1. COMPTER LES NOMBRES PREMIERS

1.1. Euclide

(1.1) On trouve dans le livre VII des Eléments d’Euclide les résultats fondamentaux de
I'arithmétique des nombres entiers.

THEOREME 1.1. (THEOREME FONDAMENTAL DE L'ARITHMETIQUE) — Tout nombre entiern >
1 est un produit de nombres premiers, et cette écriture est unique a l'ordre des facteurs pres.

Cet énoncé est bien connu, mais il est important d’avoir conscience :
(i) queI'existence d'une factorisation est tres facile a démontrer (par récurrence) 1,

(ii) quel'unicité, par contre, est plus délicate; il faut en effet faire appel au lemme d’Eu-
clide®, lequel peut se déduire du théoréme de Bachet-Bézout (et donc de I'algo-
rithme de la division euclidienne);

(iii) que l'unicité est ce qui est le plus utile dans la pratique (par exemple la résolution
dans Z* de I'équation de Pythagore x> +y*> = 72, que I'on peut trouver dans [2] ou
encore [1]).

(1.2) Considérons un nombre premier p. La valuation p-adique d un nombre entier n € Z,
notée v,(n), est la plus grand exposant de p divisant n :

vp(n) = max{k € N | pX|n}.
C’est un élément de NU {0} tel que v, (n) =0 ssin =0, v,(1) = 0 et, pour tous m,n € N,
@) vp(nm) =v,(n)+v,(m);
(i) vp(m+n) > min{v,(m),v,(n)}.
EXERCICE 1. — Démontrer les deux propriétés précédentes.

La notion de valuation p-adique permet d’énoncer le théoréme fondamental de I'arith-
métique sous la forme équivalente suivante : tout nombre entiern > 1 s’écrit sous la forme

n= Hp"p(”)‘
p

Il est important de remarquer ici que, si le produit porte a priori sur I’ensemble des
nombres premiers, le facteur p*»(") est égal a 1 dés que p > n; il s’agit donc en réalité du
produit d'un nombre fini de termes.

EXERCICE 2. — Démontrer que le dernier énoncé ci-dessus est équivalent au théoreme 1.

(1.3) Euclide démontre que I'ensemble des nombres premiers est bel et bien infini.
THEOREME 1.2. (EUCLIDE) — L'ensemble des nombres premiers est infini.

Démonstration. Pour tout entier n > 1, le nombre entier n! + 1 > 1 admet au moins un fac-
teur premier p. Celui-ci ne peut étre égal a aucun des entiers 2,3, ..., n car il diviserait sinon
n!, et donc également 1 = (n! 4+ 1) —n!; on en déduit p > n. Lensemble des nombres pre-
miers est non borné, donc il est infini. O

1. 1l s’agit par ailleurs d’'un phénomene tres général : dans tout anneau noethérien, chaque élément non
nul peut toujours s’écrire sous la forme d’un produit d’éléments irréductibles
2. Si p estun nombre premier et a,b sont deux entiers tels que p|ab, alors p|a ou p|b



REMARQUE 1.3. — Notons (p,),>1 la suite croissante des nombres premiers. On peut dé-
duire de I'argument d’Euclide une majoration tres grossiére du n-ieme nombre premier

Pn:
pa <22

pour tout n > 1. On prouve aisément cette inégalité en raisonnant par récurrence (exer-
cice). Pour tout nombre réel x > 1,

donc
Pllog,logyx|+1 S X
et
log, log, (x) < 7(x).

Cette minoration est loin d’étre optimale, mais elle a le mérite de quantitifer a peu de frais
le théoreme d’Euclide.

1.2. Euler

Euler exposa en 1737 une nouvelle preuve de 'infinitude de I’ensemble des nombres
premiers, reposant sur le théoréeme fondamental de I'arithmétique et des considérations
analytiques simples.

(2.1) Toute I'analyse requise dans I’approche d’Euler est contenue dans I’énoncé suivant,
qui est une version quantitative de la comparaison série-intégrale ).

LEMME 1.4. — Soity < x deux nombres réels. Pour toute fonction monotone f : [y,x| — R,

<3O+ LFD-

Y fn)- / Cf(e)dr

nez, y<n<x

De fagon un peu moins précise :

Y fn)= / * £ de+O(1£ )|+ 1F ),

neZ, y<n<x
ot la constante implicite dans O ne dépend ni de f, nidex ety.

Démonstration. Quitte a remplacer f par — f, nous pouvons supposer que f est croissante.

3. 1l faut quand méme ajouter I'estimation In(1 +x) = x + O(x?) sur [~1/2,1/2], sous la forme : il existe un
nombre réel A > 0 tel que

|In(14x) — x| < Ax?

pour tout x € [—1/2,1/2]. On peut le justifier en observant que la fonction définie sur | — 1,0[U]0, +oo[ par x —
% se prolonge en une fonction continue sur l'intervalle | — 1, +o[, donc bornée sur tout segment qu'’il

contient.



Si x et y sont entiers, nous pouvons écrire

x—1 pnt
Y s o= Y[ s

neZ, y<n<x n=y“n

x—1 pnt
= Y [ e a0

n=yJn

= [ Alehyars £
< [ o s

en utilisant la croissance de f. De la méme maniere,

Y m=ro+ Y [ fmyd=f0)+ [ﬂwd@ﬂw /yxf(t)dt,

neZ, y<n<x n=y+1 n—1

ce qui établit I'estimation voulue :

Y f(n)- /yxf(t) di

y<n<x

< max{[f ()], [f W[} < [F)+F O]

Le cas général s’en déduit aisément en introduisant les parties entieres des bornes de
sommation. On a en effet
Y fim= ) [

n€Z, y<n<x [y]<n<|x]
et

X [x] [ x
K oy ar— [ ptey = /y F(0) de + /m £(0) dt,

B X
0 @) < maxtir )LD, ([ s
En vertu de la croissance de f,

FO)< YD < f(lx)) < f()

avec

< max{[f ()], [f(|x])[}

et donc

max{|f ()] £y D] [F [ ()]} = max{| £ (), £ ()]}

Au final, nous avons obtenu la majoration

Y f(n)- /yxf(t) di

y<n<x

< 3max{[f ()], [f W[} <3 () +[FOD-

g

REMARQUE 1.5. — Bien que trés élémentaire, cette estimation est fort utile et nous 'uti-
liserons a de nombreuses reprises. Nous en verrons également deux raffinements : la for-
mule d’Abel et la formule d’Euler-Maclaurin.

En guise d’illustration, rappelons le comportement des séries de Riemann. Pour tout
nombre réel s > 1,
N 1 /N les _ les

Y —=[ 7 d+OM T +NT) =

+O(M7S +N7s),
n=M M s—1



doncla série {(s) = Y,~,n~* est convergente et
1
Précisons que le terme O(1) désigne une fonction bornée sur |1, +o<[, donc cette identité :
(i) établit que la fonction { est bornée sur tout intervalle de la forme [a, +oo[, aveca > 1;
(ii) fournitle comportement asymptotique de { au voisinage de 1" :

£(s) ~ —

s—1

quand s tend vers 1 dans |1, +oo].

(2.2) Lobservation capitale d’Euler est que le théoreme fondamental de I'arithmétique
permet d’exprimer {(s) a 'aide des nombres premiers. Pour comprendre cela, introdui-
sons pour tout nombre premier p et tout s > 1 la série
1 1 1
) =1+—+—+...= ) —
P P’ p2s k§) pks

restreinte aux entiers qui sont des puissances de p. Il s’agit bien entendu d’une série géo-
métrique, de somme

Le produit

1 | |
Ca(s)Ca(s) = ( )y 2mzs> <Z 3m> = X (2m3ms)s

mp =0 m3=0 my,m320

n’est pas autre chose, en vertu de la regle usuelle de développement, que la série zéta res-
treinte aux entiers de la forme 2”233, Plus généralement, pour tout entier N > 2,

-1
Moo-T(1-%) =L
PN p<N p neEy
ol Ey désigne 'ensemble des entiers obtenus en faisant tous les produits possibles des
nombres premiers p < N. Le théoréeme fondamental de I'arithmétique garantit que 'en-
semble Ey contient tous les nombres n < N (existence d'une factorisation, les facteurs pre-
miers étant nécessairement inférieurs a N), et que chacun d’eux ne s’obtient qu'une seule
fois, c’est-a-dire pour un seul terme du développement du produit de gauche (unicité de
la factorisation). Nous pouvons donc écrire

1

H Cpls) — Z oy

p<N n<N

1 1

:ng—

K s’
neEy et n>N n n>N n

Le membre de droite (reste d'une série convergente...) est majoré par % + O(N ™)
(Lemme 1.4), donc il tend vers 0 lorsque N tend vers +-oo.

Nous venons ainsi de démontrer le résultat fondamental suivant.

THEOREME 1.6 (FORMULE DU PRODUIT — Pour tout réel s > 1, la suite des produits finis
[1)<n Cp(s) est convergente, de limite { (s). Autrement dit,

Yloco-T(1-1)

n>1 peX



(2.3) On a manifestement {(s) > 1 et 1 < 1 pour tout s > 1 et tout p premier. Il est donc
licite de passer aux logarithmes dans I’ 1dent1e d’Euler, qui se réécrit alors

Ing(s) = p;@—ln (1 — pl>

)

_ Z L y R
peP p pe,@pzs .
pour tout s €]1, +ool.

Il faut ici observer que I'interversion de la somme et du O(-) est licite car on utilise I'es-
timation
In(1+x) =x+0(x?)
pour tout x dans [—1/2,1/2] (la constante de O ne dépend pas de x), puis on substitue p—* €
[0,1/2] a x. Enfin, en observant que la série des p~2* est bornée par la somme de la série (de
Riemann) convergente des n~2 pour tout s €]1, 4], nous obtenons

1
Z — =Ing(s) +O(1)
peZ p
pour tout s €]1, oo
Il reste a exploiter notre connaissance du comportement asymptotique de {(s) au voi-

sinage de 17, rappelé ci-dessus (a la suite de la remarque 1.5) :
1
C(s) = 1 +0(1),

donc

)» i =In <si I +0(1)) +0(1) zlnsi [ +In(1+0(s—1))+0(1)
et

) i = —In(s—1)4+0(1)

peS p
lorsque s tend vers 1+.

THEOREME 1.7. (EULER) — La série

]
M
Q
< =

est divergente.

Démonstration. Pour tout s > 1,

1 1

)M Vi

S
pefp peﬁzp

dans RU {+e}. L'estimation asymptotique du membre de droite quand s tend vers 1 que
I'on vient d’obtenir fournit la conclusion voulue. O

V

REMARQUE 1.8. — 1. On peut déduire de ce théoréme l'estimation 7(x) = o(x) quand x
tend vers l'infini, c’est-a-dire que la proportion des nombres premiers parmi les nombres
entiers < x tend vers 0 lorsque x tend vers +e. De maniere imagée, la probabilité qu'un
nombre entier choisi au hasard soit premier est nulle.



2. Laformule .
Z — =In(s) +0O(1)
peP
quand s tend vers 1" relie le comportement asymptotique de la suite des nombres pre-
miers, exprimé via celui de la série des % quand s — 1%, a celui d’'une fonction spéci-
fique, ici {(s), au voisinage de s = 1. Ce phénomene est au cceur de la théorie analytique
des nombres.

3. Des arguments analogues a ceux utilisés précédemment permettent d’encadrer les
sommes partielles de la séries des inverses des nombres premiers : il existe un réel C > 0
tel que

Inlnx—In2< ) L <emmrtc
pEP p<x p
pour tout réel x > 1. La démonstration fait I'objet de I'exercice 3 du TD1. Cet encadre-
ment détermine I'ordre de grandeur de ¥, %. Nous verrons plus loin un développement
asymptotique de ces sommes partielles, de terme dominant Inlnx.

1.3. Tchébychev

(3.1) En 1850, le mathématicien russe Pafnouti Tchébychev démontra que la fonction de
comptage des nombres premiers a bien I'ordre de grandeur attendu.

THEOREME 1.9. — Il existe des nombres réels 0 < ¢ < C tels que, pour tout x assez grand,
X X
—<nx) < C ——.
¢ logx (x) log(x)

On peut déduire de ce théoreme 'existence de nombres premiers dans certains inter-
valles. En effet, si a < b sont deux nombres réels (suffisamment grands) tels que

a
—_ < 7’
loga Clogb

alors m(a) < m(b) et 'intervalle |a, b] contient donc un nombre premier. De fait, les bornes
obtenues par Tchébycheyv, a savoir ¢ = 0,92 et C = 1, 11, étaient assez bonnes pour lui per-
mettre de de démontrer le postulat de Bertrand :

pour tout nombre entier n > 2, l'intervalle |n,2n| contient toujours un nombre premier.

Nous allons exposer une version simplifiée de la démonstration de Tchébychev, condui-
sant aux bornes plus grossieres ¢ = % et C = 2. Si ces bornes ne suffisent pas a déduire le
postulat de Bertrand, une preuve plus élémentaire de ce résultat, découverte par P. Erdos
en 1936, fait I'objet du probléme du TD1.

La démonstration de Tchébychev est élémentaire, au sens ou elle n'utilise que le théo-
reme fondamental de I'arithmétique et des estimations relevant de I’analyse réelle asymp-
totique, et non pas ’analyse complexe. Elle n'en demeure pas moins ingénieuse, son point
de départ étant 'observation que le coefficient binomial (2”") ne differe « pas trop » du pro-
duit de tous les nombres premiers dans I'intervalle |n,2n].

(3.2) Nous allons avoir besoin de quatre résultats auxiliaires, tous intéressants indépen-
damment de I'utilisation que nous allons en faire.



Le premier consiste en une formule explicitant la valuation p-adique des coefficients
binomiaux.

LEMME 1.10. (FORMULE DE LEGENDRE) — Pour tout nombre entier natureln et tout nombre

premier p,
vp(n!) = Z LiJ

a
o>1 p

Démonstration — Si 'on factorise chaque entier m < n sous la forme m = pMp | avec
ptm!’, alors le facteur p* apparait dans
[T m

1<m<n

pour chaque entier m tel que p*|m et p**! tm, c’est-a-dire L “J L J fois (le nombre des

multiples de p* moins celui des multiples de p**! dans [1,x].). On a donc

o= £ (1]l e- 5 L)

a>l a>1

Le second est un encadrement du coefficient binomial médian.

LEMME 1.11. — Pour tout entiern > 1,

2" n n—1
— < <20
n+1 |n/2]

Démonstration — Les coefficients binomiaux (}) sont croissants avec k € {0,..., |n/2]},
puis décroissants avec k € {|n/2],n}; la plus grande valeur est donc atteinte en

<Lnr/lzj> B <n— fn/zJ)

On en déduit facilement la minoration souhaitée :

2”‘,2@ <o (1))

w1 (i)

Pour établir la majoration, distinguons deux cas suivant la parité de n.
(i) Sin=2m+ 1 estimpair, alors nous pouvons aparier les coefficients binomiaux (}) et
(,",) pour toutk € {0,...,m}, d’'olx:

#5025 0)-2()

ce qui est la majoration souhaitée.

donc

(ii) Sin=2m, alors (") estl'unique coefficient binomial maximal, donc I'argument pré-
cédent ne fonctionne plus. On a cependant

2m _m+2 2m <9 2m
m) m \m+1)  “\m+1)’



donc

2> <m2m1> + @T) ¥ (mzfl) - <2n’an> ”(mzfl) g 2<2nT>’

ce qui est encore la majoration souhaitée.
O

Le troisieme fournit une seconde majoration des coefficients binomiaux, faisant appa-
raitre la fonction de comptage.

LEMME 1.12. — Soitn > 1 etk > 0 deux nombres entiers.
(i) Soit p un nombre premier. En posant o, = v, ((})), ona

p® < n.

(e

Démonstration — (i) Nous pouvons expliciter la valuation p-adique du coefficient bino-
mial (}) al’aide de la formule de Legendre (Lemme 1.10) :

n!
% = v”(k!(n—k)!)
= vp(nl) —vp(k!) —v,((n—k)!)

= x (L] LE - 15E)

m=>1

(i) On en déduit la majoration :

La fonction réelle f définie sur R? par

feey)=lx+y] = x] = )
est I-périodique par rapport a chacune des variables : il suffit de le vérifier pour la premiére
par symétrie de f, et
fa+Ly)=lx+y+1] = [x+1] =y = [x+y] +1=(lx] + 1) = [y] = f(x,y)

pour tous x,y € R%. On en déduit

sup f(x,y)= sup f(x,y),

x,yER2 x,y€[0,1]
puis
sup f(x.y) =1
x,yeR
puisque
_ _J 0 siox+y<l]
f(xay)_ Lx+yJ _{ 1 Si x+y>1

pour tous x,y € [0, 1[. En observant que, dans la somme ci-dessus pour «,, les seuls entiers
m ayant une contribution éventuellement non nulle sont ceux tels que p™ < n, c’est-a-dire
m < log,, n, nous obtenons finalement

ap <log,n etdonc p® < pl%" =n.



