Cours du jeudi 26 octobre 2017

Exercice 9 Soit E/K une extension algébrique. Alors tout K-morphisme $E \to E$ est un isomorphisme!

5.2 Corps de décomposition

Soit $0 \neq P \in K[X]$. On suppose que $E \geq K$ est un corps où P est scindé : $P = c(X - x_1)...(X - x_n), c \in K^{\times}$. On dit que $K(x_1, ..., x_n)$ est le corps de décomposition de P dans E.

Proposition 5.2 Un cops de décomposition existe toujours.

 $D\'{e}monstration$: Par récurrence sur deg P en utilisant l'existence de corps de rupture. q.e.d.

Nous allons voir qu'il y a unicité à isomorphisme près.

Théorème 5.3 (prolongement d'isomorphisme) Soit $\sigma: K \to K'$ un isomorphisme de corps. Soit $P \in K[X]$ un polynôme irréductible. Alors $P^{\sigma} \in K'[X]$ est irréductible. Si α, α' sont des racines de P et P^{σ} dans des extensions de K, K', alors σ se prolonge en un isomorphisme $K(\alpha) \simeq K'(\alpha')$ qui envoie α sur α' .

Théorème 5.4 (unicité du corps de décomposition) Soit $\sigma: K \to K'$ un isomorphisme de corps. Soit $P \in K[X]$. Soit $E \geq K$ un corps où P est scindé $:P = c(X - x_1)...(X - x_n)$. Soit $E' \geq K'$ un corps où P^{σ} est scindé $:P^{\sigma} = c'(X - x'_1)...(X - x'_n)$. Soient $B := K(x_1, ..., x_n), B' := K'(x'_1, ..., x'_n)$. Alors σ se prolonge en un isomorphisme $B \simeq B'$.

Corollaire 5.4.1 Soient L, L' deux corps de décomposition de P sur K. Alors il existe un K-isomorphisme $L \simeq L'$.

Autre démonstration de l'unicité des corps de décomposition à isomorphisme près. Soit $P = X^n - a_1 X^{n-1} + ... + (-1)^n a_n \in K[X]$. On suppose qu'il existe L_1, L_2 des corps contenant $K, x_1, ..., x_n \in L_1, y_1, ..., y_n \in L_2$ tels que $P = (X - x_1)...(X - x_n)$ dans $L_1[X]$ et $P = (X - y_1)...(X - y_n)$ dans $L_2[X]$ et $L_1 = K(x_1, ..., x_n)$ et $L_2 = K(y_1, ..., y_n)$. Alors on a des K-isomorphismes :

$$L_1 \simeq L_1 \otimes_K L_2/m \simeq L_2$$

où m est un idéal maximal quelconque de $L_1 \otimes L_2$.

Sans utiliser les produits tensoriels, on peut faire ainsi :

Soit I_1 l'idéal des polynômes $P \in K[X_1,...,X_n]$ tels que $P(x_1,...,x_n) = 0$ dans L_1 . Soit I_2 l'idéal des polynômes $P \in K[Y_1,...,Y_n]$ tels que $P(y_1,...,y_n) = 0$ dans L_2 . Soit M un idéal maximal de l'anneau

$$K[X_1, ..., X_n, Y_1, ..., Y_n]$$

qui contient $I_1 + I_2$ (aucun problème car $1 \notin I_1 + I_2^{\ddagger}$ et car $K[X,Y]/I_1 + I_2$ est de dimension finie, il suffit donc de choisir $M \geq I_1 + I_2$ tel que $\dim_K K[X,Y]/K$ est minimal ≥ 1).

Alors $L_1 \simeq K[X]/I_1 \stackrel{\varphi}{\to} K[X,Y]/M$, $P \mod I_1 \mapsto P \mod M$ est un morphisme K-linéaire de corps donc injectif. Or L = K[X,Y]/M est engendré par les $\overline{X_i}$ et les $\overline{Y_j}$, classes des $X_i, Y_j \mod M$.

Dans $L_1[X]$, on $a(X-x_1)...(X-x_n) = X^n + \sum_{k=1}^n \sigma_k(x_1,...,x_n)(-1)^k X^{n-k} = P(X)$ Donc $\sigma_k(x_1,...,x_n) = a_k \Rightarrow \sigma_k(X_1,...,X_n) = a_k \mod M$ i.e. $\sigma_k(\overline{X_1},...,\overline{X_n}) = a_k$ dans L. De $m \hat{e} m e$, $\sigma_k(\overline{Y_1},...,\overline{Y_n}) = a_k$ dans L et donc

$$\prod_{i} (X - \overline{X_i}) = \prod_{i} (X - \overline{Y_i})$$

dans L[X] et donc $\{\overline{X_i}: 1 \leq i \leq n\} = \{\overline{Y_i}: 1 \leq i \leq n\}$. Or $\overline{X_i} \in \text{Im } \varphi$. Donc $\overline{Y_i}$ aussi et φ est un isomorphisme. De même, on a un isomorphisme $L_2 \simeq K[X,Y]/M$. Q.e.d.

Exemples des corps finis : soient q une puissance d'un nombre premier p; le corps \mathbb{F}_q est un corps de décomposition de $X^q - X$ sur \mathbb{F}_p et on a donc l'unicité à isomorphisme près des corps finis de cardinaux donnés. De plus \mathbb{F}_q est l'ensemble des racines de $X^q - X$.

6 Corps finis

Soit K un corps fini. Sa caractéristique est un nombre premier p et son cardinal q une puissance de p. De plus si $q = p^n$, alors $(K, +) \simeq (\mathbb{Z}/p)^n$ et $(K^{\times}, \times) \simeq \mathbb{Z}/(q-1)\mathbb{Z}$.

Théorème 6.1 Soit p un nombre premier. Si $n \geq 1$, il existe, à isomorphisme près, un unique corps de cardinal $q = p^n$ c'est le corps de décomposition de $X^q - X$ sur \mathbb{F}_p .

