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Wonderful compactifications of Bruhat-Tits buildings
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Abstract. Given a split adjoint semisimple group over a local field, we consider the maximal
Satake-Berkovich compactification of the corresponding Euclidean building. We prove that it
can be equivariantly identified with the compactification we get by embedding the building in
the Berkovich analytic space associated to the wonderful compactification of the group. The
construction of this embedding map is achieved over a general non-archimedean complete
ground field. The relationship between the structures at infinity, one coming from strata of
the wonderful compactification and the other from Bruhat-Tits buildings, is also investigated.
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Titre. Compactifications magnifiques des immeubles de Bruhat-Tits

Résumé. Étant donné un groupe adjoint semi-simple déployé sur un corps local, nous
considérons la compactification de Satake-Berkovich maximale de l’immeuble euclidien cor-
respondant. Nous prouvons qu’elle peut être identifiée de manière équivariante avec la com-
pactification obtenue en plongeant l’immeuble dans l’espace analytique de Berkovich associé
à la compactification magnifique du groupe. La construction de ce plongement est effectuée
sur un corps complet non-archimédien général. La relation entre les structures à l’infini, l’une
venant des strates de la compactification magnifique et l’autre des immeubles de Bruhat-Tits,
est également étudiée.
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Introduction

In this paper, we are interested in compactifications of algebraic groups and of some of their re-
lated geometries. By “related geometries” we mean “symmetric spaces” and this terminology can
be understood in at least two different ways. The first one is purely algebraic and does not require
any topological assumption on the ground field: a symmetric space is then the homogeneous space
given by the quotient of an adjoint semisimple group by the identity component of the fixed-point
set of an involution; the prototype for such a space is (G×G)/diag(G) where diag(G) is the diag-
onal {(g, g) : g ∈ G}. The second meaning makes sense when the ground field is endowed with a
complete non-archimedean absolute value; then we investigate a Euclidean building, as given by the
Bruhat-Tits theory of reductive groups over valued fields (see [BrT72] and [BrT84]).

To each of the two kinds of symmetric spaces corresponds at least one compactification procedure.
The main question of this paper is to understand, when k is a non-archimedean local field, the
relationship between the (so-called wonderful) projective variety compactifying the symmetric space
(G×G)/diag(G) and the Satake-Berkovich compactifications of the associated Bruhat-Tits building
B(G, k), as previously constructed by Berkovich in [Ber90] and by the authors in [RTW10] and
[RTW12]. The first space is useful for instance for the algebraic representation theory of the group
G while the second one, relevant to the analogy with the Riemannian symmetric spaces of real Lie
groups, is useful for the analytic representation theory of, and the harmonic analysis on, the group
G(k).

Let us be more precise and consider a split semisimple group of adjoint type G over some field
k. Wonderful compactifications were initially constructed by representation-theoretic methods (see
[CP83], [Str87] and [CS99]) but can now be also constructed by using Hilbert schemes (see [Bri03]
and [Bri98]). We adopt the latter viewpoint in the core of the paper, but use the former one in
this introduction for simplicity. Let ρ : G → GL(V ) be an irreducible representation defined over
k, assumed to have regular highest weight (strictly speaking, one has to choose a bit more carefully
the linear representation ρ in positive characteristic – see [CS99, Lemma 1.7 and Sect. 3]). The
projective space P

(
End(V )

)
is a G × G-space for the action defined by: (g, g′).M = gM(g′)−1 for

g, g′ ∈ G and M ∈ End(V ). Then the closure G of the orbit of [idV ] is the wonderful compactification
of (G×G)/diag(G). From the very beginning, it was proved by de Concini and Procesi that the
G×G-space G is a smooth projective variety containing (G×G)/diag(G) as an open orbit and with
remarkable geometric properties. For instance (see [CP83]):

• The boundary at infinity G\G is a normal crossing divisor whose irreducible components (Di)i∈I
are indexed by the set I of simple roots of the root system of G.

• The G×G-orbits are finite in number, their closures are all smooth, in one-to-one correspondence
with the subsets of I and there is one single closed orbit.

• Each orbit closure fibers over the product of two flag varieties corresponding to two suitable op-
posite parabolic subgroups; each fiber is the wonderful compactification of the adjoint semisimple
quotient of the intersection of the corresponding parabolics.
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Roughly speaking, G does not depend on the chosen representation and its boundary at infinity is not
only nice from the viewpoint of algebraic geometry, but also as a Lie-theoretic object; in particular,
the appearance of wonderful compactifications of the adjoint semisimple quotients of the various Levi
factors contained in G is a beautiful feature of G.

We assume now that k is a complete non-archimedean valued field and we deal with the Euclidean
building B(G, k) associated to G by Bruhat-Tits theory. In [RTW10], we define a compactification
Bτ (G, k) of the building B(G, k) for each type τ of parabolic subgroup, and in [RTW12] we show
that this finite family of compactifications can be obtained by a suitable analogue of Satake’s com-
pactification of Riemmanian symmetric spaces. The compactifications we construct make crucial
use of V. Berkovich’s approach to analytic non-archimedean geometry; they were in fact originally
investigated by Berkovich in [Ber90, Chapter 5] for split groups. This geometry allows one, and
actually requires, to use possibly huge complete non-archimedean extensions of k; this explains why
some of our statements are given for arbitrary complete non-archimedean valued fields, while for a
Bruhat-Tits building B(G, k) to admit a compactification it is necessary and sufficient that k be a
local (i.e. locally compact) field. If k is not local, then the topological space Bτ (G, k) is not compact;
however, it contains the building B(G, k) as an open dense subset and the closure of every apartment
is compact. Moreover Berkovich theory associates functorially an analytic space (with good local
connectedness properties) Xan to any algebraic k-variety X in such a way that if X is affine, then
Xan can be identified with a suitable set of seminorms on the coordinate ring k[X], and if X is proper
then Xan is compact.

In this paper, we only consider the compactification associated to the type of Borel subgroups.
It leads to the maximal compactification among those given by the possible types, and we denote
it by B(G, k). In [RTW10], the compactification B(G, k) is constructed thanks to the possibility to
define an embedding map from B(G, k) to the Berkovich analytic space associated to the maximal
flag variety of G. This embedding was constructed first by embedding the building B(G, k) into
the Berkovich space Gan, and then by projecting to Fan, where F is the maximal flag variety of G.
The outcome is a compactification whose boundary consists of the Bruhat-Tits buildings of all the
semisimple quotients of the parabolic k-subgroups of G [RTW10, Th. 4.11], a striking similarity with
the algebraic case of wonderful compactifications of groups described above.