(ii) Avec les notations en vigueur, nous pouvons écrire la factorisation du coefficient
binomial sous la forme
n = pal’_
k n
P|(k)

Chaque facteur p* figurant dans le membre de droite est majoré par n en vertu premier
point, et tout diviseur premier de (Ln72 J) divise n!, donc est inférieur a n. Ces observations

conduisent immédiatement a la majoration
n
< n”(").
<Ln/ 2J> h

Le quatrieme et dernier résultat préliminaire décrit les plus grands facteurs premiers du
coefficient binomial médian.

d

LEMME 1.13. — Soitn > 2 un nombre entier. Le coefficient binomial (zn”) est divisible une
fois et une seule par chaque nombre premier p dans l'intervalle|n,2n]; en particulier,

2n
IT »l :
n<p<2n n

De méme, le coefficient binomial (2”;1) est divisible une fois et une seule par chaque nombre
premier p dans lintervalle|n+ 1,2n]; en particulier,

2n+1
1T -~ :
n+1<p<2n+1 n

Démonstration — En écrivant
2
= ()
n

il est manifeste que chaque nombre premier p €]n,2n|, divisant (2z)! mais ne divisant pas
n!, doit diviser le coefficient binomial. Le produit de ces nombres premiers divise donc
le coefficient binomial en vertu du lemme d’Euclide. Enfin, la condition p > n implique
p? >n? > 2n, donc v,((2n)!) = 1 en vertu de la formule de Legendre (Lemme 1.10) et p? ne
peut donc pas diviser le coefficient binomial.

2n+1

Le cas du coefficient binomial ( .

) se traite de maniere analogue. O

(3.3) Venons-en maintenant a la démonstration du théoreme 1.9, avec les constantes ¢ = %
etC=2.

La minoration —- Soit x > 1 un nombre réel et posons n = | x|, ce qui fournit I'encadre-
mentn<x<n+1.
En combinant les lemmes 1.11 et 1.12, nous obtenons 'inégalité
on

< nPi(")
n+1

)

soit la minoration
nln2—1In(n+1) < (x—1)In2—In(x+1)

=

nt(n) >

Inn Inx
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Le membre de droite est supérieur a 1 X pour tout réel x > 20 () donc la minoration an-

noncée est acquise pour tout x > 20. Par aileurs, on la vérifie explicitement pour 3 < x < 20
en observant sur une table des valeurs de 7(n) I'inégalité

1 n+1
>_-_"T°
) 2 S i 1)

pour tout entier n € [3,20].

La majoration — La fonction x — - est croissante, donc il suffit d’établir la majoration
pour x entier puisqu’alors

() = 7([x]) < 25 <o X

Nous allons donc établir I'inégalité
n
m(n) < 2@
en raisonnant par récurrence forte sur le nombre entier n > 2. En fait, nous allons avoir
besoin d’initialiser cette récurrence a n = 106, donc il faut commencer par vérifier explici-
tement que la majoration vaut pour tout entier n < 106; cela se fait aisément a I'aide d’'une
table des valeurs de 7 (n).
Prouvons maintenant I’hérédité forte, en distinguant deux cas, selon la parité de n.

(i) Sinestpair, alors 7(n) =n(n—1) etl'inégalité pour n découle immédiatement de celle
pour n—1.

(ii) Supposons maintenant que n = 2m + 1 soit impair et n > 106. En combinant les
lemmes 1.11 et 1.13, on obtient

p < 22m'
m+1<p<2m+1

Le membre de gauche est minoré par (m + 2)*27+D)-7m+1) donc

2mlin2
d2m+41) — )< 02
2m+1)—n(m+1) n(m+2)
puis
1 2mlin2 1+1In2 1
w(n)=n(2m+1) <2 m ma <( +in2)n+

mmt1)  nm+2) S In(n)2)
en utilisant '’hypothése de récurrence. On vérifie finalement que le membre de

droite est majoré par 2;>- pour tout n > 106 .
O

4. Lafonction f:x+> (x—1)In2—In(x+ 1) — $x est convexe sur [0, o[, strictement négative en 0 et de limite
+oo en +o0, donc elle admet un minimum strictement négatif en un point x et est strictement croissante sur
[x0,+oo[; on en déduit qu’elle s’annule en un unique point x; > x, elle qu’elle est strictement positive sur
]x1,4eo[. Comme f(20) ~ 0,17 > 0, cette fonction est positive sur [20,+oo[ et la minoration souhaitée est donc
valable sur cet intervalle.

5. La fonction f : x — ((1+1n2)x+ 1)Inx —2xIn(x/2) = (In2 — 1)xInx + Inx+ (2In2)x est concave sur [3,+os|,
strictement positive en 3 et de limite —e en 4, donc elle posséde un (unique) maximum en un point xy, et est
strictement décroissante sur [xg,+oo[; elle s’annule donc en un unique point x; > xg et est strictement négative
sur ]xp, +oo[. Comme f(106) ~ —0,07 < 0, f est strictement négative sur [106,+oo[ et la majoration souhaitée
vaut donc pour n > 106.
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2. FONCTIONS ARITHMETIQUES

Dans tout ce qui suit, on pose N* =N\ {0}.

DEFINITION 2.1 — Une fonction arithmétique est une application f : N* — C. Les fonctions
arithmétiques forment un C-espace vectoriel pour l'addition usuelle, noté < .

Bien entendu, une fonction arithmétique n’est pas autre chose qu’'une suite a valeurs
complexes. Cette nouvelle terminologie est justifiée par le fait que nous allons nous inté-
resser a des suites particulieres, intimement reliées a des questions arithmétiques. Voici
les principales fonctions arithmétiques que nous rencontrerons :

(a) la fonction constante égale a 1, notée 1;

(b) lafonction «identité » id, définie par id(n) = n pour tout n € N*;

(c) la fonction «de Dirac» en 1, définie par

51(11):{ (1) sin=1

sinon
pour tout n € N*;

(d) la fonction « nombre de diviseurs » , usuellement notée d ou 7, et définie par

dn)=Y1

dn
pour tout entier n € N*;
(e) la fonction u de Mobius, définie par

(n) = (—1)" sinestle produit de r nombres premiers distincts
fin) = 0 sinon

(f) la fonction indicatrice d'Euler ¢, définie par
¢(n) = Y 1
1<h<n, pged(hn)=1
(g) la fonction caractéristique de 'ensemble &2 des nombres premiers, notée 15 ;
(h) lafonction A de von Mangolt, définie par

Aln) = logp sin=p*, avec p premieret o > 1
a 0 sinon

Dans ce court chapitre, nous allons mettre en évidence une structure algébrique spéci-
fique sur «7, sous-jacente a de nombreuses identités (plus ou moins) bien connues.

2.1. Convolution de Dirichlet

(1.1) Les fonctions arithmétiques peuvent étre multipliées de facon habituelle. Il s’avere
cependant que 'on peut définir sur </ une autre structure multiplicative, plus intéres-
sante, qui reflete les propriétés de divisibilité des nombres entiers. Il importe pour cela de
manipuler avec aisance les diviseurs d'un nombre entier.
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LEMME 2.2. — Soitn € N*. Lapplication
{diviseurs den} — {(d,d’') e N* xN* | dd' =n}, d (d, g)
est une bijection.

Démonstration. 1l convient de remarquer que, puisque d € € N* est un diviseur de n, le
nombre rationnel n/d est bien entier. Si I'on note ¢ 'application définie dans I'énoncé et
pi1laprojection de N* x N* sur le premier facteur, alors p; est un inverse a gauche de u. Pour
voir qu’il s’agit d'un inverse a droite, il suffit d’observer que, pour tout couple (d,d’) € N* tel
que dd’' = n, on anécessairement d’ = %. Ainsi, u et (la restriction de) p; sont deux bijections
réciproques I'une de I'autre. O

Etant donné deux fonctions arithmétiques f, g, on définit leur produit de Dirichlet, noté
f*g par
W frem=Yr@e(5)= ¥ (@)

d|n d,d'eN* ;dd'=n

pour tout n € N*. La premiére somme porte sur tous les diviseurs de n dans N*, la seconde
sur tous les couples (d,d’) d’éléments de N* tels que dd’ = n; cette réécriture est justifiée
par le lemme précédent.

PROPOSITION 2.3. — Muni de l'addition + et de la multiplication *, l'ensemble </ est une
C-algebre associative, commutative, d'élément neutre d,. En outre, le groupe <7 des élé-
ments inversibles de <7 est formé des f telles que f(1) # 0.

Pour f € o/ etk > 1, on pose
fH =frxf

(k copies). Si f € 7%, on désigne par f(~!) son inverse au sens du produit de Dirichlet.

Démonstration. Lassociativité découle de I'identité

(fxg)xm(n)= ), (f*8)(dh(c)= Y  (f(a)g(b)h(c)

d,c ; dc=n a,b,c ; abc=n
et de I'associativité de la multiplication dans C.
La commutativité se déduit du fait que la seconde somme dans (1) est symétrique en f
etg.
Lélément neutre multiplicatif de <7 est la fonction de Dirac 8, puisque

f*51 Zf 51 l’l/d (

dln

pour toute fonction f € <.
Si f € o estinversible, d'inverse g, alors

1=261(1) = f+g(1) = f(1)g(1),
donc f(1) # 0. Réciproquement, si f € </ est une fonction telle que f(1) # 0, alors nous
pouvons facilement définir une fonction g € <7 telle que f* g = 6;. On raisonne pour cela
par récurrence surn € N* :
— onposeg(1) =1/f(1);
— sin > 1etquel’on a défini g(m) pour tout entier m < n, alors on pose

1
g(n)Z—m Y, fd)s(n/d)

dln, d>1
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en remarquant quel'onan/d <nsid > 1.
La relation f * g = &;, c’est-a-dire

Y f(d)g(n/d) = { (1) sin=1

T sin>1

est vérifiée par construction. |

(1.2) Introduisons maintenant les fonctions arithmétiques mudltiplicatives.

DEFINITION 2.4. — Une fonction arithmétique f est dite multiplicative si elle vérifie les
deux conditions suivantes :
@ f(1)=1;

(ii) f(mn) = f(m)f(n) pour tous entiers m,n € N* premiers entre eux.

Le théoréme fondamental de I’arithmétique garantit qu'une fonction arithmétique mul-
tiplicative f est entierement déterminée par ses valeurs sur les entiers de la forme p%, avec
p premier et o > 1 : pour tout n € N*,

fn)=f (Hpvp(n)) -T1s <pv,,(n)) '
P J2

PROPOSITION 2.5. — Les fonctions arithmétiques multiplicatives forment un sous-groupe
de o .

La démonstration de ce résultat réside entierement dans ’observation élémentaire sui-
vante.

LEMME 2.6. — Soitm,n € N* deux nombres entiers premiers entre eux. Lapplications
{(d,e) € (N*)?; d|m et e|n} — {diviseurs demn}, (d,e)— de
est une bijection.

Démonstration. Notons tout d’abord que, si d (resp. e) est un diviseur de m (resp. de n),
alors de est bien un diviseur de mn; il suffit d’écrire m = dm’, n = en’ et mn = dem’n’ pour s’en
convaincre.

L'application (d,e) — de est toujours surjective, méme si m et n ne sont pas premiers
entre eux. Pour s’en convaincre, il suffit de considérer un diviseur 6 de mn et de poser
d = pged(8,m); il vient alors d|m et pged(§/d,m/d) = 1, donc $|n puisque

o m
) —|—n.
\mn:ddn

La factorisation 6 =d g que I'on vient d’obtenir établit la surjectivité de I’application consi-
dérée.

Sous I'hypothese pged(m,n) = 1, cette application est également injective. En effet, si
d,d'|m, e,e'|netde=d'¢, alors pged(d,e’)|pged(m,n) = 1 et donc d|d’. Par symétrie, nous en
déduisonsd' =dete =e. 0
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Démonstration de la proposition 2.5. Si f et g sont multiplicatives, alors, pour tous en-
tiers m,n premiers entre eux,

(f*g)(mn) = Y f(8)g(mn/5)

S|mn
= d|n§,nf<dd'>g(dw)
= |Z F(d)f(d)g(m/d)g(n/d)
d|n,d'\m
- (Zf m/d> (Zf n/d'>
d|m d'n
= (f*g)(m)(f*g)(n).

La deuxieme égalité est justifiée par le lemme précédent, la troisiéme exploite la multi-
plicativité de f et g, tandis que la quatrieme n’est autre que le développement usuel d'un
produit de deux sommes.

Toute fonction f multiplicative est inversible puisque f(1) = 1, et il reste a démontrer
que son inverse f(-1 est encore multiplicative. On peut raisonner de la facon suivante.
Considérons I'unique fonction arithmétique multiplicative # telle que

h(p®) = OV (p%)
pour tous p premier et a € N*.
Ona

o) = X0t = X s e = () = 60),

donc f«h et §; prennent les mémes valeurs sur tous les entiers qui sont une puissance d'un
nombre premier. Puisqu’il s’agit de deux fonctions multiplicatives, on en déduit f«h = J,

et donc f(-!) = h est bien multiplicative. |
O

EXEMPLES 2.8 — L'identité

Ixlm)=Y 1= Y 1

d|n dd ; dd'=n
montre que 1 x 1 est la fonction « nombre de diviseurs », notée d; il s’agit donc d'une fonc-
tion multiplicative. On a

dp*)= Y 1=a+1

0<k<a
pour tout nombre premier p et tout a > 1, donc
d(n) = J(vp(n)+1)
pln
par multiplicativité.

Plus généralement, pour tout entier k > 2,
18 (n) = Y 1
di,....dy ; di-—-dy=n
est le nombre de k-uplets d’entiers (dy,...,dy) tels que d; - - - dy = n.
On a par ailleurs
Lxid(n) =) d,

d|n



15

doncla fonction arithmétique o = 1xid, associant a tout entier » la somme de ses diviseurs,
est également multiplicative.

2.2. Lafonction de Mobius

Considérons l'inverse de convolution de la fonction 1. Il s’agit d'une fonction multipli-
cative, qui vérifie par hypothese 'identité

Y. 179(d) = & (n)

dn
pour tout entier n € N*. On en déduit :
150y =1, 169 (p)=—1 et 10V (p*) =0
pour tout nombre premier p et tout « > 2. Par multiplicativité, on a donc

9 - 0 ( vm)__ | (=1)" sinestleproduitde r nombres premiers distincts
1 )(n)—l;ll( ><pp( )>_{ 0 sinon

c’est-a-dire
10D = p.

PROPOSITION 2.9. — La fonction de Mébbius est l'inverse de convolution de la fonction
constante 1. De maniere équivalente,

1 sin=1
Z”(d)_{ 0 ‘sinon

d|n
PROPOSITION 2.10. — Soient f et g deux fonctions arithmétiques. Les deux conditions sui-
vantes sont équivalentes :
) Vn €N, g(n) =) f(d)
d|n
n
(3) Vn € N*, f(n)zZu(g)g(d)-
dn

Démonstration. La premiere identité équivaut a g = f * 1, la seconde a f = g« u. Elles
sont donc équivalentes puisque 1% u = ;. O

2.3. Lafonction indicatrice d’Euler

Par définition,
o(n) = Y 1= Y &i(pged(m,n)).

1<m<n, pged(m,n)=1 1<m<n
En utilisant I'identité &; = 1 x u, il vient alors
o(n)= Y lxu(pged(mn)= Y Y u).
1<m<n I<m<n d|pged(m,n)

La double somme de droite est indexée par les couples (m,d) formés d'un entier
m € {1,...,n} et d'un diviseur commun d de m et n. Si 'on fixe un diviseur d de n, les
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couples (m,d) associés correspondent aux multiples m de d entre 1 et n, en nombre 5. Nous
pouvons donc réécrire I'identité précédente sous la forme :

o= Y Yu@=Y Y n@=Yu@?

1<m<nd|mn dn 1<m<n d|n
d|m,n
c’est-a-dire
¢ =idxpu.

En observant que I'on a
p* 1 1
o(p*) = Y, md)— =p*—p*“ ' =p° (1 - >
d|p® p

pour tout nombre premier p et tout o > 1, nous retrouvons les propriétés bien connues de
0.

PROPOSITION 2.11. — La fonction indicatrice d’Euler est multiplicative. Elle vérifie :
1
o(n)=n]] <1 - >
pln p
et
Y o(d)=n
dn

pour tout entiern € N*.
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3. SERIES DE DIRICHLET

Les séries de Dirichlet apparaissent naturellement comme les séries génératrices des
fonctions arithmétiques : a f € o/ est associée la série de fonctions de la variable complexe
s définie par
f(n)

n

L(fs)=Y,

n>1
La motivation pour introduire les fonctions »* plutét que s” (qui conduiraient a des séries
entieres) est la propriété de multiplicativité évidente

1 1 1

(mn) — m* n*
pour tous m,n € N*.
Lidée fondamentale sous-jacente a I’étude des séries de Dirichlet est simple : les pro-

priétés de la fonctions arithmétique f se refletent dans le comportement analytique de
L(f,s), etI'on dispose d’outils puissants pour étudier ce dernier.