^{‡.} en effet, si $\phi_1: K[X_1,...,X_n] \to K$ est une forme linéaire de noyau contenant I_1 (idem pour ϕ_2), alors on pose $\phi: K[X_1,...,X_n,Y_1,...,Y_n] \to K$, $cX^aY^b \to c\phi_1(X^a)\phi_2(Y^b)$. On vérifie facilement que $\phi(A(X)B(Y)) = \phi_1(A(X))\phi_2(B(Y))$ et que $I_1 + I_2$ est dans le noyau de ϕ . Si $\phi_1, \phi_2 \neq 0$, il est clair que $\phi \neq 0$ donc $I_1 + I_2 \neq k[X,Y]$...

Théorème 6.2 Soit q une puissance d'un nombre premier p. Si $\mathbb{F}_q \leq K \leq \mathbb{F}_{q^n}$, alors K est de cardinal q^m où m|n. Réciproquement, si m|n, il existe un unique sous-corps K de \mathbb{F}_{q^n} de cardinal q^m : c'est l'ensemble des racines de $X^{q^m} - X$ dans \mathbb{F}_q .

Théorème 6.3 Soit K un corps fini. Pour tout n, il existe une extension L/K de degré n. Cette extension est galoisienne, cyclique et unique à isomorphisme près.

Démonstration :
$$K \simeq \mathbb{F}_q$$
 et $L \simeq \mathbb{F}_{q^n}$. $\underline{q.e.d.}$

Remarque : si k est un corps, alors il existe une extension algébrique \overline{k} de k telle que \overline{k} est algébriquement clos. Ce corps \overline{k} est unique à k—isomorphisme près. On dit que c'est une clôture algébrique de k. Pour \mathbb{F}_p , on a : $\mathbb{F}_{p^n} = \{x \in \overline{\mathbb{F}_p} : x^{p^n} = x\}$ et $\overline{\mathbb{F}_p} = \bigcup_n \mathbb{F}_{p^n}$.

Dans la suite, on fixe pour tout p une clôture algébrique de \mathbb{F}_p : notée $\overline{\mathbb{F}_p}$ et $\mathbb{F}_{p^n} := \{x \in \overline{\mathbb{F}_p} : x^{p^n} = x\}.$

6.1 Polynômes sur les corps finis

6.1.1 Nombre de polynômes irréductibles de degré donné

Théorème 6.4 (de l'élément primitif) Soient p un nombre premier et q une puissance de p. Pour tout $n \geq 1$, il existe $\theta \in \mathbb{F}_{q^n}$ tel que $\mathbb{F}_{q^n} = \mathbb{F}_q[\theta]$ et il existe un polynôme irréductible de degré n sur \mathbb{F}_q .

 $D\acute{e}monstration$: En effet, il suffit de choisir pour θ un générateur du groupe cyclique $\mathbb{F}_{q^n}^{\times}.$ q.e.d.

Lemme 6.5 Soit $P \in \mathbb{F}_q[X]$ irréductible de degré m. Alors P divise $X^{q^n} - X$ sur \mathbb{F}_q si et seulement si $m \mid n$.

Démonstration : Si m|n, alors $q^m-1|q^n-1$ donc $X^{q^m-1}-1|X^{q^n-1}-1$ et $X^{q^m}-X|X^{q^n}-X$. Réciproquement, si $P|X^{q^n}-X$ alors si $x\in \mathbb{F}_{q^n}$ est une racine de P, on a :

$$\mathbb{F}_q \leq \mathbb{F}_q[x] \leq \mathbb{F}_{q^n}$$

donc $m = \deg P = [\mathbb{F}_q[x] : \mathbb{F}_q]$ divise $n = [\mathbb{F}_{q^n} : \mathbb{F}_q]$. Réciproquement, $m|n \Rightarrow q^m - 1|q^n - 1 \Rightarrow X^{q^m - 1} - 1|X^{q^n - 1} - 1 \Rightarrow X^{q^m} - X|X^{q^n} - X$. Or, si on pose $K := \mathbb{F}_q[X]/(P)$ et $x := X \mod P$, on a $\Big|\mathbb{F}_q[X]/(P)\Big| = q^m \Rightarrow x^{q^m} = x \Rightarrow x^{q^m} - x = 0 \Rightarrow P|X^{q^m} - X$. q.e.d.

On a:

i)

$$X^{q^n} - X = \prod_{d|n} \prod_P P(X)$$

où P décrit les polynômes irréductibles unitaires sur \mathbb{F}_q de degré d.

- ii) $q^n = \sum_{d|n} d\nu_d(q)$; où $\nu_n(q)$ est le nombre de polynômes irréductibles sur \mathbb{F}_q unitaires de degré n.
- iii) $\nu_n(q) = \frac{\sum_{d|n} \mu(n/d)q^d}{n}$ où μ est la fonction de Möbius.

Rappel: si $\zeta(s) := \sum_{n \geq 1} n^{-s}$ pour s > 1, alors $\zeta(s)^{-1} = \sum_{n \geq 1} \mu(n) n^{-s}$ (on peut prendre cette formule comme définition de μ). Plus concrètement, on a :

$$\mu(p_1^{a_1}...p_r^{a_r}) = \begin{cases} 0 & \text{si l'un des } a_i \ge 2, \\ (-1)^r & \text{sinon.} \end{cases}$$

Rappel: si (G, +) est un groupe abélien, si $f : \mathbb{N} \to G$ est une application et si on pose $F(n) := \sum_{d|n} f(d)$, alors $f(n) = \sum_{d|n} \mu(n/d)F(d)$. En effet,

$$\sum_{d|n} \mu(n/d) F(d) = \sum_{d|n} \mu(d) F(n/d)$$

$$= \sum_{d|n, k|n/d} \mu(d) f(k)$$

$$= \sum_{k|n, d|n/k} \mu(d) f(k)$$

$$= \sum_{k|n} f(k) \sum_{\substack{d|n/k \\ 0 \text{ sinon}}} \mu(d)$$

$$= f(n).$$

Exemple : dans \mathbb{F}_3 , on a :

$$X^9 - X = X(X+1)(X+2)(X^2 + X + 2)(X^2 + 2X + 2)(X^2 + 1)$$

et $\nu_2(3) = \frac{3^2 - 3}{2} = 3$.

