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Contrôle �nal

L'épreuve dure 2h00. Vous pouvez utiliser librement le formulaire en �n de sujet. Les documents, calculatrices et
téléphones portables ne sont pas autorisés. Sauf mention explicite du contraire, une partie importants du barème est
réservée à la justi�cation des réponses. Les exercices sont indépendants.

Exercice 1 (6 points). En utilisant la transformée de Laplace, trouver la solution f : r0,�8rÑ R de l'équation di�é-
rentielle

f2ptq � 2f 1ptq � fptq � e�t cosptq
avec les conditions initiales fp0q � 1 et f 1p0q � 0.

Correction.

1. On cherche tout d'abord une formule pour la transformée de Laplace de la solution f cherchée. D'après la formule
(8) du formulaire, on obtient pour f que Lrf 1spsq � sLrf spsq � fp0q. Appliquant cette formule à f 1, on obtient

Lrf2spsq � sLrf 1spsq � f 1p0q � s2Lrf spsq � sfp0q � f 1p0q .
Prenant alors la transformée de Laplace de l'équation di�érentielle considérée, on obtient

Lrf2 � 2f 1 � f spsq � Lre�t cosptqspsq � s� 1

ps� 1q2 � 1

ðñ ps2 � 2s� 1qLrf spsq � sfp0q � f 1p0q � 2fp0q � s� 1

ps� 1q2 � 1
� s� 2� s� 1

s2 � 2s� 2
� s3 � 4s2 � 7s� 5

s2 � 2s� 2

ðñ Lrf spsq � s3 � 4s2 � 7s� 5

ps� 1q2ps2 � 2s� 2q .

2. On e�ectue maintenant la décomposition en éléments simples de la fractions rationnelle

Y psq � s3 � 4s2 � 7s� 5

ps� 1q2ps2 � 2s� 2q �
ppsq
qpsq ,

avec qpsq � ps�1q2ps2�2s�2q � ps�1q2ps�1� iqps�1� iq. Comme degppq   degppq, le théorème de décomposition
en éléments simples dans R (voir aussi le formulaire) assure qu'il existe des nombres réels a, b, c, d (autant que le degré
du dénominateur) uniques tels que

s3 � 4s2 � 7s� 5

ps� 1q2pps� 1q2 � 1q �
a

ps� 1q2 �
b

s� 1
� cs� d

ps� 1q2 � 1
. (�)

Multipliant (�) par ps� 1q2, on obtient

s3 � 4s2 � 7s� 5

ps� 1q2 � 1
� a� bps� 1q � ps� 1q2

�
cs� d

ps� 1q2 � 1



.

NB. Contrairement à (�), cette nouvelle relation est évaluable en �1 qui n'y est jamais pôle, i.e. racine du dénominateur.
Évaluant donc en s � �1, on obtient a � 1 . Dérivant cette relation, on obtient

p3s2 � 8s� 7qpps� 1q2 � 1q � ps3 � 4s2 � 7s� 5q � 2ps� 1q
pps� 1q2 � 1q2 � b� ps� 1qRpsq

où R n'a pas de pôle en �1 ; évaluant cette dernière relation en �1 (et réutilisant les calculs déjà e�ectués lors de
l'étape précédente...), on obtient b � 2 .

On repart à présent de (�). Multipliant donc (�) par ps� 1q2 � 1, on obtient

s3 � 4s2 � 7s� 5

ps� 1q2 � d� cs� pps� 1q2 � 1q
�

a

ps� 1q2 �
b

s� 1



.

Évaluant alors en �1� i, on tire de p�1� iq2 � �2i, p�1� iq3 � 2� 2i que

�i � pd� cq � ci .
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Comme c et d sont réels, on en déduit par identi�cation des parties réelles et imaginaires que c � d � �1 . Revenant
à (�), on en déduit �nalement que

s3 � 4s2 � 7s� 5

ps� 1q2pps� 1q2 � 1q �
1

ps� 1q2 �
2

s� 1
� s� 1

ps� 1q2 � 1

3. On identi�e maintenant la solution f telle que Lrf spsq � s2�s�3
ps�1qpps�1q2�1q en utilisant si besoin le formulaire. On tire

de la décomposition en éléments simples que f donnée par fptq � e�tpt� 2� cosptqq convient.

Exercice 2 (6 points). Soient α Ps0, πr �xé et f : RÑ R la fonction 2π-périodique dé�nie sur r�π, πs par

fpxq �
"

1 si x P r�α, αs ,
0 sinon.