Nous allons commencer par une étude générale des séries de Dirichlet, puis nous consi-
dérerons plus spécifiquement le cas des séries de Dirichlet de fonctions arithmétiques
multiplicatives.

3.1. Abscisses de convergence

(1.1) Soit (a,),>1 une suite de nombres complexes.

On sait que la série entiére ¥~ a,z" a un rayon de convergence R € R, caractérisé par
le fait que cette série converge (resp. diverge) pour tout z € C tel que |z| < R (resp. |z| >
R). Nous allons voir que la série de Dirichlet ¥, 7+ a une abscisse de convergence o, €
R, caractérisée par le fait que cette série converge (resp. diverge) pour tout s € C tel que
Re(s) > o, (resp. Re(s) < o).

(1.2) L'outil essentiel permettant I’étude de la convergence des séries de Dirichlet est la
transformation d’Abel.
PROPOSITION 3.1. — Soit (an)n>0 €t (bn)n>0 deux suites de nombres complexes. Posons Ay =
YN ya, pourN >=0etA_; =0.

1. Pour tous entiers M, N tels que0 < M < N,
N N
Z anbn == Z An(bn - bn+1> +ANbN+1 _AM—le~
n=M n=M

2. Si:
(i) les sommes partielles de la série Y a, sont bornées (ce qui est en particulier le cas
lorsque cette série converge);
(ii) la suite (by) est a valeurs réelles, décroissante a partir d'un certain rang et tend vers
0;
alors la série Y a,b, converge.
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Démonstration. 1. Cette identité, appelée transformation d’Abel, est un analogue discret
de l'intégration par parties. Il suffit d’écrire :

N N
Z anbn = Z (An _An—l)bn
n=M n=M
N N—-1
= Z Anbn_ Z Anbn+1
n=M n=M-—1
N—1

= An(bn —bus1) +ANDN —Ay—1by

N
= Z Ap(bn —bus1) +ANDN+1 — Au—1by.
n=M

2. Sous les hypotheéses (i) et (ii), nous pouvons écrire, pour M et N assez grands (de sorte
que la suite (b,),>y— soit réelle et décroissante) :

N N
Y abu| < suplAul | Y |ba—burt |+ b1 |+ byl
n=M n=0 n=M

N
< sup |Aﬂ| ( Z (bn _bn+l) +bN+1 +bM>

n=0 n=M
< ZbM sup |An|
n=0
Cette majoration établit que la suite des sommes partielles de la série Y a,b, est de Cauchy,
donc convergente. O

REMARQUE 3.2 — Un cas particulier bien connu de cette proposition est celui des séries
alternées : si (u,) est une suite réelle décroissante tendant vers 0, alors la série Y (—1)"u,
converge. Il suffit de poser a, = (—1)" et b, = u,.

Nous pouvons maintenant énoncer le principal résultat technique permettant d’étudier
la convergence des séries de Dirichlet.
PROPOSITION 3.3. — Si la série de fonctions }.,~, 7% converge en un point sy € C, alors elle
converge uniformément sur tout cone C(so, 0) = so + (R0e’® + Rx0e %) avec 6 € [0,7/2[.
Démonstration. Posons s = sy +t. Puisque

an _ by

w
avec b, = a,n~*, la convergence de la série ¥ 7+ en sy équivaut a celle de la série ) % en 0.
Nous pouvons donc nous borner a traiter le cas sy = 0, et nous faisons ainsi '’hypothese
que la série Y a, converge.

Notons Ay y la somme partielle ZQV:M a, et posons Ay -1 = 0. Etant donné € > 0, notre
hypothese garantit I'existence d'un entier M, > 1 tel que, pour tous N > M > M,

|AM,N’ <E.

Effectuons une transformation d’Abel :
N

N
a 1 1 AMN
_— = E A p— ¥ .
e L n=M M (”S (n+ l)s) " (N+1)s
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Il vient

N N
an 1 1 1
<e — - +
v (ZM CRRCEV MO 1>s|>

pour tous N > M > My. Ecrivons s = a +ib avec a,b € R. En observant que 'on a |¢**+!| = r+!
pour touts > 0 et

<k k=
|s| < ka avec p—y

pour tout s dans le cone C(0,0) = R>¢e’® +R-0e?, on obtient, en suposant ¢ non nul,

1 ntl g 1 1
| e ek [ s ek (e )

o (n+ 1
puis, en observant que 'onak > 1,

N N

1 1 1 k
Y hl<ek Z<a— a>+ i) =3 ke
n=m " n=m \" (n+1) (N+1> M

Cette majoration vaut pour tout s dans le cone C(0, 6) : nous I'avons établie en supposons
Re(s) # 0, mais elle est également vraie lorsque s = 0 puisque k > 1. La suite des sommes
partielles de la série de Dirichlet
an
n>1 n
est ainsi uniformément de Cauchy sur le cone C(0,6), donc elle converge uniformément
sur ce domaine. O

Il découle de la proposition précédente que, si la série de Dirichlet ¥, 7 converge en
un point sy € C, alors elle converge en tout point du demi-plan ouvert {s € C | Re(s) >
Re(so)}; en effet, tout point s de ce demi-plan est contenu dans le cone C(so, Arg(s — s0))
et Arg(s — s9) € [0, % [. Cette observation permet de définir I'abscisse de convergence d’'une
série de Dirichlet.

COROLLAIRE 3.4. — [l existe 6. € RU {+eo} tel que la série’y.,~, 7+ soit divergente sur le
demi-plan Re(s) < o, et convergente sur le demi-plan Re(s) > o,.

Démonstration. Considérons le sous-ensemble

I= {s eR ’ Zann converge}

n>1

dans R et posons
o, = infl.

Sil = o, alors 6, = +. La série de Dirichlet ne converge en aucun point sy de C, puis-
qu’elle convergerait sinon en tout point de la demi-droite réelle |Re(sg), 4|

Sil # @, alors

|Gc,4+eo[C T et IN] —o0,0,[= @

puisque la convergence en un point xy de R implique la convergence en tout x € [xg,+o9/.

Si maintenant s est un nombre complexe tel que Pie(s) > o, alors la série de Dirichlet
converge en s puisque ce point appartient au cone C(so, 6), avec o, < so < Re(s) et 6 =
Arg(s —s0) € [0, [. Enfin, la série diverge en tout point de ] — e, 6| (par définition de o,),
donc en tout point sp € C tel que MRe(sp) < o, puisque le cone C(sp, 0) rencontre | — e, 6|
lorsque 6 est choisi suffisamment proche de 7. O
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Lélément o, de RU{+} que I'on vient d’associer a la série de Dirichlet },~., 7+ est son
abscisse de convergence.

a,

REMARQUE 3.5 — Pour déterminer I'abcisse de convergence d’une série de Dirichlet ) %,
il est donc suffisant de considérer des valeurs réelles de la variable s.

EXEMPLE 3.5 — Il est facile de voir que tous les cas sont possibles pour o, :

(i) Sia, =1, alors
a n—* _
ot ()
ns n!
lorsque n tend vers +o0, donc o, = —.

(ii) Sia, = n!, alors

an
nS

tend vers + avec n pour tout s € C, donc o, = .

(i) Sia, =1, alors o, = 1 etlasérie ¥, = diverge au point s = o,.

(iv) Sia, = m, alors o, = 1 etlasérie },- Tognhe Converge au point s = o,.
COROLLAIRE 3.7. — Une série de Dirichlet Y.~ 7 d'abscisse converge o, converge sur le
demi-plan 7, = {s € C | Re(s) > o.}, uniformément sur tout compact. Sa somme f est une
fonction holomorphe sur 7, dont les dérivées itérées s'obtiennent en dérivant la série ini-
tiale terme a terme :

k
K)oy — (__1\k an(logn)
) =Dty =+

n>1 n
pour toutk € N et tout s € J5,.

Démonstration. C’est une application immédiate du théoréeme de Weierstrass affirmant
que la limite d'une suite uniformément convergente de fonctions holomorphes est holo-
morphe. Puisque ’holomorphie est une propriété locale, il suffit d’appliquer ce théoreme
sur l'intérieur de tout disque fermé K contenu dans le demi-plan fRe(-) > o, et d’observer
que la convergence sur K est uniforme puisque K est contenu dans un cone fermé C(so, 6y)
convenable (choisir s réel tel que

o, < 5o < Ixrélll(lme(s),

puis 6, tel que
0 < 6y < max Arg(s—sp),
sekK

en observant que I'on a bien Arg(s —so) < J pour tout s € K puisque K est contenu dans le
demi-plan ouvert Re(-) > s.) O

REMARQUE 3.8 — Si l'on se borne a ne considérer que des valeurs réelles de la variable s,
alors on peut établir aisément que la somme f(s) de la série de Dirichlet ¥, 7+ est une
fonction indéfiniment dérivable sur le demi-plan s > o,. Il suffit bien entendu de consi-
dérer la cas o, < + et, en raisonnant par récurrence, de prouver que f est dérivable sur
|0;, +oo[, de dérivée f’ vérifiant

fi(s)=— Y “nlogn

N
n>1 n
pour tout s > o. Etant donné s > s; > o, dans R, nous pouvons écrire

aplogn  logn an

4)

ns - st opst’
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La série des a,n ' est convergente par hypothese (puisque s; > o,) tandis que la suite de

terme général l?gff tend vers 0 et est décroissante a partir d'un certain rang puisque

d logu 1—alogu
@ ut ud+l1

<0

des que u > e'/a. On en déduit la convergence de la série de terme général (4) (par trans-
formation d’Abel, cf. Proposition 3.1) pour tout s > .. Cette convergence est en outre uni-
forme sur tout intervalle [s;, 4o avec s; > o, en vertu de la proposition 3.3, donc f est
dérivable sur |o,,+oo[ et f'(s) est la somme de la série des a, (logn)n*.

(1.2) Ce qui précede suffit a établir 'existence d'un prolongement méromorphe de la
fonction § au demi-plan fRe(-) > 0. Nous approfondirons cela au chapitre suivant.

EXEMPLE 3.9 — Considérons la série de Dirichlet

_1n+1
Z( )

s )
n>1 n

qui est convergente pour s > 0 (série alternée) et divergente pour s < 0 (le terme général ne
tend pas vers 0) ; son abscisse de convergence est donc o, = 0. Sa somme f est une fonction
holomorphe sur le demi-plan 9Re(-) > 0. Pour s € C avec Re(s) > 1, la convergence absolue
des séries permet de permuter les termes et donc d’écrire

(D - (5)3dede)

1 2 2 2
1 1 1
= lyts et

En observant que I'on a

2
1— % = =1—el=9122 — (s _1)log2+o(s—1)

au voisinage de 1, 'identité

2\ !
c=0Ee=6-n(1-3) 50

fait apparaitre au membre de droite une fonction méromorphe sur le demi-plan RRe(s) > 0,

de valeur

1 f(l)zlolgzz

n>1

(_1)n+1

=1

log?2

en s = 1. Nous venons ainsi de prouver que la fonction { possede un prolongement méro-
morphe sur le demi-plan PRe(s) > 0 ayant un pole simple en s = 1, de résidu 1.

On ne peut pas exclure a priori que le prolongement de ¢ ait des poles aux zéros de
(1—2!7*) distincts de 1, c’est-a-dire aux points de 1+ 22 Z distincts de 1. Nous verrons plus
loin que tel est bien le cas, ce qui montrera a posteriori que ces pdles apparents sont des

zéros de f.
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(1.3) L'abscisse de convergence d'une série Dirichlet ) 7+ est étroitement relié au com-
portement asymptotique de la fonction sommatoire
S(x) = Z ap.
n<x

Nous nous contenterons du résultat élémentaire suivant.

PROPOSITION 3.10. — Les trois conditions suivantes sont équivalentes :

(i) Uabscisse de convergence o, est finie ou égale a —oo (c'est-a-dire la série de Dirichlet
converge en un point de C);

(ii) la suite (a,) a une croissance polynomiale : il existe d > 0 tel que a,, = O(n?) quand n
tend vers +oo;

(iii) la fonction sommatoire a une croissance polynomiale : il existe ¢ > 0 tel que S(x) =
O(x¢) quand x tend vers +co.

Démonstration. Si la série de Dirichlet converge en o € R, alors a,n° = o(1) et donc
a, = o(n?) lorsque n tend vers +oo. Ceci établit (i) = (ii).
S'il existe d > 0 tel que a, = O(n?) quand n tend vers +oo, alors

S(x) = Zan =0 (an> =0(n?th),

n<x n<x
la derniere égalité se déduisant, par exemple, de la comparaison série-intégrale (Lemme
1.4). Ceci établit (ii) = (iii).
Finalement, s'il existe ¢ > 0 tel que S(x) = O(x“) quand x tend vers +oo, alors
an=S8(n)—S(n—1)=0(n
quand » tend vers +oo et la série de Dirichlet converge donc en s = ¢+ 2. Ceci établit (iii) =

(i) et acheve la démonstration.
g

(1.4) Nous achevons cette premiére étude des séries de Dirichlet en définissant leur abs-
cisse de convergence absolue.

Partant d'une série de Dirichlet ¥, %, nous pouvons considérer la série de Dirichlet

Y1 |f§';‘ et lui appliquer ce qui précede.
DEFINITION 3.11. — L’abscisse de convergence absolue d’une série de Dirichlet -, a,n™*
est 'abscisse de convergence de la série de Dirichlet Y, - |a,|n"*. C'est l'unique élément de
RU {+oo} tel que la sériey, | |a,|n"* soit convergente sur|o,, +oo| et divergente sur| — o, o,].

LEMME 3.12. — Labscisse de convergence o, et l'abscisse de convergence absolue o, d'une
série de Dirichlet vérifient les inégalités

0, < 0y < O+ 1.

Démonstration. Linégalité o, < o, est claire puisque la convergence absolue implique la
convergence. Si 5o > o, et € > 0, alors
an

I o(1)

nso

a 1
nsot+1+e =0 nl+e

par convergence, donc
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et la série a,n(*0*1+€) est absolument convergente. On en déduit
Oy < 1 + S0 + £,

et on conclut en faisant tendre sy vers o, et € vers 0. O

EXEMPLE 3.12 — La encore, tous les cas sont possibles :
— 0, =0,=—ocS8la,=1;

— 0, =0, =+ Ssia, =n!;

— o.,=0,=1sia,=1;

— o.=0eto, =1sia, = (—1)""".
En général, une série de Dirichlet est donc divergente sur le demi-plan Re(-) < o,

convergente mais non absolument convergente sur la bande o, < Re(-) < o,, de largeur
au plus 1, et absolument convergente sur le demi-plan ke > o,.

3.2. Les séries de Dirichlet des fonctions arithmétiques

(2.1) Comme nous 'avons dit, les séries de Dirichlet sont naturellement les séries géné-
ratrices des fonctions arithmétiques. Pour f € <7, posons

e
n}ln

Si f est a croissance polynomiale, alors I'abscisse de convergence de Ly est dans RU { —eo}
(Proposition 3.10). Nous noterons o I’abscisse de convergence absolue de Ly.

PROPOSITION 3.13. — Si f,g € o/ sont deux fonctions arithmétiques telles que 6,0, < +oo,
alors 6., < max(oy,0y) et

Lyeg(s) = Ly (s)Lg(s)-
Démonstration. Pour s € C tel que a = Re(s) > max(oy, o),

yp sl - 7 LY st
< ¥y e

N

(Z |be3>> (Z |g£:>|> |

Cela montre que Ly,,(s) converge absolument si fRe(s) > max(oy,0g), donc oy <
max(or,0,). Sous cette hypothese, les inégalités précédentes deviennent des égalités
lorsqu’'on omet les modules puisque la convergence absolue permet de regrouper les
termes a notre guise. O

COROLLAIRE 3.14. — Si f € <« est inversible et si Of,0p(-1) < +oo, alors

Lf(S)Lf(—U(S) =1

pour tout s € C tel que Re(s) > max(0y,0p-1)). En particulier, Ly(s) ne sannule pas sur le
demi-plan Re(s) > max(oy,0-1)).
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EXEMPLE 3.15—1.0na L;(s)
|

= {(s) et oy = 1. Linverse de 1 est la fonction de Mdbius, qui
vérifie o, < 1 puisque |u(n)| <1p

our tout n. Comme
y kel y !
n>1 V4 p

diverge, il vient o, = 1. On en déduit que {(s) ne s’annule pas pour Re(s) > 1, ainsi que
I'identité

2. On sait que la fonction d comptant le nombre de diviseurs d'un entier vérified = 1x 1.
Onadonc o, < 1, puisque 6; = 1, puis oy = 1 puisque

Z,

n>1 n

diverge. On en déduit 'identité

pour tout s € C tels que Re(s) > 1.