In order to relate B(G, k) to the wonderful compactification of G, a natural idea would be to use
the map B(G, k)→ Gan (the first step above) and to replace the analytification of the fibration G→ F
(the second step above) by the analytification of the embedding G ↪→ G, g 7→ (g, e) into the wonderful
compactification. However, it turns out that the map ϑ : B(G, k) → Gan used for compactifying the
building is not suitable for this purpose. We have to replace it by a G(k) × G(k)-equivariant map
Θ : B(G, k) × B(G, k) → Gan also constructed in [RTW10]. This leads to the desired comparison
stated in the following theorem, which is the main goal of this paper.

Theorem. Let k be a complete non-archimedean field and let G be a split adjoint semisimple group
over k.

(i) There exists a continuous G(k) × G(k)-equivariant map Θ : B(G, k) × B(G, k) → G
an

. For
every point x in B(G, k) the map Θ(x,−) : B(G, k)→ G

an
is a G(k)-equivariant embedding.

(ii) When k is locally compact, this embedding induces a homeomorphism from the compactified
building B(G, k) to the closure of the image of B(G, k)→ Gan → G

an
.

(iii) The boundaries at infinity are compatible in the following sense: given a proper parabolic k-
subgroup P of type τ(P ) in G, the Bruhat-Tits building of the adjoint semisimple quotient of P ,

which is a stratum of B(G, k), is sent into the analytification of the closed subscheme
⋂

i/∈τ(P )

Di.
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Part (i) is proven in Theorem 4.1, part (ii) in Proposition 3.1. Part (iii) can be made more pre-
cise: it is known that the intersection

⋂
i/∈τ(P )Di is an orbit closure in the wonderful compactification

G, and that it fibers over G/P with fibers isomorphic to the wonderful compactification of the ad-
joint semisimple quotient of P . Then the Bruhat-Tits building at infinity of the adjoint semisimple
quotient of P is sent equivariantly to the analytification of an explicit fiber.

The structure of this paper is as follows. Section 1 recalls the most useful facts for us on wonderful
compactifications, adopting Brion’s viewpoint using Hilbert schemes of products of a faithful flag
variety with itself. Section 2 defines the embedding maps from Bruhat-Tits buildings to analytic spaces
associated to wonderful varieties. Section 3 investigates the boundaries of the two compactifications;
this is where part (iii) of the theorem above is proved. Section 4 uses the results on the equivariant
compatibility of the boundaries to prove the identification between the maximal Satake-Berkovich
compactification and the one obtained thanks to analytic wonderful varieties.

Convention. In this paper G is a split adjoint semisimple group over a field k. The choice of a
maximal split torus T of G, with character group X∗(T ), provides a root system Φ(T,G) ⊂ X∗(T ). In
this article, roots are always seen as functions on T and some suitable affine toric varieties associated
with T .

1. Wonderful compactifications of algebraic groups

In this section, we recall the most important facts we need on wonderful compactifications. Our main
reference for this topic is Brion’s article [Bri03], adopting the viewpoint of Hilbert schemes.

Wonderful compactifications were initially (and are usually) constructed by representation-theor-
etic means; this was first done over an algebraically closed field of characteristic 0 by de Concini and
Procesi [CP83], and then extended by Strickland to the case of positive characteristic [Str87]. Brion’s
paper establishes, among other things, an identification between the wonderful compactification G as
in the latter two papers and an irreducible component of the Hilbert scheme Hilb(X ×X) where X
is any suitable flag variety of G.

Let us be more precise. Let k be a field and let G be a k-split adjoint semisimple group. We
choose a parabolic k-subgroup P of G such that the G-action on the flag variety X = G/P is faithful,
which amounts to requiring that P does not contain any simple factor of G. As before, we denote by
G the wonderful compactification obtained via an irreducible representation. The variety G admits
a (G × G)-action (g, g′, ḡ) 7→ (g, g′).ḡ, which we denote by (g, g′).ḡ = gḡ(g′)−1 for g, g′ ∈ G and
ḡ ∈ G. This notation is motivated by the construction of G itself: given a highest weight module
(V, ρ) (e.g. obtained as in [CS99, Lemma 1.7]), the compactification G is the closure in P

(
End(V )

)
of the (G × G)-orbit of [idV ] for the action induced by (g, g′).M = ρ(g)Mρ(g′)−1 for any g, g′ ∈ G
and M ∈ End(V ).

We now turn specifically to Brion’s approach. Let us denote by P the closure of P in the complete
variety G: this space is stable under the restricted action by P×P . Let G be the space (G×G)×P×P P
constructed as the image of the quotient map

q : G×G× P � (G×G)×P×P P = G

associated to the right (P × P )-action defined by:

(p, p′).(g, g′, p̄) = (gp, g′p′, p−1p̄p′)

for all g, g′ ∈ G, p, p′ ∈ P and p̄ ∈ P . The orbit of (g, g′, p̄) for this action is denoted by [g, g′, p̄].

On the one hand, the right (P × P )-action on G×G is free and the map
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πX×X : G → X ×X
[g, g′, p̄] 7→ [g, g′] = (gP, g′P )

is a locally trivial fibration with fiber P . On the other hand, the (G × G)-action on G restricted to
G×G× P factors through the quotient q to give another map with the same source space as πX×X ,
namely:

πG : G → G
[g, g′, p̄] 7→ gp̄(g′)−1.

By taking the product, one finally obtains a map

πX×X × πG : G → X ×X ×G
[g, g′, p̄] 7→ (gP, g′P, gp̄(g′)−1)

which is a closed immersion and which enables one to see the fibers of πG as a flat family of closed
subschemes of X × X (see [Bri03, Sect. 2, p. 610] for more details and additional references to
previous work by Brion [Bri98]). The outcome is a (G × G)-equivariant morphism obtained thanks
to the universal property of the Hilbert scheme:

ϕ : G → Hilb(X ×X)
ḡ 7→ (πX×X)∗

(
(πG)∗ḡ

)
which, roughly speaking, attaches to any point ḡ of the wonderful compactification G, the following
closed subscheme of the product X ×X of faithful flag varieties:

ϕ(ḡ) = {(gP, g′P ) | g, g′ ∈ G, ḡ ∈ gP (g′)−1} ⊂ X ×X.

This description of the images of ϕ comes from the whole description of the image (πX×X × πG)(G)
as an “explicit” incidence variety in X ×X ×G [loc. cit.]. It provides an easy way to compute that
ϕ(1G) is the diagonal subscheme diag(X) in X × X, a point in Hilb(X × X) whose stabilizer for
the induced (G×G)-action is easily seen to be the diagonal subgroup diag(G) of G×G. Therefore,
using the latter facts together with the (G×G)-equivariance of ϕ, one can see ϕ(G) as the space of
degeneracies of the diagonal diag(X) in X ×X, the images of the elements of G = (G×G)/diag(G)
being the graphs of the elements g seen as automorphisms of X = G/P . We will use a more detailed
understanding of the boundary points in section 3, but can already quote Brion’s comparison theorem
[Bri03, Theorem 3]:

Theorem 1.1. Let HX,G denote the closure of the (G×G)-orbit of diag(X) in Hilb(X×X) endowed
with its reduced subscheme structure. Then the map ϕ establishes a G×G-equivariant isomorphism
between the wonderful compactification G and HX,G.

