
1. COMPTER LES NOMBRES PREMIERS

1.1. Euclide

(1.1) On trouve dans le livre VII des Éléments d’Euclide les résultats fondamentaux de
l’arithmétique des nombres entiers.

THÉORÈME 1.1. ( THÉORÈME FONDAMENTAL DE L’ARITHMÉTIQUE) — Tout nombre entier n>
1 est un produit de nombres premiers, et cette écriture est unique à l’ordre des facteurs près.

Cet énoncé est bien connu, mais il est important d’avoir conscience :

(i) que l’existence d’une factorisation est très facile à démontrer (par récurrence) (1) ;

(ii) que l’unicité, par contre, est plus délicate ; il faut en effet faire appel au lemme d’Eu-
clide (2), lequel peut se déduire du théorème de Bachet-Bézout (et donc de l’algo-
rithme de la division euclidienne) ;

(iii) que l’unicité est ce qui est le plus utile dans la pratique (par exemple la résolution
dans Z3 de l’équation de Pythagore x2 + y2 = z2, que l’on peut trouver dans [2] ou
encore [1]).

(1.2) Considérons un nombre premier p. La valuation p-adique d’un nombre entier n ∈ Z,
notée vp(n), est la plus grand exposant de p divisant n :

vp(n) = max{k ∈ N | pk|n}.

C’est un élément de N∪{∞} tel que vp(n) = ∞ ssi n = 0, vp(1) = 0 et, pour tous m,n ∈ N,

(i) vp(nm) = vp(n)+ vp(m) ;

(ii) vp(m+n)> min{vp(m),vp(n)}.

EXERCICE 1. — Démontrer les deux propriétés précédentes.

La notion de valuation p-adique permet d’énoncer le théorème fondamental de l’arith-
métique sous la forme équivalente suivante : tout nombre entier n > 1 s’écrit sous la forme

n = ∏
p

pvp(n).

Il est important de remarquer ici que, si le produit porte a priori sur l’ensemble des
nombres premiers, le facteur pvp(n) est égal à 1 dès que p > n ; il s’agit donc en réalité du
produit d’un nombre fini de termes.

EXERCICE 2. — Démontrer que le dernier énoncé ci-dessus est équivalent au théorème 1.

(1.3) Euclide démontre que l’ensemble des nombres premiers est bel et bien infini.

THÉORÈME 1.2. (EUCLIDE) — L’ensemble des nombres premiers est infini.

Démonstration. Pour tout entier n > 1, le nombre entier n!+1 > 1 admet au moins un fac-
teur premier p. Celui-ci ne peut être égal à aucun des entiers 2,3, . . . ,n car il diviserait sinon
n!, et donc également 1 = (n!+ 1)− n! ; on en déduit p > n. L’ensemble des nombres pre-
miers est non borné, donc il est infini. 2

1. Il s’agit par ailleurs d’un phénomène très général : dans tout anneau noethérien, chaque élément non
nul peut toujours s’écrire sous la forme d’un produit d’éléments irréductibles

2. Si p est un nombre premier et a,b sont deux entiers tels que p|ab, alors p|a ou p|b

1
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REMARQUE 1.3. — Notons (pn)n>1 la suite croissante des nombres premiers. On peut dé-
duire de l’argument d’Euclide une majoration très grossière du n-ième nombre premier
pn :

pn 6 22n−1

pour tout n > 1. On prouve aisément cette inégalité en raisonnant par récurrence (exer-
cice). Pour tout nombre réel x > 1,

22n−1
6 x ⇐⇒ n 6 log2 log2 x+1,

donc

pblog2 log2 xc+1 6 x

et

log2 log2(x)6 π(x).

Cette minoration est loin d’être optimale, mais elle a le mérite de quantitifer à peu de frais
le théorème d’Euclide.

1.2. Euler

Euler exposa en 1737 une nouvelle preuve de l’infinitude de l’ensemble des nombres
premiers, reposant sur le théorème fondamental de l’arithmétique et des considérations
analytiques simples.

(2.1) Toute l’analyse requise dans l’approche d’Euler est contenue dans l’énoncé suivant,
qui est une version quantitative de la comparaison série-intégrale (3).

LEMME 1.4. — Soit y < x deux nombres réels. Pour toute fonction monotone f : [y,x]→ R,∣∣∣∣∣ ∑
n∈Z, y6n6x

f (n)−
∫ x

y
f (t) dt

∣∣∣∣∣6 3(| f (y)|+ | f (x)|).

De façon un peu moins précise :

∑
n∈Z, y6n6x

f (n) =
∫ x

y
f (t) dt +O(| f (y)|+ | f (x)|),

où la constante implicite dans O ne dépend ni de f , ni de x et y.

Démonstration. Quitte à remplacer f par− f , nous pouvons supposer que f est croissante.

3. Il faut quand même ajouter l’estimation ln(1+ x) = x+O(x2) sur [−1/2,1/2], sous la forme : il existe un
nombre réel A > 0 tel que

| ln(1+ x)− x|6 Ax2

pour tout x ∈ [−1/2,1/2]. On peut le justifier en observant que la fonction définie sur ]− 1,0[∪]0,+∞[ par x 7→
ln(1+x)−x

x2 se prolonge en une fonction continue sur l’intervalle ]− 1,+∞[, donc bornée sur tout segment qu’il
contient.



3

Si x et y sont entiers, nous pouvons écrire

∑
n∈Z, y6n6x

f (n) =
x−1

∑
n=y

∫ n+1

n
f (n) dt + f (x)

=
x−1

∑
n=y

∫ n+1

n
f (btc) dt + f (x)

=
∫ x

y
f (btc) dt + f (x)

6
∫ x

y
f (t) dt + f (x)

en utilisant la croissance de f . De la même manière,

∑
n∈Z, y6n6x

f (n) = f (y)+
x

∑
n=y+1

∫ n

n−1
f (n) dt = f (y)+

∫ x

y
f (dte) dt > f (y)+

∫ x

y
f (t) dt,

ce qui établit l’estimation voulue :∣∣∣∣∣ ∑
y6n6x

f (n)−
∫ x

y
f (t) dt

∣∣∣∣∣6 max{| f (x)|, | f (y)|}6 | f (x)|+ | f (y)|.

Le cas général s’en déduit aisément en introduisant les parties entières des bornes de
sommation. On a en effet

∑
n∈Z, y6n6x

f (n) = ∑
dye6n6bxc

f (n)

et ∫ x

y
f (t) dt−

∫ bxc
dye

f (t) dt =
∫ dye

y
f (t) dt +

∫ x

bxc
f (t) dt,

avec ∣∣∣∣∫ dyey
f (t) dt

∣∣∣∣6 max{| f (y)|, | f (dye)|},
∣∣∣∣∫ x

bxc
f (t) dt

∣∣∣∣6 max{| f (x)|, | f (bxc)|}

En vertu de la croissance de f ,

f (y)6 f (dye)6 f (bxc)6 f (x)

et donc
max{| f (y)|, | f (dye)|, | f (x)|, | f (bxc)|}= max{| f (x)|, | f (y)|}.

Au final, nous avons obtenu la majoration∣∣∣∣∣ ∑
y6n6x

f (n)−
∫ x

y
f (t) dt

∣∣∣∣∣6 3max{| f (x)|, | f (y)|}6 3(| f (x)|+ | f (y)|) .

2

REMARQUE 1.5. — Bien que très élémentaire, cette estimation est fort utile et nous l’uti-
liserons à de nombreuses reprises. Nous en verrons également deux raffinements : la for-
mule d’Abel et la formule d’Euler-Maclaurin.

En guise d’illustration, rappelons le comportement des séries de Riemann. Pour tout
nombre réel s > 1,

N

∑
n=M

1
ns =

∫ N

M
t−s dt +O(M−s +N−s) =

M1−s−N1−s

s−1
+O(M−s +N−s),
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donc la série ζ (s) = ∑n>1 n−s est convergente et

1 < ζ (s) =
1

s−1
+O(1).