3. On sait que ¢ = id* u. Comme L;(s) = {(s — 1) a une abscisse de converge absolue
égale a2, o, < 2. Il s’agit en fait d'une égalité puisque

Z‘P Z(zl)

n>1 P p

diverge. On en déduit 'identité

pour tout nombre complexe s tel que PRe(s) > 2.
4. Considérons finalement la fonction de von Mangolt A = pxlog. Onaocy < letop =1
par divergence de
IR

n=1 n pp

Puisque Liog(s) = —&'(s) et Ly (s) = {(s)~!, nous obtenons I'identité

AW L)
Lo =T

pour tout s € C tel que Re(s) > 1.

(2.2) Le résultat suivant montre qu'une fonction arithmétique a croissance polynomiale
est entierement déterminée par sa série de Dirichlet. Il permet en particulier d’établir des
identités entre fonctions arithmétiques a partir de calculs sur leurs séries de Dirichlet.

PROPOSITION 3.16. — Soit f,g € o/ deux fonctions arithmétiques a croissance polyno-
miale. S'il existe c > max{cy, 0.} tel que L;(s) = L,(s) pour touts € [c,+oo|, alors f = g.
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Démonstration. En posant h = f — g, nous avons o, < max{0y, 0.} et L,(s) = 0 pour tout
s € [c,+eo[. Supposons que % ne soit pas identiquement nulle et désignons par ng le plus
petit entier n tel que h(n) # 0. Lhypothese nous permet d’écrire
h(no) h(n)
c+t Z

c+t
nO n=no+1 n

pour tout ¢ € [0,+oo[. En observant que 'on a
c+t

o — @ (@)[ < 16 "o t
nett n¢ \n/) T nc\ng+1
pour tout n > ng+ 1, il vient

w6 2 B2)-(35)

pour toutz € [0, +<[. Nous en déduisons /(ny) = 0 en faisant tendre 7 vers <o, ce qui contre-
dit notre hypothese; la fonction % est donc identiquement nulle, c’est-a-dire f = g. a

COROLLAIRE 3.17. — Soit f € o/ une fonction arithmétique a croissance polynomiale. Si f
n'est pas identiquement nulle, il existe un nombre réel c tel que Ly(s) ne sannule pas sur tout
le demi-plan Re(s) > c.

Démonstration. Supposons que n soit le plus petit entier tel que f(ng) # 0. Si s € C est
un nombre complexe tel que PRe(s) > oy et Ly(s) = 0, nous pouvons écrire comme dans la
démonstration précédente

Re(s) f(n)] . I\ ([ no Re(s)—c
|f(n0)| <I’l0 Z niRe(s) =Ny <n2§+1 ne ) (n0+1>

n>ng+1

pour tout ¢ > oy et donc Re(s) est majorée en fonction de n et c. O

(2.3) Sans surprise, enfin, les séries de Dirichlet des fonctions multiplicatives ont des
propriétés particulieres.

PROPOSITION 3.18. — Soit f € &/ une fonction arithmétique multiplicative a croissance
polynomiale.

(i) Pour tout nombre premier p, la série restreinte
[
Lfvp(s) = Z ms
m=0 p

converge absolument uniformément sur tout demi-plan fermé contenu dans Re(s) >

Oy.
(ii) La suite des produits [],<yLy,,(s) converge uniformément sur tout demi-plan fermé

contenu dansRe(s) > oy et

(iii) S’il existec € R tel que

alorsor <cet
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pour tout s € C de partie réelle strictement supérieure dc.

Démonstration. (i) Il suffit d’écrire

Zf(p)

ms
m=0 p

pour tout s € C tel que Re(s) > ¢ > oy.

cy Ol

c
n>1 n

(ii) Notons <y 'ensemble des nombres premiers inférieurs a N.

" v(p) ny
[T )= T1 (Zf(’”>: Y I f;l?(p)): y L)

pms ns
pE'@gN pGL@gN m=0 VZ,@SN%N pE@gN VL@SN%N v

oul'onaposény =[],co_, p"?). Lorsque v parcourt 'ensemble des applications de Py
dansN, n, décrit!’ensemble des entiers strictement positifs dont tous les facteurs premiers
sont inférieurs a N. Puisque ceux-ci contiennent certainement tous les entiers inférieurs a
N, nous en déduisons

<Z|fn(f),

n>N

Lg(s) — H Ly p(s)

PEP N
ce qui établit la convergence de [],c»_, Ly »(s) vers Ly(s), uniformément sur tout demi-
plan fermé Re(s) > c.

(iii) Cette hypothese équivaut a la convergence du produit infini

14 m=1 p
En raisonnant comme au point (ii), la multiplicativité de f entraine la majoration
Z f(n) < H <1 i Z f )

(™)
e B =S w1l P

pour tout N > 2, et donc la convergence de L(s), uniformément sur le demi-plan fermé

PRe(s) > c.Onadonc oy < ¢, et Ly(s) =[], Ly ,(s) d’apres le point (ii). O

REMARQUE 3.19 — Lorsque f est completement multiplicative, c’est-a-dire vérifie f(mn) =
f(m)f(n) pour tous entiers m et n, la formule du point (ii) s’écrit plus simplement sous la

forme | ( P ))_1
Yo=TI(1-2%)

n>1 n P ps
C’est une généralisation de la formule du produit d’Euler.

EXEMPLE 3.20—Ona

n>1 g p
pour tout complexe s tel que PRe(s) > 1.
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4. LA FONCTION ZETA DE RIEMANN

Nous amorcons dans ce chapitre I’étude de la fonction { en établissant I’existence d'un
prolongement méromorphe sur C satisfaisant a une équation fonctionnelle associée a la
symétrie de centre ;.

La fonction I" d’Euler joue un réle important dans I’étude de ¢ et constitue en soit un
sujet digne d’intérét...

4.1. Lafonction Gamma d’Euler

n! :/ e 't dt,
0

valable pour tout entier n € N et que I’on démontre aisément par récurrence et intégration
par parties, permet d’étendre le domaine de définition de la fonction factorielle : le second
membre garde en effet un sens lorsque |'entier n est remplacé par n'importe quel nombre
réel dans | — 1, +oo|.

Euler observa que 'identité

Plus généralement, pour tout z € C tel que 9ie(z) > 0, la fonction +— e 't~ ! est intégrable
sur |0, +oo[ et 'on pose

5) I(z) = /0 e,

REMARQUE 4.1. — On aimmédiatement
F(l):/ e'dr =1 et T(n) = (n—1)! pour tout n > 1
0

ainsi que
1 e —t dr * —u? —u?
=)= e —:2/6 du:ﬁ/e du=+n
2 0 NG 0 R

si 'on connait la valeur de l'intégrale de Gauss (©).

PROPOSITION 4.2. — (i) La fonction T" ainsi définie est holomorphe sur le demi-plan
Re(z) > 0, sur lequel :
(i) elle vérifie I'équation fonctionnelle

(6) I(z+1)=2z(z);
(ii) elle se prolonge de maniere unique en une fonction méromorphe'”) sur C, encore no-
téel;
(iii) la fonctionT satisfait I'équation fonctionnelle (2) sur C. Ses poles, tous simples, sont
les entiers négatifs, et le résidu del” en —n est (71,)".

n

6. C’est un calcul que 'on effectue classiquement en exprimant le carré de cette intégrale sous la forme
d’une intégrale double, puis en passant en coordonnées polaires. On peut également déduire ce résultat de la
formule des compléments pour la fonction I', voir la remarque 5.8.

7. Rappelons qu'une fonction méromorphe sur un ouvert U de C est une fonction définie sur le complé-
mentaire dans U d'un ensemble E de points isolés, dont chacun est un péle pour f : pour tout zy € E, il existe

un entier £ > 0 et une fonction holomorphe 4 sur un voisinage V de zy dans U tels que f(z) = (7}'7(2)k pour tout
z€ V\{z0}.
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Démonstration. (i) 1l s’agit d’'une application du théoréme d’holomorphie sous l'intégrale
(voir les rappels d’analyse complexe a la fin de ce document) :

¢ la fonction
Rog X C, (1,2) e 71 = Helogr
est continue, donc mesurable et intégrable par rapport a ¢ sur tout segment, et elle
est holomorphe par rapport a la seconde variable;

e pour tous nombresréels 0 < a < b et tout nombre complexe z € C tel que a < PRe(z) < b,
la majoration

—tga—1 :
—tz—1) _ ,—t,Fe(z)—1 < et s1? 6]07 1]
N \{ e '’ sit e [1, oo

fournit une domination uniforme en z dans la bande verticale %,;, = {z € C|a <
PRe(z) < b} par une fonction intégrale sur [0, +oo].
Sous ces hypotheéses, le théoreme d’holomorphie sous I'intégrale fournit '’holomorphie de
la fonction I sur I'intérieur de %, ;, et donc sur tout le demi-plan 9e(z) > 0 puisqu'’il s’agit
d’une propriété locale.

(ii) Lunicité du prolongement méromorphe se déduit directement du principe du pro-
longement analytique'®. En effet, si f et g sont deux fonctions méromorphes sur C qui
coincident avec I" sur le demi-plan Re(-) > 0, alors I'ensemble E de leurs poles est discret
et f et g sont holomorphes sur 'ouvert C\ E, qui est connexe; puisqu’elle coincident (avec
I') sur le demi-plan fRe(-) > 0, on obtient f = g. Cette unicité justifie I'abus de notation
consistant a utiliser I" pour désigner le prolongement méromorphe obtenu.

Existence — Etant donné un entier n > 1, on consideére la fonction I',, définie sur le demi-
plan Q, = {z € C | Re(z) > —n} par

[(z+n)
I = .
"(?) z2(z+1)---(z+n—1)

C’estune fonction méromorphe sur ce demi-plan, ayant des poles simplesen0,—1,...,—(n—
1). Les fonctions I, et I, coincident sur Q, puisque

I'z+n+1) (z4+n)(z+n)

F = = = Fn
w1(3) 2(z+1)---(z+n)  z(z+1)---(z+n) @)

pour tout z € ,\{0,—1,...,—(n— 1)} en vertu de I"’équation fonctionnelle de T". Il existe

donc une unique fonction F sur C\ (—N) telle que F(z) =T,(z) pour tousn € Netz € C\
(—N) vérifiant fRe(z) > —n. Cette fonction est méromorphe sur C, avec un pole simple en
tout entier négatif.

(iii) Lidentité I'(z+ 1) = zI'(z) entre fonctions holomorphes sur 'ouvert connexe C\ (—N)
est vérifiée sur le demi-plan %e(z) > 0, donc également sur tout C\ (—N) en vertu du prin-
cipe du prolongement analytique. Considérons finalement n € N et écrivons

[(z+n+1)
I'(z) =T, =
(Z) +1(Z) Z(Z+1)(Z+n)
pour toutz € Q,;\{0,—1,...,—n}. Comme I'(1) = 1, nous en déduisons I"’équivalent
1 " 1
I(z) ~ _ =

(—n)(—n+1)---(=1)(z+n) n!  z+n

au voisinage de —n. Ceci prouve que I admet un podle simple en —n, de résidu % a

8. Soit f et g deux fonctions méromorphes sur un ouvert connexe U de C. Si f et g coincident sur une partie
A de U admettant un point d'accumulation dans U, alors f = g.
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Le prolongement méromorphe de la fonction I' que nous venons de construire a partir
de I'équation fonctionnelle peut s’obtenir différemment, en écrivant explicitement une
fonction méromorphe qui coincide avec I' sur le demi-plan PRe(-) > 0 (voir également
I'exercice 1 sur la fiche TD4).

Pour ce faire, on commence par écrire

t n
e "= lim (1 — 7>
n—r+oo

pour tout ¢ € R. La domination

t\" t t
(1—7> = exp (nlog (1—7)> gexpn<—7> =e !
n n n

vaut pour n > |t| en vertu de I'inégalité log(1 +x) < x pour tout x > —1. Le théoréme de
convergence dominée nous permet donc d’écrire :

o0 | . oo t n 1 . 1 1
() = / el dr = lim (1—7) £ g, (1) dt = lim 7? / (1— )" du
0 0 n ' 0

n— +-oo n——+oo

pour tout nombre complexe z tel que $Re(z) > 0. On définit classiquement la fonction Béta
d’Euler en posant

1
B(x,y) :/ (1—u) 1w~ du
0
pour x,y dans le demi-plan fRe(-) > 0. En utilisant de fagon répétée 'identité
X
B(x+1,y) = —B(x,
(+1y) =~ e (x,y)

(cf. le lemme ci-dessous), il vient

n!
I'(z) = lim B(n,z)n* = lim B(1,z)n%,
() n—+oo 74 n ( ) nﬁ+oo(z—|—1)---(z+n) ( )
d’ot1 au final
nln®
7 I['(z) = lim
) ) n—tez(z+1)---(z+n)
puisque B(1,z) = %
LEMME 4.3. — Pour tous nombres complexes x,y tels que 9e(x),Re(y) > 0,
B(x+1,y) = ——B(x,y)
x+1,y) = ——B(x,y).
y P y

Démonstration. Une intégration par parties conduit a

I 1
B(x—l—IJ):/O (l—u)xuylduz;c/o (1—uy'w du:ic;B(x,)’—i-l).

En développant (1 —u)’ = (1 —u)*~'(1 —u), il vient
B(x,y+1) =B(x,y) —B(x+1,y).
La conclusion s’obtient en combinant ces deux identités. O

Lidentité (7) s’écrit de maniere équivalente sous la forme

® r(1z> = = 1),'1}. = (Re(z) > 0).

Au membre de droite figure une suite de fonctions holomorphes sur C tout entier. Nous
allons voir que la convergence est uniforme sur tout compact, et donc que la limite est
holomorphe sur C; c’est 'expression de I que I’on souhaitait obtenir.
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PROPOSITION 4.4 (FORMULE DE GAUSS) — Pour toutz € C,

o lim 2(z+ 1)+ (z+n)

- —Z
[(z) noteo n! "

et la convergence est uniforme sur tout compact. En particulier, la fonction T ne s'annule en
aucun point de C.

Démonstration. La stratégie de démonstration est tres classique : on établit tout d’abord
que le membre de droite définit une fonction holomorphe sur C en prouvant que la
convergence est uniforme sur tout compact, puis, en notant Z ’ensemble (discret) des
zéros de I', on observe que les deux membres sont des fonctions holomorphes sur I’ouvert
connexe C\ Z qui, comme on vient de le voir, coincident sur 'ouvert non vide fe(z) > 0;
I'égalité vaut alors sur C\ Z en vertu du principe du prolongement analytique. Le membre
de droite étant holomorphe sur C, on en déduit immédiatement I'(z) # O pour toutz € C

Pour toutn € N* et z € C, posons

n(z) = z(z+1)-~(z+n).

nn!

Il s’agit d'une fonction holomorphe sur C ayant un zéro simple en 0, —1,..., —n. Ecrivons

T (142
0 (2) = zg(l+k)

et

n—1 n
1 1
ni=e 08" —exp (—z Z log(k+1)— log(k)) =exp <—z Z log <1 + k)) -exp (zlog <1 + n)>
k=1 k=1

(le second facteur du membre de droite compense le terme d’indice k = n dans la somme),
d’otu

un(@) =2 [ (145 )erroeleh) et
k=1 k

Le facteur ¢°¢(1*1) tend vers 1 uniformément sur tout compact, donc nous pouvons le
négliger dans ce qui suit. Fixons R > 0 et z tel que |z| < R. Pour k > R, il vient
4 4 z
‘%‘ <1, etdonc T+ — clog(1+7)

_1)\n+1 . y . .
en définissantlog(1 +x) par la série entiére usuelle },,- ( 1}2 “ ¥ Ceci permet donc d’écrire

[T(155)e 604l = o T (14)ecweltel). T ooalrsi)-ctos(i+1)
Z 14 =) e 28Tk z 1+-)e e
k_l( 3 (1+3)

I<k<R R<k<n
B ZKI;R(” o) et
en posant
1
- 5 (5049 -2(1+)
R<k<n
Il existe un nombre C(R) > 0 tel que
[log(1+x) —x| < C(R)|x|* pour tout x € C tel que |x| < max R__R
keN, k>R k  R—+1
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On en déduit la majoration suivante pour tous entiers m,ntelsque R<m <n:

1
log (1+ )—Zlog <l+k)
1 1
1 1+-)—=

n
< ’log(l—i— )—f’—i-\z\ )
k= m+1 k=m-+1
1

pour tout z € C tel que |z| < R. Le membre de droite tend vers 0 lorsque m et n tendent vers
+o0, donc ceci établit la convergence uniforme de la suite (vg,) sur le disque fermé D(0, R).

Nous avons obtenu ainsi la convergence uniforme de la suite (u,) sur D(0,R) vers une
fonction u., s’écrivant

n
VRn(2) = VRm| < Z
=m+
n

< (CRRP+R)- Y =

R<k<n

us(z) =z [] (1 +§) e~?I0(14) vk (2)

1<k<R

pour tout z € D(0,R). Cette fonction est holomorphe sur I'intérieur de D(0,R), avec un zéro
simple en chacun des points 0, —1,...,—|R|. Puisque R a été choisi arbitrairement, la fonc-
tion u.. est donc holomorphe sur C, avec un zéro simple en chaque entier négatif. a

COROLLAIRE 4.5 (FORMULE DU PRODUIT DE WEIERSTRASS) — Pour toutz € C,
e ((E Pt
n>1
ot y désigne la constante d’Euler.