Exercice:

Donner un sens au produit infini $\prod_P (1-t^{\deg P})^{-1}$ où P décrit l'ensemble des polynômes irréductibles unitaires sur \mathbb{F}_q et montrer que :

$$\prod_{P} (1 - t^{\deg P})^{-1} = (1 - qT)^{-1} .$$

L'égalité précédente s'écrit :

$$\prod_{n>1} (1-t^n)^{-\nu_n(q)} = (1-qT)^{-1} .$$

Exercice: Vérifier: $\nu_n(q)=\frac{q^n}{n}+O\left(\frac{q^{n/2}}{n}\right)$. En déduire

 $| \{ P \in \mathbb{F}_q[X] : P \text{ irréductible unitaire } \deg P \leq n \} | \sim \frac{q}{q-1} \frac{q^n}{n} .$

6.2 Symbole de Legendre

Soit p un nombre premier impair.

Définition 9 Si $x \in \mathbb{F}_p^{\times}$, alors on pose $\binom{x}{p:=1}$ si x est un carré et -1 sinon.

Proposition 6.6 $\binom{x^{\frac{p-1}{2}}=x}{p \bmod p}$. en particulier, $\mathbb{F}_p^{\times} \to \{\pm 1\}$, $\binom{x\mapsto x}{p}$ est un morphisme de groupes de noyau l'ensemble des carrés de \mathbb{F}_p^{\times} .

Exercice 10 En déduire que le polynôme $X^4 + 1$ est réductible mod p pour tout p premier. Solution : $si \ p = 2$, alors $X^4 + 1 = (X+1)^4$ et $si \ p$ est impair, on a :

$$\binom{-1}{p}\binom{-2}{p}\binom{2}{p} = 1$$

donc -1, -2 ou 2 est un carré mod p. $Si -1 = x^2$, $alors X^4 + 1 = (X^2 - x)(X^2 + x)$ et $si \ 2$ $(ou -2) = x^2$, $alors \ X^4 + 1 = (X^2 - xX + 1)(X^2 + xX + 1)$...

 $D\'{e}monstration$: Le morphisme $x\mapsto x^2$ a pour noyau $\{\pm 1 \bmod p\}$ de cardinal 2 et tout $x=y^2$ vérifie $x^{(p-1)/2}=y^{p-1}=1$. Cela donne (p-1)/2 solutions et donc on les a toutes ... q.e.d.

Théorème 6.7 (Loi de réciprocité quadratique) (i) $\binom{-1}{p} = (-1)^{(p-1)/2} = 1$ si $p = 1 \mod 4$, -1 si $p = -1 \mod 4$.

(ii) si p, q sont des nombres premiers impairs, alors

$$\binom{p}{q} \binom{q}{p} = (-1)^{\frac{p-1}{2} \frac{q-1}{2}} .$$

(iii) $\binom{2}{p} = (-1)^{\frac{p^2-1}{8}} = 1$ si $p = \pm 1 \mod 8$, -1 si $p = \pm 3 \mod 8$.

Exemple: 5 est un carré mod $5 \Leftrightarrow p$ est un carré mod 5.

 $\begin{array}{lll} \textit{D\'{e}monstration} & : \text{Admettons } (ii) \text{ et d\'{e}montrons } (iii). \text{ On introduit le symbole de Jacobi} : \text{Si } m, n \text{ sont des nombres impairs premiers entre eux, avec } n > 0, \text{ on pose } \binom{m}{n} = \prod_i \binom{m}{p_i}^{\alpha_i} \text{ où } n = \prod_i p_i^{\alpha_i} \text{ est la d\'{e}composition de } n \text{ en produit de nombre premiers. On v\'{e}rifie que } \binom{m}{n}\binom{n}{m} = (-1)^{\frac{m-1}{2}\frac{n-1}{2}} \text{ et que } \binom{m}{n} \text{ ne d\'{e}pend que de la classe de } m \text{ mod } n \text{ .} \\ \text{Attention on peut avoir } \binom{m}{n=1} \text{ sans que } m \text{ soit un carr\'{e} mod } m. \text{ Par exemple } \binom{2}{9} = 1 \text{ mais } 2 \text{ n'est pas un carr\'{e} mod } 9. \\ \end{array}$

On a:

$$\binom{2}{p} = (-1)^{\frac{p-1}{2}} \binom{-2}{p} = = (-1)^{\frac{p-1}{2}} \binom{p-2}{p}$$

et maintenant p-2 et p sont impairs et l'un des 2 est 1 mod 4! Donc :

$$\binom{2}{p} = (-1)^{\frac{p-1}{2}} \binom{p}{p-2} = (-1)^{\frac{p-1}{2}} \binom{2}{p-2}$$
$$= (-1)^{\frac{p-1}{2}} (-1)^{\frac{p-3}{2}} \dots (-1)^{1} 1$$
$$= (-1)^{1+\dots+\frac{p-1}{2}}$$
$$= (-1)^{\frac{p^{2}-1}{8}} .$$

q.e.d.

7 Résultant

Définition 10 Soient $P := a_0 X^p + + a_p, Q := b_0 X^q + ... + b_q \in A[X]$ où A est un anneau.

Soit $\operatorname{Res}_{p,q}(P,Q)$ le déterminant de la matrice :

Le coefficient (i, j) de la matrice est : a_{j-i} si $1 \le i \le q$ et b_{j-i+q} si $q+1 \le i \le p+q$ (où l'on convient que $a_n=0$ si n<0.

Remarques:

- 1. si $a_0 = b_0 = 0$, alors $\operatorname{Res}_{p,q} = 0$; si $\phi : A \to B$ est un morphisme d'anneaux, alors $\phi(\operatorname{Res}_{p,q}(P,Q)) = \operatorname{Res}_{p,q}(P^{\phi},Q^{\phi})$; $\operatorname{Res}_{p,q}(P,Q) = a_p^q b_o^p + (-1)^{(q-1)p} a_0^q b_q^p + \text{des termes de degrés}$
- 2. $\operatorname{Res}_{p,q}(P,Q)$ est homogène de degré q en $a_0,...,a_p$ et de degré p en $b_0,...,b_q$.