Précisons que le terme O(1) désigne une fonction bornée sur ]1,+∞[, donc cette identité :

(i) établit que la fonction ζ est bornée sur tout intervalle de la forme [a,+∞[, avec a > 1 ;

(ii) fournit le comportement asymptotique de ζ au voisinage de 1+ :

ζ (s)∼ 1
s−1

quand s tend vers 1 dans ]1,+∞[.

(2.2) L’observation capitale d’Euler est que le théorème fondamental de l’arithmétique
permet d’exprimer ζ (s) à l’aide des nombres premiers. Pour comprendre cela, introdui-
sons pour tout nombre premier p et tout s > 1 la série

ζp(s) = 1+
1
ps +

1
p2s + . . .= ∑

k>0

1
pks

restreinte aux entiers qui sont des puissances de p. Il s’agit bien entendu d’une série géo-
métrique, de somme

ζp(s) =
(

1− 1
ps

)−1

.

Le produit

ζ2(s)ζ3(s) =

(
∑

m2>0

1
2m2s

)(
∑

m3>0

1
3m3s

)
= ∑

m2,m3>0

1
(2m23m3)s

n’est pas autre chose, en vertu de la règle usuelle de développement, que la série zêta res-
treinte aux entiers de la forme 2m23m3 . Plus généralement, pour tout entier N > 2,

∏
p6N

ζp(s) = ∏
p6N

(
1− 1

ps

)−1

= ∑
n∈EN

1
ns ,

où EN désigne l’ensemble des entiers obtenus en faisant tous les produits possibles des
nombres premiers p 6 N. Le théorème fondamental de l’arithmétique garantit que l’en-
semble EN contient tous les nombres n 6 N (existence d’une factorisation, les facteurs pre-
miers étant nécessairement inférieurs à N), et que chacun d’eux ne s’obtient qu’une seule
fois, c’est-à-dire pour un seul terme du développement du produit de gauche (unicité de
la factorisation). Nous pouvons donc écrire∣∣∣∣∣∏p6N

ζp(s)− ∑
n6N

1
ns

∣∣∣∣∣= ∑
n∈EN et n>N

1
ns 6 ∑

n>N

1
ns .

Le membre de droite (reste d’une série convergente...) est majoré par N1−s

s−1 + O(N−s)
(Lemme 1.4), donc il tend vers 0 lorsque N tend vers +∞.

Nous venons ainsi de démontrer le résultat fondamental suivant.

THÉORÈME 1.6 (FORMULE DU PRODUIT — Pour tout réel s > 1, la suite des produits finis
∏p6N ζp(s) est convergente, de limite ζ (s). Autrement dit,

∑
n>1

1
ns = ζ (s) = ∏

p∈P

(
1− 1

ps

)−1

.
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(2.3) On a manifestement ζ (s) > 1 et 1
ps <

1
2 pour tout s > 1 et tout p premier. Il est donc

licite de passer aux logarithmes dans l’identié d’Euler, qui se réécrit alors

lnζ (s) = ∑
p∈P
− ln

(
1− 1

ps

)
= ∑

p∈P

(
1
ps +O

(
1

p2s

))

= ∑
p∈P

1
ps +O

(
∑

p∈P

1
p2s

)
.

pour tout s ∈]1,+∞[.
Il faut ici observer que l’interversion de la somme et du O(·) est licite car on utilise l’es-

timation
ln(1+ x) = x+O(x2)

pour tout x dans [−1/2,1/2] (la constante de O ne dépend pas de x), puis on substitue p−s ∈
[0,1/2] à x. Enfin, en observant que la série des p−2s est bornée par la somme de la série (de
Riemann) convergente des n−2 pour tout s ∈]1,+∞[, nous obtenons

∑
p∈P

1
ps = lnζ (s)+O(1)

pour tout s ∈]1,+∞[.
Il reste à exploiter notre connaissance du comportement asymptotique de ζ (s) au voi-

sinage de 1+, rappelé ci-dessus (à la suite de la remarque 1.5) :

ζ (s) =
1

s−1
+O(1),

donc

∑
p∈P

1
ps = ln

(
1

s−1
+O(1)

)
+O(1) = ln

1
s−1

+ ln(1+O(s−1))+O(1)

et

∑
p∈P

1
ps =− ln(s−1)+O(1)

lorsque s tend vers 1+.

THÉORÈME 1.7. (EULER) — La série

∑
p∈P

1
p

est divergente.

Démonstration. Pour tout s > 1,

∑
p∈P

1
p
> ∑

p∈P

1
ps

dans R∪{+∞}. L’estimation asymptotique du membre de droite quand s tend vers 1 que
l’on vient d’obtenir fournit la conclusion voulue. 2

REMARQUE 1.8. — 1. On peut déduire de ce théorème l’estimation π(x) = o(x) quand x
tend vers l’infini, c’est-à-dire que la proportion des nombres premiers parmi les nombres
entiers 6 x tend vers 0 lorsque x tend vers +∞. De manière imagée, la probabilité qu’un
nombre entier choisi au hasard soit premier est nulle.
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2. La formule

∑
p∈P

1
ps = lnζ (s)+O(1)

quand s tend vers 1+ relie le comportement asymptotique de la suite des nombres pre-
miers, exprimé via celui de la série des 1

ps quand s −→ 1+, à celui d’une fonction spéci-
fique, ici ζ (s), au voisinage de s = 1. Ce phénomène est au cœur de la théorie analytique
des nombres.

3. Des arguments analogues à ceux utilisés précédemment permettent d’encadrer les
sommes partielles de la séries des inverses des nombres premiers : il existe un réel C > 0
tel que

ln lnx− ln2 6 ∑
p∈P,p6x

1
p
6 e ln lnx+C

pour tout réel x > 1. La démonstration fait l’objet de l’exercice 3 du TD1. Cet encadre-
ment détermine l’ordre de grandeur de ∑p6x

1
p . Nous verrons plus loin un développement

asymptotique de ces sommes partielles, de terme dominant ln lnx.

1.3. Tchébychev

(3.1) En 1850, le mathématicien russe Pafnouti Tchébychev démontra que la fonction de
comptage des nombres premiers a bien l’ordre de grandeur attendu.

THÉORÈME 1.9. — Il existe des nombres réels 0 < c <C tels que, pour tout x assez grand,

c
x

logx
6 π(x)6C

x
log(x)

.

On peut déduire de ce théorème l’existence de nombres premiers dans certains inter-
valles. En effet, si a < b sont deux nombres réels (suffisamment grands) tels que

C
a

loga
< c

b
logb

,

alors π(a) < π(b) et l’intervalle ]a,b] contient donc un nombre premier. De fait, les bornes
obtenues par Tchébychev, à savoir c = 0,92 et C = 1,11, étaient assez bonnes pour lui per-
mettre de de démontrer le postulat de Bertrand :

pour tout nombre entier n > 2, l’intervalle ]n,2n[ contient toujours un nombre premier.

Nous allons exposer une version simplifiée de la démonstration de Tchébychev, condui-
sant aux bornes plus grossières c = 1

2 et C = 2. Si ces bornes ne suffisent pas à déduire le
postulat de Bertrand, une preuve plus élémentaire de ce résultat, découverte par P. Erdös
en 1936, fait l’objet du problème du TD1.

La démonstration de Tchébychev est élémentaire, au sens où elle n’utilise que le théo-
rème fondamental de l’arithmétique et des estimations relevant de l’analyse réelle asymp-
totique, et non pas l’analyse complexe. Elle n’en demeure pas moins ingénieuse, son point
de départ étant l’observation que le coefficient binomial

(2n
n

)
ne diffère « pas trop » du pro-

duit de tous les nombres premiers dans l’intervalle ]n,2n].