Démonstration. 11 suffit d’écrire, comme dans la démonstration de la proposition précé-
dente,

2(z+1)---(z+n) n_zzezlog(H%)ZfI(l_'_%) —zlog(1+7 zanZH(1+ )

n! i
avec
=1 <1+1> +i <1—10 <1+1>> = il—lo n=y+o(l)
=log n) = \k g k)T &k gn=y :
O
REMARQUE 4.6. — Lanon-annulation de I" sur C constituera une information importante

dans I’étude des singularités (zéros et poles) du prolongement méromorphe de la fonction
¢ sur C.

Outre I'équation fonctionnelle, l1a fonction I satisfait a plusieurs identités remarquables.
Parmi celles-ci, en voici qui joueront un role important par la suite.

PROPOSITION 4.7 (FORMULE DES COMPLEMENTS) — Pour toutz € C\Z,
V[

TR -2) = sin(7z)

Démonstration. Léquation fonctionnelle et la formule du produit de Weierstrass per-
mettent d’écrire

1

T —2) :_zr() _ZH(” o (=) ==I1 <1_k2>

k>1 k>1
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On remarque que le produit infini figurant a droite est uniformément convergent sur tout
compact de C en vertu de I'estimation log (1 + ,i—i) = 2—2 +2'0 () et de la convergence de
la série de terme général kiz (cf. la démonstration de la formule de Gauss ci-dessus).

La conclusion provient immédiatement de la formule du produit pour la fonction sinus

(Euler) : pour tout z € C,
sin(7z) 2
e =I5

k>1

(voir 'exposé 9 pour une démonstration).

REMARQUE 4.7. — En faisant z = %, la formule des compléments fournit

N? 2 /my 1 1

Vularemarque 5.1, ce calcul fournit donc une maniére de retrouver la valeur de I'intégrale
de Gauss.

PROPOSITION 4.8 (FORMULE DE DUPLICATION) — Pour toutz € C\ (—N),

((r(5) v

Démonstration. En vertu de la formule de Gauss, le membre de gauche est la limite,
lorsque n tend vers +<o, de

nin! nln's 22042 (1) 2t 2
SGE+1) - Gn) FH(HEH 1) (L n) 2(z+1)(z+2) - (z+2n+1)
_ o (an)?Pna2e D (2n+1)!(2n+ 1)
2n+1)!12n+1)* z(z+1)(z+2) - (z+2n+1)’
Ona

et, par la formule de Stirling,

12 n 2"27rn 2n+1
(I’l) ~ (e) N< n ) n 26\/>N —(2n+1) 2\/E’

@+t (2 S \2n+1

donc ] »
nin! nln'z

: ~ 2170 /T (7).

GG S

La conclusion en découle immédiatement en faisant tendre » vers +oo. O

REMARQUE 4.9. — En faisant z = 1, on retrouve de nouveau
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4.2. Prolongement de la fonction zéta : premiere méthode

Commencons par définir les nombres de Bernoulli (voir également 'exposé 4).

La fonction z — —*; est méromorphe sur C, avec des poles simples le long de 2inZ \
{0}. Elle se prolonge par continuité en 0 puisque ¢* — 1 ~ z, donc elle est holomorphe au
voisinage de 0. Son développement en série entiere a |’origine s’écrit

z B, ,

—Z
Z |
ec—1 a0 !

avec B, € R. La série entiere obtenue a pour rayon de convergence 2x (la distance de I'ori-
gine au pole le plus proche).

Le nombre B, est par définition le n-ieme nombre de Bernoulli. 11 s’agit manifestement
d’'un nombre rationnel en vertu des regles de calcul sur les séries entieres.

Le calcul des premiers nombres de Bernoulli s’effectue facilement :

— = (145 +Z2+Z3+ :
e—1 3!
2 3 2 3 2
= T z ¢ T
1— — 4+ — —...
( TR TR >+(2+3!+4,+ )
z 11\, 111\ 4
= 1—7 —_— _— —_—— =
2+< 3'+4> +< PTREY 8>Z+
= 1—£+ +0-2°+.
N 212
donc
Byp=1, B = ! B —1 B;=0
0o— 1, 1= 27 2_67 3 —VU.
PROPOSITION 4.10. — Les nombres de Bernoulli sont rationnels et By, =0 pour toutn > 1.

Démonstration. La premiere assertion découle immédiatement de la rationnalité des
coefficients de la série exponentielle et des régles de calcul sur les séries entieres. Pour
obtenir la seconde, il suffit de vérifier que la fonction f définie par

b4 Z z 2 7 e+1
= —_—= - 1 = — .
fE) =27+ 2<e2—1+> 2 -1

est paire, ce qui est immédiat. a

En poussant plus loins les calculs, on obtient

Nous en savons assez pour construire un prolongement méromorphe de la fonction
zéta sur C. Pour Re(s) > 0 etn € N*,
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par le changement de variable 7 <— nr, donc

['(s) _ /ooe_mt_s %
0 r

nS

En sommant, nous en déduisons, pour Re(s) > 1:

o o nco —t =)
:Z/ e—mtsﬁ:/ Ze—m tsdf:/ e tsg: 5 %
2>170 t 0\ 31 t o l—e? t o e—11

Linterversion de l'intégrale et de la somme est ici justifiée par le théoréme de Fubini-
Tonelli puisque la quantité

/Z|e””|dt / =1 dr
n>1 -

est ﬁnie (I'intégrabilité en 0 pour 9Re(s) > 1 découle de l'estimation 7¢()~1(¢! —1)~1 ~
Re(s
) =2),

Pour aller plus loin, nous allons traiter séparément les bornes 0 et e :

r(s)c(s)z/o1 a dt+/1°° roa

e —1t e—1t

Dans le membre de droite, la seconde intégrale définit une fonction holomorphe sur tout
C : il suffit en effet d’invoquer le théoréme d’holomorphie sous I'intégrale, avec la domi-
nation

ts—l 14
el —1 el —1
pour tout s dans le demi-plan ie(s) < a. Dans la premiere intégrale, nous pouvons rempla-
cer 5 par son développement en série entiere en 0 et intervertir la somme et I'intégrale
puisque le segment [0, 1] est contenu dans l'intérieur du disque de convergence D(0,2) :

1
/ r / n+s Zdt 1
0 e —1 = n' s n' (l—n)

La série de fonctions obtenue est normalement convergente sur tout compact K de C\
{1,0,—1,-2,...} : en effet, il existe § > 0 tel que |s— (1 —n)| > 6 pour touts € Ketn € N, et

y B 1 Z]B]

le—(1— ]
Shlnts (1—n) n>0 n!

est fini puisque 1 est a I'intérieur du disque de convergence de la série entiere - %z".
La somme de cette série de fonctions holomorphes est donc elle-méme holomorphe sur
C\{1,0,—1,-2,...}. 11 s’agit plus précisément d'une fonction méromorphe sur C ayant un
pole simple en 1 et en chaque entier négatif; en effet, étant donné n( € N, il suffit d’écrire
cette somme sous la forme
B, 1 By, 1
son!s—(1—n) " ng!s—(1—np)

B, 1

+ &np (s), avec gy, (S) = Z Wm

n>1, n#ny
et d'observer que g,, est holomorphe au voisinage de ny.
Au final, 'identité

©) M=y 2 )+/1°° roda

nls—(1—n e—11
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valable sous la condition Re(s) > 1, fournit bien un prolongement méromorphe de ¢ sur
C :le membre de droite est une fonction méromorphe f sur C, donc I'"! f est une fonction
méromorphe sur C qui coincide avec { sur son demi-plan de définition.

L'étude des singularités de ce prolongement est aisée. En posant
B, 1 <
S - ——dr
fGs) ngb n!'s—(1—n) +/1 e —1
et en utilisant les développements asymptotiques
I['(s) =14+05,1(s—1)

et
['(s)= (nl‘)s—il—n +O45,-4(1), nEN,
il vient :
— d’'une part
£6) = /6 = (1406 =)+ (F125 -0 ) = 2 +ol)
au voisinage de 1 puisque B; = 1, donc ce prolongement a un pole simple en 1, de
résidu 1;
— d’autre part
1 n—1 »n (B 1
() = ) ()= ((-1)" " (n=1D!(s+n—1)+O((s+n—1) )-(n!m_l+0(1)>
(=1)"'B,

= L ML O(stn—1
" +O(s+n—1)

au voisinage de —(n — 1), pour tout n > 1, donc

L(—(n—1)) = (-1 2,

n
ou encore

pour toutn > 0.

En se rappelant que B, s’annule pour tout » > 3 impair, nous obtenons donc I'annulation
(du prolongement) de { en tous les entiers strictement négatifs pairs; ce sont les zéros
triviaux de cette fonction.

REMARQUE 4.11. — Les valeurs {(0) = —] et {(—1) = {5 peuvent s'écrire de maniere pro-
vocatrice |
I+14+14...=—=
+1+1+ 5
et !
14243444 ...=——
+2+43+4+ o

ol les membres de gauche sont les séries divergentes obtenues en évaluant terme a terme
Y.>1n*en0 eten 1. Ces deux identités sont a comprendre de la facon suivante : étant
donnée une suite ¢ = (a,),>; de nombres complexes, considérons la série de Dirichlet
D(s) = Y,>1a,n""; en supposant
(a) que D(s) aune abscisse de convergence finie;
(b) et que D(s) admet un prolongement méromorphe sur un demi-plan contenant 0 et
holomorphe en 0
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cela fait sens de poser
Ip(a) =limD(s).
s—0

Il est clair que les suites a vérifiant les deux conditions ci-dessus forment un espace vec-
toriel complexe et que I'application a — Xp(a) est linéaire. En outre, si a, > 0 et si la série
Y..>1a, associée a la suite a est convergente, alors

Yp(a) =Y an.
n>1
En effet,
L . an _ ) an _
D)= lm D(s)= lim Y, Jim Si=)

nS
n>1 n>1" n>1
en vertu du théoreme de convergence monotone.L'opérateur ¥, est un exemple de procédé
de sommation.

4.3. Prolongement de la fonction zéta : deuxieme méthode

(4.3.1) Préliminaires d’analyse de Fourier

LEMME 4.12. — Soit f une fonction continue sur R, périodique de période 1. Posons

1 .
Cn = / f(r)e " dq
0
pour tout entier n € Z. Si la famille (c,),cz est sommable, alors
f(t) — Z Cne2i7rnt
neZ
pour toutt € R.

Démonstration. Posons g(t) = ¥,,cz c,e*™ pour tout ¢ € R. Il s’agit de la somme d'une
série de fonctions normalement convergente sur R, donc g est continue et vérifie

1 )
/ g(t>672mnt dr = Cn

0
pour tout n € Z. La fonction f — g est continue, 1-périodique et a coefficients de Fourier
identiquement nuls, donc est orthogonale a toutes les fonctions (¢ — e? ™) dans L?([0,1]);
ces derniéres formant une base hilbertienne, on en déduit f — g = 0 dans L2([0,1]), d’olu
f —g =0 presque partout puis, par continuité, f = g. O

LEMME 4.13 (TRANSFORMEE DE FOURIER D’UNE GAUSSIENNE) — Pour tout & € R,
/efnxzefzmxé dx — efmgz_
R

Démonstration. En complétant le carré dans I’exponentielle, nous obtenons :
/ o T g 2T g T / o FOHE? 4y
R R
Nous allons calculer I'intégrale apparaissant au membre de droite a I'aide du théoreme
des résidus. Fixons R > 0 et considérons le chemin 93 constitué par le bord du rectangle de
sommets —R,R,R + i& et —R + i parcouru dans le sens indirect. La fonction z — e ™ est
holomorphe sur C, donc
/e*f&:a
R
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On a d’autre part :

R ~R
/ e dg = / e dx—l—i/g ¢ T(Rit)® dt+/ e~ T—iE)? dx—ﬁ—i/é e TRFI? 4
TR —-R 0 R 0

/5 e*ﬂ'(iRJrit)z dr
0

et

< €] sup e TR < |gle KoY
[7]< €]

donc, en faisant tendre R vers oo,

R R

Il est bien connu que I'intégrale de droite est égale a 1 (on calcule son carré en appliquant
le théoreme de Fubini et en passant en coordonnées polaires). a

PROPOSITION 4.14 (FORMULE SOMMATOIRE DE POISSON) — Soit f une fonction continue et
intégrable surR telle que :

~

(i) la famille (f(n)),cz soit sommable;
(ii) la sérieY .z f(x+ n) soit uniformément convergente sur [0, 1].

On a : Pour toutx € R,

Y fletn)= Y flme 2

nez nez
et, en particulier :
) fm) =} f(n).
neZz neZz

Démonstration. Posons F(x) =Y.,cz f(x+n) pour tout x € R. La condition (ii) garantit que
F est une fonction continue et 1-périodique; en outre, elle permet d’écrire

1 _ 1 . k+1 . . ~
Cn(F) — /0 F(x>672t7'cnx dx = Z /O f(x—i—k)efz’”"x dx = Z /k f(x)efmn'nx dx = ‘/Rf(x)efmn'nx dx:f(n)

keZ keZ

La famille (¢, (F)),cz étant supposée sommable, nous pouvons appliquer le lemme précé-
dent : pour tout x € R,

F(x) — Z Cn(F)eZin'nx,
nel
c’est-a-dire

Y fGtm) = Y Flnpe? ™,

neZ nez
Il reste a évaluer les deux membres en 0 pour obtenir I'identité souhaitée :

Y f(n)=Y F(n).
neZz neZz
O

COROLLAIRE 4.15 (EQUATION FONCTIONNELLE DE LA FONCTION THETA) — Posons, pour

toutt € R+,
o)=Y e ™.
nerl
On a, pour toutt > 0,

6 (1) =/10(t).
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Démonstration. Etant donné ¢ > 0, la fonction f définie sur R par f(x) = e ™' appartient
al’espace de Schwartz . (R) et

J/‘\(é):/ e—rcxt —Ztnxédxi \[/ —7ry 21”}\/ dy = 1
R

Vi
en vertu du lemme 14. La famille des f(n) est manifestement sommable et la série des
f(x+n) converge normalement sur [0, 1] puisque

2
it

|f(x+n)| = efm(x+n)2 < efﬂ't(nz)

sur ce segment. Nous pouvons donc appliquer la formule sommatoire de Poisson a f, ce
qui conduit a I'identité

:Zf Zf <:)

neZz nez
O
(4.3.2) Prolongement méromorphe et équation fonctionnelle de
Considérons la fonction holomorphe A définie sur le demi-plan {s € C | Re(s) > 1}
par

Als) = ﬁr(%) Z(s).

THEOREME 4.16. — La fonction A se prolonge en une fonction méromorphe sur C ayant
pour uniques singularités des poles simples en 0 et 1, de résidus respectifs —1 et 1. En outre,
ce prolongement satisfait a l'équation fonctionnelle

VseC, A(s) =A(1-s).

Démonstration. Pour tout nombre complexe s tel que Re(s) > 1,
Als)=m" 31“( Z/ e't2n idt—Z/Jme””z“u;
n>1 t n>1 0

Linterversion de la somme et de I'intégrale se déduit du théoreme de Fubini sur |'espace
produit Z x R, muni du produit de la mesure de comptage et de la mesure de Lebesgue.
En effet, en posant 6 = fe(s), il vient :

Z/er ey ‘du*Z/ ey "S- gy — 2F< )C(G)<oo
n>1 0 2 ’

n>1

donc

oo
0= [T p et &
u

n>1

Nous reconnaissons la fonction 0 de Jacobi :

A(s) :/0+°°;(9(u)_1) d; 1 pdu, ]

= [ =(6(u)-u — ~(0(u) —1)u2
| 2O —=Due == o S (0(u) —1)u
Dans le membre de droite, 'intégrale sur [1, 4| définit une fonction holomorphe sur C
tout en entier : c’est une application du théoréme d’holomorphie sous l'intégrale, en utili-
sant la domination

I\)\ﬂ

1 s
S1000) = 1]+t <
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uniformément sur tout compact de C. Lintégrale sur [0, 1] est plus problématique : on a
6(u) ~ - au voisinage de 0 puisque

&
1 1 1
Ou)=—406(-|~—
) Vu (u) Vu
en vertu de I'’équation fonctionnelle, donc I'intégrabilité en 0 ne vaut que si fRe(s) > 1. Le
changement de variable r = % permet cependant de réécrire cette intégrale sous la forme

[SIAD Iy

oo 1 1—s dM 1 oo 1—s ¢ dl/l
o ()
/1 S(6(u)— 1> u+2/1 W —ut) 2

1 1 teo ] 1—s du
= — = — —Duz —.
s—1 s+/1 Z(O(M) Ju> u

“

La dernieére intégrale obtenue définit de nouveau une fonction holomorphe sur C tout
entier. Nous avons ainsi obtenu l'identité

A= —if/fw;(e(u)— D (uf4u's) &

s—1 u

pour tout nombre complexe s tel que PRe(s) > 1. Le membre de droite est une fonction
méromorphe sur C dont les seules singularités sont deux poles simples en 0 et 1, de résidus
respectifs —1 et 1, et qui est invariante par I'involution s — 1 — . O

Léquation fonctionnelle
s=1 1—s s s
2 r( : )C(l—s)—n ir (5) £(s)

peut se réécrire un peu plus simplement. En écrivant % =1- %, la formule des complé-

ments et la formule de duplication conduisent a

r <1 —s> B T
2 sin (LSZHU I (&)
al (3)
sin (25} /@211 (s)
2R ()
sin (7”(‘?1)) [(s) ’

£(1—s)=2"7"sin (”(“‘2* 1)) T(s)¢(s)

et
¢(s) =27 'sin (%) r(1—s)¢(1—s)
pour touts € C\ {0,1}.