Exemples: Res $(f, f') = 4p^3 + 27q^2$ si $f = X^3 + pX + q$, $-a(b^2 - 4ac)$ si $f = ax^2 + bx + c$.

Proposition 7.1 Si $P, Q \in K[X]$ sont de degrés respectifs p, q, alors $\operatorname{Res}_{p,q}(P,Q) = 0 \Leftrightarrow P, Q$ ont un facteur commun (\Leftrightarrow ont une racine commune dans une certaine extension de K).

Démonstration : P, Q ont un facteur en commun si et seulement si $PQ_1 = QP_1$ pour un $P_1 = \alpha_1 X^{p-1} + ... + \alpha_p \in K[X]$ de degré $< \deg P$ et un $Q_1 = \beta_1 X^{q-1} + ... + \beta_q$ de degré $< \deg Q$ avec $(P_1, Q_1) \neq (0; 0)$ (en fait $P_1 = 0 \Rightarrow Q_1 = 0$).

Or $PQ_1 = P_1Q \Leftrightarrow (\beta_1, ..., \beta_q, -\alpha_1, ..., -\alpha_p).S = 0$. Donc il existe un facteur commun si et seulement si S est non inversible ... q.e.d.

Théorème 7.2 Si $P = a_0(X - x_1)...(X - x_p)$ et $Q = b_0(X - y_1)...(X - y_q)$, alors

$$\operatorname{Res}(P,Q) = a_0^q b_0^p \prod_{i=1,j=1}^{i=p,j=q} (x_i - y_j) = a_0^q \prod_{i=1}^p Q(x_i) = (-1)^{pq} b_0^p \prod_{j=1}^q P(y_j) .$$

 $D\acute{e}monstration$: Raisonnons dans l'anneau des polynômes $\mathbb{Z}[a_0,b_0,x_1,...,x_p,y_1,...y_q]$ en pq+2 variables. Alors $P=a_0X^p-a_0\sigma_1(x_1,...,x_p)+...+(-1)^pa_0\sigma_p(x_1,...,x_p))$ et $Q=b_0X^q-b_0\sigma_1(x_1,...,x_q)+...+(-1)^qb_0\sigma_q(x_1,...,x_q))$. Donc $\mathrm{Res}(P,Q)=a_0^qb_0^pR(x_1,...,x_p,y_1,...,y_q)$ un polynôme homogène de degré q en les x_i et p en les y_j (car les σ_k sont de degré 1 en chaque x_i).

Or, dans l'anneau $\mathbb{Z}[a_0, b_0, x_1, ..., x_p, y_1, ...y_q]$, si on remplace x_i par y_j , on trouve $R(x_1, ..., \underset{y_j}{\times}, ..., y_1, ..., y_q) = 0$ car il ya un facteur commun : $x - y_j$. Or, pour tout polynôme

$$F(x_1, ..., x_p, y_1, ..., y_q) = F(x_1, ..., \underbrace{x_i}_{y_j}, ..., y_1, ..., y_q) \bmod x_i - y_j$$

dans $\mathbb{Z}[x_1,...,x_p,y_1,...y_q]$. Donc pour tous $i,j,x_i-y_j|R$ dans $\mathbb{Z}[x_1,...,x_p,y_1,...y_q]$. Comme ce dernier anneau est factoriel, $S=\prod_{i=1,j=1}^{i=p,j=q}(x_i-y_j)$ divise R dans $\mathbb{Z}[x_1,...,x_p,y_1,...y_q]$.

Or en chaque x_i , $\deg_{x_i} R \leq q$ et $\deg_{x_i} S = q$ et en chaque y_j , $\deg_{y_j} R \leq p$ et $\deg_{y_i} S = p$ donc

$$\operatorname{Res}(P,Q) = a_0^q b_0^p S \lambda$$

où $\lambda \in \mathbb{Z}$. Pour l'ordre lexicographique en les y_j , le terme dominant dans $\operatorname{Res}(P,Q)$ est $(-1)^{pq}a_0^qb_0^p(y_1...y_q)^p$. Pour l'ordre lexicographique en les y_j , le terme dominant dans $a_0^qb_0^pS$ est aussi $(-1)^{pq}a_0^qb_0^p(y_1...y_q)^p$. Donc $\lambda = 1$.

q.e.d.

Corollaire 7.2.1 $Res_{p,q}(P,Q) = (-1)^{pq} Res_{p,q}(Q,P)$.

Définition 11 Si $f = a_0x^n + ... + a_n \in K[X]$, on pose $D(f) = a_0^{2n-2} \prod_{1 \le i < j \le n} (x_i - x_j)^2$ où $f = a_0(X - x_1)...(X - x_n)$ dans une certaine extension de K. C'est un élément de l'anneau $\mathbb{Z}[a_0, ..., a_n]$

Exercice 11 Vérifier que $Res_{n,n-1}(f, f') = (-1)^{n(n-1)/2} a_0 D(f)$.

7.1 Application du résultant : loi de réciprocité quadratique

Exercice 12 Pour tout $k \geq 1$, il existe un polynôme $P \in \mathbb{Z}[X]$ tel que $X^k + \frac{1}{X^k} = P\left(X + \frac{1}{X}\right)$.

Soit p un nombre premier impair.

On pose $T_p \in \mathbb{Z}[X]$ unitaire de degré $\frac{p-1}{2}$ tel que :

$$X^{(p-1)/2}T_p\left(X+\frac{1}{X}\right) = 1 + \dots + X^{p-1}$$
.

Exercise 13 $T_p(0) = (-1)^{(p-1)/2}$

Proposition 7.3 Si $p \neq q$ sont premiers impairs, alors :

- i) $\operatorname{Res}(T_p, T_q) = \pm 1 \ dans \ \mathbb{Z};$
- ii) $\operatorname{Res}(T_p, T_q) = \binom{q}{p} \mod p$.