(3.2) Nous allons avoir besoin de quatre résultats auxiliaires, tous intéressants indépen-
damment de l’utilisation que nous allons en faire.
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Le premier consiste en une formule explicitant la valuation p-adique des coefficients
binomiaux.

LEMME 1.10. (FORMULE DE LEGENDRE) — Pour tout nombre entier naturel n et tout nombre
premier p,

vp(n!) = ∑
α>1

⌊ n
pα

⌋
.

Démonstration — Si l’on factorise chaque entier m 6 n sous la forme m = pvp(m)m′, avec
p - m′, alors le facteur pα apparaît dans

n! = ∏
16m6n

m

pour chaque entier m tel que pα |m et pα+1 - m, c’est-à-dire
⌊

n
pα

⌋
−
⌊

n
pα+1

⌋
fois (le nombre des

multiples de pα moins celui des multiples de pα+1 dans [1,n].). On a donc

vp(n!) = ∑
α>1

(⌊ n
pα

⌋
−
⌊ n

pα+1

⌋)
α = ∑

α>1

⌊ n
pα

⌋
.

2

Le second est un encadrement du coefficient binomial médian.

LEMME 1.11. — Pour tout entier n > 1,

2n

n+1
6

(
n
bn/2c

)
6 2n−1.

Démonstration — Les coefficients binomiaux
(n

k

)
sont croissants avec k ∈ {0, . . . ,bn/2c},

puis décroissants avec k ∈ {bn/2c,n} ; la plus grande valeur est donc atteinte en(
n
bn/2c

)
=

(
n

n−bn/2c

)
.

On en déduit facilement la minoration souhaitée :

2n =
n

∑
k=0

(
n
k

)
6 (n+1)

(
n
bn/2c

)
,

donc
2n

n+1
6

(
n
bn/2c

)
.

Pour établir la majoration, distinguons deux cas suivant la parité de n.

(i) Si n = 2m+1 est impair, alors nous pouvons aparier les coefficients binomiaux
(n

k

)
et( n

n−k

)
pour tout k ∈ {0, . . . ,m}, d’où :

2n =
n

∑
k=0

(
n
k

)
= 2

m

∑
k=0

(
n
k

)
> 2
(

n
m

)
,

ce qui est la majoration souhaitée.

(ii) Si n = 2m, alors
(n

m

)
est l’unique coefficient binomial maximal, donc l’argument pré-

cédent ne fonctionne plus. On a cependant(
2m
m

)
=

m+2
m

(
2m

m+1

)
6 2
(

2m
m+1

)
,
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donc

2n >

(
2m

m−1

)
+

(
2m
m

)
+

(
2m

m+1

)
=

(
2m
m

)
+2
(

2m
m+1

)
> 2
(

2m
m

)
,

ce qui est encore la majoration souhaitée.
2

Le troisième fournit une seconde majoration des coefficients binomiaux, faisant appa-
raître la fonction de comptage.

LEMME 1.12. — Soit n > 1 et k > 0 deux nombres entiers.

(i) Soit p un nombre premier. En posant αp = vp
((n

k

))
, on a

pαp 6 n.

(ii) On en déduit la majoration : (
n
k

)
6 nπ(n).

Démonstration — (i) Nous pouvons expliciter la valuation p-adique du coefficient bino-
mial

(n
k

)
à l’aide de la formule de Legendre (Lemme 1.10) :

αp = vp

(
n!

k!(n− k)!

)
= vp(n!)− vp(k!)− vp((n− k)!)

= ∑
m>1

(⌊ n
pm

⌋
−
⌊ k

pm

⌋
−
⌊n− k

pm

⌋)
La fonction réelle f définie sur R2 par

f (x,y) = bx+ yc−bxc−byc

est 1-périodique par rapport à chacune des variables : il suffit de le vérifier pour la première
par symétrie de f , et

f (x+1,y) = bx+ y+1c−bx+1c−byc= bx+ yc+1− (bxc+1)−byc= f (x,y)

pour tous x,y ∈ R2. On en déduit

sup
x,y∈R2

f (x,y) = sup
x,y∈[0,1[

f (x,y),

puis

sup
x,y∈R2

f (x,y) = 1

puisque

f (x,y) = bx+ yc=
{

0 si x+ y < 1
1 si x+ y > 1

pour tous x,y ∈ [0,1[. En observant que, dans la somme ci-dessus pour αp, les seuls entiers
m ayant une contribution éventuellement non nulle sont ceux tels que pm 6 n, c’est-à-dire
m 6 logp n, nous obtenons finalement

αp 6 logp n et donc pαp 6 plogp n = n.
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(ii) Avec les notations en vigueur, nous pouvons écrire la factorisation du coefficient
binomial sous la forme (

n
k

)
= ∏

p|(n
k)

pαp .

Chaque facteur pαp figurant dans le membre de droite est majoré par n en vertu premier
point, et tout diviseur premier de

( n
bn/2c

)
divise n!, donc est inférieur à n. Ces observations

conduisent immédiatement à la majoration(
n
bn/2c

)
6 nπ(n).

2

Le quatrième et dernier résultat préliminaire décrit les plus grands facteurs premiers du
coefficient binomial médian.

LEMME 1.13. — Soit n > 2 un nombre entier. Le coefficient binomial
(2n

n

)
est divisible une

fois et une seule par chaque nombre premier p dans l’intervalle ]n,2n] ; en particulier,

∏
n<p62n

p |
(

2n
n

)
.

De même, le coefficient binomial
(2n+1

n

)
est divisible une fois et une seule par chaque nombre

premier p dans l’intervalle ]n+1,2n] ; en particulier,

∏
n+1<p62n+1

p |
(

2n+1
n

)
.

Démonstration — En écrivant

(2n)! =
(

2n
n

)
(n!)2,

il est manifeste que chaque nombre premier p ∈]n,2n], divisant (2n)! mais ne divisant pas
n!, doit diviser le coefficient binomial. Le produit de ces nombres premiers divise donc
le coefficient binomial en vertu du lemme d’Euclide. Enfin, la condition p > n implique
p2 > n2 > 2n, donc vp((2n)!) = 1 en vertu de la formule de Legendre (Lemme 1.10) et p2 ne
peut donc pas diviser le coefficient binomial.

Le cas du coefficient binomial
(2n+1

n

)
se traite de manière analogue. 2

(3.3) Venons-en maintenant à la démonstration du théorème 1.9, avec les constantes c = 1
2

et C = 2.

La minoration —- Soit x > 1 un nombre réel et posons n = bxc, ce qui fournit l’encadre-
ment n 6 x < n+1.

En combinant les lemmes 1.11 et 1.12, nous obtenons l’inégalité

2n

n+1
6 npi(n),

soit la minoration

π(n)>
n ln2− ln(n+1)

lnn
>

(x−1) ln2− ln(x+1)
lnx

.
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Le membre de droite est supérieur à 1
2

x
lnx pour tout réel x > 20 (4) donc la minoration an-

noncée est acquise pour tout x > 20. Par aileurs, on la vérifie explicitement pour 3 6 x < 20
en observant sur une table des valeurs de π(n) l’inégalité

π(n)>
1
2

n+1
ln(n+1)

pour tout entier n ∈ [3,20].

La majoration — La fonction x 7→ x
lnx est croissante, donc il suffit d’établir la majoration

pour x entier puisqu’alors

π(x) = π(bxc)6 2
bxc

lnbxc
6 2

x
lnx

.

Nous allons donc établir l’inégalité

π(n)6 2
n

lnn
en raisonnant par récurrence forte sur le nombre entier n > 2. En fait, nous allons avoir
besoin d’initialiser cette récurrence à n = 106, donc il faut commencer par vérifier explici-
tement que la majoration vaut pour tout entier n 6 106 ; cela se fait aisément à l’aide d’une
table des valeurs de π(n).

Prouvons maintenant l’hérédité forte, en distinguant deux cas, selon la parité de n.

