MATRICES SYMÉTRIQUES RÉELLES ET MATRICES HERMITIENNES

DANS LE PLAN

- forme quadratique associée à une matrice symétrique $M: X \mapsto {}^t X M X$;
- forme hermitienne associée à une matrice hermitienne $M: X \mapsto {}^t \overline{X} MX$;
- définition de la signature : deux matrices symétriques réelles sont congruentes
 ⇔ elles ont la même signature ; remarquer que deux matrices symétriques complexes sont congruentes
 ⇔ elles ont même rang ;
- les matrices symétriques réelles sont diagonalisables sur $\mathbb R$ dans une base orthonormée!
- les matrices hermitiennes sont diagonalisables sur C dans une base orthonormée avec des valeurs propres réelles;
- Orthogonalisation simultanée : si A est symétrique définie positive, si B est symétrique, alors il existe P inversible telle que

$${}^{t}PAP = I_{n} \text{ et } {}^{t}PBP = D$$

où D est diagonale. De plus les coefficients diagonaux de D sont les racines du polynôme $d\acute{e}t(xA-B)$.

Voici un exemple concret (cf. [2, §8.5]:

soient
$$A = \begin{pmatrix} 2 & 1 & 3 \\ 1 & 2 & -1 \\ 3 & -1 & 9 \end{pmatrix}$$
 et $B = \begin{pmatrix} 0 & 1 & -1 \\ 1 & 2 & -1 \\ -1 & -1 & 1 \end{pmatrix}$. Alors A est définie positive car ses mineurs principaux sont $2 \cdot 2 \times 2 - 1 \times 1 = 1$

définie positive car ses mineurs principaux sont $2, 2 \times 2 - 1 \times 1 = 3$, dét A = 1 > 0. On résout

$$\det(xA - B) = 0 \Leftrightarrow \begin{vmatrix} 2x & x - 1 & 3x + 1 \\ x - 1 & 2x - 2 & -x - 1 \\ 3x + 1 & -x - 1 & 9x - 1 \end{vmatrix} = 0$$
$$\Leftrightarrow x^3 - x^2 - x - 1 = 0$$
$$\Leftrightarrow (x - 1)^2 (x + 1) = 0.$$

Pour -1 on trouve $v_1 = {}^t(-32,1)$ qui vérifie $(-A-B)v_1 = 0$ et ${}^tv_1Av_1 = 1$.

Ensuite on trouve $V = {}^t(u, v, w)$ qui est solution de $(A - B)V = 0 \Leftrightarrow V$ de la forme $V = {}^t(2a, b, -a), a, b \in \mathbb{R}$.

On peut prendre donc $v_2 = {}^t(0,1,0)$ et on choisit ensuite $v_3 = {}^t(2a,b,-a)$ tel que ${}^tv_2Av_3 = 0 \Leftrightarrow (1,2,-1){}^t(2a,b,-a) = 0 \Leftrightarrow 3a+2b=0$. On peut

donc prendre $v_3 = (-4, 3, 2)$. On normalise pour obtenir v'_2 , v'_3 tels que ${}^tv'_iAv'_i = 1$:

$$\begin{array}{l} {}^{t}v_{i}'Av_{i}'=1:\\ \text{On prend }v_{2}'=\frac{v_{2}}{\sqrt{2}},\,v_{3}'=\frac{v_{3}}{\sqrt{2}}.\text{ Donc en posant }P=\left(\begin{array}{c|c}v_{1}&v_{2}'&v_{3}'\end{array}\right)=\\ \begin{pmatrix} -3 & 0 & 3\\ 2 & \frac{1}{\sqrt{2}} & 0\\ -2\sqrt{2} & \frac{3}{\sqrt{2}} & \sqrt{2} \end{pmatrix},\text{ on a bien }{}^{t}PAP=I_{3}\text{ et }{}^{t}PBP=\text{diag}(-1,1,1). \end{array}$$

Exercices

– Si M est antisymétrique réelle, alors M est diagonalisable sur $\mathbb C$ avec des valeurs propres dans $i\mathbb R$.

Réponse : iM est hermitienne donc diagonalisable sur $\mathbb C$ à valeurs propres réelles.

– La matrice
$$n \times n : J = \begin{pmatrix} 1 & \dots & 1 \\ \vdots & & \vdots \\ 1 & \dots & 1 \end{pmatrix}$$
 est-elle diagonalisable sur $\mathbb R$, sur

 \mathbb{C} , sur \mathbb{Q} , sur le corps fini \mathbb{F}_a ?

Réponse : sur \mathbb{R} : oui car symétrique. Sur \mathbb{C} oui car elle l'est sur \mathbb{R} . Sur \mathbb{Q} : on remarque que 0 est valeur prpore de multiplicité dim $\ker J = n - \operatorname{rg} J = n - 1$ et comme la trace est n, l'autre valeur propre est n. Donc oui! Sur \mathbb{F}_q , on peut utiliser le critère : J diagonalisable $\Leftrightarrow J^q = J$.

$$Or J^q == \begin{pmatrix} n^{q-1} & \dots & n^{q-1} \\ \vdots & & \vdots \\ n^{q-1} & \dots & n^{q-1} \end{pmatrix}. \ Donc \ sur \ \mathbb{F}_q, \ J \ est \ diagonalisable \ si \ et$$

seulement si n est premier à q.

