3 Qu'est-ce qu'un corps

Définition 2 Un corps est un anneau $(K, +, \cdot)$ avec unité, non nul, où tous les éléments $\neq 0$ sont inversibles pour la multiplication \cdot . Un corps non commutatif est aussi appelé un corps gauche.

Exemple (non commutatif): le corps gauche des quaternions:

$$\mathbb{H} := \left\{ \left(\begin{array}{cc} a & -\overline{b} \\ b & \overline{a} \end{array} \right) : a, b \in \mathbb{C} \right\} .$$

Exemples commutatifs: $\mathbb{F}_p := \mathbb{Z}/p\mathbb{Z}$ (p premier), \mathbb{Q} , \mathbb{R} , \mathbb{C} , $\mathbb{Q}(\sqrt{2})$, $\mathbb{Q}(i)$, $\mathbb{C}(X,Y)$, $\mathbb{C}(T)$, $\mathbb{C}((T)) = \{\sum_{n \geq n_0} a_n T : n_0 \in \mathbb{Z}, \forall n \geq n_0, a_n \in \mathbb{C}\},$

$$\mathbb{Z}[i]/7, \mathbb{Z}[\sqrt{2}]/3, \left\{ \begin{pmatrix} a & 2b \\ b & a \end{pmatrix} : b \in \mathbb{F}_5 \right\}$$
sont des corps finis à 49,9 et 25 éléments.

3.1 Construction en quotientant par un idéal maximal

Plus généralement si A est un anneau commutatif avec unité, alors si $m \leq A$ est un idéal propre, m est maximal $\Leftrightarrow A/m$ est un corps (exo).

Rappels sur les idéaux : idéaux premiers, maximaux. Soit A un anneau commutatif non nul. Un idéal propre I < A est premier si $ab \in I$, $a,b \in A \Rightarrow a$ ou $b \in I$. Un idéal propre I < A est maximal s'il n'existe pas d'idéal propre I < J < A (avec les inclusions strictes.

Proposition 3.1 Soit I < A un idéal propre d'un anneau commutatif. Alors I premier $\Leftrightarrow A/I$ intègre et I maximal $\Leftrightarrow A/I$ corps.

Corollaire 3.1.1 $maximal \Rightarrow premier$.

Ex. : les idéaux premiers de \mathbb{Z} sont les $p\mathbb{Z}$ avec p premier ou p=0. Les idéaux maximaux de \mathbb{Z} sont les $p\mathbb{Z}$ avec p premier.

3.2 Corps des fractions d'un anneau intègre

Définition 3 Soit A un anneau commutatif avec unité non nul et intègre (i.e. $ab = 0 \Leftrightarrow a$ ou b = 0).

 $Si(a,b), (c,d) \in A \times A \setminus \{(0)\}, \ on \ pose \ (a,b) \sim (c,d)si \ ad = bc. \ C'est$ une relation d'équivalence. On pose a/b la classe d'équivalence de (a,b).

addition: a/b + c/d := (ad + bc)/bd,

multiplication: a/bc/d := ac/bd,

 $z\acute{e}ro: 0/1,$ $unit\acute{e}: 1/1.$

Remarque : $a/b \neq 0 \Leftrightarrow a \neq 0$ et dans ce cas l'inverse est b/a.

Proposition 3.2 On a obtenu un corps noté FracA et l'aaplication $A \to \operatorname{Frac} A$, $a \mapsto \frac{a}{1}$ est injective.

Exemples: $\mathbb{Q} = \operatorname{Frac}\mathbb{Z}$, $\mathbb{Q}(X) = \operatorname{Frac}\mathbb{Q}[X]$, $\operatorname{Frac}\mathbb{C}[[T]] \simeq \mathbb{C}((T))$.

3.3 le groupe des inversibles

Notation importante : Soit K un corps. On note K^* le groupe $(K \setminus \{0\}, \cdot)$.

Théorème 3.3 Soit K un corps commutatif. Si $G \leq K^{\times}$ est fini alors G est cyclique!