(i) Si n est pair, alors π(n) = π(n−1) et l’inégalité pour n découle immédiatement de celle
pour n−1.

(ii) Supposons maintenant que n = 2m + 1 soit impair et n > 106. En combinant les
lemmes 1.11 et 1.13, on obtient

∏
m+1<p62m+1

p 6 22m.

Le membre de gauche est minoré par (m+2)π(2m+1)−π(m+1), donc

π(2m+1)−π(m+1)6
2m ln2

ln(m+2)
,

puis

π(n) = π(2m+1)6 2
m+1

ln(m+1)
+

2m ln2
ln(m+2)

6
(1+ ln2)n+1

ln(n/2)
en utilisant l’hypothèse de récurrence. On vérifie finalement que le membre de
droite est majoré par 2 n

lnn pour tout n > 106 (5).
2

4. La fonction f : x 7→ (x−1) ln2− ln(x+1)− 1
2 x est convexe sur [0,+∞[, strictement négative en 0 et de limite

+∞ en +∞, donc elle admet un minimum strictement négatif en un point x0 et est strictement croissante sur
[x0,+∞[ ; on en déduit qu’elle s’annule en un unique point x1 > x0, elle qu’elle est strictement positive sur
]x1,+∞[. Comme f (20) ' 0,17 > 0, cette fonction est positive sur [20,+∞[ et la minoration souhaitée est donc
valable sur cet intervalle.

5. La fonction f : x 7→ ((1+ ln2)x+ 1) lnx− 2x ln(x/2) = (ln2− 1)x lnx+ lnx+(2ln2)x est concave sur [3,+∞[,
strictement positive en 3 et de limite−∞ en +∞, donc elle possède un (unique) maximum en un point x0, et est
strictement décroissante sur [x0,+∞[ ; elle s’annule donc en un unique point x1 > x0 et est strictement négative
sur ]x1,+∞[. Comme f (106) ' −0,07 < 0, f est strictement négative sur [106,+∞[ et la majoration souhaitée
vaut donc pour n > 106.
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2. FONCTIONS ARITHMÉTIQUES

Dans tout ce qui suit, on pose N∗ = N\{0}.

DÉFINITION 2.1 — Une fonction arithmétique est une application f : N∗→C. Les fonctions
arithmétiques forment un C-espace vectoriel pour l’addition usuelle, noté A .

Bien entendu, une fonction arithmétique n’est pas autre chose qu’une suite à valeurs
complexes. Cette nouvelle terminologie est justifiée par le fait que nous allons nous inté-
resser à des suites particulières, intimement reliées à des questions arithmétiques. Voici
les principales fonctions arithmétiques que nous rencontrerons :

(a) la fonction constante égale à 1, notée 1 ;

(b) la fonction « identité » id, définie par id(n) = n pour tout n ∈ N∗ ;

(c) la fonction « de Dirac » en 1, définie par

δ1(n) =
{

1 si n = 1
0 sinon

pour tout n ∈ N∗ ;

(d) la fonction « nombre de diviseurs » , usuellement notée d ou τ , et définie par

d(n) = ∑
d|n

1

pour tout entier n ∈ N∗ ;

(e) la fonction µ de Möbius, définie par

µ(n) =
{

(−1)r si n est le produit de r nombres premiers distincts
0 sinon

(f) la fonction indicatrice d’Euler ϕ , définie par

ϕ(n) = ∑
16h6n, pgcd(h,n)=1

1

(g) la fonction caractéristique de l’ensemble P des nombres premiers, notée 1P ;

(h) la fonction Λ de von Mangolt, définie par

Λ(n) =
{

log p si n = pα , avec p premier et α > 1
0 sinon

Dans ce court chapitre, nous allons mettre en évidence une structure algébrique spéci-
fique sur A , sous-jacente à de nombreuses identités (plus ou moins) bien connues.

2.1. Convolution de Dirichlet

(1.1) Les fonctions arithmétiques peuvent être multipliées de façon habituelle. Il s’avère
cependant que l’on peut définir sur A une autre structure multiplicative, plus intéres-
sante, qui reflète les propriétés de divisibilité des nombres entiers. Il importe pour cela de
manipuler avec aisance les diviseurs d’un nombre entier.
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LEMME 2.2. — Soit n ∈ N∗. L’application

{diviseurs de n} −→ {(d,d′) ∈ N∗×N∗ | dd′ = n}, d 7→
(

d,
n
d

)
est une bijection.

Démonstration. Il convient de remarquer que, puisque d ∈ ∈ N∗ est un diviseur de n, le
nombre rationnel n/d est bien entier. Si l’on note q l’application définie dans l’énoncé et
p1 la projection de N∗×N∗ sur le premier facteur, alors p1 est un inverse à gauche de u. Pour
voir qu’il s’agit d’un inverse à droite, il suffit d’observer que, pour tout couple (d,d′)∈N∗ tel
que dd′= n, on a nécessairement d′= n

d . Ainsi, u et (la restriction de) p1 sont deux bijections
réciproques l’une de l’autre. 2

Étant donné deux fonctions arithmétiques f ,g, on définit leur produit de Dirichlet, noté
f ∗g, par

(1) f ∗g(n) = ∑
d|n

f (d)g
(n

d

)
= ∑

d,d′∈N∗ ; dd′=n
f (d)g(d′)

pour tout n ∈ N∗. La première somme porte sur tous les diviseurs de n dans N∗, la seconde
sur tous les couples (d,d′) d’éléments de N∗ tels que dd′ = n ; cette réécriture est justifiée
par le lemme précédent.

PROPOSITION 2.3. — Muni de l’addition + et de la multiplication ∗, l’ensemble A est une
C-algèbre associative, commutative, d’élément neutre δ1. En outre, le groupe A × des élé-
ments inversibles de A est formé des f telles que f (1) 6= 0.

Pour f ∈A et k > 1, on pose
f (k) = f ∗ . . .∗ f

(k copies). Si f ∈A ×, on désigne par f (−1) son inverse au sens du produit de Dirichlet.

Démonstration. L’associativité découle de l’identité

(( f ∗g)∗h)(n) = ∑
d,c ; dc=n

( f ∗g)(d)h(c) = ∑
a,b,c ; abc=n

( f (a)g(b))h(c)

et de l’associativité de la multiplication dans C.
La commutativité se déduit du fait que la seconde somme dans (1) est symétrique en f

et g.
L’élément neutre multiplicatif de A est la fonction de Dirac δ1 puisque

f ∗δ1(n) = ∑
d|n

f (d)δ1(n/d) = f (n

pour toute fonction f ∈A .
Si f ∈A est inversible, d’inverse g, alors

1 = δ1(1) = f ∗g(1) = f (1)g(1),

donc f (1) 6= 0. Réciproquement, si f ∈ A est une fonction telle que f (1) 6= 0, alors nous
pouvons facilement définir une fonction g ∈A telle que f ∗g = δ1. On raisonne pour cela
par récurrence sur n ∈ N∗ :

— on pose g(1) = 1/ f (1) ;

— si n > 1 et que l’on a défini g(m) pour tout entier m < n, alors on pose

g(n) =− 1
f (1) ∑

d|n, d>1
f (d)g(n/d)
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en remarquant que l’on a n/d < n si d > 1.

La relation f ∗g = δ1, c’est-à-dire

∑
d|n

f (d)g(n/d) =
{

1 si n = 1
0 si n > 1

est vérifiée par construction. 2

(1.2) Introduisons maintenant les fonctions arithmétiques multiplicatives.

DÉFINITION 2.4. — Une fonction arithmétique f est dite multiplicative si elle vérifie les
deux conditions suivantes :

(i) f (1) = 1 ;

(ii) f (mn) = f (m) f (n) pour tous entiers m,n ∈ N∗ premiers entre eux.