Note that when G = Aut(X)◦ (which is the case in general [Dem77]), the space HX,G is also the
irreducible component of Hilb(X × X) passing through diag(X) [Bri03, Lemma 2]. Note also that
the above isomorphism holds for any parabolic k-subgroup provided the associated flag variety is a
faithful G-space. The Lie-theoretic construction of the wonderful compactification of G in [Str87],
written over an algebraically closed base field of arbitrary characteristic, applies more generally when
G is split over an arbitrary field. In [Bri03], Brion always works over an algebraically closed field.
However, his construction makes sense over an arbitrary field, and its naturality allows one to see
that, by faithfully flat descent, the statement of the above theorem remains true for a split semisimple
group G of adjoint type over an arbitrary field k.

The proof of this theorem uses a lot of knowledge on the structure of G, previously obtained by
representation theory (see [CP83], [Str87] and [CS99]). In fact, once some standard Lie-theoretic
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choices have been made in G, the latter considerations exhibit in the wonderful compactification G,
as a main tool of study of it, an explicit open affine subset G0 ⊂ G. More precisely, let T be a split
maximal k-torus in G with character group X∗(T ), let B+ and B− be two opposite Borel subgroups
containing T and with unipotent radical U+ and U−, respectively. These choices provide as usual a
root system Φ = Φ(T,G) ⊂ X∗(T ) and two opposite subsets Φ+ and Φ− corresponding to the roots
appearing in the adjoint T -action on the Lie algebras of U+ and U−, respectively. The affine open
subset G0 satisfies the following properties (see for instance [Str87, Section 2] for the original reference
in arbitrary characteristic):

• the subset G0 contains T and is stable under the action by TU− × TU+;

• the closure of T in G0, which we denote by Z, is the affine toric variety associated with the
semigroup 〈Φ−〉 of X∗(T ) spanned by the negative roots;

• the canonical map U− × Z × U+ → G is an isomorphism onto G0;

• the subset Z is isomorphic to an affine space of dimension equal to dim(T ), therefore G0 is
isomorphic to an affine space of dimension equal to dim(G) since U+ ' U− ' Ad

k, with 2d = |Φ|,
as G is split;

• the (G × G)-orbits in G are in one-to-one correspondence with the (T × T )-orbits in the toric
affine variety Z.

In what follows, we see the affine space Z as a partial compactification of the split torus T '
(Gm)dim(T ). Moreover there is a simple way to construct a complete set of representatives of the
(T×T )-orbits in Z by “pushing to infinity” the diagonal diag(X) by suitable one-parameter subgroups
in T . For instance, given any regular one-parameter subgroup λ : Gm → T , the limit

lim
t→0

(λ(t), 1).diag(X)

exists and is, so to speak, the “most degenerate degeneracy” of the diagonal; it is also the point of Z
in the unique closed (G×G)-orbit of G.

Roughly speaking, the next section, where our embedding map is defined, is the Berkovich analytic
counterpart of some of the previous facts.

2. Construction of the embedding map

We henceforth assume that the field k is complete with respect to a non-trivial non-archimedean
absolute value, and we keep the adjoint split semisimple k-group G as before. A non-archimedean
field extension of k is a field K containing k, which is complete with respect to a non-archimedean
absolute value extending the one on k.

Our main goal in this section is to construct an equivariant map from the Bruhat-Tits building
B(G, k) to the Berkovich analytic space G

an
associated to the wonderful compactification G of G.

Note that G
an

is compact since G is proper. More precisely, we define a continuous equivariant map
from B(G, k) × B(G, k) to G

an
. Fixing a special point in the first coordinate gives the map we aim

for. Later, in section 4, we will show that this map is an embedding.

Let us first recall some important facts on Satake-Berkovich compactifications of buildings (see
[RTW10] and [RTW12] for details). In [RTW10, Prop. 2.4] we define a morphism ϑ : B(G, k)→ Gan

by associating to each point x in the building B(G, k) a k-affinoid subgroup Gx of Gan (the underlying
set of Gx is an affinoid domain of Gan). The subgroup Gx is an analytic refinement of the integral
structure of G associated to x by Bruhat-Tits theory [BrT84, 4.6 and 5.1.30]. Working in an analytic
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context, rather that in a purely algebraic one, has the important advantage that two distinct points,
even in the same facet (i.e. the same cell) of B(G, k), lead to distinct analytic subgroups. We use
the group Gx to define the image ϑ(x) as the unique Shilov boundary point of Gx [Ber90, 2.4]. The
map ϑ obtained in this way is a continuous G(k)-equivariant injection if we let G(k) act on Gan by
conjugation [RTW10, Prop. 2.7]. The map ϑ is well-adapted to Bruhat-Tits theory in the sense that
for any non-archimedean extension K/k, the group Gx(K) is the stabilizer in G(K) of x, seen as a
point in the building B(G,K).

Unfortunately, we cannot use the natural map ϑ to define an embedding towards G
an

that could
be useful for our purposes. We have to use another one, also constructed [loc. cit.] thanks to ϑ. It is
a continuous morphism

Θ : B(G, k)× B(G, k)→ Gan

which can be seen as a map describing a kind of “relative position” from one point to another. This
viewpoint gives an intuition to understand why the equivariance relation

Θ(gx, hy) = hΘ(x, y)g−1

is satisfied by Θ for all x, y ∈ B(G, k) and g, h ∈ G(k) [RTW10, Prop. 2.11]. The definition of Θ is
again an improvement of facts known from Bruhat-Tits theory – here, the transitivity properties of
the G(k)-action on the facets of B(G, k) – made possible by the Berkovich analytic viewpoint. Indeed,
this viewpoint is flexible enough to allow the use of (possibly huge) non-archimedean extensions of
k in order to obtain better transitivity properties. More precisely, for x, y ∈ B(G, k) there exists an
extension K/k as before and an element g ∈ G(K) such that after embedding B(G, k) into B(G,K)
we have gx = y. Then we define Θ(x, y) to be the image of gϑK(x) under the natural projection
from Gan

K to Gan, where GK is the base change of G by K, and ϑK : B(G,K) → Gan
K is the above

embedding over K. Note that Θ is compatible with non-archimedean field extensions and that, if G is
reductive, we can define the map Θ on the extended building of G (which then contains the building
of the semisimple group [G,G] as a factor). Moreover, by the same Proposition we know that for
every point x0 in B(G, k) the map Θ(x0,−) : B(G, k) → Gan is a G(k)-equivariant injection, where
G(k) acts by left translations on Gan.

The key result for our comparison theorem in section 4 is the following statement. It gives a map
which, when the first argument is fixed, is eventually shown to be the embedding we are looking for.