Démonstration : Posons $\varphi(k) = |\{1 \le k \le n : k \land n = 1\}|$. Alors :

$$\sum_{k|n} \varphi(k) = n$$

si $n \geq 1^{\dagger}$. Supposons que G est d'ordre n. Soit N_d le nombre d'éléments d'ordre d dans G. On a $\sum_{d|n} N_d = n$ car tout élément de G a un ordre qui divise n. Si $N_d \neq 0$, il existe $g \in G$ d'ordre d. Alors tout élément de $\langle g \rangle$ est solution de $X^d = 1$ dans K. Or cette équation a au plus d solution dans K^{\dagger} . Comme il ya d éléments dans $\langle g \rangle$ les solutions de $X^d = 1$ dans K sont exactement les éléments de $\langle g \rangle$. Or dans $\langle g \rangle$, les éléments d'ordre d sont précisément $\varphi(d)$ (ce sont les g^k où $1 \leq k \leq d$ et $k \wedge d = 1$. En résumé, $N_d = 0$ ou $N_d = \varphi(d)$. En particulier, $0 \leq N_d \leq \varphi(d)$ pour tout d.

Comme $\sum_{d|n} N_d = \sum_{d|n} \varphi(d)$ (= n), on a forcement $N_d = \varphi(d)$ pour tout d et donc $N_n = \varphi(n) \neq 0$ et G est cyclique! q.e.d.

mathbbmH ...

^{†.} En effet toute fraction dans $\left\{\frac{1}{n},...,\frac{n}{n}\right\}$ s'écrit d'une manière irréductible $\frac{a}{k}$ pour un k|n et un a premier avec k. Le nombre de fractions irréductible ayant pour dénominateur k est exactement $\varphi(k)$ et il y a exactement n fractions dans la liste ...

^{‡.} FAUX si K n'est pas commutatif. Par exemple $X^2=-1$ a une infinité de solutions dans

Contre-exemple:
$$\{\pm 1, \pm \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}, \pm \begin{pmatrix} 0 & i \\ i & 0 \end{pmatrix}, \pm \begin{pmatrix} i & 0 \\ 0 & -i \end{pmatrix} \}$$
 forme

un sous-groupe d'ordre 8 dans \mathbb{H}^{\times} non commutatif donc non cyclique..

Exercice 1 On a un isomorphisme de groupes : $\mathbb{Q}^{\times} \simeq \mathbb{F}_3(X)^{\times}$. En effet, tout élément de \mathbb{Z} s'écrit : ± 1 . $\prod_{i=1}^s p_i^{\alpha_i}$ pour certains p_i premiers > 0 deux à deux distincts et des $\alpha_i \in \mathbb{N}$. De plus cette écriture est unique. On en déduit en numérotant les nombres premiers $p_1, ..., p_n, ...$ un isomorphisme

$$\mathbb{Q}^*$$
 $= \{\pm 1\} \times \mathbb{Z}^{(\mathbb{N})}$

$$\epsilon \prod_{i \in \mathbb{N}} p_i^{\alpha_i} \longleftarrow (\epsilon, (\alpha_i)_{i \in \mathbb{N}})$$

Comme les inversibles de $\mathbb{F}_3[X]$ sont ± 1 , comme les irréductibles de $\mathbb{F}_3[X]$ sont en nombre dénombrable, on a aussi : $\mathbb{F}_3(X)^* \simeq \{\pm 1\} \times \mathbb{Z}^{(\mathbb{N})}$

3.4 Sous-corps premier, caractéristique

Soit K un corps.

Définition 4 Soit $p \ge 0$ tel que $p\mathbb{Z} = \ker(\varphi : \mathbb{Z} \to K, n \mapsto n1_K)$. Le nombre p est la caractéristique du corps K.

Proposition 3.4 La caractéristique de K est 0 ou un nombre premier > 0.

Remarque : si p=0, \mathbb{Q} est le plus petit sous-corps de K. Si p>0, c'est $\mathbb{F}_p:=\mathbb{Z}/p\mathbb{Z}$.