Le théorème fondamental de l’arithmétique garantit qu’une fonction arithmétique mul-
tiplicative f est entièrement déterminée par ses valeurs sur les entiers de la forme pα , avec
p premier et α > 1 : pour tout n ∈ N∗,

f (n) = f

(
∏

p
pvp(n)

)
= ∏

p
f
(

pvp(n)
)
.

PROPOSITION 2.5. — Les fonctions arithmétiques multiplicatives forment un sous-groupe
de A ×.

La démonstration de ce résultat réside entièrement dans l’observation élémentaire sui-
vante.

LEMME 2.6. — Soit m,n ∈ N∗ deux nombres entiers premiers entre eux. L’applications

{(d,e) ∈ (N∗)2 ; d|m et e|n} −→ {diviseurs de mn}, (d,e) 7→ de

est une bijection.

Démonstration. Notons tout d’abord que, si d (resp. e) est un diviseur de m (resp. de n),
alors de est bien un diviseur de mn ; il suffit d’écrire m = dm′, n = en′ et mn = dem′n′ pour s’en
convaincre.

L’application (d,e) 7→ de est toujours surjective, même si m et n ne sont pas premiers
entre eux. Pour s’en convaincre, il suffit de considérer un diviseur δ de mn et de poser
d = pgcd(δ ,m) ; il vient alors d|m et pgcd(δ/d,m/d) = 1, donc δ

d |n puisque

δ |mn ⇒ δ

d
|m
d

n.

La factorisation δ = d δ

d que l’on vient d’obtenir établit la surjectivité de l’application consi-
dérée.

Sous l’hypothèse pgcd(m,n) = 1, cette application est également injective. En effet, si
d,d′|m, e,e′|n et de = d′e′, alors pgcd(d,e′)|pgcd(m,n) = 1 et donc d|d′. Par symétrie, nous en
déduisons d′ = d et e′ = e. 2
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Démonstration de la proposition 2.5. Si f et g sont multiplicatives, alors, pour tous en-
tiers m,n premiers entre eux,

( f ∗g)(mn) = ∑
δ |mn

f (δ )g(mn/δ )

= ∑
d|m,d′|n

f (dd′)g
(m

d
n
d′

)
= ∑

d|n,d′|m
f (d) f (d′)g(m/d)g(n/d′)

=

(
∑
d|m

f (d)g(m/d)

)(
∑
d′|n

f (d′)g(n/d′)

)
= ( f ∗g)(m)( f ∗g)(n).

La deuxième égalité est justifiée par le lemme précédent, la troisième exploite la multi-
plicativité de f et g, tandis que la quatrième n’est autre que le développement usuel d’un
produit de deux sommes.

Toute fonction f multiplicative est inversible puisque f (1) = 1, et il reste à démontrer
que son inverse f (−1) est encore multiplicative. On peut raisonner de la façon suivante.
Considérons l’unique fonction arithmétique multiplicative h telle que

h(pa) = f (−1)(pa)

pour tous p premier et a ∈ N∗.
On a

( f ∗h)(pa) =
a

∑
m=0

f (pm)h(pa−m) =
a

∑
m=0

f (pm) f (−1)(pa−m) = ( f ∗ f (−1))(pa) = δ1(pa),

donc f ∗h et δ1 prennent les mêmes valeurs sur tous les entiers qui sont une puissance d’un
nombre premier. Puisqu’il s’agit de deux fonctions multiplicatives, on en déduit f ∗h = δ1,
et donc f (−1) = h est bien multiplicative. 2

2

EXEMPLES 2.8 — L’identité
1∗1(n) = ∑

d|n
1 = ∑

d,d′ ; dd′=n
1

montre que 1∗1 est la fonction « nombre de diviseurs », notée d ; il s’agit donc d’une fonc-
tion multiplicative. On a

d(pα) = ∑
06k6α

1 = α +1

pour tout nombre premier p et tout α > 1, donc

d(n) = ∏
p|n

(vp(n)+1)

par multiplicativité.

Plus généralement, pour tout entier k > 2,

1(k)(n) = ∑
d1,...,dk ; d1···dk=n

1

est le nombre de k-uplets d’entiers (d1, . . . ,dk) tels que d1 · · ·dk = n.

On a par ailleurs
1∗ id(n) = ∑

d|n
d,
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donc la fonction arithmétique σ = 1∗ id, associant à tout entier n la somme de ses diviseurs,
est également multiplicative.

2.2. La fonction de Möbius

Considérons l’inverse de convolution de la fonction 1. Il s’agit d’une fonction multipli-
cative, qui vérifie par hypothèse l’identité

∑
d|n

1(−1)(d) = δ1(n)

pour tout entier n ∈ N∗. On en déduit :

1(−1)(1) = 1, 1(−1)(p) =−1 et 1(−1)(pα) = 0

pour tout nombre premier p et tout α > 2. Par multiplicativité, on a donc

1(−1)(n) = ∏
p

1(−1)
(

pvp(n)
)
=

{
(−1)r si n est le produit de r nombres premiers distincts
0 sinon

c’est-à-dire
1(−1) = µ.

PROPOSITION 2.9. — La fonction de Möbius est l’inverse de convolution de la fonction
constante 1. De manière équivalente,

∑
d|n

µ(d) =
{

1 si n = 1
0 ‘sinon

PROPOSITION 2.10. — Soient f et g deux fonctions arithmétiques. Les deux conditions sui-
vantes sont équivalentes :

(2) ∀n ∈ N∗, g(n) = ∑
d|n

f (d)

(3) ∀n ∈ N∗, f (n) = ∑
d|n

µ

(n
d

)
g(d).

Démonstration. La première identité équivaut à g = f ∗ 1, la seconde à f = g ∗ µ . Elles
sont donc équivalentes puisque 1∗µ = δ1. 2

2.3. La fonction indicatrice d’Euler

Par définition,
ϕ(n) = ∑

16m6n, pgcd(m,n)=1
1 = ∑

16m6n
δ1(pgcd(m,n)).

En utilisant l’identité δ1 = 1∗µ , il vient alors

ϕ(n) = ∑
16m6n

1∗µ(pgcd(m,n)) = ∑
16m6n

∑
d|pgcd(m,n)

µ(d).

La double somme de droite est indexée par les couples (m,d) formés d’un entier
m ∈ {1, . . . ,n} et d’un diviseur commun d de m et n. Si l’on fixe un diviseur d de n, les
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couples (m,d) associés correspondent aux multiples m de d entre 1 et n, en nombre n
d . Nous

pouvons donc réécrire l’identité précédente sous la forme :

ϕ(n) = ∑
16m6n

∑
d|m,n

µ(d) = ∑
d|n

∑
1 6 m 6 n

d|m,n

µ(d) = ∑
d |n

µ(d)
n
d
,

c’est-à-dire
ϕ = id∗µ.

En observant que l’on a

ϕ(pα) = ∑
d|pα

µ(d)
pα

d
= pα − pα−1 = pα

(
1− 1

p

)
pour tout nombre premier p et tout α > 1, nous retrouvons les propriétés bien connues de
ϕ .

PROPOSITION 2.11. — La fonction indicatrice d’Euler est multiplicative. Elle vérifie :

ϕ(n) = n∏
p|n

(
1− 1

p

)
et

∑
d|n

ϕ(d) = n

pour tout entier n ∈ N∗.
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3. SÉRIES DE DIRICHLET

Les séries de Dirichlet apparaissent naturellement comme les séries génératrices des
fonctions arithmétiques : à f ∈A est associée la série de fonctions de la variable complexe
s définie par

L( f ,s) = ∑
n>1

f (n)
ns .

La motivation pour introduire les fonctions ns plutôt que sn (qui conduiraient à des séries
entières) est la propriété de multiplicativité évidente

1
(mn)s =

1
ms ·

1
ns

pour tous m,n ∈ N∗.