 $D\'{e}monstration$:

i) On a $\operatorname{Res}(T_p, T_q) \in \mathbb{Z}$. Si rest un nombre premier qui divise $\operatorname{Res}(T_p, T_q)$, alors T_p et T_q ont une racine commune dans une extension de \mathbb{F}_r . Notons cette racine y. Comme $y \neq 0$, on peut trouver une racine x de x+1/x=y. Alors $1+\ldots+x^{p-1}=0=1+\ldots+x^{q-1}$. Donc $x^p=x^q=1$ et x=1 absurde

Or dans
$$\mathbb{F}_p$$
, $T_p(Y) = (Y-2)^{(p-1)/2}$. Donc $\operatorname{Res}(T_p, T_q) = (-1)^{(p-1)(q-1)/4} T_q(2)^{(p-1)/2} = q^{(p-1)/2} = \binom{q}{p} \mod p$...

 $\underline{q.e.d.}$

Corollaire 7.3.1 $\binom{p}{q}\binom{q}{p} = (-1)^{\frac{(p-1)(q-1)}{4}}$.

Démonstration : En effet, $\operatorname{Res}(T_p, T_q) = (-1)^{\frac{(p-1)(q-1)}{4}} \operatorname{Res}(T_q, T_p).$ q.e.d.

8 Corps algébriquement clos

Définition 12 On dit qu'un corps K est algébriquement clos si tout polynôme non constant est scindé sur K.

Théorème 8.1 Soit K un corps. Il existe une extension algébrique \overline{K} de K qui est un corps algébriquement clos. C'est une clôture algébrique de K. L'extension \overline{K} est unique à K-isomorphisme près.

 $D\'{e}monstration$:

Existence : soit \mathscr{P} l'ensemble des polynômes irréductibles unitaires de K[X]. Pour tout $p \in \mathscr{P}$, on choisit une variable X_p . Soit $A := K[X_p : p \in \mathscr{P}]$. Soit I l'idéal de A engendré par les polynômes $p(X_p)$, $p \in \mathscr{P}$. Alors I est propre donc contenu dans un idéal maximal M. Le corps A/M est une extension algébrique de K et tout polynôme p irréductible sur K a une racine $(X_p \mod M)$ dans A/M. Cela suffit pour dire que A/M est algébriquement clos (comme nous le verrons plus tard) ...

Unicit'e: on utilise le lemme de Zorn ... q.e.d.

Exemples: \mathbb{C} (respectivement $\overline{\mathbb{Q}}$ (respectivement $\cup_{n\geq 1}\mathbb{C}((t^{1/n}))$)) est une clôture algébrique de \mathbb{R} (respectivement de \mathbb{Q} (respectivement de $\mathbb{C}((t))$)).

9 Éléments primitifs

Soit E/K une extension.

On dit que $x \in E$ est un élément primitif de E/K si E = K(x).

Théorème 9.1 Si $x, y \in E$ sont algébriques sur K, si y est séparable sur K, alors il existe $z \in E$ tel que E = K(z). En particulier, si K est parfait, toutes ses extensions finies sont primitives.

Démonstration: Si K est fini, alors K(x,y) aussi donc $K(x,y)^{\times}$ est cyclique et il suffit de prendre pour z un générateur du groupe $K(x,y)^{\times}$!

Si K est infini : notons P_x, P_y les polynômes minimaux de x et y sur K. Notons y_j les racines distinctes de P_y et x_i celles de P_x (dans une extension). Soit $0 \neq t \in K$ tel que les $x_i + ty_j$ soient deux à deux distincts (il suffit que $t \in K \setminus \{\frac{x_{i'}-x_i}{y_j-y_{j'}}: i,i',j,j',y_j \neq y_{j'}\}$. Posons z:=x+ty. Alors $P_x(z-tY) \in K(z)[Y]$ a une seule racine en commun avec $P_y(Y): y$. Donc le pgcd de $P_x(z-tY)$ et P_y est Y-y. Or, $P_y, P_x(z-tY) \in K(z)[Y]$ donc $Y-y \in K(z)[Y] \Rightarrow y \in K(z) \Rightarrow x,y \in K(z) \Rightarrow K(z) = K(x,y)$. q.e.d.

Exercice: si E/K est finie, alors E/K admet un élément primitif si et seulement s'il existe un nombre fini de corps $K \leq L \leq E$.

Contre-exemple: si $K := \mathbb{F}_p(X^p, Y^p), E := \mathbb{F}_p(X, Y),$ alors les corps K(X + tY), $t \in K$ sont deux à deux distincts.

Théorème 9.2 Soit E/K une extension algébrique telle que tout polynôme irréductible $P \in K[X]$ a une racine dans E. Alors E est algébriquement clos.

Démonstration :

1er cas: K est parfait.

Soit $P \in E[X]$ irréductible. Soit E_1 une extension où P est scindé : P = $(X-x_1)...(X-x_n)$. Les x_i sont algébriques sur K. il existe $a \in E_1$ tel que $K(x_1,...,x_n)=K(a)$. Soit Q le polynôme minimal de a sur K. Alors Q a une racine b dans E, une racine de P dans une extension de E. Alors, x est algébrique sur K. Soit K_1 un corps de décomposition de $\pi_{x,K}$ sur K.

2ème cas Posons $K'=\{x\in E: \exists n,\, x^{p^n}\in K\}$. Alors $K'=K'^p$. Et tout polynôme irréductible sur K' a une racine dans E. (en effet, si $x \in K'$, alors il existe $n \text{ tel que } x^{p^n} \in K \text{ ; le polynôme } T^{p^{n+1}} - x^{p^n} \text{ a une racine dans } E \text{ disons } y.$ Alors $y \in K'$ et $y^p = x$).

q.e.d.

9.1Corps parfaits

Définition 13 Si K est un corps de caractéristique nulle ou si K est un corps de caractéristique p > 0 vérifiant $K^p = K$, on dit que K est un corps parfait.

Exercice 14 si K est un corps parfait, alors tout polynôme irréductible est premier avec son polynôme dérivé.