Développements possibles :

Développement 1 (Sous-groupes compacts de $GL_n(\mathbb{R})$, cf [1]) Soit $K \leq GL_n(\mathbb{R})$ un sous-groupe compact, alors G est conjugué à un sous-groupe de $O_n(\mathbb{R})$.

Remarques: savoir démontrer facilement le cas fini en « moyennant » une forme quadratique définie positive : si q est une forme quadratique définie positive sur \mathbb{R}^n et si K est un groupe fini, alors la forme quadratique $x\mapsto \sum_{g\in G=K}q(gx)$ est une forme quadratique définie positive sur \mathbb{R}^n qui est K-invariante. Donc $K\leq O(q)=PO_nP^{-1}$ pour une certaine matrice $P\in \mathrm{GL}_n(\mathbb{R})$...

Développement 2 (Pfaffien, cf. [2, §8.6]) En termes de matrices :

 $\forall A \ matrice \ antisymétrique , \exists P \in \mathrm{GL}_n(K),$

$${}^{t}PAP = \left(\begin{array}{c|ccc} \left(\begin{array}{cccc} 0 & 1 \\ -1 & 0 \end{array} \right) & & & & \\ \hline & & \dots & & \\ \hline & & & \left(\begin{array}{cccc} 0 & 1 \\ -1 & 0 \end{array} \right) & & \\ \hline & & & \left(\begin{array}{cccc} 0 & 1 \\ -1 & 0 \end{array} \right) & & \\ \hline \end{array}\right)$$

où une matrice antisymétrique est une matrice A telle que ${}^{t}A = -A$. Pour que cela reste vrai en caractéristique 2 il faut ajouter la condition que la diagonale est nulle.

Applications: si $A \in \mathcal{M}_{2n}(K)$ est antisymétrique (et si la diagonale est nulle en caractéristique 2), alors dét $A = \operatorname{Pf}(A)^2$ où Pf est une fonction polynomiale à coefficients entiers en les coefficients $A_{i,j}$, i < j, homogène de degré n. On choisit Pf qui a un coefficient > 0 devant $A_{1,2}A_{3,4}...A_{2n-1,2n}$. On en déduit que toutes les matrices du groupe $\operatorname{Sp}_{2n}(K)$ sont de déterminant 1.

Remarques: Rappelons que $\operatorname{Sp}_{2n}(K)$ est le sous-groupe des matrices $M \in \operatorname{GL}_{2n}(K)$ telles que ${}^tMJM = J$ où $J := \left(\begin{array}{c|c} 0 & I_n \\ \hline -I_n & 0 \end{array}\right)$. Par exemple :

$$Pf \left(\begin{array}{cc} 0 & a \\ -a & 0 \end{array} \right) = a \,,$$

$$Pf \begin{pmatrix}
0 & a_{12} & a_{13} & a_{14} \\
-a_{12} & 0 & a_{23} & a_{24} \\
-a_{13} & -a_{23} & 0 & a_{34} \\
-a_{14} & -a_{24} & -a_{34} & 0
\end{pmatrix} = a_{12}a_{34} + a_{23}a_{14} - a_{13}a_{24} .$$

Quel rapport avec le titre de la leçon? en bien si A est antisymétrique, iA est hermitienne!

Développement 3 Cf [4, th. 8] Matrices de Gram. Ce sont les matrices de la forme $G(v_i) = (\langle v_i, v_j \rangle)_{ij}$ où les v_i sont des vecteurs d'un espace euclidien E

Théorème : $si \ x \in E$, $si \ F \le E$ est un sous-espace de base (pas forcément orthogonale $v_1, ..., v_r$), alors $d(x, F) = \inf_{y \in F} ||x - y|| = \frac{G(v_1, ..., v_r, x)}{G(v_1, ..., v_r)}$.

Application : inégalité d'Hadamard (cf. [4, th. 7]) ou un calcul de borne inférieure d'une certaine classe d'intégrales cf. [4, exo 5, ch. V]

Développement 4 Les inégalités de Weyl (cf. [3]).

Si M est une matrice symétrique réelle de taille n, on note $\lambda_1(M) \geq ... \geq \lambda_n(M)$ ses valeurs propres.

Théorème : $si\ A, B\ sont\ symétriques\ réelles,\ alors\ pour\ tous\ i, j\ on\ a$:

$$\lambda_{i+j-1}(A+B) \leq \lambda_i(A) + \lambda_j(B)$$
.

Références

- [1] Alessandrini. Thèmes de géométrie. Dunod.
- [2] Cohn. Algebra 1. John Wiley & sons.
- [3] J. Fresnel et M. Matignon. Algèbre et géométrie : 81 thèmes pour l'agrégation de mathématiques. Ellipses.
- [4] X. Gourdon. Les maths en tête, algèbre. Ellipses.