1. Dessiner le graphe de la fonction f sur r�2π, 2πs.
2. Calculer les coe�cients de Fourier réels an et bn de f , puis donner la série de Fourier Sf de f .

3. Citer un résultat précis du cours assurant que la série de Fourier Sf converge simplement sur R et expliciter sa
somme Sf pxq pour tout x P R.

4. Pour quels x P R a-t-on l'égalité Sf pxq � fpxq ?
5. Montrer sans calcul que la série de Fourier Sf de f ne converge pas uniformément sur R. A-t-on convergence

normale de Sf sur R ?

6. Déterminer la somme de la série numérique
�8̧

n�1

p�1qn sinpnαq
n

en fonction du paramètre α.

7. Déterminer la somme de la série numérique
�8̧

n�1

sinpnαq2
n2

en fonction du paramètre α.

Correction. Cet exercice est essentiellement l'exercice 4 de la feuille de TD 3A.
2. La fonction étant paire, on a bn � 0 pour tout n P N�. On calcule alors, utilisant la parité (et le formulaire si besoin),

a0 � 2

π

» π
0

fpxqdx � 2

π

» α
0

dx � 2α

π
,

puis, pour n P N�,

an � 2

π

» α
0

cospnxqdx � 2

π

�
sinpnxq
n

�α
0

� 2

π

sinpnαq
n

.

La série de Fourier de f est donc par dé�nition

α

π
�

�8̧

n�1

2 sinpnαq
nπ

cospnxq .

3. D'après le Théorème de Dirichlet (cours 3), la fonction f étant C1 par morceaux, sa série de Fourier converge

simplement en tout x P R vers fpx�q�fpx�q
2 , où fpx�q :� lim

yÑ0�
fpx � yq et fpx�q :� lim

yÑ0�
fpx � yq. Dans notre cas

particulier, on obtient donc

Sf pxq �
#

fpxq si x � �α� 2kπ pour tout k P Z ,
1
2 si x � �α� 2kπ pour un k P Z.

4. Comme fpxq � 1 � 1
2 � Sf pxq si x � �α� 2kπ pour un k P Z par dé�nition, on conclut de la question précédente

que Sf pxq � fpxq ðñ x � �α� 2kπ pour tout k P Z.
5. La série de Fourier Sf est la série de fonctions απ �

°�8
n�1 fn, où, pour tout n P N, la fonction fn : x ÞÑ 2 sinpnαq

nπ cospnxq
est continue. Nous avons vu en question 3 que cette série converge simplement vers une fonction x ÞÑ Sf pxq qui a
des "sauts" en �α � 2πZ et est donc discontinue. Par un résultat du cours 2 (Théorème 1, transparent 48), si la
convergence était uniforme, cette somme serait continue. La convergence n'est donc pas uniforme, et donc pas normale
non plus (la convergence normale impliquant la concergence uniforme).
6. Explicitant la question 3 en x � π � �α, on obtient

fpπq � Sf pπq ðñ 0 � α

π
�

�8̧

n�1

2 sinpnαq � p�1qn
nπ

ðñ
�8̧

n�1

p�1qn sinpnαq
n

� �α
2
.
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7. En utilisant la formule de Parseval (formule (3) du formulaire), on obtient

1

2π

» π
�π

|fpxq|2dx � 2α

2π
� 1

4

4α2

π2
� 1

2

�8̧

n�1

4 sinpnαq2
n2π2

ðñ
�8̧

n�1

sinpnαq2
n2

� αpπ � αq
2

.

Exercice 3 (5 points). Une méthode pour obtenir la transformée de Fourier d'une fonction gaussienne.

1. Pour p P R, on pose F ppq �
» �8
0

e�t
2

cospptq dt.
(a) Soit p P R �xé. Montrer que l'intégrale donnant F ppq est convergente.
(b) Montrer soigneusement que la fonction F est dérivable sur R, puis donner une expression intégrale de F 1ppq.
(c) En déduire que, pour tout p P R, on a F 1ppq � p

2
F ppq � 0.

(d) En déduire que F ppq �
?
π

2
e�

p2

4 pour tout p P R.

Indication : pour la question 1.(d), on pourra montrer que F p0q2 � π

4
en utilisant un changement de variables

en coordonnées polaires.

2. Montrer que si f : R Ñ R est donnée par fpxq � e�x
2

, alors sa transformée de Fourier f̂ est donnée par
f̂ppq � 2F ppq pour tout p.

Correction. Cet exercice est essentiellement issu de l'exercice 2, p.2, du cours 6 et de l'exemple 0.3, p.5, du cours 7.

