TD — jeudi 26 janvier

Exercice 1 Soit
$$H:=\{\begin{pmatrix}a&b\\-\overline{b}&\overline{a}\end{pmatrix}:a,b\in\mathbb{C}\}$$
. Si $M\in\mathscr{M}_2(\mathbb{C}),$ on pose $M^*:={}^t\overline{M}.$

- a) Montrer que H est un \mathbb{R} -espace vectoriel de dimension 4 et que dét : $H \to \mathbb{R}$ est une forme quadratique définie positive sur H. Déterminer le produit scalaire associé.
- b) Montrer que SU_2 est un sous-groupe fermé compact connexe de $SL_2(\mathbb{C})$. Indication : penser à diagonaliser!
- c) Montrer que l'action de $SU_2 \times SU_2$ sur H via :

$${}^{\forall}g_1, g_2 \in SU_2, {}^{\forall}h \in H, (g_1, g_2).h := g_1hg_2^{-1}$$

induit un morphisme $SU_2 \times SU_2 \to O_4(\mathbb{R})$.

- d) Montrer que l'image est contenue dans $SO_4(\mathbb{R})$. Indication : montrer que SU_2 est connexe ou que tout élément de SU_2 est un carré ...
- e) Déterminer le noyau.
- f) Montrer que si $g \in SU_2$, alors l'application $H \to H$, $h \mapsto -gh^*g$ est une réflexion orthogonale dont on déterminera l'hyperplan.
- g) Quel est le déterminant d'une réflexion orthogonale? En admettant que les réflexions orthogonales engendrent $O_4(\mathbb{R})$, montrer que $SU_2 \times SU_2 \to SO_4$ est surjectif.
- h) En déduire que $SO_4(\mathbb{R})/Z$ n'est pas un groupe simple $(Z = \{\pm I_4\})$.

Exercice 2 Soit $r \in O_n(\mathbb{R})$.

- a) On suppose que r est le produit de k réflexions orthogonales : $r = r_1...r_k$. Montrer que $k \ge \dim(\ker r - I_n)$.
- b) Soit $\sigma \in \mathfrak{S}_n$ une permutation et soit P_{σ} la matrice de permutation associée. Démontrer que dim $\ker(P_{\sigma} I_n) = s$ le nombre de cycles qui apparaissent dans la décomposition de σ en produit de cycles à supports disjoints (on compte aussi les cycles de longueur 1!).
- c) En déduire le nombre minimal de transpositions nécessaires pour obtenir une permutation σ .

Exercice 3 Soit K un corps (éventuellement de caractéristique > 0).

Si $\sigma \in \mathfrak{S}_n$, on note $P_{\sigma} \in \mathrm{GL}_n(K)$ sa matrice de permutation associée. On note $c_k(\sigma)$ le nombre de cycles de longueur k qui apparaissent dans la décomposition de σ en produits de cycles à supports disjoints.

- a) Montrer que dim(ker $(P_{\sigma}^m I_n)$) = $\sum_{k=1}^n \operatorname{pgcd}(k, m) c_k(\sigma)$. indication : commencer par m = 1.
- b) Soit $S := (\operatorname{pgcd}(i,j))_{1 \leq i,j \leq n} \in \mathcal{M}_n(\mathbb{Z})$. Montrer que dét $S = \varphi(1)...\varphi(n)$ indication : on pose $d_{ij} := 1$ si j | i et 0 sinon ; vérifier que $S = A\operatorname{diag}(\varphi(1), ..., \varphi(n))^t A$.
- c) En déduire que σ et τ sont conjuguées dans \mathfrak{S}_n si et seulement si P_{σ} et P_{τ} le sont dans $\mathrm{GL}_n(K)$.

Exercice 4 Soient $r, r' \ge 0$, $d_1|...|d_n$ et $d'_1|...|d'_{n'}$ des entiers > 1. On suppose que les groupes :

$$\mathbb{Z}^r \oplus \mathbb{Z}/d_1 \oplus ... \oplus \mathbb{Z}/d_n \simeq Z^{r'} \oplus \mathbb{Z}/d_1' \oplus ... \oplus \mathbb{Z}/d_n' \simeq$$

sont isomorphes. Montrer que r = r', n = n' et $d_i = d'_i$ pour tout i.

Exercice 5 Soit M un A-module de type fini. Soit $f: M \to M$ un morphisme surjectif de A-modules. On suppose que A est un anneau commutatif unitaire .

On veut montrer que f est injectif.

