :

$$\dim_k \mathbb{A}_K(E)/\mathbb{A}_K(D) = \dim_k \mathbb{A}_K(E)/\mathbb{A}_K(E') + \dim_k \mathbb{A}_K(E')/\mathbb{A}_K(D)$$
$$= \deg E - \deg E' + \deg E' - \deg D.$$

Q.e.d.

Lemme 20.6 Si $D \leq E$, alors $\dim_k \mathbb{A}_K(E) + K/\mathbb{A}_K(D) + K = (\deg E - \log E)$ l(E)) – (deg D - l(D)).

Démonstration: L'application $\mathbb{A}_K(E) \to \frac{\mathbb{A}_K(E) + K}{\mathbb{A}_K(D) + K}$ est surjective de

noyau
$$\mathbb{A}_K(E) \cap (\mathbb{A}_K(D) + K) = \mathbb{A}_K(D) + L(E)$$
.
Or $\dim_k \frac{\mathbb{A}_K(E)}{\mathbb{A}_K(D) + L(E)} = \dim_k \frac{\mathbb{A}_K(E)/\mathbb{A}_K(D)}{\mathbb{A}_K(D) + L(E)/\mathbb{A}_K(D)}$ et $\frac{\mathbb{A}_K(D) + L(E)}{\mathbb{A}_K(D)} \simeq \frac{L(E)}{\mathbb{A}_K(D) \cap L(E)}$.
Mais $\mathbb{A}_K(D) \cap L(E) = \mathbb{A}_K(D) \cap K \cap L(E) = L(D) \cap L(E) = L(D)$...
Q.e.d.

Si D est un diviseur, on pose $r(D) := \deg D - l(D)$.

Lemme 20.7 Si $D \leq E$, alors $r(D) \leq r(E)$ et si $f \in K^{\times}$, $r(D + \div f) =$ r(D).

Théorème 20.8 La fonction r(D) est majorée lorsque D décrit les diviseurs de X.

Démonstration: Soit $x \in K \setminus k$. On a $\deg(\div_{\infty}(x)) = [K:k(x)] =: n$. Si $y \in R_x$, alors on a : $\operatorname{ord}_P x \geq 0 \Rightarrow x \in O_P \Rightarrow k[x] \leq O_P \Rightarrow y$ entier sur $O_P \Rightarrow y \in O_P$ car O_P est intégralement clos. De manière équivalente : $\operatorname{ord}_P y < 0 \Rightarrow \operatorname{ord}_P x < 0$. Donc $\operatorname{supp}(\div_{\infty} y) \subseteq \operatorname{supp}(\div_{\infty} x)$. Il existe donc k > 0 tel que $\div_{\infty} y \leq k \div_{\infty} xi.e.$ $k \div_{\infty} x + \div y \geq \div_0 y \geq 0$. Donc pour tout $y \in R_x$, $y \in L(k \div_{\infty} x)$ pour un certain k > 0. Soit $y_1, ..., y_n$ une base de K/k(x). On choisit les y_j dans R_x . Pour tout $i, y_i \in L(k_i \div_{\infty} x)$ pour un certain $k_i > 0$. Soit $k := \max\{k_i\}$. Pour tout $i, y_i \in L(k \div_{\infty} (x))$. Comme x est transcendant sur k, les éléments $x^i y_j$, $0 \leq i \leq m - k$, $1 \leq j \leq n$, sont dans $L(m \div_{\infty} x)$ et sont k-linéairement indépendants sur k. Donc $l(m \div_{\infty} x) \geq n(m - k + 1)$. Donc :

$$r(m \div_{\infty} x) = \deg(m \div_{\infty} x) - l(m \div_{\infty} x) \le (mn) - n(m - k + 1) = nk - n.$$

La suite croissante $r(m \div_{\infty} x)$ est donc majorée donc stationnaire. Notons g-1 la limite. Soit D un diviseur de X, nous allons voir que $r(D) \leq g-1$. On a $-D = D_1 + D_2$ où $\operatorname{supp} D_1 \cap \operatorname{supp} \div_{\infty} x = \emptyset$ et $\operatorname{supp} D_2 \subseteq \operatorname{supp} \div_{\infty} x$. Soit $P \in X$ tel que $n_P(D_1) < 0$. On a $k[x] \leq O_P$ et $\mathfrak{m}_P \cap k[x] = (\pi_P) \neq 0$ pour un certain $\pi_P \in k[x]$. Soit m_P tel que $\operatorname{ord}_P(\pi_P^{m_P}) + n_P(D_1) \geq 0$. De plus, comme $k[x] \leq R_x$, $\operatorname{supp}(\div_{\infty} \pi_P) \subseteq \operatorname{supp}(\div_{\infty} x)$ et donc $\operatorname{supp}(\div_{\infty} \pi_P) \cap \operatorname{supp} D_1 = \emptyset$. Soit $f := \prod_{P:n_P(D_1) < 0} \pi_P^{m_P}$ où les $m_P \geq 0$ sont choisis pour que $\operatorname{ord}_P(\pi_P^{m_P}) + n_P(D_1) \geq 0$. Donc les éventuels coefficients < 0 de $\div f + D_1$ sont dans l'ensemble des pôles de x. Comme $\operatorname{supp} D_2 \subseteq \operatorname{supp} \div_{\infty} x, \div f - D = \div f + D_1 + D_2$ a des coefficients < 0 seulement (éventuellement) dans l'ensemble des pôles de x. Donc pour m assez grand, $\div f - D + m \div_{\infty} x \geq 0$. Donc