COROLLAIRE 4.17. — Pour tout entiern

WV
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Démonstration. Léquation fonctionnelle fournit I'identité

W) [(2n)8(2n) = (—1)"2' 272" (2n — 1)1 (2n).

On connait par ailleurs les valeurs de zéta aux entiers négatifs :

B
C(H) = (-1

¢(1—2n) =227 sin <

pour tout k € N, donc

By,
1—2n) =22,
S(1—2m) = =~
La formule ,
(2m)™ 1
2n) = —1)""'B
en découle immédiatement. O
COROLLAIRE 4.18. — La fonction zéta admet un prolongement méromorphe sur C dont

l'unique singularité est un pole simpleen 1, de résidu 1. Elle sannule en tous les entiers pairs
strictement négatifs (les zéros triviaux). Ses autres zéros sont tous contenus dans la bande
verticale {s € C | 0 < Re(s) < 1} et ils sont globalement préservés par les transformations
s—1—sets—s.

Démonstration. Le prolongement méromorphe de A et de I sur C donnent évidemment
naissance a un prolongement méromorphe de { sur C:

¢(s) = mil (%)_ As).
Le membre de droite est holomorphe sur C\ {0,1}, et méme sur C\ {1} puisque A(s) =
~liro()etr (%)_1 = 3 +0(s?) au voisinage de s = 0. En outre, I'holomorphie de A sur
C\ {0, 1} force la fonction zéta a s’annuler en tout entier strictement négatif pair puisque
tel est la cas de la fonction holomorphe s — I'($) -

Pour aller plus loin, observons que la fonction zéta ne s’annule pas sur le demi-plan
Re(-) > 1 en vertu de I'identité

u(n
() y M =
n>1
sur ce demi-plan (rappelons qu’il s’agit d'une reformulation de I'identité de convolution
01 = 1 xu). Comme la fonction I ne s’annule pas sur C ©), on en déduit que

Als) =773 (3) ()

ne s’annule pas davantage pour Re(s) > 1, et donc également pour fe(s) < 0 en vertu de
I'équation fonctionnelle. On en déduit que chaque entier strictement négatif pair est un
zéro simple de { (ce serait sinon un zéro de A), et que { ne s’annule nulle part ailleurs sur
le demi-plan fRe(s) < 0. Comme I" ne s’annule pas, les zéros non triviaux de ¢, c’est-a-dire
de partie réelle dans [0, 1], sont précisément les zéros de A; il sont donc invariants par la
transformation s — 1 — s (symétrie de centre %). On a par ailleurs

() =20s)

pour tout s € C\ {1} puisque les fonctions { et s — {(5) sont holomorphes sur cet ouvert
connexe et coincident sur I'intervalle réel | 1, 4], qui contient des points d’accumulations.

9. Rappelons que son inverse est holomorphe sur C...
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On en déduit immédiatement que I'ensemble des zéros de { est stable par conjugaison
complexe. Tout zéro non trivial s) = oy + ity de { dans la bande critique 0 < oy < 1 vient
donc accompagnés des zéros 5p, 1 — sp et 1 —5p. O

Pour aller plus loin, observons que la fonction zéta ne s’annule pas sur le demi-plan
MRe(-) > 1 en vertu de I'identité
p(n)

nS

&(s) =1
n>1

sur ce demi-plan (rappelons qu’il s’agit d'une reformulation de I'identité de convolution
81 = 1% u). Comme la fonction I ne s’annule pas sur C (!, on en déduit que

Als) =774 (3) ¢(s)

ne s’annule pas davantage pour Re(s) > 1, et donc également pour fe(s) < 0 en vertu de
I’équation fonctionnelle. On en déduit que chaque entier strictement négatif pair est un
zéro simple de { (ce serait sinon un zéro de A), et que { ne s’annule nulle part ailleurs sur
le demi-plan fRe(s) < 0. Comme I" ne s’annule pas, les zéros non triviaux de ¢, c’est-a-dire
de partie réelle dans [0, 1], sont précisément les zéros de A; il sont donc invariants par la
transformation s — 1 —s (symétrie de centre 3). On a par ailleurs

6()=¢(s)
pour tout s € C\ {1} puisque les fonctions { et s — {(5) sont holomorphes sur cet ouvert
connexe et coincident sur I'intervalle réel |1, +<o[, qui contient des points d’accumulations.
On en déduit immédiatement que 'ensemble des zéros de { est stable par conjugaison
complexe. Tout zéro non trivial s) = oy + ity de { dans la bande critique 0 < oy < 1 vient
donc accompagnés des zéros 59, 1 — 5o et 1 —5p. |

4.4. Non-annulation de {(s) pour Re(s) > 1.

Rappelons que, si f est une fonction méromorphe non identiquement nulle au voisi-
nage d'un point zy de C, alors f s’écrit localement

f(2) = (z—20)"¢(2),
oum € Zest!'ordrede f en zp, noté m = ord,, (f), et g estune fonction holomorphe inversible
définie au voisinage de zo. On en déduit (')

/ /

L= 48

f z—2 &
et ¢’ /g est une fonction holomorphe au voisinage de z. Ainsi, si f est définie sur un ouvert
Q de C, alors f7/ est une fonction méromorphe sur Q ayant un pole simple en tout zéro ou
pole zp de f, de résidu ord,, (f), et

/

lim (z — 20)]}(1) = ordy, (f).

220

10. Rappelons que son inverse est holomorphe sur C...
11. En utilisant le fait que la dérivée logarithmique d'un produit est la somme des dérivées logarithmiques

des facteurs :
(w) oV

uy u 14
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THEOREME 4.19. — La fonction zéta ne s‘annule en aucun point du demi-plan {s €
C | Re(s) > 1}.

Démonstration. La non-annulation de {(s) lorsque PRe(s) > 1 découle directement de
I'identité

oo

Z

qui vaut sous cette condition et, rappelons le, traduit I'identité de convolution 1 x u = §;
(cf. Chapitre 2).

Pour MRe(s) > 1 toujours, la formule du produit

Ees)=T11-p)"

p

permet d’exprimer la dérivée logarithmique de la fonction zéta sous la forme

¢ (logp 3 10gp _ 10gp logp
Z(S) ; 1— - Z - Z ;PS(PS_I)'

La série
log p
_ Z Ty
est normalement convergente sur le deml-plan fermé PRe(s) > ¢ pour tout ¢ > %, donc sa
somme ¥ est une fonction holomorphe sur le demi-plan ouvert Q) = {s € C| Re(s) > 1}.
En posant

1
o(s) = — Y ~=L
p P
et en écrivant
C/
7 (s) —¥(s),

on obtient une fonction méromorphe @ sur sur le demi-plan Q; = {s € C | fRe(s) > 1} ad-
mettant un prolongement méromorphe au demi-plan Q 1 ayant les mémes poles que ¢’/ &,

avec les mémes résidus.

D(s) =

Considérons maintenant un nombre complexe sy = 1 + iy, avec 1y € R*, ainsi que le
nombre complexe s; = 1 + 2ity. Introduisons les entiers naturels

m = ordy,§, n=ordy, (§)

et rappelons que I'on a
ord; (§) = —1.
En vertu de I'identité ¢ (5) = {(s) pour tout nombre complexe z # 1, il vient

ords(§) =m et ords(§) =n.

La fin de la démonstration est astucieuse. Elle consiste a considérer I’expression

Ale) = D(1+e—2ity) +4P(1+£—ity) +6D(1+¢€) +4P(1 4 £+ itg) + P(1 + £+ 2ity)
2
4
= D(1+ &+ 2ikt
k;2<k+2> ( +€e+2 ())

pour € € R. suffisamment petit et a calculer la limite de €A(€) lorsque € tend vers 0. D'une
part, nous avons
limeA(e) =2n+4m—06

£—0
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. Y
lim (z—20)®(2) = lim = (2)

% C

43

= ordy, ()

pour tout zp € Q 1 envertu du rappel effectué avant I'énoncé du théoreme. D’autre part,

2
A(e)
k=-2

- Z <2+k)z
Z 2
—Z

logp
1+£

)}
>

logp
1+e

donc A(e) < 0 pour tout €. On en dedult I 1negalité

2n+8m—6<0,
puis
m =20,
ce qu’il fallait démontrer.
COROLLAIRE 4.20. — La fonction
¢ 1
= C (S) + s — 1

) <kiz>q>(1+e+2ikzo)

logp

1+&+2ikty

(k 4 >p2ik1‘0
k2

+pit0/2)4

admet un prolongment holomorphe sur un voisinage du demi-plan fermé {s € C | Re(s) >

1}.

Démonstration. En effet, {’/{ est une fonction méromorphe sur C ayant un unique pdle,

simple, en s = 1, de résidu —1.

g

Nous verrons au dernier chapitre que le théoréme des nombres premiers découle « di-
rectement » de cet énoncé; plus exactement, il s’agit de la seule information requise sur la

fonction zéta pour établir le TNP.
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5. CARACTERES ET FONCTIONS L DE DIRICHLET

5.1. Caracteres de Dirichlet

DEFINITION 5.1. — Soit N > 1 un nombre entier. Un caractere de Dirichlet modulo N est
une fonction x : Z. — C induite par un morphisme de groupes 3 : (Z/NZ)™ — C*. Plus pré-
cisément:
2(n) = { 0 si pged(n,N) # 1
X(n (mod N)) sipged(n,N)=1.

Le caractere de Dirichlet modulo N tel que x(n) = 1 pour tout entier n premier a N est dit
principal (ou trivial).

Il peut arriver qu'un caractere de Dirichlet modulo N se factorise par (Z/MZ)* avec M|N
et M # N, c’est-a-dire que x provienne d’'un caractere de Dirichlet modulo M via la projec-
tion canonique

(Z/NZ)" — (Z/MZ)" .

Cette observation motive la définition suivante.

DEFINITION 5.2. — Le conducteur d'un caractere de Dirichlet x est le plus petit entier M
(au sens de la divisibilité) tel que y se factorise a travers (Z/MZ)*. On dit qu'un caractére de
Dirichlet modulo N est primitif si son conducteur est égal aN.

De facon évidente, le conducteur du caractére principal modulo N est égal a 1.

EXEMPLE 5.3. — 1. Les caracteres de Dirichlet modulo 4.

Le groupe (Z/4Z)™ est cyclique d’ordre 2, engendré par la classe de —1. Il y a deux ca-
racteres de Dirichlet modulo 4 : le caractere principal y;, défini par x;(—1) = xi1(1) =1, et
le caractére y,, défini par x»(1) =l et yo(—1) = —1.

2. Les caracteres de Dirichlet modulo 8.

Le groupe (Z/8Z)* est abélien d’ordre 4. Tous ses éléments sont de carré trivial, donc il
estaZ/2Z x Z./2Z. Plus précisément :

(Z/8Z)* ~ (—T) x (3).

Un caractere de Dirichlet modulo 8 envoie tout élément de (Z/8Z)* sur un élément d’ordre
(au plus) 2 dans C*, donc sur 1 ou —1, et il est entierement déterminé par la connaissance
des images de —1 et de 3. Ces observations permettent de dresser aisément la liste de tous
les caracteres de Dirichlet modulo 8 :

1|—-1| 3 | —3 | conducteur
x| 1] 1 1 1 1
n|1l|-1|-1]1 4
x|l 1 | —-1]-1 8
x| 1| —1] 1 | —1 8

Les caracteres qui se factorisent a travers (Z/4Z)* sont ceux qui sont triviaux sur le
noyau {1,—3} de la projection canonique (Z/8Z)* — (Z/4Z)*.
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5.2. Fonctions L de Dirichlet

On associe a tout caractere de Dirichlet ¥ modulo N la série de Dirichlet
x(n
Ligs) = ¥ 20,

s
n=1 n

Comme |x(n)| < 1, cette série de Dirichlet est absolument convergente sur le demi-plan

Re(s) > 1 et
oo (-22) - 52)’

P P’
P piN
sur ce demi-plan par multiplicativité compléte de y.
PROPOSITION 5.4. — Soit y un caractere de Dirichlet modulo N.
1. Siy =1 est le caractere principal, alors U'abscisse de convergence (absolue) de L(1,s) est

égaleal et
L(1,s) = H (1 - 1> &(s)

pIN p
pour tout nombre complexe s tel que Re(s) > 1.

2. Siy nlest pas principal, alors :
@

pour tout nombreréelx > 0;

(ii) Uabscisse de convergence (resp. de convergence absolue) de la série de Dirichlet
L(x,s) est égale a0 (resp. al).

Démonstration. 1. U'abscisse de convergence (absolue) de L(1, ) est égale a 1 puisque la
série Yy % diverge. On a immédiatement

L(l,s>zn(1_ls>1:n<1— L)

PIN p pIN P

sur le demi-plan PRe(s) > 1.

2. Considérons maintenant un caractere y non principal.
Pour établir (i), il suffit d’'observer que la fonction sommatoire de y est N-périodique,

puisque

Y x(n)=0

nel
pour tout intervalle / de longueur N par orthogonalité de y et du caractére principal, et
d’observer que 'on a trivialement

Y x(n)

n<x

< Y lx(ml= o)

n<N

pour toutx € [0,N].

Le fait que la fonction sommatoire de y soit bornée entraine que I'abscisse de conver-
gence o, de L(yx,s) vérifie o, <0 (TD 3, exercice 2), et]'on obtient 6. = 0 en observant que la
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série )~ x(n) ne converge pas puisque |x(n)| = 1 pour tout n premier a N. On a par ailleurs
o, = 1 puisque |x(n)| < 1 pour tout n et que la série ¥~ [ (n)|n™" = L2, pgcduyy—17 " di-
verge. 0

5.3. Non-annulation de L(y,s) pour RRe(s) > 1.

PROPOSITION 5.5. — Pour tout caractere de Dirichlet modulo N non principal,
L(x,1)#0.

Démonstration. Pour s de partie réelle > 1, posons

z(s) = JI Lxs)

x mod N

- ()

x mod N piN

O (1_95( >)“

S
PIN x mod N p

1 —&(p)
)

PIN

ol f(p) désigne I'ordre de p dans (Z/NZ)* et g(p) = (N)/f(p). En effet, x(p) est toujours
une racine f(p)-ieme de I'unité, et chacune apparait g(p) fois (voir les rappels sur les ca-
racteres des groupes abéliens finis dans I'appendice). La derniéere égalité découle de la

factorisation
1-x/ =J(1-&x)
¢
dans C[X], ou £ parcourt 'ensemble des racines f-iemes de 'unité dans C.

On reconnait a droite un produit des séries géométriques Y,,~ ﬁ, donc nous pouvons
écrire

(10) H L(y,s) =

S
X mod N ln

avec a, > 0 pour tout n; c’est une propriété remarquable, puisque chacune des séries L(x, s)
est a coefficients complexes!
Désignons par o 'abscisse de convergence (absolue) de cette série de Dirichlet.
En observant que I'on a
1 1 1

_ —1_ <1- =
b= e =1 e ST

il vient

H< 1 )-g( H( 1 )-g(p) H< 1>—g(p) H< 1>—1
l————— = > 1—— > l—— .
DN pf(P)/‘P(N) 1/8 p) N p DN p

Comme le produit de droite est divergent ('>), on obtient déja
1

G)W.

12. Cela équivaut a la divergence de la série des inverse des nombres premiers.
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Raisonnons maintenant par I’absurde en supposant qu’il existe un caractere non prin-
cipal yx tel que L()xo,1) = 0. La fonction

L(1,9)L0to,5) = [T(1 = p )E(s)Llxo.5)
pIN
se prolonge alors en une fonction holomorphe sur tout le demi-plan Re(s) > 0 puisque,
comme nous l'avons établi précédemment, {(s) admet un prolongement méromorphe
sur ce demi-plan ayant un unique pole, simple, en s = 1. La série de Dirichlet Z(s) admet
donc un prolongement holomorphe sur le demi-plan RRe(s) > 0, ce qui impose ¢ < 0 pour
son abscisse de convergence (absolue) o en vertu de la proposition suivante. Nous avons
abouti a une contradiction, ce qui termine la démonstration. O

PROPOSITION 5.6 (Lemme de Landau) — Soit (a,),>1 une suite de nombres réels positifs
telle que la série de Dirichlet Y, a,n* ait une abscisse de convergence ¢ < +oo. La fonction
f(s) = Xus1ann™°, définie sur le demi-plan Re(s) > o, n'admet pas de prolongement holo-
morphe au voisinage de c.

