Ι

Exercice 1 Soit k un corps algébriquement clos.

Soient A, B deux k-algèbres intègres de type fini. Montrer que $A \otimes_k B$ est encore intègre. En déduire que si X, Y sont des variétés algébriques affines, alors les composantes irréductibles de $X \times Y$ sont les $X_i \times Y_j$ où X_i, Y_j sont les composantes irréductibles de X, Y.

Exercice 2 a) Montrer que les groupes GL_n , B_n , D_n , U_n sont connexes et déterminer leur dimension;

- b) Soit $D \in k[T_{i,j} : 1 \le i, j \le n]$ le polynôme déterminant. Montrer que D-1 est irréductible sur k. En déduire que le groupe SL_n est connexe et déterminer sa dimension;
- c) soit un corps algébriquement clos k de caractéristique $\neq 2$. Montrer que l'application :

$$A \mapsto (I_n + A)^{-1}(I_n - A)$$

définit un isomorphisme entre un ouvert du groupe SO_n et un ouvert de l'espace des matrices $n \times n$ antisymétriques. En déduire la dimension de SO_n et que SO_n est la composante connexe du groupe O_n .

Exercice 3 Soit $A := k[SL_2] = k[T_1, T_2, T_3, T_4]/(T_1T_4 - T_2T_3 - 1)$. Posons t_i l'image de T_i dans A. Soit B la sous-k-algèbre de A engendrée par les t_it_j , $1 \le i, j \le 4$.

- a) Montrer que $\mu^*B \subseteq B \otimes B$ et $i^*B \subseteq B$. En déduire qu'il existe un groupe algébrique dont l'algèbre des fonctions régulières est B.

 On notera PSL_2 ce groupe.
- b) Montrer que l'inclusion $B \subseteq A$ induit un morphisme de groupes :

$$\phi: SL_2 \to PSL_2$$

dont le noyau est d'ordre au plus 2.

- c) si k est de caractéristique $\neq 2$, montrer que B est l'algèbre des fonctions $f \in A$ telle que f(M) = f(-M) pour tout $M \in SL_2$;
- d) si k est de caractéristique 2, montrer que ϕ est un isomorphisme de groupes mais n'est pas un isomorphisme de groupes algébriques.