Q.e.d.

Définition 21 On pose $g := 1 + \max\{\deg D - l(D)\}$ où D décrit les diviseurs de X. C'est le genre de X.

Remarque : on a $g = 1 + \max_{m \in \mathbb{Z}} \{ \deg(m \div_{\infty} x) - l(m \div_{\infty} x) \}$ pour tout $x \in K \setminus k$.

Exercice: retrouver que g = 0 si $X = \mathbb{P}^1$.

Corollaire 20.8.1 Pour tout diviseur D de X, on a:

$$l(D) \ge \deg D + 1 - g .$$

Corollaire 20.8.2 Pour tout diviseur D, $\dim_k \mathbb{A}_K/\mathbb{A}_K(D) + K < \infty$.

Démonstration: On sait que si $D' \geq D$, $r(D') - r(D) = \dim_k \mathbb{A}_K(D') + K/\mathbb{A}_K(D) + K$. Or r(D') est majoré donc comme $\mathbb{A}_K = \bigcup_{D'} \mathbb{A}_K(D')$, $\dim_k \mathbb{A}_K/\mathbb{A}_K(D) + K \leq \sup\{r(D') : D'\} - r(D)$. Q.e.d. On pose pour tout diviseur D, $H(D) := \mathbb{A}_K/\mathbb{A}_K(D) + K$. On a donc $r(D) = g - 1 - \dim_k H(D)$. Donc $g = \dim_k H(0)$.

Pour démontrer le théorème de Riemann-Roch il suffit donc de démontrer que $\dim_k H(D) = l(K_X - D)$ pour un certain diviseur K_X .

20.4 Fin de la démonstration du théorème de Riemann-Roch

Une forme différentielle ω sur K est une forme linéaire sur A_K qui s'annule sur le sous-espace $A_K(D) + K$ pour un certain diviseur D de X. On peut donc identifier une forme différentielle avec un élément de $H(D)^*$.

Soit $\Omega(X)$ l'ensemble des formes différentielles de K. Si $f \in K$ et $\omega \in \Omega(X)$, on pose $f\omega(\xi) := \omega(f\xi)$ si $\xi \in \mathbb{A}_K$. L'ensemble $\Omega(X)$ devient ainsi un K-espace vectoriel.

Remarque : si $\omega \in H(D)^*$, $f\omega \in H(D - \div f)^*$.

Proposition 20.9 $\dim_K \Omega(X) = 1$.

Lemme 20.10 Soit $0 \neq \omega \in \Omega(X)$, il existe un diviseur maximal (pour \leq) tel que $\omega \in H(D)^*$.

Démonstration: Remarquons que si $\omega \in H(D_1)^* \cap H(D_2)^*$, alors $\omega \in H(\max\{D_1,D_2\})^*$. Il suffit donc de montrer que les degrés des diviseurs D tels que $\omega \in H(D)^*$ sont majorés. Soit D un tel diviseur. Si D' est un diviseur et si $f \in L(D')$, on a $\mathbb{A}_K(D-D') \leq \mathbb{A}_K(D+\div f)$. Soient $f_1,...,f_n$ une k-base de L(D'), on a $f_1\omega,...,f_n\omega$ qui s'annulent sur $\mathbb{A}_K(D-D') \leq \mathbb{A}_K(D+\div f_i)$ ($\forall i$) et qui sont k-linéairement indépendants. Donc $\dim_k H(D-D') \geq l(D')$. D'où :

$$g - 1 - \deg(D - D') + l(D - D') \ge l(D')$$

$$\Leftrightarrow \deg D \leq g-1+r(D')+l(D-D') \leq 2g-2+l(D-D')=2g-2$$
 si on choisit $D'>D$ tel que $L(D-D')=0$. Q.e.d.