Démonstration. Si I'on pose b, = a,n"°, de sorte que a,n° = b,n~~ %), la série de Diri-
chlet Y, -, b,n™" est encore a coefficients positifs, a pour abscisse de convergence 0 et se
prolonge holomorphiquement au voisinage de 0 si et seulement si f se prolonge holomor-
phiquement au voisinage de o. Cette observation montre qu'il suffit donc de considérer le
caso =0.

Supposons que f admette un prolongement holomorphe sur un disque ouvert D de
centre 0. En observant que a,n* croit vers a, lorsque s tend vers 0 dans ]0, <[, nous pou-

vons écrire
N

N
£0)=_lim_f(s)=supf(s) > sup f=Z

5s—0, s>0 $>0 §>0 e 1n5

pour tout N > 1, donc la série numérique de terme général a, > 0 est convergente. Ceci
permet d’appliquer le théoreme de convergence dominée, qui fournit I'égalité

0) = Z ap.
n>1

Nous pouvons reproduire ce raisonnement avec la série de Dirichlet Y-, a,(logn)n™", de
somme — f’(s) sur le demi-plan fRe(s) > 0 et a coefficients tous positifs; nous obtenons

- Z ay(logn).
n=1
Plus généralement, en itérant ce raisonnement,
F9(0) = (1) ¥ a(logn)*
n>1
pour tout k£ > 0.
Par hypothese, la série entiere
1
Y G/POF =¥ ¥ (~1a(logn)'?
k=0 " k=0n>1

converge sur le disque D. En I’évaluant en un nombre réel s < 0 dans D, nous obtenons une
série double convergente a termes positifs; il est donc licite d’intervertir les deux sommes
et de conclure a la convergence de la série numérique

Zanzklv (—tlogn)* Zan ~tlogn _ y dn.

nt
n=z1l k>0 n>1 n=1
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Il en découle que I'abscisse de convergence o de notre série de Dirichlet est inférieure a ,
et donc strictement négative. Comme ¢ = 0, c’est une contradiction et f ne peut donc pas

avoir de prolongement hololomorphe au voisinage de c. O
REMARQUE 5.7. — Soit x un caractére de Dirichlet et soit fRe(s) > 1. La formule du produit
L(x.s) =10 = x(p)p™)"

p
implique
L’( Z% p (10gp _ Zx(p)(logp)
%,s ~ 1—x(p)p™ >~ r—x(p)’
c’est-a-dire
L'(x.s) _
an o) = Prls) ¥
ou
Z x(p 1ng
p
et
Z % (p)*logp
> p*(p*—2(p))

est holomorphe pour Re(s) > 1.

COROLLAIRE 5.8 (Théoreme de la progression arithmétique de Dirichlet) — Soita et N deux
entiers strictement positifs tels que pged(a,N) = 1. Lensemble
ZN(a+1ZN)
des nombres premiers congrus a a modulo N est infini.
Démonstration. Pour s € C tel que Re(s) > 1, posons

By(s) = Z log p _ Z lﬁ(ﬁ).

p=a (mod N) P’ P P

Cette série est normalement convergente sur tout demi-plan fermé 9Re(s) > ¢ > 1, donc @,
est une fonction holomorphe sur le demi-plan ouvert Q; = {s € C | Re(s) > 1}. La théoréme
de la progression arithmétique va simplement découler du fait que ®,(s) tend vers +c
lorsque s tend vers 1 dans R- , ce que nous allons établir.

La fonction 1;: (Z/NZ)™ — C se décompose dans la base des caracteres de (Z/NZ)~

Io=) (xIla)x Zx

x
Nous pouvons donc réécrire ®,(s) sous la forme :

logp xX(p 10gp
(12 o ZLE@ = o) L@ LA
P

ol y parcourt I’ensemble des caractéres de Dirichlet modulo N. Grace au calcul effectué a
la remarque 5.7, nous obtenons, toujours pour Re(s) > 1:

_ Ly e = — Lyl
o) DA =~ i AT
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Dans le membre de droite, le second terme est une fonction holomorphe sur le demi-plan
Q= {s € C | Re(s) > 1}. Le premier terme est une fonction méromorphe sur le demi-plan

Qp={se€C|Re(s) >0} qui:
e possede un pole simple en s = 1, de résidu ﬁ, si x est le caracteétre trivial modulo
N;
¢ est holomorphe au voisinage de 1 si y est non trivial, en vertu de la proposition 5.5.

Ces observations montrent que ®, admet un pole simple en s = 1, de résidu ﬁ; on a
donc
lim B, s)| = +ev
ce qu’il fallait démontrer. |

THEOREME 5.9. — Soit y un caractere de Dirichlet modulo N.
(i) Six est non trivial, alors L(x,s) ne sannule pas pour Re(s) > 1.
(ii) Siy =1, alorsL(x,s) ne sannule pas pour Re(s) > 1 ets # 1.

Démonstration. Pour ¢ € R, désignons par Q. le demi-plan ouvert {s € C | Re(s) > c}.
Considérons de nouveau la fonction Z définie pour s € Q, par

Z(S) = HL(X7S)7
4

ou x parcourt I'’ensemble des caracteres de Dirichlet modulo N (cette fonction a été intro-
duite dans la démonstration de la proposition 5.5). Il s’agit d'une fonction holomorphe sur
Q; admettant un prolongement méromorphe sur Q, et le théoreme a démontrer équivaut
au fait que Z posséde un pole en s = 1 et ne s'annule pas sur Q; \ {1}. La premiére assertion
est acquise en vertu de la proposition 5.5 et Z(s) # 0 pour tout s € Q; en vertu de la formule
du produit

Z(s)=T1I T = x(p)p~)".
X p

Il reste donc a démontrer que Z ne s’annule en aucun nombre complexe s # 1 tel que
MRe(s) = 1. On reprend pour cela la stratégie de démonstration du théoreme 4.19, en étu-
diant la dérivée logarithmique de Z.

Fixons so = 1 +ity, avec 1) € R* et considérons également le point s; = 1 + 2ity. Posons
m=ordy,(Z) et n=ordy, (Z).

La série de Dirichlet Z étant a coefficients réels (voir le début de la démonstration du théo-

reme 5.5), elle vérifie Z(5) = Z(s) pour tout s € Q;, donc

ordg;(Z) =m et ords(Z) = n.

En reprenant le calcul effectué a la remarque 5.7, nous pouvons écrire, pour s € Q;,

_Z(s)
Z(s)

- L gf:j)) — By(s) + By (s),

Py (s) = —) ¥y (s)
x
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est holomorphe sur le demi-plan Q L et

Dy(s) = —) Pyls)
X

— YY)
p X

p
logp

p=1 (mod N) p’

en vertu des relations d’orthogonalité satisfaites par les caractéeres de Dirichlet. Les fonc-
tions méromorphes —% et dy ont les mémes parties polaires sur le demi-plan Q L

Considérons maintenant I’expression

2 4 -
A(E) = k:Z_Z <k+2> ‘I)N(l +€+lkl0)

logp z 4 —ikt,
= _Zp1+£ Z (k+2>p 241
p k=-2
logp to 4
= _§P1+8 (Zcos <§logp>)

pour € > 0. Il s’agit d'un nombre réel positif. On a par ailleurs

2 !
4 Z
lim €A = —1 —(1 2i
lim €A(e) E%k_z_2<k+2)gz( + €+ 2ikio)
4
L)
= - ord; ik, (Z)
k_z(k+—2 0
= —2n—8m+6

. d A . . P . . 2z . P
puisque ®y et £ ont les mémes parties polaires sur Q. Nous en déduisons I'inégalité
2

2n+8m—6 <0,
d’ou
m =0,
ce qu’il fallait démontrer. O
Nous concluons ce chapitre en formulant le résultat d’analyse complexe qui nous per-

mettra d’établir au chapitre suivant une version renforcée du théoreme de la progression
arithmétique.

COROLLAIRE 5.10. — Soit a et N deux nombres entiers strictement positifs tels que
pged(a,N) = 1. Posons
lo
D, (s) = =
p=a (mod N) P
La fonction
1 1
= Dy(s) — ——
T s

admet un prolongement holomorphe sur un voisinage du demi-plan fermé Q, = {s €
C | Re(s) > 1}.
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Démonstration. Pour Re(s) > 1, nous avons établi dans la démonstration du corollaire

5.7 I'identité . Lr.s)
e Y 2@ K g
Puls) =~ iy DA 7 5y~ Hals)

ou x parcourt I'ensemble des caracteres de Dirichlet modulo N et

x(p)*logp
Z% L5t )

> (P —x(

est une fonction holomorphe sur le deml-plan ouvert Q; = {s € C| Re(s) > 1}. 1 découle
du théoréme précédent que la fonction L' (y,-)/L(x,-) est:
e holomorphe au voisinage de Q, si y est non trivial;

e méromorphe au voisinage de Q;, avec un unique pole, simple et de résidu —1, en
s =1, si y est trivial.
La conclusion s’en déduit immédiatement. ad
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6. LE THEOREME DES NOMBRES PREMIERS

Rappelons que I'on désigne par x la fonction de comptage des nombres premiers :
Vx € R>o, m(x) =Card ({p premier et p < x}).
Nous allons voir dans ce chapitre une démonstration du théoréeme des nombres premiers.

THEOREME 6.1. — Quand x tend vers +oo,
7(x) ~
X))~ —.
Inx

La premiere preuve a été obtenue (de facon indépendante) par Jacques Hadamard et
Charles de la Vallée Poussin en 1896. Le cceur en est le prolongement méromorphe de
la fonction ¢ sur le demi-plan Q = {z € C | fie(z) > 0} et sa non-annulation sur le demi-
plan fermé Q; = {z € C | Re(s) > 1}, mais elle requiert en fait une étude plus fine de ¢
afin d’obtenir, en particulier, un voisinage explicite de Q; dans Q sur lequel { ne s’annule
pas (13,

En 1909, Edmund Landau a donné une démonstration plus simple de ce théoréme, qui
ne requiert que la non-annulation de { sur Q; et la croissance au plus polynomiale de
{'(s)/¢(s) lorsque s tend vers 4o dans Q. En 1931, finalement, Shikaro Ikehara est parvenu
a déduire le théoréme des nombres premiers de la seule non-annulation de { sur Q;, en
utilisant pour cela les travaux fondamentaux et contemporains de Norbert Wiener (théorie
taubérienne). Ceci est particulierement satisfaisant car il est assez facile de montrer que,
réciproquement, le théoreme des nombres premiers entraine la non-annulation de { sur
Q (cf. section 6.4). C’est cette démonstration que nous allons présenter dans ce qui suit,
avec une simplification apportée par Donald Newman en 1980.

En bonus, nous obtiendrons un renforcement du théoréme de la progression arithmé-
tique. Etant donné deux entiers naturels a,N > 1 tels que pged(a,N) = 1, posons

Vx € R>o, mun(x) = Card ({p premier, p=a (mod N) et p < x}).

THEOREME 6.2. — Soita,N € N* avecpged(a,N) = 1. Quand x tend vers +o,

1
——7(x).
¢(N)
Autrement dit, les nombres premiers sont équidistribués parmi les suites arithmétiques de
raison N.

7'L'a7N(X) ~

6.1. Une reformulation du théoréme des nombres premiers

Pour tout x € R, posons

0(x) = Z Inp.
PsX
PROPOSITION 6.3. — Le théoréme des nombres premiers équivaut a l'estimation asympto-
tique
0(x) ~x

quand x tend vers +co.

13. Rappelons que I'hypothése de Riemann affirme que le domaine optimal est le demi-plan Q.
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Démonstration. Pour tout x € R>, la majoration

6(x) =) Inp<(Inx) ) 1=n(x)lnx

PSX PSX

est immeédiate. Pour tous nombres réels y < x dans R, on dispose par ailleurs de la mino-
ration

6(x)> Y Inp> (Iny)(n(x)—a(y)) > 7(x) Iny— ylny.

En fixant a dans ]0, 1] et en posant y = x%, on en déduit
0(x) > am(x)Inx — ax*Inx,
donc
@ > OcM —ax®* Mnx
X x/Inx
et, en faisant tendre x vers +oo,
0
) imint &)
x/Inx X

) < limsup @
x/Inx X

Puisque « a été choisi arbitrairement dans |0, 1[, nous obtenons au final

9 0
timinf =L~ 1iminf 8% et timsup 2L — fim sup 2
xotoo x/Inx  xotee  x xoteo X/INX e X

aliminf

alimsup

et donc la reformulation annoncée du théoreme des nombres premiers. O

REMARQUE 6.4. — Le théoréeme de Tchébychev établi au premier chapitre (théoréme 1.9)
entraine I'estimation

0(x) =O(x)
quand x tend vers +o0, que nous allons utiliser au cours de la preuve du théoréme des
nombres premiers.

Considérons maintenant deux nombres entiers a, N € N* tels que pgced(a,N) = 1 et po-
sons

Oun(x) = Z Inp.
p<x, p=a (mod N)

La méme démonstration permet d’établir une reformulation du théoreme 6.2.

PROPOSITION 6.5. — Quand x tend vers + :
1 x 1
aN ()~ SN T an (%)~ o

6.2. Le théoréme de Wiener-Tkehara

Considérons une série de Dirichlet
+
an
fls) = ey
n=1
a coefficients complexes. Pour tout x € R, on pose

Ax) = Z ay.

n<x
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THEOREME 6.6. — Supposonsa, € R> et A(x) = O(x) quand x tend vers +, ce qui garantit
la convergence de f(s) pourRe(s) > 1. S'il existe un nombre réel a tel que
o

se prolonge en une fonction holomorphe sur un voisinage du demi-plan fermé Q, = {s €
C | Re(s) > 1}, alors
Ax)

lim — =«.
X—+too X

L'essentiel de la preuve du théoreme de Wiener-Ikaehara est contenu dans les deux
lemmes suivants.

LEMME 6.7. — Soitu : [1,+e[— R une fonction croissante et soit o. € R. Si l'intégrale géné-
ralisée
T u(x) —ax
[,
1 X
converge, alors
lim @ =a.
X—+4o X

Démonstration. Nous allons raisonner par I’absurde.
Supposons tout d’abord
limsup —= u()

x—+4oo X

1l existe alors une suite (x;) de nombres réels strictement positifs tendant vers 4o et telle
que u(x;) > Ax; pour tout k.
Par croissance de u, nous obtenons la minoration

A A A
% u(x) —ax % Axg — ax a A—at
———dx > / ———dx= / dr.
/xk -x2 - Xk -x2 1 t2

Une contradiction en découle, puisque le membre de droite est un nombre réel stricte-
ment positif indépendant de k tandis que le membre de gauche tend vers 0 quand & tend
vers +oo, par convergence de l'intégrale généralisée.

Supposons maintenant

>A>a.

u(x)

liminf ™ <pu<a
X—+eo X

et considérons de nouveau une suite (x;) de nombres réels strictement positifs tendant
vers +oo et telle que u(x;) < ux; pour tout k.
Par croissance de u, nous obtenons la majoration

/xk u(x)—ocxdx< a0 lxk—ax ,u ar |

2
=Xk X %xk

Q=

Une contradiction en découle de nouveau, puisque le membre de droite est un nombre
réel strictement négatif ne dépendant pas de k tandis que le membre de gauche tend vers
0 quand & tend vers + par convergence de l'intégrale généralisée.

Nous venons d’établir I’encadrement

o< liminf@ < limsup @

La,
x—4oeo X x—+o0 X
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donc
lim @ =
X—rFoo X
O
LEMME 6.8. — Soit h : R>¢g — C une fonction mesurable bornée. Soit g la fonction holo-
morphe définie sur le demi-plan Q) = {z € C | Re(z) > 0} par
—+oo
g(z) = h(t)e @ dt.

0

Si g se prolonge holomorphiquement sur un voisinage du demi-plan fermé Q, alors l'inté-
grale généralisée [, h(t) dt est convergente et

/ ) de = g(0).
0

Démonstration. Pour tout nombre réel 7 > 0 et tout nombre complexe s, posons gr(s) =
i h(t)e~* dr. La fonction g7 est holomorphe sur C et nous devons prouver que gr(0) tend
vers g(0) quand T tend vers + + oo.

Pour R > 0 fixé, il existe 6 > 0 tel que g soit holomorphe au voisinage de 'adhérence de
I'ouvert

Q={seC|Re(s) >—Fbet|z]| <R}

En traitant la frontiere de Q comme un lacet y orienté positivement,le théoreme des rési-
dus fournit I'identité

g(0)—gr(0) = 2117_5/}/(8(2) —gr(z))e’ <i + RZZ> dz.