Proposition 2.1. The map Θ : B(G, k)× B(G, k)→ Gan has a continuous extension

Θ : B(G, k)× B(G, k)→ G
an
,

such that for all g, h ∈ G(k), x ∈ B(G, k) and y ∈ B(G, k), we have

Θ(gx, hy) = hΘ(x, y)g−1.

The map Θ is compatible with non-archimedean field extensions: if k′/k is a non-archimedean exten-
sion, then the natural diagram

B(G, k′)× B(G, k′)
Θ // (G⊗k k′)an

prk′/k
��

B(G, k)× B(G, k)

OO

Θ

// G
an

is commutative.
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The rest of the section is dedicated to the proof of this statement. We start with some auxiliary
results.

Consider a maximal split torus T of G and a Borel subgroup B of G containing T : such an inclusion
T ⊂ B will henceforth be called a standardization in G. We fix a standardization (T,B) in G. The
Borel group B gives rise to an order on the root system Φ = Φ(T,G) inside the character group
X∗(T ) of T , and we denote the corresponding set of positive (resp. negative) roots by Φ+ (resp. Φ−).
Moreover, we denote the associated unipotent subgroups by U+ =

∏
α∈Φ+ Uα and U− =

∏
α∈Φ− Uα;

they are the unipotent radicals of B and of its opposite with respect to T , respectively.

We denote by A the apartment associated to T in B(G, k): by Bruhat-Tits theory, it is an affine
space under the real vector space X∗(T ) ⊗Z R where X∗(T ) is the cocharacter group of T , but in
accordance with [RTW10] we will see it as an affine space under Λ = HomAb(X∗(T ),R>0), using the
multiplicative convention for the sake of compatibility with later seminorm considerations. Now, we
pick a special point x0 in A and we consider the associated épinglage [BrT84, 3.2.1-3.2.2]: this is a
consistent choice of coordinates ξα : Uα →̃Ga,k for each root α, which identifies the filtration of the
root group Uα with the canonical filtration of Ga,k. Thus we get an isomorphism between the big
cell U− × T × U+ and the spectrum of the k-algebra k[X∗(T )][(ξα)α∈Φ]. We also use x0 to identify
the apartment A with Λ: thus there is a natural pairing 〈 , 〉 between A and X∗(T ), which we can
restrict to a pairing between A and Φ.

At last, we recall that the underlying space of the analytic space associated to an affine k-variety
V is the set of multiplicative seminorms k[V ]→ R, defined on the coordinate ring of V and extending
the absolute value of k. Therefore a point in the analytic big cell (U−× T ×U+)an is a multiplicative
seminorm on the k-algebra k[X∗(T )][(ξα)α∈Φ].

We first show an explicit formula for the restriction of Θ to A×A.

Lemma 2.2. We use the notation introduced above. For each (x, y) ∈ A × A, the point Θ(x, y), a
priori in Gan, actually lies in (U− × T × U+)an. It is given by the following multiplicative seminorm
on the coordinate ring k[X∗(T )][(ξα)α∈Φ] of U− × T × U+:∑

χ∈X∗(T ),ν∈NΦ

aχ,νχξ
ν 7→ max

χ,ν
|aχ,ν |〈y, χ〉〈x, χ〉−1

∏
α∈Φ−

〈y, α〉ν(α)
∏
α∈Φ+

〈x, α〉ν(α).

Note that the seminorm Θ(x, y) is in fact a norm.

Proof. To check this formula, we first observe that Θ(x0, x0) = ϑ(x0), so that the desired formula
for Θ(x0, x0) follows from [RTW10, Prop. 2.6]. Given (x, y) ∈ A×A, there exist a non-archimedean
field extension K/k and points s, t ∈ T (K) such that we have 〈x, χ〉 = |χ(t)| and 〈y, χ〉 = |χ(s)| for
any χ ∈ X∗(T ). By compatibility of Θ with non-archimedean field extensions and G(K) × G(K)-
equivariance [RTW10, Prop. 2.11], we can write Θ(x, y) = sΘ(x0, x0)t−1. Since

χ(swt−1) = χ(s)χ(t)−1χ(w) and ξα(svs−1) = α(s)ξα(v)

we deduce, for f =
∑

χ,ν aχ,νχξ
ν ∈ k[X∗(T )][(ξα)α∈Φ], that

|f |(Θ(x, y)) = |f |(sΘ(x0, x0)t−1)

=

∣∣∣∣∣∣
∑
χ,ν

aχ,νχ(s)χ(t)−1
∏
α∈Φ−

α(s)ν(α)
∏
α∈Φ+

α(t)ν(α)χξν

∣∣∣∣∣∣ (Θ(x0, x0))

= max
χ,ν
|aχ,ν |〈y, χ〉〈x, χ〉−1

∏
α∈Φ−

〈y, α〉ν(α)
∏
α∈Φ+

〈x, α〉ν(α).

This finishes the proof. �
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Let us define a partial compactification of the vector space Λ = HomAb(X∗(T ),R>0) by embed-
ding it into

Λ
B

= HomMon(〈Φ−〉,R>0),

where 〈Φ−〉 denotes the semigroup spanned by Φ− = −Φ+ in X∗(T ). The affine space A directed

by Λ admits a canonical Λ-equivariant compactification A
B

which can be defined as a contracted
product :

A
B

= Λ
B ×Λ A = (Λ

B ×A)/diag(Λ).

The next step is now, for each standardization (T,B), to use the previous formula in order to extend

Θ|A×A to a continuous map Θ(T,B) : A×AB → G
an

.

For this, we need to provide additional details about wonderful compactifications, in particular
about the affine charts given by partially compactifying the maximal torus, seen as a factor of the big
cell. More precisely, we use the affine subvariety G0 ' U−×Z×U+ of G introduced in section 1. The
difference between the latter variety and the big cell is that the factor T ' (Gm)dim(T ) is replaced by
a partial compactification Z which is an affine space of dimension equal to dim(T ). At the level of
coordinate rings, it means replacing the k-algebra k[X∗(T )][(ξα)α∈Φ] of the big cell, by the k-algebra
k[〈Φ−〉][(ξα)α∈Φ] of G0.

Proposition 2.3. Fix a standardization T ⊂ B of G with associated apartment A and partial com-

pactification A
B

. Then the restriction Θ|A×A extends to a continuous embedding

Θ(T,B) : A×AB → G
an
.

The map Θ(T,B) actually takes its values in (G0)an.