Exercice 4 (5 points, dont bonus de 2 points). Soit v : R Ñ R une fonction continue, bornée et �xée pour tout
l'exercice. On s'intéresse à l'équation de la chaleur homogène sur tout R, avec condition initiale v au temps t � 0 :$&

%
Bu
Bt pt, xq �

B2u
Bx2 pt, xq, pour t ¡ 0, x P R ,

up0, xq � vpxq, pour x P R .

Soit w : s0,�8r�RÑ R donnée par

wpt, xq � 1?
4πt

»
R
e�

px�yq2

4t vpyqdy .

1. Montrer que w est bien dé�nie et satisfait
Bw
Bt pt, xq �

B2w
Bx2 pt, xq pour tout t ¡ 0 et x P R.

2. (Bonus) Montrer que, pour tout x P R �xé, on a

lim
tÑ0�

wpt, xq � vpxq .

Correction. Cet exercice est contenu dans la preuve du théorème 0.2 du cours 8.
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Formulaire pour l'UE Mathématiques 4

(1) Les coe�cients de Fourier de f T -périodique continue par morceaux sont donnés par l'intégrale sur une période
(a au choix, ω � 2π

T )

anpfq � 2

T

» a�T
a

cospnωxqfpxqdx, bnpfq � 2

T

» a�T
a

sinpnωxqfpxqdx, cnpfq � 1

T

» a�T
a

e�inωxfpxqdx.

(2) Si f est continue et C1 par morceaux, alors on a pour n P N� :

anpf 1q � nω bnpfq, bnpf 1q � �nω anpfq.
(3) La formule de Parseval, valable pour f T -périodique continue par morceaux, s'écrit :

1

T

» a�T
a

|fpxq|2dx � |a0pfq|2
4

� 1

2

�8̧

n�1

|anpfq|2 � |bnpfq|2.

(4) La transformée de Fourier de f est donnée par f̂ppq �
»
R
e�ipxfpxqdx.

(5) Formule d'inversion s'écrit fpxq � 1

2π

»
R
f̂ppqeipxdp.

(6) Le produit de convolution est donné par pf � gqpxq �
»
R
fpx� yqgpyqdy.

(7) La formule de Plancherel s'écrit
» �8
�8

|fpxq|2dx � 1

2π

» �8
�8

|f̂ppq|2dp.

(8) Transformée de Laplace de f : r0,�8rÑ C est donnée par Lrf spsq �
» �8
0

fptqe�stdt. On pourra aussi utiliser

librement l'identité Lrf 1spsq � sLrf spsq � fp0q.
Transformées de Fourier usuelles

fpxq f̂ppq � Frf sppq
(9) gσpxq � 1?

2πσ2
e�

x2

2σ2 , σ ¡ 0 e�
p2σ2

2

(10) c
c2�x2 , c ¡ 0 πe�c|p|

(11) hpsxq, s ¡ 0 1
s ĥpps q

(12) 1
shpxs q, s ¡ 0 ĥpspq

(13) hpx� aq, a ¡ 0 e�ipaĥppq
Transformées de Laplace usuelles

(14) fptq Lrf spsq
(15) eattn n!

ps�aqn�1 pour s ¡ a

(16) eat cospωtq, ω ¡ 0, a P R ps�aq
ps�aq2�ω2 pour s ¡ a

(17) eat sinpωtq, ω ¡ 0, a P R ω
ps�aq2�ω2 pour s ¡ a

(18) eathptq, a ¡ 0 Lrhsps� aq

Décomposition en éléments simples complexe de Y psq � ppsq
qpsq , avec qpsq � aps � s1qm1 � � � ps � skqmk et

degppq   degpqq est de la forme :

Y psq �
ķ

i�1

mi̧

j�1

ai,j
ps� siqj ,

avec pour 1 ¤ j ¤ mi :

ai,j � 1

pmi � jq!
�
dpmi�jq

dspmi�jq
pY psqps� siqmiq

�
s�si

.

Dans ce cas, ai,1 est le résidu de Y en si.

Décomposition réelle. Si qpsq � aps� s1qm1 � � � ps� slqmlpps�a1q2� b21qn1 � � � pps�aλq2� b2λqnλ , pour si, ai, bi réels,
et Y comme ci-dessus, il existe des réels ai,j , bi,j , ci,j uniques tels que

Y psq � ppsq
qpsq �

ļ

i�1

mi̧

j�1

ai,j
ps� siqj �

λ̧

i�1

ni̧

j�1

ci,j � sdi,j
ppps� aiq2 � b2i qqj

.

4


