Exercice 1 Soit V un k-espace vectoriel de dimension finie. Montrer que $\pi: V \setminus \{0\} \to \mathbb{P}(V), v \mapsto [v]$ est séparable.

Exercice 2 Soit G un groupe algébrique. On note $\mu: G \times G \to G$, $(x,y) \mapsto xy$ et $i: G \to G$, $x \mapsto x^{-1}$. Montrer que $d\mu_{e,e}: \mathfrak{g} \oplus \mathfrak{g} \to \mathfrak{g}$, $(\xi, \xi') \mapsto \xi + \xi'$ et $di_e = -\mathrm{Id}$.

Exercice 3 Soit $\phi: G_1 \to G_2$ un morphisme de groupes. Rappelons que si G est un groupe algébrique, si $x \in G$, on note $Ad(x) = dInt(x)_e: \mathfrak{g} \to \mathfrak{g}$. Montrer que pour tout $x_1 \in G_1$ et tout $\xi_1 \in \mathfrak{g}_1$, on a:

$$(d\phi_e)(\operatorname{Ad}(x_1)(\xi_1)) = \operatorname{Ad}(\phi(x_1))(d\phi_e(\xi_1)) .$$

Exercice 4 Soit G un groupe algébrique connexe sur un corps algébriquement clos de caractéristique p > 0. Soit q une puissance de p.

- a) Soit $\sigma: G \to G$ un morphisme de variétés. On pose $\phi: G \to G$, $x \mapsto (\sigma x)x^{-1}$. Montrer que $d\phi_e = d\sigma_e \mathrm{Id}$.
- b) Supposons que G est un sous-groupe fermé connexe de GL_n . On note $\sigma: GL_n \to GL_n$, $(g_{i,j}) \mapsto (g_{i,j}^q)$. On suppose que G est σ -stable.Montrer que $\Lambda: G \to G$, $g \mapsto (\sigma g)g^{-1}$ est surjective.
- c) Soit $a \in G^{\sigma} := \{g \in G : \sigma g = g\}$. On note $Z(a) := \{x \in G : xa = ax\}$. Supposons que Z(a) est connexe. Montrer que si $b \in G^{\sigma}$ est conjugué à a dans G, alors b et a sont conjugués dans le groupe fini G^{σ} .

Exercice 5 On note $\begin{pmatrix} T_1 & T_2 \\ T_3 & T_4 \end{pmatrix}$ les fonctions coordonnées dans $k[\operatorname{SL}_2]$. On

note PSL_2 le groupe algébrique tel que $k[PSL_2] = k[T_iT_j : 1 \le i, j \le 4]$. Soit $\phi : SL_2 \to PSL_2$ le morphisme de groupes algébriques induit.

Montrer que $d\phi_e$ est bijective en caractéristique $\neq 2$ et déterminer $d\phi_e$ en caractéristique 2.

Exercice 6 Soit G un groupe algébrique. Soit X une G-variété homogène.

- a) Montrer que chaque composante irréductible de X est homogène pour G^0 .
- b) Montrer que les composantes de X sont ouvertes et fermées et que leur union est une union disjointe.
- c) En déduire que si H est un sous-groupe fermé de G, alors G/H est un e variété quasiprojective.

Exercice 7 Soit G un groupe algébrique. On suppose que H est un sousgroupe fermé distingué de G.

- a) Montrer que $G/H \times G/H \to G/H$, x_1H , $x_2H \mapsto x_1x_2H$ et $G/H \to G/H$, $xH \mapsto x^{-1}H$ sont des morphismes de variétés.
- b) Soit $\phi: G \to \operatorname{GL}(V)$ une représentation rationnelle de dimension finie, soit $0 \neq v \in V$ tels que :

$$H = \{ g \in G : gv \in k^{\times}v \}$$

$$\mathfrak{h} = \{ \xi \in \mathfrak{g} : d\phi(\xi)v \in kv \} .$$

On pose, pour tout caractère $\chi \in X^*(H)$:

$$V_{\chi} := \{ x \in V : \forall h \in H, \phi(h)x = \chi(h)x \}$$
.

Vérifier que les V_{χ} sont en somme directe et que G laisse stable $\bigoplus_{\chi} V_{\chi}$. On peut donc supposer que $V = \bigoplus_{\chi} V_{\chi}$.

c) Soit W l'espace des k-endomorphismes de V qui laissent stables chaque V_{χ} . On pose pour tout $g \in G$ et tout $f \in W$:

$$\psi(g)f = \phi(g)f\phi(g^{-1}) .$$

On a bien un morphisme : $\psi: G \to \mathrm{GL}(W)$. Vérifier que $\ker \psi \subseteq H$. En déduire un morphisme : $\lambda: G/H \to \mathrm{GL}(W)$.

- d) Montrer que le morphisme obtenu ci-dessus λ est d'image fermée dans $\mathrm{GL}(W)$.
- e) Montrer que $\ker d\psi_e \subseteq \mathfrak{h}$. En déduire que λ est birationnelle et bijective sur son image.
- f) En déduire que λ est un isomorphisme sur son image et que G/H est un groupe algébrique affine.