Remarque importante : si K est de caractéristique p, alors $K \mapsto K$, $x \mapsto x^p$ est un morphisme de corps!

4 Extensions, algébricité

Définition 5 Si $K \leq L$ sont des corps, on dit que L est une extension de K. On note parfois L/K l'extension $K \leq L$ (bien que l'on ne considère pas le quotient d'espaces vectoriels L/K).

Notation : Dans ce cas L est aussi un K-espace vectoriel. On note $[L:K] := \dim_K L$: c'est le degré de L sur K.

Proposition 4.1 (multiplicativité des degrés) Soient $K_1 \leq ... \leq K_n$ des corps. Alors $[K_n : K_1] = [K_n : K_{n-1}]...[K_2 : K_1]$.

 $D\acute{e}monstration$: Supposons n=3. Soit $(x_i)_i$ une base de K_2 comme K_1 —espace vectoriel. Soit $(y_j)_j$ une base de K_3 comme K_2 —espace vectoriel. Alors $(x_iy_j)_{i,j}$ est une base de K_3 comme K_1 —espace vectoriel. $\underline{q.e.d.}$ $\underline{Exemple}: [\mathbb{Q}(\sqrt[3]{2},j):\mathbb{Q}] = 6$.

4.1 Éléments algébriques

Remarque : K[X]/(P) est un K-espace vectoriel de dimension $d = \deg P$ car une base est donnée par les $X^k \mod P$, $0 \le k < \deg P$.

Proposition 4.2 Soit $K \leq E$ une extension de corps. Soit $x \in E$. Sont équivalentes :

- (i) il existe $0 \neq P \in K[X]$ tel que P(x) = 0;
- (ii) $\dim_K K[x]$ est finie;
- (iii) K[x] = K(x).

Dans ce cas, on dit que x est algébrique sur K.

Dans ce cas, K[x] = K(x), K[x] est un K-espace vectoriel de dimension finie.

De plus, l'idéal $\{P \in K[X] : P(x) = 0\}$ est un idéal premier non nul engendré par un unique polynôme unitaire P_x : le polynôme minimal de x sur K.

Remarque, P_x est irréductible sur K et si P est un polynôme irréductible sur K qui annule x, $P = cP_x$ pour un $c \in K^{\times}$.

On a : $\dim_K K(x) = \deg P_x$: c'est le degré de x sur K.

Remarque : en particulier si x est algébrique sur K, alors tous les éléments de K[x] le sont.

Remarque importante : $K[x] \simeq K[X]/(P_x)$.

Définition 6 Une extension L/K est algébrique si tous les éléments de L sont algébriques sur K. Elle est finie si L est un K- espace vectoriel de dimension finie.

Proposition 4.3 Si L/K est finie, alors L/K est algébrique.

 $Remarque: \overline{\mathbb{Q}}$ est une extension algébrique infinie de \mathbb{Q} .

Exercice 2 $e^{2i\pi/103}$ est algébrique sur \mathbb{Q} , $\cos(2\pi/7)$ aussi, $\sum_{k\geq 0} \frac{1\times ...\times (2k-1)}{2\times ...\times (2k)} t^k$ est algébrique sur $\mathbb{C}(t)$ (en effet c'est $(1-t)^{-1/2}$).

Proposition 4.4 Soit $K \leq L$ une extension de corps. Si $x, y \in L$ sont algébriques sur K, alors x + y, xy et x/y (si $y \neq 0$) aussi!

Démonstration: En effet, si on note
$$d_x = [K(x) : K]$$
 et $d_y = [K(y) : K]$ alors $K(x,y) = K(x)(y) = K[x,y]$ est de dimension $\leq d_x d_y$.] q.e.d.

Exercice 3 (transitivité) 1. Si $x_1, ..., x_n$ sont algébriques sur K, alors $K(x_1, ..., x_n)/K$ est algébrique et finie!

- 2. Si $K_2 \ge K_1 \ge K$, alors K_2/K algébrique $\Leftrightarrow K_2/K_1$ et K_1/K algébriques.
- 3. Si L/K est une extension de corps, alors $\overline{K}^L = \{x \in L : x \text{ est algébrique sur } K\}$ est un sous-corps de L.