L’idée fondamentale sous-jacente à l’étude des séries de Dirichlet est simple : les pro-
priétés de la fonctions arithmétique f se reflètent dans le comportement analytique de
L( f ,s), et l’on dispose d’outils puissants pour étudier ce dernier.

Nous allons commencer par une étude générale des séries de Dirichlet, puis nous consi-
dérerons plus spécifiquement le cas des séries de Dirichlet de fonctions arithmétiques
multiplicatives.

3.1. Abscisses de convergence

(1.1) Soit (an)n>1 une suite de nombres complexes.

On sait que la série entière ∑n>1 anzn a un rayon de convergence R ∈ R+ caractérisé par
le fait que cette série converge (resp. diverge) pour tout z ∈ C tel que |z| < R (resp. |z| >
R). Nous allons voir que la série de Dirichlet ∑n>1

an
ns a une abscisse de convergence σc ∈

R, caractérisée par le fait que cette série converge (resp. diverge) pour tout s ∈ C tel que
Re(s)> σc (resp. Re(s)< σc).

(1.2) L’outil essentiel permettant l’étude de la convergence des séries de Dirichlet est la
transformation d’Abel.

PROPOSITION 3.1. — Soit (an)n>0 et (bn)n>0 deux suites de nombres complexes. Posons AN =

∑
N
n=0 an pour N > 0 et A−1 = 0.

1. Pour tous entiers M,N tels que 0 6 M 6 N,

N

∑
n=M

anbn =
N

∑
n=M

An(bn−bn+1)+ANbN+1−AM−1bM.

2. Si :

(i) les sommes partielles de la série ∑an sont bornées (ce qui est en particulier le cas
lorsque cette série converge) ;

(ii) la suite (bn) est à valeurs réelles, décroissante à partir d’un certain rang et tend vers
0 ;

alors la série ∑anbn converge.
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Démonstration. 1. Cette identité, appelée transformation d’Abel, est un analogue discret
de l’intégration par parties. Il suffit d’écrire :

N

∑
n=M

anbn =
N

∑
n=M

(An−An−1)bn

=
N

∑
n=M

Anbn−
N−1

∑
n=M−1

Anbn+1

=
N−1

∑
n=M

An(bn−bn+1)+ANbN−AM−1bM

=
N

∑
n=M

An(bn−bn+1)+ANbN+1−AM−1bM.

2. Sous les hypothèses (i) et (ii), nous pouvons écrire, pour M et N assez grands (de sorte
que la suite (bn)n>M−1 soit réelle et décroissante) :∣∣∣∣∣ N

∑
n=M

anbn

∣∣∣∣∣ 6 sup
n>0
|An|

(
N

∑
n=M
|bn−bn+1|+ |bN+1|+ |bM|

)

6 sup
n>0
|An|

(
N

∑
n=M

(bn−bn+1)+bN+1 +bM

)
6 2bM sup

n>0
|An|.

Cette majoration établit que la suite des sommes partielles de la série ∑anbn est de Cauchy,
donc convergente. 2

REMARQUE 3.2 — Un cas particulier bien connu de cette proposition est celui des séries
alternées : si (un) est une suite réelle décroissante tendant vers 0, alors la série ∑(−1)nun
converge. Il suffit de poser an = (−1)n et bn = un.

Nous pouvons maintenant énoncer le principal résultat technique permettant d’étudier
la convergence des séries de Dirichlet.

PROPOSITION 3.3. — Si la série de fonctions ∑n>1
an
ns converge en un point s0 ∈ C, alors elle

converge uniformément sur tout cône C(s0,θ) = s0 +
(
R>0eiθ +R>0e−iθ

)
avec θ ∈ [0,π/2[.

Démonstration. Posons s = s0 + t. Puisque

an

ns =
bn

nt

avec bn = ann−s0 , la convergence de la série ∑
an
ns en s0 équivaut à celle de la série ∑

bn
nt en 0.

Nous pouvons donc nous borner à traiter le cas s0 = 0, et nous faisons ainsi l’hypothèse
que la série ∑an converge.

Notons AM,N la somme partielle ∑
N
n=M an et posons AM,M−1 = 0. Étant donné ε > 0, notre

hypothèse garantit l’existence d’un entier M0 > 1 tel que, pour tous N > M > M0,

|AM,N |6 ε.

Effectuons une transformation d’Abel :
N

∑
n=M

an

ns =
N

∑
n=M

AM,n

(
1
ns −

1
(n+1)s

)
+

AM,N

(N +1)s .
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Il vient ∣∣∣∣∣ N

∑
n=M

an

ns

∣∣∣∣∣6 ε

(
N

∑
n=M

∣∣∣∣ 1
ns −

1
(n+1)s

∣∣∣∣+ 1
|(N +1)s|

)
pour tous N > M > M0. Écrivons s = a+ ib avec a,b ∈R. En observant que l’on a |ts+1|= ta+1

pour tout t > 0 et

|s|6 ka avec k =
1

cosθ

pour tout s dans le cône C(0,θ) = R>0eiθ +R>0e−iθ , on obtient, en suposant a non nul,∣∣∣∣ 1
ns −

1
(n+1)s

∣∣∣∣= ∣∣∣∣∫ n+1

n

s
ts+1 dt

∣∣∣∣6 k
∫ n+1

n

a
ta+1 dt = k

(
1
na −

1
(n+1)a

)
,

puis, en observant que l’on a k > 1,∣∣∣∣∣ N

∑
n=M

an

ns

∣∣∣∣∣6 εk

(
N

∑
n=M

(
1
na −

1
(n+1)a

)
+

1
(N +1)a

)
=

εk
Ma 6 kε.

Cette majoration vaut pour tout s dans le cône C(0,θ) : nous l’avons établie en supposons
Re(s) 6= 0, mais elle est également vraie lorsque s = 0 puisque k > 1. La suite des sommes
partielles de la série de Dirichlet

∑
n>1

an

ns

est ainsi uniformément de Cauchy sur le cône C(0,θ), donc elle converge uniformément
sur ce domaine. 2

Il découle de la proposition précédente que, si la série de Dirichlet ∑n>1
an
ns converge en

un point s0 ∈ C, alors elle converge en tout point du demi-plan ouvert {s ∈ C | Re(s) >
Re(s0)} ; en effet, tout point s de ce demi-plan est contenu dans le cône C(s0,Arg(s− s0))
et Arg(s− s0) ∈

[
0, π

2

[
. Cette observation permet de définir l’abscisse de convergence d’une

série de Dirichlet.

COROLLAIRE 3.4. — Il existe σc ∈ R∪ {±∞} tel que la série ∑n>1
an
ns soit divergente sur le

demi-plan Re(s)< σc et convergente sur le demi-plan Re(s)> σc.

Démonstration. Considérons le sous-ensemble

I =

{
s ∈ R

∣∣∣ ∑
n>1

ann−s converge

}
dans R et posons

σc = inf I.

Si I = ∅, alors σc = +∞. La série de Dirichlet ne converge en aucun point s0 de C, puis-
qu’elle convergerait sinon en tout point de la demi-droite réelle ]Re(s0),+∞[.

Si I 6=∅, alors
]σc,+∞[⊂ I et I∩]−∞,σc[=∅

puisque la convergence en un point x0 de R implique la convergence en tout x ∈ [x0,+∞[.

Si maintenant s est un nombre complexe tel que Re(s) > σc, alors la série de Dirichlet
converge en s puisque ce point appartient au cône C(s0,θ), avec σc < s0 < Re(s) et θ =
Arg(s− s0) ∈

[
0, π

2

[
. Enfin, la série diverge en tout point de ]−∞,σc[ (par définition de σc),

donc en tout point s0 ∈ C tel que Re(s0) < σc, puisque le cône C(s0,θ) rencontre ]−∞,σc[
lorsque θ est choisi suffisamment proche de π

2 . 2
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L’élément σc de R∪{±∞} que l’on vient d’associer à la série de Dirichlet ∑n>1
an
ns est son

abscisse de convergence.