Démonstration de la proposition : Raisonnons par l'absurde. Soient $\omega, \omega' \in \Omega(X)$ K-linéairement indépendants. Soit $(a_1, ..., a_n)$ une base de L(D'). Alors $a_1\omega, ..., a_n\omega, a_1\omega', ..., a_n\omega'$ sont k-linéairements indépendantes dans $H(D-D')^*$ si on choisit D tel que $\omega, \omega' \in H(D)^*$. Donc $\dim_k H(D-D') \geq 2n = 2l(D')$. On en déduit que :

$$g - 1 - \deg D + \deg D' + l(D - D') \ge 2l(D')$$

$$\Rightarrow g - 1 + 2(\deg D' - l(D')) \ge \deg D + \deg D'$$
$$\Rightarrow 3g - 3 \ge \deg D' + \deg D$$

pour tout D' > D absurde si on choisit D' assez grand.

Q.e.d.

Soit $0 \neq \omega \in \Omega(X)$, on choisit D maximal tel que $\omega \in H(D)^*$. On note $D =: \div \omega$, c'est le diviseur de ω .

Corollaire 20.10.1 Soient $0 \neq \omega, \omega' \in \Omega(X)$, alors : $\div \omega \sim \div \omega'$

Démonstration: Soit
$$f \in K$$
 tel que $f\omega = \omega'$. Alors $\omega \in H(D)^* \Rightarrow f\omega = \omega' \in H(D + \div f)^*$. Donc $\div \omega' = \div f\omega = \div \omega + \div f$. Q.e.d.

Démonstration du théorème de Riemann-Roch : Il reste à montrer que pour tout diviseur D, $\dim_k H(D) = l(K_X - D)$ ou encore :

$$\dim_k H(K_X - D) = l(D) .$$

Soit $\omega \in \Omega(X)$ tel que $\div \omega = K_X$. Si $f \in L(D)$, alors $f\omega \in H(K_X + \div f)^* \leq H(K_X - D)^*$. D'où une application linéaire $c : L(D) \to H(K_X - D)^*$. Réciproquement, si $\lambda \in H(K_X - D)^*$, soit $K' := \div \lambda$. Alors $\lambda = g\omega$ pour une $g \in K$. On a : $\omega = g^{-1}\lambda \Rightarrow \omega \in H(K_X - D - \div g)^* \Rightarrow K_X - D - \div g \leq K_X$ par maximalité de K_X . Donc $\div g + D \geq 0$ i.e. $g \in L(D)$. L'application $H(K_X - D)^* \to L(D)$ obtenue, $\lambda \mapsto g$ est l'inverse c^{-1} . Donc $\dim_k H(K_X - D)^* = l(D)$.

Q.e.d.

20.5 Lien avec les différentielles usuelles

On note I le noyau du morphisme $k(X) \otimes_k k(X) \to k(X)$, $a \otimes b \mapsto ab$. On pose $\Omega^1 := I/I^2$. Si $f \in k(X)$, on pose $df := f \otimes 1 - 1 \otimes f \mod I^2$. L'application $d: k(X) \to \Omega^1$ induit un isomorphisme :

$$\operatorname{Hom}_{k(X)}(\Omega^1, k(X)) \simeq \operatorname{Der}_k(k(X), k(X))$$
.

Si $P \in X$, si $\omega \in \Omega_1$, alors soit t une uniformisante de X en P. On a $\omega = fdt$ pour un $f \in k(X)$. On pose $\text{R\'es}_P(\omega) := c_{-1}$, coefficient de f devant t^{-1} dans $k(t) \supseteq k(X)$. Ce nombre est indépendant de l'uniformisante choisie.

Si $\xi \in \mathbb{A}_K$, on pose $\langle \omega, \xi \rangle := \sum_{P \in X} \mathrm{R\acute{e}s}_P(\xi_P \omega)$. On obtient ainsi un élément de Ω . L'application $\Omega^1 \to \Omega$, $\omega \mapsto \langle \omega, \cdot \rangle$ est un isomorphisme (cf. J.-P Serre, Groupes algébriques et corps de classes, II §8).

20.6 Application

Théorème 20.11 Soit X une courbe projective irréductible lisse de genre 1. Alors X est isomorphe à une cubique plane lisse $c \subseteq \mathbb{P}^2$.

Démonstration: D'après le théorème de riemann-roch, si deg D>0, on a $l(D)=\deg D$. En particulier, si $x\in X$, il existe $f\in L(2x)$ non constant et $g\in L(3x)\setminus L(2x)$. Alors $1,f,f^2,f^3,g,g^2,fg\in L(6x)$ sont k-linéairement indépendants :

$$a_0 + a_1 f + a_2 f^2 + a_3 f^3 + a_4 g + a_5 f g + a_6 g^2 = 0$$

pour des a_i non tous nuls. On vérifie que $\forall i, a_i \neq 0$, que k(f,g) = k(X) donc $X \setminus \{x\} \to \mathbb{A}^2, x \mapsto (f(x), g(x))$ est un isomorphisme birationnel. Comme X n'est pas rationnelle, l'image est bien une cubique lisse de \mathbb{P}^2 . Q.e.d.