- a) On définit une structure de A[X]-module sur M par : R(X).m := R(f)(m). Montrer que IM = M où I = (X).
- b) Montrer qu'il esiste $i \in I$ tel que (1-i)M = 0 indication utiliser le théorème de Cayley-Hamilton.
- c) Conclure.

Exercice 6 Sous-groupes finis de $\operatorname{PGL}_2(\mathbb{C})$ Soit $G < \operatorname{PGL}_2(\mathbb{C})$ un sous-groupe fini. On considère l'action suivante de $\operatorname{PGL}_2(\mathbb{C})$ sur $\mathbb{P}^1(\mathbb{C})$:

$${}^{\forall}g = \left[\begin{array}{cc} a & b \\ c & d \end{array}\right] \in \mathrm{PGL}_2(\mathbb{C}), \, {}^{\forall}[x:y] \in \mathbb{P}^1(\mathbb{C}), \, g.[x:y] := [ax + by : cx + dy] \ .$$

- a) Soit g un élément d'ordre fini de $\operatorname{PGL}_2(\mathbb{C})$. Montrer que si $g \neq 1$, g a exactement 2 points fixes dans $\mathbb{P}^1(\mathbb{C})$.
- b) On pose $Z := \{(x,g) \in \mathbb{P}^1(\mathbb{C}) \times G \setminus \{1\} : gx = x\}$; Soit \mathcal{P} a projection de Z sur $\mathbb{P}^1(\mathbb{C})$. Soit $\mathcal{P} = O_1 \cup ... \cup O_k$ la décomposion de \mathcal{P} en G-orbites. On note e_i l'ordre du stabilisateur d'un point de O_i . Montrer que $|O_i| = N/e_i$ où N := |G|.
- c) En comptant |Z| de deux façons différentes, montrer que :

$$|Z| = N \sum_{i=1}^{k} (1 - \frac{1}{e_i})$$
.

d) En déduire que $\sum_{i} \frac{1}{e_i} = k - 2 + \frac{2}{N}$ et que k = 2 ou 3.

Suposons k = 2.

e) Montrer que G fixe 2 points de $\mathbb{P}^1(\mathbb{C})$. Notons-les z_1, z_2 . Montrer qu'il existe $g \in \mathrm{PGL}_2(\mathbb{C})$ tel que $gz_1 = 0 := [1:0], \ gz_2 = \infty := [0:1]$. Montrer que $gGg^{-1} = \langle \begin{bmatrix} \zeta & 0 \\ 0 & 1 \end{bmatrix} \rangle$ où ζ est une racine primitive N-ième de l'unité.

On suppose que k = 3. On suppose aussi $e_1 \le e_2 \le e_3$.

- f) Montrer que $(e_1, e_2, e_3; N) =$
 - i) (2,2,n;2n);
 - ii) (2,3,3;12);
 - iii) (2,3,4;24);
 - iv) (2,3,5;60).
- g) Montrer que l'action de SU_2 sur H par conjugaison induit un morphisme surjectif $SU_2 \to SO_3(\mathbb{R})$ indication : restreindre l'action à l'orthogonal de $\mathbb{R}I_2$ dans H et pour la surjectivité, considérer les applications $x \mapsto -gx^*g$, $g \in SU_2$, sur $\mathbb{R}I_2^{\perp}$...
- $h) \quad Cas\ (2,2,n;2n).\ Montrer\ qu'il\ existe\ g\in G\ tel\ que\ gGg^{-1}=\langle \left[\begin{array}{cc} \zeta & 0 \\ 0 & 1 \end{array}\right], \left[\begin{array}{cc} 0 & 1 \\ 1 & 0 \end{array}\right] \rangle.$
- i) Cas(2,3,3;12). Montrer qu'il existe $g \in G$ tel que $gGg^{-1} = \langle \begin{bmatrix} j & 0 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} 1 & 2 \\ 0 & -1 \end{bmatrix} \rangle \simeq A_4$.
- j) Cas(2,3,4;24). $Montrer\ qu'il\ existe\ g \in G\ tel\ que\ gGg^{-1} = \langle \begin{bmatrix} i & 0 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} \rangle \simeq S_4$.
- k) $Cas\ (2,3,5;60)$. $Montrer\ qu'il\ existe\ g\in G\ tel\ que\ gGg^{-1}=\langle \begin{bmatrix} \delta & 0 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} 1 & 1 \\ \Delta & -1 \end{bmatrix} \rangle \simeq A_5$. $Avec\ \delta\ une\ racine\ primitive\ 5-i\`eme\ de\ l'unit\'e\ et\ \Delta:=1-\delta-\delta^{-1}$.