REMARQUE 3.5 — Pour déterminer l’abcisse de convergence d’une série de Dirichlet ∑
an
ns ,

il est donc suffisant de considérer des valeurs réelles de la variable s.

EXEMPLE 3.5 — Il est facile de voir que tous les cas sont possibles pour σc :

(i) Si an =
1
n! , alors

an

ns =
n−s

n!
= o

(
n−2)

lorsque n tend vers +∞, donc σc =−∞.

(ii) Si an = n!, alors
∣∣an

ns

∣∣ tend vers +∞ avec n pour tout s ∈ C, donc σc =+∞.

(iii) Si an = 1, alors σc = 1 et la série ∑n>1
1
ns diverge au point s = σc.

(iv) Si an =
1

(logn)2 , alors σc = 1 et la série ∑n>1
1

(logn)2ns converge au point s = σc.

COROLLAIRE 3.7. — Une série de Dirichlet ∑n>1
an
ns d’abscisse converge σc converge sur le

demi-plan Hσc = {s ∈C | Re(s)> σc}, uniformément sur tout compact. Sa somme f est une
fonction holomorphe sur Hσc dont les dérivées itérées s’obtiennent en dérivant la série ini-
tiale terme à terme :

f (k)(s) = (−1)k
∑
n>1

an(logn)k

ns

pour tout k ∈ N et tout s ∈Hσc .

Démonstration. C’est une application immédiate du théorème de Weierstrass affirmant
que la limite d’une suite uniformément convergente de fonctions holomorphes est holo-
morphe. Puisque l’holomorphie est une propriété locale, il suffit d’appliquer ce théorème
sur l’intérieur de tout disque fermé K contenu dans le demi-plan Re(·)> σc, et d’observer
que la convergence sur K est uniforme puisque K est contenu dans un cône fermé C(s0,θ0)
convenable (choisir s0 réel tel que

σc < s0 < min
s∈K

Re(s),

puis θ0 tel que

0 < θ0 6 max
s∈K

Arg(s− s0),

en observant que l’on a bien Arg(s− s0)<
π

2 pour tout s ∈ K puisque K est contenu dans le
demi-plan ouvert Re(·)> s0.) 2

REMARQUE 3.8 — Si l’on se borne à ne considérer que des valeurs réelles de la variable s,
alors on peut établir aisément que la somme f (s) de la série de Dirichlet ∑n>1

an
ns est une

fonction indéfiniment dérivable sur le demi-plan s > σc. Il suffit bien entendu de consi-
dérer la cas σc < +∞ et, en raisonnant par récurrence, de prouver que f est dérivable sur
]σc,+∞[, de dérivée f ′ vérifiant

f ′(s) =−∑
n>1

an logn
ns

pour tout s > σc. Étant donné s > s1 > σc dans R, nous pouvons écrire

(4)
an logn

ns =
logn
ns−s1

· an

ns1
.
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La série des ann−s1 est convergente par hypothèse (puisque s1 > σc) tandis que la suite de
terme général logn

ns−s1 tend vers 0 et est décroissante à partir d’un certain rang puisque

d
du

logu
ua =

1−a logu
ua+1 < 0

dès que u > e1/a. On en déduit la convergence de la série de terme général (4) (par trans-
formation d’Abel, cf. Proposition 3.1) pour tout s > σc. Cette convergence est en outre uni-
forme sur tout intervalle [s1,+∞[ avec s1 > σc en vertu de la proposition 3.3, donc f est
dérivable sur ]σc,+∞[ et f ′(s) est la somme de la série des an(logn)n−s.

(1.2) Ce qui précède suffit à établir l’existence d’un prolongement méromorphe de la
fonction ζ au demi-plan Re(·)> 0. Nous approfondirons cela au chapitre suivant.

EXEMPLE 3.9 — Considérons la série de Dirichlet

∑
n>1

(−1)n+1

ns ,

qui est convergente pour s > 0 (série alternée) et divergente pour s 6 0 (le terme général ne
tend pas vers 0) ; son abscisse de convergence est donc σc = 0. Sa somme f est une fonction
holomorphe sur le demi-plan Re(·)> 0. Pour s ∈ C avec Re(s)> 1, la convergence absolue
des séries permet de permuter les termes et donc d’écrire(

1− 2
2s

)
ζ (s) =

(
1− 2

2s

)(
1+

1
2s +

1
3s +

1
4s + . . .

)
= 1+

1
2s +

1
3s +

1
4s + . . .− 2

2s −
2
4s −

2
6s − . . .

= 1− 1
2s +

1
3s −

1
4s + . . .

= f (s).

En observant que l’on a

1− 2
2s = 1− e(1−s) log2 = (s−1) log2+o(s−1)

au voisinage de 1, l’identité

(s−1)ζ (s) = (s−1)
(

1− 2
2s

)−1

f (s)

fait apparaître au membre de droite une fonction méromorphe sur le demi-plan Re(s)> 0,
de valeur

1
log2

f (1) =
1

log2 ∑
n>1

(−1)n+1

n
= 1

en s = 1. Nous venons ainsi de prouver que la fonction ζ possède un prolongement méro-
morphe sur le demi-plan Re(s)> 0 ayant un pôle simple en s = 1, de résidu 1.

On ne peut pas exclure a priori que le prolongement de ζ ait des pôles aux zéros de
(1−21−s) distincts de 1, c’est-à-dire aux points de 1+ 2iπ

ln2 Z distincts de 1. Nous verrons plus
loin que tel est bien le cas, ce qui montrera a posteriori que ces pôles apparents sont des
zéros de f .
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(1.3) L’abscisse de convergence d’une série Dirichlet ∑
an
ns est étroitement relié au com-

portement asymptotique de la fonction sommatoire

S(x) = ∑
n6x

an.

Nous nous contenterons du résultat élémentaire suivant.

PROPOSITION 3.10. — Les trois conditions suivantes sont équivalentes :

(i) l’abscisse de convergence σc est finie ou égale à −∞ (c’est-à-dire la série de Dirichlet
converge en un point de C) ;

(ii) la suite (an) a une croissance polynomiale : il existe d > 0 tel que an = O(nd) quand n
tend vers +∞ ;

(iii) la fonction sommatoire a une croissance polynomiale : il existe c > 0 tel que S(x) =
O(xc) quand x tend vers +∞.

Démonstration. Si la série de Dirichlet converge en σ ∈ R, alors ann−σ = o(1) et donc
an = o(nσ ) lorsque n tend vers +∞. Ceci établit (i)⇒ (ii).

S’il existe d > 0 tel que an = O(nd) quand n tend vers +∞, alors

S(x) = ∑
n6x

an = O

(
∑
n6x

nd

)
= O(nd+1),

la dernière égalité se déduisant, par exemple, de la comparaison série-intégrale (Lemme
1.4). Ceci établit (ii)⇒ (iii).

Finalement, s’il existe c > 0 tel que S(x) = O(xc) quand x tend vers +∞, alors

an = S(n)−S(n−1) = O(nc)

quand n tend vers +∞ et la série de Dirichlet converge donc en s = c+2. Ceci établit (iii)⇒
(i) et achève la démonstration.

2

(1.4) Nous achevons cette première étude des séries de Dirichlet en définissant leur abs-
cisse de convergence absolue.

Partant d’une série de Dirichlet ∑n>1
an
ns , nous pouvons considérer la série de Dirichlet

∑n>1
|an|
ns et lui appliquer ce qui précède.

DÉFINITION 3.11. — L’abscisse de convergence absolue d’une série de Dirichlet ∑n>1 ann−s

est l’abscisse de convergence de la série de Dirichlet ∑n >1 |an|n−s. C’est l’unique élément de
R∪ {±∞} tel que la série ∑n>1 |an|n−s soit convergente sur ]σa,+∞[ et divergente sur ]−∞,σa[.