Proof. We use again x0 to identify A with HomAb(X∗(T ),R>0) and A
B

with HomMon(〈Φ−〉,R>0).
Thanks to the formula for the restriction of Θ to A×A proven in Lemma 2.2, we can easily extend this

map to a continuous map Θ(T,B) : A× AB → G
an

by mapping (x, y) ∈ A× AB to the multiplicative

seminorm on the coordinate ring k[〈Φ−〉][(ξα)α∈Φ] of G0 defined by∑
χ∈〈Φ−〉,ν∈NΦ

aχ,νχξ
ν 7→ max

χ,ν
|aχ,ν |〈y, χ〉〈x, χ〉−1

∏
α∈Φ−

〈y, α〉ν(α)
∏
α∈Φ+

〈x, α〉ν(α).

The right hand side is obviously continuous in x and y, hence Θ is continuous.

Moreover we have
〈x, α〉 = |ξα|(Θ(T,B)(x, y))−1

for each root α ∈ Φ+ and
〈y, α〉 = |ξα|(Θ(T,B)(x, y))

for each root α ∈ Φ−. Since Φ+ spans X∗(T ), we thus can recover x and y from Θ(T,B)(x, y) and

therefore Θ(T,B) is injective. �

Remark 2.4. We recall here that, according to [RTW10, Prop. 4.20, (i)], given any pair (x, y) ∈
B(G, k)×B(G, k), there exists a standardization (T,B) such that (x, y) ∈ A×AB for the apartment
A given by T . In other words, any (x, y) ∈ B(G, k)× B(G, k) lies in the domain of at least one map
Θ(T,B).
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Our next task is to verify that the extensions Θ(T,B) glue nicely together when the standardization

(T,B) varies, in order to be able to define the map Θ we seek for.

Let us recall some facts about the compactification B(G, k). First, we explain the relationship
between the closure of an apartment A in the maximal Satake-Berkovich compactification B(G, k) and

the partial compactification A
B

we used so far in this section. We introduce the maximal flag variety
F = G/B of G (where B is some Borel subgroup of G), and we let λ : G→ F be the corresponding
projection. Then the map ϑ∅ = λan ◦ ϑ : B(G, k) → Fan is a G(k)-equivariant injection [RTW10,
Prop. 3.29]. Let A be an apartment in G associated to the split torus T . We denote by A the closure
of ϑ∅(A) in Fan: this is a compact topological space. By [RTW10, Prop. 3.35], the subset A is
homeomorphic to the compactification of A with respect to the Weyl fan, i.e. the fan consisting of
the cones

C(P ) = {x ∈ A : α(x) 6 1 for all α ∈ −Φ(T, P )},

where P runs over all parabolic subgroups in G containing T . The partial compactification A
B

of the
present paper is a subset of A, where only the cone C(B) is compactified.

The space B(G, k) is defined as the image of the map

G(k)×A→ Fan, (g, x) 7→ gxg−1

endowed with the quotient topology. If the field k is locally compact, then B(G, k) is the closure of
the image of B(G, k) in Fan via ϑ∅ and hence compact [RTW10, Prop. 3.34]. At last, the space
B(G, k) is the disjoint union of all B(Pss, k), where P runs over all parabolic subgroups of G, and
where Pss denotes the semisimplification P/R(P ) of P [RTW10, Th. 4.1].

Lemma 2.5. Let x be a point in B(G, k). For any two apartments A and A′ of B(G, k) whose closure
in B(G, k) contains x, there exists a sequence of points in A ∩A′ which converges to x.

Proof. The stabilizer Gx(k) of x in G(k) acts transitively on the set of compactified apartments
containing x [RTW10, Prop. 4.20 (ii)], hence we can write A′ = g.A with g ∈ Gx(k). Pick a

standardization (T,B) such that A = A(T ) and x belongs to A
B

(cf. Remark 2.4). The assertion is
trivially true if x belongs to B(G, k), hence we may assume that x lies at the boundary of A. Then
there exists a proper parabolic subgroup P of G containing B such that x lies in the boundary stratum
B(Pss, k) of B(G, k).

We let N denote the normalizer of T in G and recall that Φ = Φ(T,G). By [RTW10, Th. 4.14],
the group Gx(k) is generated by the stabilizer N(k)x of x in N(k), the full root groups Uα(k) when
the root α belongs to Φ(T,Ru(P )), and the partial root groups Uα(k)− logα(x) for α ∈ Φ(T, L), where
L is the Levi subgroup of P containing ZG(T ) = T . The group N(k) acts on A by reflections through
root hyperplanes, i.e. affine hyperplanes parallel to a linear hyperplane of the form {u | 〈u, α〉 = 1} in
the vector space Λ = Hom(X∗(T ),R>0), with α ∈ Φ. Identifying A and Λ, it follows that the group

N(k)x fixes each point of the closure A
B
x of the affine subspace

Ax = {y ∈ A |α(y) = α(x) for all α ∈ Φ−such that α(x) 6= 0}.

Consider a root α ∈ Φ and an element u in Uα(k). The action of u on B(G, k) fixes each point of the
half-space

Au = {y ∈ A | α(y) > |ξα(u)|}.

The closure of the latter in A
B

is the subspace A
B
u defined by

A
B
u = {y ∈ AB | α(y) > |ξα(u)|} if α ∈ Φ−
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and
A
B
u = {y ∈ AB | (−α)(y)|ξα(u)| 6 1} if α ∈ Φ+.

In each case, if A
B
u contains x, then A

B
u ∩A

B
x is a neighborhood of x in A

B
x .

Now, thanks to the description of Gx(k) recalled above, any given element g of Gx(k) fixes each

point in the intersection of A
B
x with a finite number of (partially) compactified half-spaces A

B
u all

containing x, hence fixes each point in some neighborhood V of x in A
B
x . We deduce V ⊂ AB ∩ gAB

and, therefore, there exists a sequence of points in A ∩ gA which converges to x in both A
B

and

gA
B

. �

Proof of Proposition 2.1. We are now in position to prove successively the properties claimed about
the map Θ.

1) Existence. We first check that the maps Θ(T,B) glue together nicely. Pick two points x ∈ B(G, k)

and y ∈ B(G, k). We have to check that

Θ(T,B)(x, y) = Θ(T ′,B′)(x, y)

for any two standardizations (T,B) and (T ′, B′) such that A(T )
B

and A(T ′)
B′

both contain x and

y. By Lemma 2.5, we can pick a sequence (yn)n>0 in A(T ) ∩ A(T ′) converging to y in A(T )
B

and

A(T ′)
B′

. We have
Θ(T,B)(x, yn) = Θ(x, yn) = Θ(T ′,B′)(x, yn)

for all n, hence Θ(T,B)(x, y) = Θ(T ′,B′)(x, y) by continuity of Θ(T,B) and Θ(T ′,B′).

Since any two points x ∈ B(G, k) and y ∈ B(G, k) are contained in A(T )
B

for a suitable stan-
dardization (T,B) (cf. Remark 2.4), this allows us to define the map Θ by gluing together the maps
Θ(T,B).