Un peu de théorie de Galois 10

10.1Morphismes de corps

Exercice 15

$$\operatorname{Aut}(\mathbb{R}) = 1,$$

$$\operatorname{Aut}(\mathbb{Q}(\sqrt{2})) = \{ \operatorname{Id}, a + b\sqrt{2} \mapsto a - b\sqrt{2} \},$$

$$\operatorname{Aut}\mathbb{C}(t) \simeq \operatorname{PGL}_2(\mathbb{C}),$$

$$\operatorname{Aut}\mathbb{Q}(\sqrt[3]{2}) = 1,$$

$$\operatorname{Aut}(\mathbb{Q}(\sqrt[3]{2}, j) \simeq \mathfrak{S}_3.$$

10.2 Lemme d'Artin

Théorème 10.1 Soient K, L des corps et $\sigma_1, ..., \sigma_n : K \to L$ des morphismes de corps deux à deux distincts. Alors les σ_i sont L-linéairement indépendants dans le L-espace vectoriel des fonctions $K \to L$.

Définition 14 Une extension (finie) galoisienne est une extension de la forme K/K^G où K un corps et $G \leq \operatorname{Aut} K$ un sous-groupe fini.

Exemples : $\mathbb{F}_{q^n}/\mathbb{F}_q$, $\mathbb{Q}(\sqrt{2})/\mathbb{Q}$, $Q(sqrt[3]2,j)/\mathbb{Q}$, $\mathbb{C}(t)/\mathbb{C}(t+t^{-1})$ sont galoisiennes.

Contre-exemples: $\mathbb{Q}(\sqrt[3]{2})/\mathbb{Q}$, $\mathbb{F}_p(X)/\mathbb{F}_p(X^p)$.

- 10.3 Extensions résolubles
- 10.4 Nombres constructibles à la règle et au compas
- 11 Théorème de Lüroth
- 11.1 Sous-groupes finis de $PGL_2(\mathbb{C})$
- 12 Un peu de théorie de Galois

12.1 Théorème d'indépendance des caractères d'Artin

Si G est un groupe et K un corps, un caractère de G dans K est un morphisme de groupes $G \to K^{\times}$. L'ensemble des caractères est une partie du K-espace vectoriel des fonctions $G \to K$.

Exemple : $G = \mathbb{Z}/n\mathbb{Z}$, $K = \mathbb{C}$, les caractères de G dans \mathbb{C} sont les $k \mapsto \zeta^k$ où $\zeta = \exp(2i\pi/n)$.

12.2 Indépendance

Théorème 12.1 (Artin) Soient $\sigma_1, ..., \sigma_n$ n caractères distincts de G dans K. Alors les σ_i sont K-linéairement indépendants.

Corollaire 12.1.1 Soient E, E' deux corps. Si $\sigma_1, ..., \sigma_n$ sont n morphismes distincts de corps $E \to E'$. Alors les σ_i sont E'-linéairement indépendants.

Exercice : si G abélien, on pose G^{\vee} le groupe des caractères de G dans \mathbb{C} . Montrer que $G^{\vee} \simeq G$ (non canonique).

Exercice: si G fini, $|\text{Hom}(G, K^{\times})| \leq |G|$.

12.3 Corps des invariants

Théorème 12.2 Soient $\sigma_1, ..., \sigma_m$ m morphismes distincts $E \to E'$. Alors $si\ F := E^{\{\sigma_1, ..., \sigma_m\}} := \{x \in E : \sigma_1(x) = ... = \sigma_n(x)\}, \ [E : F] \ge m$.

 $D\acute{e}monstration$: Si $e_1,...,e_n$ est une famille génératrice de E comme F-espace vectoriel, alors les lignes de la matrice $(\sigma_i(e_j))_{\substack{1 \leq i \leq m \\ 1 \leq j \leq n}} \in \mathscr{M}_{m,n}(E')$ sont indépendantes. Donc $m \leq n$. q.e.d.

Corollaire 12.2.1 Si G est un sous-groupe fini de Aut(E), alors $[E : E^G] \ge |G|$.

Remarque : comme G contient l'identité, $E^G = \{x \in E : {}^\forall g \in G, \ g(x) = x\}.$

Exemple : $E=\mathbb{C},\ G=\{1,\sigma\}$ où σ est la conjugaison complexe, $[\mathbb{C}:\mathbb{R}]=2.$

12.4 Extensions galoisiennes

Définition 15 Soit E un corps. Soit $G \leq \operatorname{Aut}(E)$ fini. On dit que E/E^G est une extension galoisienne de groupe de Galois G.

 $\begin{array}{c} \textit{Exemples}: \mathbb{C}/\mathbb{R}, \, \mathbb{F}_{q^n}/\mathbb{F}_q, \, \mathbb{Q}(\zeta)/\mathbb{Q}, \, \mathbb{Q}(\sqrt{2})/\mathbb{Q}, \, \mathbb{C}(X)/\mathbb{C}(X^3) \, ; \, \textit{contre-exemple}: \\ \mathbb{Q}(\sqrt[3]{2})/\mathbb{Q}, \, \mathbb{F}_p(X)/\mathbb{F}_p(X^p), \, \mathbb{Q}(\sqrt[4]{2})/\mathbb{Q}. \\ \textit{Exemple}: \, \mathbb{Q}(\sqrt[3]{2},j)/\mathbb{Q}. \end{array}$

Théorème 12.3 Soit E un corps. Soit $G \leq \operatorname{Aut}(E)$ un groupe fini. Alors $[E:E^G]=|G|$.