(i) SifRe(z) >0, alors g(z) = [, h(t)e @ dt et donc

< \|h||oo/+w e el g = x'(‘je%@?
T ¢(z

—+oo
h(t)e @ dt

8(2) —gr(2)| =

(i) Si|z| =R, alors

eZT l + i — emQ(Z)T
7z RZ? R

En combinant les majorations (i) et (ii), on obtient que la contribution de 'intégrale sur le
demi-arc de cercle C; formé des z tels que |z| = R et fie(z) > 0 est majorée par

1 1z 2[|A]|o LIS
— T4 =) dz] € R= .
2in /C+(g(2) gr(z))e (Z +R2> Z‘ 2TR2 T R

A4

z, 2 _2\9%(1)](3%(1”
ol Izl '

= R

Notons y_ la partie du lacet y contenu dans le demi-plan fie(z) < 0 et soit C_ le demi-arc
de cercle formé des z tels que |z| = R et 9ie(z) < 0. La fonction g7 étant holomorphe sur C,

ona
1 Z 1 z
T —p 2 ) dr= T-p =) d
[ srtoe (Z+R2) 2= [ ere (Z+R2) .

car I'intégrande est holomorphe sur le demi-plan fRe(z) < 0.
Pour toutz e C_,

T Al (- Al -
<l m/ Re(d)r gy — Re(T 1) < Re(x)T
er@I <l | e i (¢ ) e
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En combinant cette majoration avec (ii), on en déduit

1 a1,z 2[[A]]eo [1A]]--
— -+ ] dz| < R = .
2m4“@e<ﬁhﬂ 4 27R? R
Considérons enfin l'intégrale

1 Iz
_— S T I |
i /y g(2)e <z +R2) z.

La fonction z — g(z) (% + # ) est holomorphe, donc bornée, au voisinage du support de y-.
Comme

|ezT‘ _ eme(z)T

tend vers 0 quand 7 tend vers +eco pour tout z tel que fRe(z) < 0, on aimmédiatement

. 1 1z
lim — T -4+ =5 ) dz=0
T34 2t /y s(z)e (z +R2> ¢

par application du théoréme de convergence dominée.

En mettant bout a bout les trois estimations ci-dessus, nous obtenons

[1A]]e»
8(0) — r(0)] < 250 +I(RT),
ol I(R,T) tend vers 0 quand T tend vers +oo a R fixé. Etant donné & > 0, on pose Ry = 4”@”“’
puis I'on considere T > 0 tel que |/(Ry,T)| < €/2 pour tout T > Ty; on a alors
8(0) —gr(0)| <€
pour toutT > Ty.
Cela démontre I'assertion souhaitée :
li 0) =g(0).
Aim_e7(0) =£(0)
O

Nous sommes maintenant en mesure de démontrer le théoreme de Wiener-Ikehara.
Etant donné s € C et N € N*, la formule sommatoire d’Abel (TD3, exercice 1) permet
d’écrire

Noa, _A(N)+S/NA(X) &
1

ns - NS s+l

Si MRe(s) > 1, 'hypothese A(x) = O(x) montre que les deux membres convergent et I'on
aboutit a I'identité

Puisque
/+°°dx_ 1
ox s—17
o as e A(x) — ox
f(S)—s_l— (S)—s_1+a—S/l de+a

En posant s = 1 +z et en effectuant le changement de variable x = ¢/, il vient :
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fe)-5-a = fe+D)-%—a
= (Z+1)/1+°°A(x)—(xxdx

x2+Z

T A(d) —ae
= (Z+1)/O Wé‘ dr

—+oo
= (z+1) / (A()e ™" — ) e dr.
0
Par hypothese, le membre de droite se prolonge en une fonction holomorphe sur un voi-
sinage du demi-plan fermé Q; = {z € C | Re(z) > 0}. La fonction h définie sur R par
h(t)=A(e)e " —1

est continue par morceaux et bornée, puisque A(x) = O(x). Nous pouvons ainsi appliquer
le lemme 6.8 et en déduire la convergence de I'intégrale généralisée

oo oo A _
/ h([) dr = / M dx7
0 1 X

puis conclure grace au lemme 6.7 puisque 'hypothese a, > 0 fournit la croissance de la
fonction A.

6.3. Démonstration du théoreme des nombres premiers

Grace a la reformulation établie en 6.1, le théoreme de Wiener-lIkehara permet de dé-
duire tres facilement le théoréeme des nombres premiers de la non-annulation de ¢ sur le
demi-plan fermé Q; = {z € C | Re(z) > 1} (Théoreme 4.19).

Démonstration du théoreme 6.1. Considérons en effet la série de Dirichlet a coefficients
positifs définie par

o — { Inp sin=p estunnombre premier
=

0 sinon.
Ona
A(x) =0(x) =0(x)
et
_Sa_yloen 00,
P N TR

ou ¥ est une fonction holomorphe sur le demi-plan Q% (voir la démonstration du théo-
réme 4.19). La non-annulation de { sur Q; et son pole simple en s = 1 garantissent que

L g 1
fls) = s—1  C(s) s—1 +¥0)
se prolonge holomorphiquement sur un voisinage de Q;, donc
0(x) ~x

quand x tend vers +o0 en vertu du théoréme de Wiener-lkehara. Grace a la proposition 6.3,
le théoreme des nombres premiers est donc démontré. O
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Démonstration du théoreme 6.2. Considérons maintenant deux nombres entiers a,N € N*
tels que pged(a,N) = 1 et introduisons la série de Dirichlet a coefficients positifs définis par

_ | Inp sin=pestun nombre premier etp =a (mod N)
" 0 sinon.

Ona
A(x) = 64n(x) = O(x)
et

fls) = y e

s
p=a (mod N), p<x P

_ _; TLI(XJ)
= o, BT

ou ¥,y désigne de nouveau une fonction holomorphe sur le demi-plan Q 1 (voir la dé-
monstration du corollaire 5.8). On a démontré que les fonctions L(y, ) sont holomorphes
sur Qo et ne s’annulent pas sur Q, si y est non trivial, tandis que L(1,-) est méromorphe

sur Q) avec un unique pole, simple, en s = 1, et ne s’annule pas ailleurs sur Q; (Théoréme
5.9). On en déduit que

+ lPaJv(S)

1 1
se prolonge holomorphiquement au voisinage de Q;, donc
1
Oun(X) ~ ——x
’ ¢(N)
quand x tend vers +oo en vertu du théoreme de Wiener-lkehara. Grace a la proposition 6.4,
la forme renforcée du théoréme de la progression arithmétique est donc démontrée. O

6.4. Complément

Nous venons de déduire le théoreme des nombres premiers de la non-annulation de ¢
sur le demi-plan fermé Q,. Il est assez facile de prouver que, réciproquement, cette non-
annulation peut se déduire du théoreme des nombres premiers.

PROPOSITION 6.9. — Considérons une fonction mesurable localement bornée u : [1,+oo[—
R telle que u(x) = O(x) quand x tend vers +e. Posons

oo u(x)
Vs € Qy, g(s):/l o dx

S’il existe a € R tel que @ tende vers a quand x tend vers +oo, alors :

(i) (s—1)g(s) tend vers o quand s tend vers 1 dans un secteur angulaire de la forme
|Tm(s—1)| < C(Re(s) —1);
(i) pourtoutsyc C\ {1} tel queRe(s) =1,
(s —s0)g(s) = o(1)
quand s tend vers sy dans un secteur angulaire de la forme
|Jm(s—s0)| < CRe(s—s0).

En particulier, si l'on sait que g admet un prolongement méromorphe sur un voisinage de
Qi, alors celui-ci ne sannule pas sur Q, \ {1} et admet au plus un pole, simple, en s =1 si
o #0, derésidu a.



59

Démonstration. Pour tout s € Q,

Par hypothese,
u(x) — oex = o(x).

Etant donné € > 0, il existe donc xy > 1 tel que |u(x) — ox| < ex pour tout x > xo. En notant
M un majorant de (u(x) — ox) /x sur [1, +eo[, on en déduit la majoration

tou(x) —ax o Ju(x) — ax|
/1 1 dr| < /1 Re(s) 1 dx

T dx Yo dx
< co—— _
= £/x0 xRe(s) +M/1 xPe(s)

(e+m(1—xp 7).

1
< -
Re(s) — 1
En écrivant
x(l)_m(s) =14 (1 —Re(s))Inxg + oy, (Re(s) — 1)
quand Re(s) tend vers 1, on voit que le membre de droite de la derniére inégalité est majoré
par
2¢

Re(s) —1
si Re(s) est suffisamment proche de 1, donc

- 2=

as

quand fe(s) tend vers 1.

Nous pouvons maintenant conclure.

(i) Ona
as \ |s— 1]
61 (s0-5%7) =0 (meimi)
quand s tend vers 1 dans Q, donc
(s—1)g(s) —a=o(1)

quand s tend vers 1 dans un secteur angulaire de la forme
|Tm(s)| < C(Re(s) —1),

car alors

—1
Mg,/cz_i_l.

Re(s)—1
(i) Fixonsspdans C\ {1} tel que fRe(sp) =1.0na

as \ |s — s0]
(s =50) (g(s) s— 1) —° <§Re(s) — 1>
quand s tend vers sy dans Q, donc
(s —s0)g(s) = o(1)

quand s tend vers sy dans un secteur angulaire de la forme

(s — s0)] < C(PRe(s) — 1),
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car alors

Ecrivons

Ona

quand x tend vers + et

o0 g
D (ORI

ou ¥ est une fonction holomorphe sur le demi-plan Q L. La proposition précédente af-

!/

firme que —%

est une fonction méromorphe (sur Q;) qui posseéde dans Q; un unique
2

pole, simple, au point s = 1, de résidu 1. La fonction ¢ posseéde donc dans ©; un unique
pole, simple, en s = 1 et elle ne s’annule pas sur ce demi-plan fermé.
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RAPPELS D’ANALYSE COMPLEXE

1. Le théoréme d’holomorphie sous I'intégrale

Soit (X, 47, 1) un espace mesuré. Il s’agit d’établir ’holomorphie d'une intégrale

| £ex) du
X

en fonction du parametre complexe z.

Commencons par rappeler 'énoncé bien connu permettant de traiter le probleme ana-
logue lorsque le parametre est a valeurs réelles.

Théoréme (Dérivation sous I'intégrale) — Soit! un intervalle ouvert deR et soit f : I x X —
C une fonction satisfaisant aux trois conditions suivantes :

(i) pour toutt € I, le fonction f(t,-) est mesurable;

(ii) pour presque toutx € X, la fonction f(-,x) est dérivable surlI;

(iii) il existe une fonction intégrable ¢ : X — R telle que

pour toutt € I et presque toutx € X.
La fonction F : I x C définie par

F() = [ £(05) du
est alors dérivable, et
)= [ 20 utw
X ot
pour toutt € 1.

Démonstration. Soit ty € I et soit h € R* tel que tp + i € 1. En vertu de I'inégalité des ac-
croissements finis

d
Flto+,) — flao)| < sup| 5 (1) 1o
rel | Ot
I'hypothese (iii) fournit la majoration
f(to +h2l _f(to) < (P(x)

pour presque tout x € X. Nous pouvons donc appliquer le théoréme de convergence do-
minée pour obtenir

F h)—F h,x) — ,
. h7 - 9
= [
)
= [ o0 ut).

Voici I’énoncé dans le cas complexe.
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Théoréme (Holomorphie sous I'intégrale) — Soit Q un ouvert de C et soit f : Qx X — C
une fonction satisfaisant aux trois conditions suivantes :

(i) pour toutz € Q, le fonction f(z,-) est mesurable;
(i) pour presque toutx € X, la fonction f(-,x) est holomorphe surQ;
(iii) il existe une fonction intégrable ¢ : X — R telle que
[/ (z,0)] < @ (x)
pour tout z € Q et presque tout x € X.
La fonction F : Q x C définie par

F() = [ (0 du(x)
est alors holomorphe, et

iy [ 9f
Fi(z) = /x 872<Z’x) dpt(x)
pour toutz € Q.

Il convient de relever la différence de formulation de la condition de domination (iii) :
alors qu’elle porte sur la dérivée dans le cas réel, il suffit de I'imposer sur la fonction elle-
meéme dans le cas complexe. Il découle en effet de la formule intégrale de Cauchy que

la domination de f induit automatiquement une domination (locale) de ‘;—’; : pour toute
fonction holomorphe g sur Q,

oy — 8(§)
)= 5z ey

ou D désigne un disque fermé de centre zyp contenu dans Q, donc, en fixant r > 0,

supg |¢]

suplg’| <
Q/ r

Q ={weQ|D(w,r) CQ}.

Premiere démonstration. 1l suffit de recopier la démonstration du théoréeme de dériva-
tion sous l'intégrale, en exploitant la domination locale sur ‘;—{ que 'on vient de déduire de
la condition (iii). O

Rappelons que, si ’homomorphie est définie comme la dérivabilité par rapport a la va-
riable complexe, on dispose d'une caractérisation équivalente ne faisant pas intervenir de
dérivation.

Théoreme de Cauchy-Morera — Soit Q un ouvert de C et soit f : Q@ — C une fonction conti-
nue. Les deux conditions suivantes sont équivalentes :

(i) f est holomorphe surQ;
(i) pour tout triangle ferméT contenu dans Q,

an(z) dz=0.

Démonstration. Voir par exemple [3, 10.17] pour une démonstration. a

Nous pouvons nous appuyer sur ce point de vue pour proposer une autre démonstra-
tion du théoréme d’holomorphie sous l'intégrale.
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Seconde démonstration. Lhypothése de domination (iii) entraine immédiatement la
continuité de la fonction F sur Q. Quel que soit le triangle plein 7 contenu dans Q,

/8TF(Z) dz:/gT/Xf(z,x) du(x) dZ:/x/an(Z’x) dz du(x) =0,

donc I'holomorphie de F en découle d’apres le théoreme de Cauchy-Morera, a condition
que l'interversion des intégrales soit licite. C’est une application du théoréme de Fubini-
Tonelli puisque

[ 5@ del du) = [ / £0O2)]-17(0)] i () < £OT) [ p(x) du() <o

ol1y: [0,1] — C désigne un paramétrage C' par morceauxde 9T et £(dT) = fol |Y(¢)] dt estla
longueur de JT. O
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ANALYSE HARMONIQUE SUR UN GROUPE ABELIEN FINI.

Soit G un groupe abélien fini.

1. Un caracteére de G est un morphisme de groupes x : G — C*. Lensemble
G= Homg,(G,C*)
des caracteres de G est un groupe pour la multiplication usuelle des fonctions (i.e.
(x142)(x) = x1(x) x2(x)), appelé groupe dual et non canoniquement isomorphe (') a2 G. Son
élément neutre est le caractere trivial, qui envoie G sur {1}; on le note 1.

—

EXEMPLE — Si G =Z/NZ, alors on dispose d'un isomorphisme canonique Z/NZ = uy, x +—

x(1). Choisir un isomorphisme entre Z/NZ et Z/NZ revient a choisir une racine N-iéme de
I'unité primitive.

2. [Fonctorialité] Si f : G — G’ est un morphisme de groupes abéliens, alors ’application
f*:G'— G, x> xof,estun morphisme de groupes. Etant donné un sous-groupe H de
G, la suite exacte naturelle

1 H G G/H i
induit une suite exacte (1%
|—>G/H=~G~H 1.

Autrement dit : tout caractere de H se prolonge en un caractere de G, et les caractéres du
groupe quotient G/H s'identifient aux caracteres de G qui sont triviaux sur H.

En particulier, sia est un élément de G d’ordre f, alors
(i) x(a) estune racine f-ieme de 'unité dans C pour tout caractere x de G;

(ii) lorsque y parcourt I'ensemble G, chaque racine f-ieme de 'unité apparait exacte-
ment |G|/ f fois parmi les x(a).
Pour le vérifier, il suffit de considérer la suite exacte courte

1 —— (a)* G (a) 1

ott (a)t = {y € G| x(a) = 1}, et de remarquer que 'application y — ¥ (a) réalise un isomor-
phisme entre (a) et s (C).

3. Les caracteres de G forment une base orthonormée du C-espace vectoriel des fonc-
tions complexes sur G relativement au produit scalaire hermitien

(flg) = f),
cp
Nous pouvons donc écrire toute fonction complexe f sur G sous la forme

f=Y xlhHx

x€G

14. C’est facile a établir lorsque G est cyclique, et le cas général s’en déduit en utilisant le théoreme de
structure des groupes abéliens finis.
15. Cela signifie que le noyau de chaque fleche et égal a 'image de la fleche précédente.
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En particulier (relations d’orthogonalité) :

(i) pour tout y € (A?,
G| siy=1
¥ 0 =lelaln ={ 51 %

S1non.
xeG

(ii) pour tout x € G,

Z ’G‘ Si x=1
Z(x sinon.
x€G

On peut le justifier ainsi :

Y xk) = (Z}@M)U)
xeG xX€G

= |G| (ZA(I{x}X)%) (1)
x€G

= |Gy (1)
ou 1;,, désigne la fonction caractéristique du singleton {x}.
On peut aussi invoquer la bidualité : le morphisme de groupes canonique

G—G, xvs (g x(x))

est un isomorphisme et (ii) est une reformulation de (i) en remplacant G par G.
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