2) Equivariance. We now check that the map Θ is G(k)×G(k)-equivariant, and for this we pick
(x, y) ∈ B(G, k) × B(G, k) and choose a standardization (T,B) such that the partially compactified

apartment A
B

for A = A(T ) contains both x and y, as well as a sequence (yn)n>0 in A converging to
y. By the Bruhat decomposition theorem for compactifed buildings, proved in [RTW10, Prop. 4.20],
we can write G(k) = Gx(k)NGx(k), where Gx(k) = StabG(k)(x) and N = NormG(T )(k). Therefore,
it is enough to prove that

Θ(gx, y) = Θ(x, y)g−1 and Θ(x, hy) = hΘ(x, y)

for g and h belonging to Gx(k) or N . If g ∈ N , then gx ∈ A and therefore

Θ(gx, y) = Θ(T,B)(gx, y) = lim
n

Θ(gx, yn) = lim
n

Θ(x, yn)g−1

= Θ(T,B)(x, y)g−1 = Θ(x, y)g−1.

If g ∈ Gx(k), then

Θ(gx, y) = Θ(x, y) = Θ(T,B)(x, y)

= lim
n

Θ(x, yn) = lim
n

Θ(gx, yn) = lim
n

Θ(x, yn)g−1

= Θ(T,B)(x, y)g−1 = Θ(x, y)g−1.

If h ∈ N , then hA
B

= A
hBh−1

and

Θ(x, hy) = Θ(T,hBh−1)(x, hy) = lim
n

Θ(x, hyn) = lim
n
hΘ(x, yn)

= hΘ(T,B)(x, y) = hΘ(x, y).
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If h ∈ Gx(k), then the points x = hx and hyn are contained in the apartment hA and therefore

Θ(x, hy) = Θ(hTh−1,hBh−1)(x, hy) = lim
n

Θ(x, hyn) = lim
n
hΘ(x, yn)

= hΘ(T,B)(x, y) = hΘ(x, y).

3) Continuity. Let us now prove continuity of Θ. The canonical map(
G(k)×G(k)

)
× (A×AB)→ B(G, k)× B(G, k)

identifies the right-hand-side with a topological quotient of the left-hand-side. By construction and
equivariance, the map Θ is induced by the continuous map(

G(k)×G(k)
)
× (A×AB)→ G

an
,
(
(g, h), (x, y)

)
7→ hΘ(T,B)(x, y)g−1,

hence it is continuous.

4) Field extensions. Finally, the map Θ is compatible with non-archimedean field extensions since
this is the case for each map Θ(T,B) thanks to the formula used to define it in the proof of Lemma
2.2. �

3. Analytic strata in boundary divisors

In this section, we analyze the compatibility between the boundaries at infinity of the Satake-Berkovich
compactifications of Bruhat-Tits buildings and of the wonderful compactifications. For this, we need
to recall some facts about the combinatorics and geometry of boundaries of wonderful compactifica-
tions G, which amounts to decomposing the latter varieties into G×G-orbits. Our general reference
is [Bri03, Section 3, p. 617].

Let Par(G) be the scheme of parabolic subgroups of G. The type τ = τ(P ) of a parabolic subgroup
P of G is the connected component of Par(G) containing P ; we denote by Parτ (G) this connected
component. Since G is split, each connected component of Par(G) contains a k-rational point. Let
T = π0

(
Par(G)

)
denote the set of types of parabolic subgroups. This set is partially ordered as

follows: given two types τ and τ ′, we set τ 6 τ ′ if there exist P ∈ Parτ (G)(k) and P ′ ∈ Parτ ′(G)(k)
with P ⊂ P ′. The minimal type corresponds to Borel subgroups and the maximal type corresponds
to the trivial parabolic subgroup G. This set is also equipped with an involution τ 7→ τopp defined
as follows: pick a parabolic subgroup P ∈ Parτ (G)(k) as well as a Levi subgroup L of P and set
τopp = τ(P opp), where Popp is the only parabolic subgroup of G such that P ∩ Popp = L. Note that
the type τopp is well-defined since G(k) acts transitively by conjugation on pairs (P,L) consisting of
a parabolic subgroup of type τ and a Levi subgroup L of P .

Let us go back now to the problem of decomposing G as explicitly as possible into G×G-orbits.
We pick a standardization (T,B) of G and use the associated notation as in the previous section, such
as the root system Φ and its positive and negative subsets Φ+ and Φ−. We let also ∆ ⊂ Φ− denote the
corresponding set of simple roots and we recall that there is an increasing one-to-one correspondence
between the types of parabolics introduced above and the subsets of ∆: this map sends the type τ of
a parabolic subgroup P containing B to ∆ ∩ Φ(T, L), where L is the Levi subgroup of P containing
T ; in particular, the type of Borel subgroups (resp. of the trivial subgroup G) goes to ∅ (resp. to ∆).
The choice of (T,B) gives us the “partially compactified big cell” G0, which can be identified with
U− × Z × U+ [Str87, Lemmas 2.1 and 2.2] via the natural open immersion

ϕ : U− × Z × U+ → G0, (u−, z, u+) 7→ u−zu
−1
+ .
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One can choose specific 1-parameter subgroups λτ : Gm → T defined by α(λτ )(t) = 1 if α ∈ τ and
α(λτ )(t) = t if α ∈ ∆ \ τ .

Each of these cocharacters has a limit at 0, i.e. extends to a morphism from A1
k to Z. We set

e(T,B),τ = lim
t→0

λτ (t) ∈ Z(k)

and we note that this k-rational point can be described by

α(e(T,B),τ ) = 0 for all α ∈ −Φ(T,Ru(P )) and α(e(T,B),τ ) = 1 for all α ∈ Φ(T, L)−.

The points {e(T,B),τ}τ⊂∆ are extremely useful because they provide a complete set of representatives:

• for the T × T -action on the toric affine variety Z,

• for the G×G-action on the wonderful compactification G.

Therefore we obtain a one-to-one correspondence between these two sets of orbits.

Let P denote the unique parabolic subgroup of G of type τ containing B (it can be described as
consisting of the elements g ∈ G such that the limit λτ (t)gλτ (t)−1 exists as t → 0), and let L be its
Levi subgroup containing T = ZG(T ). Then P opp is the parabolic subgroup in G opposite P with
respect to B (it can be described as consisting of the elements g ∈ G such that the limit λτ (t)gλτ (t)−1

exists as t→∞, and we have P ∩ P opp = L). We have the following description of stabilizers:

StabG×G(e(T,B),τ ) = diag(L)
(
Ru(P )Z(L)×Ru(P opp)Z(L)

)
⊂ P × P opp.