 $D\acute{e}monstration$: On utilise la forme F-linéaire $Tr: E \to F, x \mapsto \sigma_1(x) + ... + \sigma_n(x)$ où $F = E^G, G = \{\sigma_1, ..., \sigma_n\}$. Soient $g_1, ..., g_n$ les éléments de G. Si $e_1, ..., e_{n+1}$ sont des éléments de E, alors les colonnes de la matrices $(g_i(e_j))_{1 \le i \le n \atop 1 \le j \le n+1} \in \mathcal{M}_{n,n+1}$ sont liées. Donc $\forall i, \sum_j x_j g_i(e_j) = 0$ pour certains $x_j \in E$. D'où :

$$\forall i, \sum_{j} g_i^{-1}(x_j)e_j = 0$$

et $\sum_i \sum_j g_i^{-1}(x_j)e_j = 0 \Rightarrow \sum_j \operatorname{Tr}(x_j)e_j = 0$. C'est encore vrai si on remplace x_j par xx_j , $x \in E$. Donc on peut choisir les x_j tels que $x_1 \in E$ et $\operatorname{Tr}(x_1) \neq 0$ par exemple. Mais alors, les e_j sont liés sur E^G . q.e.d.

Exemples:

- a) $k(x_1,...,x_n)^{\mathfrak{S}_n} = k(s_1,...,s_n)$ (où k est un corps et où les s_i sont les polynômes symétriques élémentaires) car $k(x_1,...,x_n) \geq k(x_1,...,x_n)^{\mathfrak{S}_n} \geq k(s_1,...,s_n)$ et $[k(x_1,...,x_n):k(x_1,...,x_n)^{\mathfrak{S}_n}] = |\mathfrak{S}_n| = n! \geq [k(x_1,...,x_n):k(s_1,...,s_n)],$
- b) $\mathbb{Q}(\sqrt[3]{2}, j)/\mathbb{Q}$ est galoisienne de groupe de Galois $G := \langle s, t \rangle \simeq \mathfrak{S}_3$ où s est le $\mathbb{Q}(j)$ -automorphisme qui envoie $\sqrt[3]{2}$ sur $j\sqrt[3]{2}$ et t le $\mathbb{Q}(\sqrt[3]{2})$ -automorphisme qui envoie j sur j^2 ;
- c) soit G le sous-groupe des automorphismes de $\mathbb{C}(t)$ engendré par les changements de variables $t \mapsto t^{-1}$ et $t \mapsto 1 t$. On vérifie que G est d'ordre 6, isomorphe à \mathfrak{S}_3 .

Soit K le sous-corps des fractions rationnelles $f \in \mathbb{C}(t)$ invariantes par les changements de variables

$$t \mapsto 1 - t \text{ et } t \mapsto t^{-1}$$
.

Montrer que $K = \mathbb{C}\left(\frac{(t^2-t+1)^3}{t^2(t-1)^2}\right)$.

En déduire que l'extension :

$$\mathbb{C}\left(\frac{(t^2-t+1)^3}{t^2(t-1)^2}\right)\subset\mathbb{C}(t)$$

est galoisienne de groupe de Galois S_3 .

Exercice: on pose $y_1 := x_1 + jx_2 + j^2x_3$, $y_2 := x_1 + j^2x_2 + jx_3$. Montrer que $\mathbb{C}(x_1, x_2, x_3)^{\mathfrak{A}_3} = \mathbb{C}(y_1^2/y_2, y_2^2/y_1, \sigma_1)$.

On peut retrouver les polynômes symétriques à partir des fractions rationnelles symétriques ...

Exercice On pose $L := k(s_1, ..., s_n)$ et $L_i := L(x_{i+1}, ..., x_n), 0 \le i \le n$ $(L_n = L).$

- a) $[L_{i-1}:L_i]=i$ et $1,...,x_i^{i-1}$ est une base de L_{i-1}/L_i .
- b) $\{x_1^{a_1}...x_n^{a_n}: \forall i, a_i \leq i-1\}$ est une base de $k(x_1,...,x_n)/L$.
- c) tout $g \in k[x_1,...,x_n]$ est une combinaison $k[s_1,...,s_n]$ -linéaire de monômes $x_1^{a_1}...x_n^{a_n}: \forall i, a_i \leq i-1$.
- d) On retrouve que $k[x_1, ..., x_n]^{\mathfrak{S}_n} = k[s_1, ..., s_n].$

Corollaire 12.3.1 (Maximalité du groupe de Galois) Soit E/F galoisienne de groupe G. Alors si $E' \geq E$ et si $\sigma : E \rightarrow E'$ est un F-morphisme de corps, $\sigma \in G$. En particulier, $G = \operatorname{Aut}_F(E)$, groupe des automorphismes F-linéaires de E.

Notation : si $F = E^G$, G =: Gal(E/F).

12.5 Injectivité

Corollaire 12.3.2 (Injectivité) Si E/F est galoisienne de groupe G si $H_1, H_2 \leq G$, alors $E^{H_1} = E^{H_2} \Leftrightarrow H_1 = H_2$.

12.6 Surjectivité

Théorème 12.4 Soit E/F une extension galoisienne de groupe de Galois G. Si $F \leq B \leq E$, alors il existe $H \leq G$ tel que $E^H = B$.

 $D\acute{e}monstration$: Soit $H:=\operatorname{Aut}_B(E)$. On a : $B\leq E^H$. Soit $s_1,...,s_r$ un système de représentants de G/H. On a $B^{\{s_1,...,s_r\}}=F$ donc $[B:F]\geq r$ et $[E:B]\leq [E:F]/r=|H|=[E:E^H]$ d'où $B=E^H$. q.e.d.

Exercice: donner la liste des sous-corps de $\mathbb{Q}(\sqrt[3]{2}, j)$. $(réponse: \mathbb{Q}(\sqrt[3]{2}, j) \ge \mathbb{Q}(\sqrt[3]{2}), \mathbb{Q}(j\sqrt[3]{2}), \mathbb{Q}(j^2\sqrt[3]{2}), \mathbb{Q}(j) \ge \mathbb{Q}).$

12.7 Correspondance de Galois

Théorème 12.5 (fondamental) Soit E/F une extension galoisienne de groupe G.

i) On a 2 bijections réciproques :

$$\{H \le G\} \stackrel{\text{1:1}}{\longleftrightarrow} \{F \le B \le E\}$$

$$H \mapsto E^H$$

$$\text{Gal}(E/B) \leftarrow B .$$

- ii) L'extension E/B est galoisienne et [E:B] = |Gal(E/B)|;
- iii) $[B:F] = |G/\operatorname{Gal}(E/B)|;$
- iv) l'extension B/F est galoisienne si et seulement si $\operatorname{Gal}(E/B) \triangleleft G$. Dans ce cas, $\operatorname{Gal}(B/F) \simeq G/\operatorname{Gal}(E/B)$.