Exercice 4 Soit E/K une extension algébrique. Soit $P \in K[X]$ unitaire qui annule $x \in E$. Alors $P = \pi_x \Leftrightarrow P$ irréductible.

Exemple: trouver le polynôme minimal de $\sqrt{2+\sqrt[3]{2}}$ sur Q.

4.2 Polynômes irréductibles

Rappelons que l'anneau K[X] est euclidien, donc principal donc factoriel (donc intégralement clos).

Rappels sur les anneaux :

Définition 7 Soit A un anneau intègre.

On dit que A est euclidien s'il existe une fonction $q: A \setminus \{0\} \to \mathbb{N}$ telle que :

$$\forall a, b \in A, b \neq 0, \exists q, r \in A, a = bq + r \ avec \ r = 0 \ ou \ r \neq 0 \ et \ q(r) < q(b).$$

On dit que A est principal si tout idéal de A peut être engendré par un élément.

On dit que $0 \neq a \in A$ est irréductible si a n'est pas inversible et si $bc = a, b, c \in A \Rightarrow b \text{ ou } c \text{ inversible.}$

On dit que A est factoriel si tout $a \neq 0$ dans A s'écrit :

$$a = up_1....p_s$$

avec u inversibles et les p_i irréductibles et si cette écriture est unique au sens suivant :

$$a = up_1...p_s = vp'_1...p'_{s'} \Rightarrow s = s'$$
 et il existe $\sigma \in \mathfrak{S}$ tel que $p'_i = u_i p_{\sigma(i)}$ pour un certain u

euclidien \Longrightarrow principal \Longrightarrow factoriel \Longrightarrow intégralement clos

$$\overset{\mathbb{R}[X,Y]/(X^2+Y^2+1)}{\underset{\times}{\longleftarrow}\times\underset{\times}{\longleftarrow}} \overset{\mathbb{R}[X,Y]}{\underset{\times}{\longleftarrow}} \overset{\mathbb{Z}[i\sqrt{5}]}{\underset{\times}{\longleftarrow}}$$

Proposition 4.5 Principal \Rightarrow factoriel

Exercice 5 Même si K est fini, il y a une infinité de polynômes irréductibles deux à deux premiers entre eux.

Proposition 4.6 Soit K un corps. Soit $P \in K[X]$. Alors P est irréductible $\Leftrightarrow K[X]/(P)$ est un corps.

4.3 Critères d'irréductiblité

Proposition 4.7 (Eisenstein) Soit $P = a_n X^n + ... + a_0 \in \mathbb{Z}[X]$ de degré n > 0. Supposons qu'il existe p premier tel que :

- (i) $p \nmid a_n$;
- (ii) $p|a_0,...,a_{n-1}$;
- (iii) et $p^2 \nmid a_0$.

Alors P est irréductible sur \mathbb{Q} .

Remarque : cette proposition reste vraie si on remplace \mathbb{Z} par un anneau factoriel, p par unélément irréductible de A et \mathbb{Q} par FracA.

Exemple: si p est premier $1 + X + ... + X^{p-1}$ est irréductible sur \mathbb{Q} . (On applique le critère d'Eisenstein à P(X+1)!

Définition 8 Soit $P \in \mathbb{Z}[X]$. On note c(P) le pgcd des coefficients de P.

Exercice 6 c(PQ) = c(P)c(Q)

Proposition 4.8 Soit $P \in \mathbb{Z}[X]$. alors P est irréductible dans $\mathbb{Z}[X] \Leftrightarrow P \in \mathbb{Z}$ est irréductible dans \mathbb{Z} ou deg P > 0 et P est irréductible sur \mathbb{Q} .

Plus généralement :

Proposition 4.9 Si A est factoriel, alors l'anneau A[X] aussi. Plus précisément les irréductibles de A[X] sont les $a \in A$ irréductibles et les $P \in A[X]$ de degré > 0, tels que $c(P) \sim 1$ et P est irréductible dans K[X].