In other words, the wonderful compactification G has a G × G-equivariant stratification by locally
closed subspaces {X(τ)}τ∈T and each stratum X(τ) is a homogeneous space under G × G which
comes with a G×G-equivariant map

πτ : X(τ)→ Parτ (G)× Parτopp(G)

sending the point e(T,B),τ to (P, P opp) (note that this map is well-defined since the stabilizer of e(T,B),τ

is contained in P × P opp). Moreover, for each point (P, P ′) ∈ Parτ (G)(k)× Parτopp(G)(k) consisting
of two opposite parabolic subgroups with respect to a common Levi subgroup L, the fiber of πτ over
(P, P ′) is canonically isomorphic to the adjoint quotient L/Z(L) of L.

One can also give an explicit description of the intersection of X(τ) with G0 and of the restriction
of πτ to X(τ)∩G0. For simplicity, let us write Φ(Q) = Φ(T,Q) for every subgroup Q of G containing
the torus T . The stratum X(τ) intersects the toric variety Z = Speck[〈Φ−〉] along the locally closed
subspace

Z(τ) = {z ∈ Z : α(z) = 0 for all α ∈ −Φ(Ru(P )) and α(z) 6= 0 for all α ∈ Φ(L)−},

i.e. the intersection of the vanishing sets of all negative roots belonging to the unipotent radical
of P opp and the non-vanishing set of all negative roots belonging to the Levi subgroup L. This
stratum Z(τ) is a principal homogeneous space under T/T (τ), where T (τ) is the subtorus given as
the connected component of the kernel of all α ∈ Φ(L), and Z(τ) is trivialized by the k-rational
point e(T,B),τ . The torus T (τ) is the center of L, hence T/T (τ) is the maximal split torus of L/Z(L)
induced by T .

At last, the following diagram

∏
α∈−Φ(Ru(P ))

Uα ×

( ∏
α∈Φ(L)−

Uα × Z(τ)×
∏

α∈Φ(L)+

Uα

)
×

∏
α∈Φ(Ru(P ))

Uα

(pr1,pr3)

��

ϕ // X(τ) ∩G0

πτ

��∏
α∈−Φ(Ru(P ))

Uα ×
∏

α∈Φ(Ru(P ))

Uα // Parτ (G)× Parτopp(G)
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where the bottom horizontal map is (u−, u+) 7→ (u−Pu
−1
− , u+P

oppu−1
+ ), is commutative.

Let P be a parabolic subgroup of G of type τ , and let λ : G → G/P be the projection to the
associated flag variety, which is isomorphic to Parτ (G). Recall the embedding ϑ : B(G, k) → Gan

defined in [RTW10, Prop. 2.4]. By composition, we get a map ϑτ = λan ◦ ϑ : B(G, k) → Parτ (G)an,
which is G(k)-equivariant and independent of the choice of the parabolic P of type τ by [RTW10,
Lemma 2.13]. If τ is the type of a Borel subgroup, we have seen this map under the name ϑ∅ already
in section 2.

Proposition 3.1. Let P be any parabolic subgroup of G of type τ(6= ∆), giving rise to the boundary
stratum B(Pss, k) lying in B(G, k) \ B(G, k).

(i) The map Θ sends B(G, k)× B(Pss, k) into X(τ)an.

(ii) We have
(πan
τ ◦Θ)(x, y) = (P, ϑτopp(x))

for all (x, y) ∈ B(G, k)× B(Pss, k).

(iii) For every point x ∈ B(G, k), the restriction of Θ(x, ·) to B(Pss, k) is a continuous embedding.

Remark 3.2. Note that in assertion (ii) above, P is a k-rational point in Parτ (G)an whereas the
point ϑτopp(x) in Parτopp(G)an is defined over a transcendental non-archimedean field extension. One
should also be aware that, if one denotes by |X| the underlying topological space of a non-Archimedean
analytic space X, then |X × Y | is in general different from |X| × |Y |. However, since X(k) × |Y | ⊂
|X × Y |, the formula in point (ii) does make sense.

Proof of Proposition 3.1. We fix a standardization (T,B) of G and use the notation introduced above.

Let us prove (i) and (ii). The partially compactified apartment A
B

intersects B(Pss, k) along the

subspace A
B

(P ) defined by the conditions α = 0 for each root α in −Φ(Ru(P )) and α > 0 for each
root α ∈ Φ(L)−. This is the apartment of the maximal split torus T/T (τ) of Pss. According to the

explicit formula for Θ(T,B) in Proposition 2.3, a point (x, y) ∈ A × AB(P ) is mapped to the Gauss
point of  ∏

α∈−Φ(Ru(P ))

Uα ×
( ∏
α∈Φ(L)−

Uα × Z ×
∏

α∈Φ(L)+

Uα

)
×

∏
α∈Φ(Ru(P ))

Uα

an

defined by
|α| = 〈y, α〉〈x, α〉−1 for all α ∈ Φ−,

which vanishes if and only if α ∈ −Φ(Ru(P )), and by

|ξα| =


0 if α ∈ −Φ(Ru(P ))
〈y, α〉 if α ∈ Φ(L)−

〈x, α〉 if α ∈ Φ(L)+ ∪ Φ(Ru(P )).

By the commutative diagram preceding our statement, we thus have Θ(B,T )(x, y) ∈ (X(τ) ∩ G0)an.
Using the explicit formula for ϑτopp(x) from the proof of [RTW10, Lemma 3.33], we also find that
πan
τ (Θ(T,B)(x, y)) is the point ({P}, ϑτopp(x)) of Parτ (G)an × Parτopp(G)an. We have thus proved (i)

and (ii) for the restriction of Θ to A×AB(P ). Since πτ is G×G-equivariant, the general case follows
via translation by the subgroup G× P .

Let us finally prove (iii). Consider two points y, y′ in B(Pss, k) such that Θ(x, y) = Θ(x, y′). Pick
a maximal split torus T of G contained in P such that y and y′ belong to the closure of A = A(T ); for
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any choice of a Borel subgroup B of P containing T , we have y, y′ ∈ AB. Choose also some g ∈ G(k)
such that x belongs to g−1A. By assumption, we have

Θ(gx, y) = Θ(x, y)g−1 = Θ(x, y′)g−1 = Θ(gx, y′).

Since gx, y and y′ are all contained in A
B

, we deduce

Θ(T,B)(gx, y) = Θ(T,B)(gx, y
′)

and therefore y = y′ by injectivity of Θ(T,B)(gx,−) on A
B

. �

4. Equivariant comparison

Thanks to the better understanding of the relationship between the boundaries provided by the
previous section, we can now prove our main comparison theorem, stated as the first two points of
the main theorem in the introduction.

Theorem 4.1. (i) For every point x ∈ B(G, k), the map

Θ(x, ·) : B(G, k)→ G
an

is a continuous, G(k)-equivariant embedding.

(ii) Assume that k is locally compact. Then Θ(x, ·) is a closed embedding, and the compactified
building B(G, k) is homeomorphic to the closure of the image of the building B(G, k) under the
embedding

B(G, k)
Θ(x,·)−→ Gan ↪→ G

an
.