 $D\acute{e}monstration$: Si $Gal(E/B) \triangleleft G$, si $\sigma \in G$, alors $\sigma(B) = B$: en effet, $Gal(E/\sigma(B)) = \sigma Gal(E/B)\sigma^{-1} = Gal(E/B) \Rightarrow \sigma(B) = B$. Notons G' l'image du morphisme $\sigma \mapsto \sigma|_B$. On a : $B^{G'} = F$. Réciproquement si B/F est galoisienne, alors pour tout $\sigma \in G$, $\sigma|_B \in Gal(B/F)$ (cf. le corollaire 12.3.1). On a alors $Gal(E/B) = \ker(G \to Gal(B/F), \sigma \mapsto \sigma|_B)$ qui est un noyau donc distingué. q.e.d.

Proposition 12.6 Soit E/K une extension galoisienne. On suppose que $K \leq B \leq B' \leq E$. On note $U := \operatorname{Gal}(E/B)$, $U' := \operatorname{Gal}E/B'$. Alors B'/B est galoisienne $\Leftrightarrow U' \triangleleft U$. Et dans ce cas, $\operatorname{Gal}(B'/B) \simeq U/U'$.

Exercice: démontrer cette proposition.

12.8 Caractérisation des extensions galoisiennes

Théorème 12.7 Soit E/K une extension finie. On a toujours : $|\operatorname{Aut}_K(E)| \le [E:K]$. L'extension E/K est galoisienne $\Leftrightarrow |\operatorname{Aut}_K(E)| = [E:K]$. Dans ce cas, $\operatorname{Gal}(E/K) = \operatorname{Aut}(E/K)$.

Contre-exemples:

- a) si $E = \mathbb{Q}(\sqrt[4]{2})$, alors $|\text{Aut}(E/\mathbb{Q})| = 2 < 4 = [E : \mathbb{Q}]$.
- b) si p est premier et $E = \mathbb{F}_p(T)$ et $K = \mathbb{F}_p(T^p)$; alors $[\mathbb{F}_p(T) : \mathbb{F}_p(T^p)] = p$ mais $\operatorname{Aut}_{\mathbb{F}_p(T^p)}(\mathbb{F}_p(T)) = \{\operatorname{Id}\}.$

13 Éléments entiers sur un anneau

Définition 16 Soit B un anneau commutatif avec unité. Soit $A \subseteq B$ un sous-anneau (sous-entendu qui contient 1). Si $b \in B$, sont équivalentes :

- (i) il existe $P \in A[X]$ unitaire tel que P(b) = 0;
- (ii) A[b] est un A-module de type fini;
- (iii) il existe un A[b]-module fidèle qui est un A-module de type fini. Un b qui vérifie ces propriétés est dit entier sur A.

Exemple: $\sqrt{2}$ est entier sur \mathbb{Z} .

Exercice 16 Si $z \in \mathbb{Q}$ est entier sur \mathbb{Z} , alors $z \in \mathbb{Z}$.

 $D\acute{e}monstration : iii \Rightarrow i : soit M un A[b]-module fidèle qui est un A-module de type fini. Soient <math>e_1,...,e_n$ des générateurs. Il existe des coefficients $a_{i,j} \in A$ tels que :

$$\forall j, be_j = \sum_i a_{i,j} e_j$$
.

On en déduit par récurrence sur n que $\forall j$ $b^n e_j = \sum_i (M^n)_{i,j} e_i$ où $M := (a_{i,j})$. Mais alors, $\chi_M(b)e_j = \sum_i \chi_M(M)_{i,j} e_i = 0$ pour tout j. Donc $\chi_M(b)M = 0 \Rightarrow \chi_M(b) = 0$ car M est fidèle. Or, $\chi_M(X)$ est unitaire à coefficients dans A.

Corollaire 13.0.1 L'ensemble des éléments de B entiers sur A est un sous-anneau de A

Exercice 17 Soit $z \in \mathbb{C}$ une racine de l'unité. Alors $\mathbb{Q} \cap \mathbb{Z}[z] = \mathbb{Z}$. On dit que \mathbb{Z} est intégralement clos (sous-entendu dans son corps des fractions). Contre-exemple : $\mathbb{Z}[i\sqrt{5}]$ est intégralement clos non factoriel car $6 = 2 \times 3 = (1+i\sqrt{5})(1-i\sqrt{5})$ et $2,3,1\pm i\sqrt{5}$ sont des irréductibles dans $\mathbb{Z}[i\sqrt{5}]$ deux à deux non associés ...

Application : irréductibilité des polynômes cyclotomiques :

13.1 Polynômes cyclotomiques

Définition 17 Soit $n \geq 1$. On pose $\Phi_n(X) = \prod_{\substack{1 \leq k \leq n \\ k \wedge n = 1}} (X - e^{2ik\pi/n}) \in \mathbb{C}[X]$.

Théorème 13.1 a) Pour tout $n, X^n - 1 = \prod_{d|n} \Phi_d(X)$.

- b) Pour tout $n, \Phi_n \in \mathbb{Z}[X]$.
- c) Pour tout n, Φ_n est irréductible sur \mathbb{Q} .

Remarque : en particulier $\Phi_n(X) = \prod_{d|n} (X^d - 1)^{\mu(n/d)}$. Démonstration :

c)

Soit ζ une racine primitive n-ième de l'unité. Soit $P \in \mathbb{Q}[X]$ son polynôme minimal sur \mathbb{Q} . Soit p un nombre premier qui ne divise pas n. Alors $P \in \mathbb{Z}[X]$ donc $P(X^p) = P(X)^p \mod p$. En particulier, dans l'anneau $\mathbb{Z}[\zeta]$, on a $P(\zeta^p) = 0 \mod p$.