Exercice 7 Le déterminant vu comme polynôme dans $K[X_{ij} : 1 \le i, j \le n]$ est irréductible.

Exercice 8 Le polynôme $X^3 + Y^3 - 1$ est irréductible dans $\mathbb{C}[X,Y]$

Technique de la réduction mod p: Soit $P = a_0 + ... + a_d X^d \in \mathbb{Z}[X]$. Soit p un nombre premier; si $\overline{P} := \overline{a_0} + ... + \overline{a_d} X^d \in \mathbb{Z}/p\mathbb{Z}[X]$ est irréductible dans $\mathbb{Z}/p\mathbb{Z}[X]$, alors P est irréductible sur \mathbb{Q} (où l'on a noté $\overline{a_i} = a_i \mod p \in \mathbb{Z}/p\mathbb{Z}$).

Exemple: $X^4 - X - 1$ est irréductible sur $\mathbb Q$ car l'est mod 2. Contre-exemple: $X^4 + 1$ est réductible mod p pour tout p premier mais $X^4 + 1$ est irréductible sur $\mathbb Q^{\dagger}$.

4.4 Morphismes de corps

Exercice 9

$$\operatorname{Aut}(\mathbb{R}) = 1,$$

$$\operatorname{Aut}(\mathbb{Q}(\sqrt{2})) = \{\operatorname{Id}, a + b\sqrt{2} \mapsto a - b\sqrt{2}\},$$

$$\operatorname{Aut}\mathbb{C}(t) \simeq \operatorname{PGL}_2(\mathbb{C}),$$

$$\operatorname{Aut}\mathbb{Q}(\sqrt[3]{2}) = 1,$$

$$\operatorname{Aut}(\mathbb{Q}(\sqrt[3]{2}, j) \simeq \mathfrak{S}_3.$$

^{†.} en effet, les facteurs irréductibles (unitaires) de X^4+1 sur $\mathbb R$ sont $X^2\pm\sqrt{2}X+1$ et aucun n'est dans $\mathbb Q[X]$

5 Corps de rupture, corps de décomposition

5.1 Corps de rupture

Soit $P \in K[X]$ un polynôme irréductible. Dans le corps K[X]/(P), l'élément $\overline{X} := X \mod P$ est une racine de P car $P(\overline{X}) = P(X) = 0 \mod P$.

Théorème 5.1 Soit L une extension de K et $\alpha \in L$ une racine de P telle que $K[\alpha] = L$. Alors $K[X]/(P) \to k[\alpha]$, $Q(X) \mod P \mapsto Q(\alpha)$ est un isomorphisme de corps.

Une extension L de K comme dans le théorème est un corps de rupture de P sur K.

En particulier $1, \alpha, ..., \alpha^{\deg P-1}$ est une K-base de α .

Exemple : $\mathbb{Q}(\sqrt[3]{2})$, $\mathbb{Q}(j\sqrt[3]{2})$, $\mathbb{Q}(j^2\sqrt[3]{2})$ sont des corps de rupture de X^3-2 sur \mathbb{Q} .

Corollaire 5.1.1 Si $P \in K[X]$ est irréductible, il existe toujours un corps de rupture de P sur K, unique à isomorphisme près.

Réalisation du corps de rupture

Si $P(X) = X^n + a_1 X^{n-1} + ... + a_n \in K[X]$ est irréductible, alors $K[X]/(P) \simeq K[A]$ où A est la matrice :

$$\begin{pmatrix}
0 & -a_n \\
1 & & \\
0 & & \\
0 & 0 & 1 & -a_1
\end{pmatrix} \in \mathcal{M}_n(\mathbb{K})$$

$$\text{Par exemple}: \mathbb{C} \simeq \left\{ \left(\begin{array}{cc} a & -b \\ b & a \end{array} \right) : a,b \in \mathbb{R} \right. \right\} \text{ et } \mathbb{F}_{25} \simeq \left\{ \left(\begin{array}{cc} a & 2b \\ b & a \end{array} \right) : a,b \in \mathbb{F}_5 \right.$$