Proof. Injectivity of Θ(x, ·) follows immediately from the following three observations based on Propo-
sition 3.1. For any parabolic subgroup P of G of type τ :

• the map Θ(x, ·) sends B(Pss, k) into X(τ)an;

• the image of Θ(x,B(Pss, k)) under the map πτ is contained into {P} × Parτ(P )opp(G)an;

• the map Θ(x, ·) restricts injectively to the stratum B(Pss, k) of B(G, k) associated with P .

Note that, thanks to the first two observations, different strata have disjoint images.

If k is locally compact, the map Θ(x, ·) is closed since it is continuous, B(G, k) is compact by
[RTW10, Prop. 3.34], and G

an
is Hausdorff. Since B(G, k) is dense in B(G, k) by [RTW10, Prop.

3.34], the last claim follows. �

In order to complete the proof of our main theorem stated in the introduction, it remains to show
part (iii). Strictly speaking, this statement deals with orbits closures while Proposition 3.1 deals
with the orbits themselves. The relationship is in fact very neat since it is well-known that, with our
notation, we have by [CS99, Th. 3.9]:

X(τ) =
⋂

i∈∆\τ

Di,

hence
X(τ) =

⋃
τ ′6τ

X(τ ′).
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By Prop. 3.1 (ii), this observation implies that, for every parabolic subgroup P of type τ ,

B(Pss, k) ⊂ X(τ)an and B(Pss, k) ⊂ X(τ)
an

since
B(Pss, k) =

⋃
P ′∈Par(G)(k), P ′⊂P

B(P ′ss, k)

by [RTW10, Theorem 4.1 and Example 3.9.(ii)].

We conclude by a strengthening of assertion (i) in our Theorem, thereby answering a question
raised by one of the referees.

Proposition 4.2. The map
Θ : B(G, k)× B(G, k)→ G

an

is injective.

Proof. (Step 1) Let us first check that the map Θ : B(G, k) × B(G, k) → Gan is injective, a fact
which we did not notice in [RTW10]. Consider two points (x, y), (x′, y′) ∈ B(G, k) × B(G, k) such
that Θ(x, y) = Θ(x′, y′). By [RTW10, Lemma 2.10], this condition still holds after an arbitrary non-
Archimedean extension of k and therefore we may assume that there exists g′, h, h′ ∈ G(k) such that
x′ = g′x, y = hx and y′ = h′x. By [RTW10, Proposition 2.11], we get

hΘ(x, x) = h′Θ(x, x)g′
−1
,

hence
h−1h′ϑ(x) = ϑ(x)g′ and h−1h′Gx = Gxg

′

by [RTW10, Definition 2.9 and Proposition 2.4.(i)]. We thus can write g′ = h−1h′s for some suitable
s ∈ Gx(k) and deduce

g′Gx = h−1h′Gx = Gxg
′, hence Gg′·x = Gx.

This implies g′ · x = x by [RTW10, Corollary 2.5], and therefore g′ ∈ Gx(k). It follows that h−1h′

also belongs to Gx(k), hence x′ = g′x = x and y′ = h′x = h(h−1h′)x = hx = y.

(Step 2) Let us now prove that Θ is also injective. It follows easily from Proposition 3.1 (i) and
(ii) that the map Θ separates the strata B(G, k)×B(Pss, k) associated with the parabolic subgroups
P of G, so it is enough to check that its restriction to each stratum B(G, k) × B(Pss, k) is injective.
We remark that it is easy if the parabolic subgroup P does not contain any simple factor of G, i.e. if
its type τ = τ(P ) is nondegenerate. In this case indeed, the opposite type τopp is also nondegenerate,
hence the map ϑτopp from B(G, k) to Parτopp(G)an is injective [RTW10, Proposition 3.29] and thus
the conclusion follows from Proposition 3.1.(ii) and (iii).

(Step 3) In general, one can write G = G1 × G2 for some semisimple groups of adjoint type G1

and G2 such that P = G1×P2, where P2 is a nondegenerate parabolic subgroup of G2 of type τ2. The
schemes Parτ (G)×Parτopp(G) and Parτ2(G2)×Parτopp

2
(G2) are canonically isomorphic, the building

of G is the product of the buildings of G1 and G2, and ϑτ = ϑτ2 ◦ pr2. Fix a point x2 in B(G2, k). By
Proposition 3.1(ii), the restriction of Θ to

B(G1, k)× {x2} × B(Pss, k) = B(G1, k)× {x2} × B(G1, k)× B(P2,ss, k)

is a G1×Pss-equivariant map whose image is contained in the fiber of πτ over the point (P, ϑτ2(x2)),
which is a canonically split torsor under Gan

1 ×(P2,ss/Z(P2,ss))
an. Projecting onto Gan

1 , we thus obtain
a G1 ×G1-equivariant map

M : B(G1, k)× B(G1, k)× B(P2,ss, k)→ (G1 ⊗k K)an,
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where K is equal to the completed residue field H(ϑτ2(x2)). Choosing a standardization (B, T ) =
(B1 × B2, T1 × T2) of G and computing in the associated big cell as in the proof of Proposition 3.1,
we observe that the restriction of M to

A×AB(P ) = A(T1)×A(T2)×A(T1)×AB2(P2)

factors through the canonical projection onto A(T1) × A(T1), and that the induced map coincides
with the restriction of ΘG1⊗kK to A(T1)×A(T1). By translation, we deduce that M factors through
the projection onto B(G1, k)× B(G1, k) and that the induced map to Gan

1,K coincides with ΘG1⊗kK .

(Step 4) We can now finish the proof. We make the identification

B(G, k)× B(Pss, k) = B(G1, k)× B(G2, k)× B(G1, k)× B(P2,ss, k)

and consider two points (x1, x2, y1, y2), (x′1, x
′
2, y
′
1, y
′
2) in the product such that Θ((x1, x2), (y1, y2)) =

Θ((x′1, x
′
2), (y′1, y

′
2)). Projecting this equality by πτ , we deduce ϑτ2(x2) = ϑτ2(x′2), hence x′2 = x2.

Combining steps 1 and 3, we then get (x′1, y
′
1) = (x1, y1). We can then apply Proposition 3.1.(iii) to

derive (y′1, y
′
2) = (y1, y2), hence (x′1, x

′
2, y
′
1, y
′
2) = (x1, x2, y1, y2). �

Further questions: Our constructions are all Galois-equivariant and can be descended to ground
fields over which the group G need not be split. On the one hand, it seems to us that wonderful
compactifications of non-split groups are less explicitly described in the literature, presumably due
to lack of representation-theoretic motivation. On the other hand, descent in Bruhat-Tits theory
is a central topic. The geometric description of Satake-Berkovich compactifications of Bruhat-Tits
buildings could be a useful tool to describe wonderful compactifications of non-split groups.

Another interesting line of further research is the generalization of our results to other equivariant
compactifications of the reductive group G [Ti03].
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