LEMME 3.12. — L’abscisse de convergence σc et l’abscisse de convergence absolue σa d’une
série de Dirichlet vérifient les inégalités

σc 6 σa 6 σc +1.

Démonstration. L’inégalité σc 6 σa est claire puisque la convergence absolue implique la
convergence. Si s0 > σc et ε > 0, alors

an

ns0
= o(1)

par convergence, donc
an

ns0+1+ε
= o

(
1

n1+ε

)
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et la série ann−(s0+1+ε) est absolument convergente. On en déduit

σa 6 1+ s0 + ε,

et on conclut en faisant tendre s0 vers σc et ε vers 0. 2

EXEMPLE 3.12 — Là encore, tous les cas sont possibles :

— σa = σc =−∞ si an =
1
n! ;

— σa = σc =+∞ si an = n! ;

— σc = σa = 1 si an = 1 ;

— σc = 0 et σa = 1 si an = (−1)n+1.

En général, une série de Dirichlet est donc divergente sur le demi-plan Re(·) < σc,
convergente mais non absolument convergente sur la bande σc < Re(·) < σa, de largeur
au plus 1, et absolument convergente sur le demi-plan Re> σa.

3.2. Les séries de Dirichlet des fonctions arithmétiques

(2.1) Comme nous l’avons dit, les séries de Dirichlet sont naturellement les séries géné-
ratrices des fonctions arithmétiques. Pour f ∈A , posons

L f (s) = ∑
n>1

f (n)
ns .

Si f est à croissance polynomiale, alors l’abscisse de convergence de L f est dans R∪{−∞}
(Proposition 3.10). Nous noterons σ f l’abscisse de convergence absolue de L f .

PROPOSITION 3.13. — Si f ,g ∈A sont deux fonctions arithmétiques telles que σ f ,σg <+∞,
alors σ f∗g 6 max(σ f ,σg) et

L f∗g(s) = L f (s)Lg(s).

Démonstration. Pour s ∈ C tel que a =Re(s)> max(σ f ,σg),

∑
n>1

| f ∗g(n)|
|ns|

= ∑
n>1

1
na

∣∣∣∣ ∑
uv=n

f (u)g(v)
∣∣∣∣

6 ∑
n>1

∑
uv=n

| f (u)|
ua
| f (v)|

va

6

(
∑
u>1

| f (u)|
ua

)(
∑
v>1

|g(v)|
va

)
.

Cela montre que L f∗g(s) converge absolument si Re(s) > max(σ f ,σg), donc σ f∗g 6
max(σ f ,σg). Sous cette hypothèse, les inégalités précédentes deviennent des égalités
lorsqu’on omet les modules puisque la convergence absolue permet de regrouper les
termes à notre guise. 2

COROLLAIRE 3.14. — Si f ∈A est inversible et si σ f ,σ f (−1) <+∞, alors

L f (s)L f (−1)(s) = 1

pour tout s ∈ C tel que Re(s) > max(σ f ,σ f (−1)). En particulier, L f (s) ne s’annule pas sur le
demi-plan Re(s)> max(σ f ,σ f (−1)).
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EXEMPLE 3.15 — 1. On a L1(s) = ζ (s) et σ1 = 1. L’inverse de 1 est la fonction de Möbius, qui
vérifie σµ 6 1 puisque |µ(n)|6 1 pour tout n. Comme

∑
n>1

|µ(n)|
n

> ∑
p

1
p

diverge, il vient σµ = 1. On en déduit que ζ (s) ne s’annule pas pour Re(s) > 1, ainsi que
l’identité

∑
n>1

µ(n)
n

=
1

ζ (s)
.

2. On sait que la fonction d comptant le nombre de diviseurs d’un entier vérifie d = 1∗1.
On a donc σd 6 1, puisque σ1 = 1, puis σd = 1 puisque

Σn>1
d(n)

n
> ∑

n>1

1
n

diverge. On en déduit l’identité

∑
n>1

d(n)
ns = ζ (s)2

pour tout s ∈ C tels que Re(s)> 1.

3. On sait que ϕ = id ∗ µ . Comme Lid(s) = ζ (s− 1) a une abscisse de converge absolue
égale à 2, σϕ 6 2. Il s’agit en fait d’une égalité puisque

∑
n>1

ϕ(n)
n2 > ∑

p

p(p−1)
p2

diverge. On en déduit l’identité

∑
n>1

ϕ(n)
ns =

ζ (s−1)
ζ (s)

pour tout nombre complexe s tel que Re(s)> 2.

4. Considérons finalement la fonction de von Mangolt Λ = µ ∗ log. On a σΛ 6 1 et σΛ = 1
par divergence de

∑
n>1

Λ(n)
n

> ∑
p

1
p
.

Puisque Llog(s) =−ζ ′(s) et Lµ(s) = ζ (s)−1, nous obtenons l’identité

∑
n>1

Λ(n)
ns =−ζ ′(s)

ζ (s)

pour tout s ∈ C tel que Re(s)> 1.

(2.2) Le résultat suivant montre qu’une fonction arithmétique à croissance polynomiale
est entièrement déterminée par sa série de Dirichlet. Il permet en particulier d’établir des
identités entre fonctions arithmétiques à partir de calculs sur leurs séries de Dirichlet.

PROPOSITION 3.16. — Soit f ,g ∈ A deux fonctions arithmétiques à croissance polyno-
miale. S’il existe c > max{σ f ,σg} tel que L f (s) = Lg(s) pour tout s ∈ [c,+∞[, alors f = g.
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Démonstration. En posant h = f −g, nous avons σh 6 max{σ f ,σg} et Lh(s) = 0 pour tout
s ∈ [c,+∞[. Supposons que h ne soit pas identiquement nulle et désignons par n0 le plus
petit entier n tel que h(n) 6= 0. L’hypothèse nous permet d’écrire

h(n0)

nc+t
0

=− ∑
n>n0+1

h(n)
nc+t

pour tout t ∈ [0,+∞[. En observant que l’on a

nc+t
0

nc+t =
nc

0
nc ·
(n0

n

)t
6

nc
0

nc

(
n0

n0 +1

)t

pour tout n > n0 +1, il vient

|h(n0)|6 nc
0

(
∑

n>n0+1

|h(n)|
nc

)
·
(

n0

n0 +1

)t

pour tout t ∈ [0,+∞[. Nous en déduisons h(n0) = 0 en faisant tendre t vers +∞, ce qui contre-
dit notre hypothèse; la fonction h est donc identiquement nulle, c’est-à-dire f = g. 2

COROLLAIRE 3.17. — Soit f ∈A une fonction arithmétique à croissance polynomiale. Si f
n’est pas identiquement nulle, il existe un nombre réel c tel que L f (s) ne s’annule pas sur tout
le demi-plan Re(s)> c.

Démonstration. Supposons que n0 soit le plus petit entier tel que f (n0) 6= 0. Si s ∈ C est
un nombre complexe tel que Re(s) > σ f et L f (s) = 0, nous pouvons écrire comme dans la
démonstration précédente

| f (n0)|6 nRe(s)
0 ∑

n>n0+1

| f (n)|
nRe(s)

= nc
0

(
∑

n>n0+1

| f (n)|
nc

)
·
(

n0

n0 +1

)Re(s)−c

pour tout c > σ f et donc Re(s) est majorée en fonction de n0 et c. 2

(2.3) Sans surprise, enfin, les séries de Dirichlet des fonctions multiplicatives ont des
propriétés particulières.

PROPOSITION 3.18. — Soit f ∈ A une fonction arithmétique multiplicative à croissance
polynomiale.

(i) Pour tout nombre premier p, la série restreinte

L f ,p(s) = ∑
m>0

f (pm)

pms

converge absolument uniformément sur tout demi-plan fermé contenu dans Re(s) >
σ f .

(ii) La suite des produits ∏p6N L f ,p(s) converge uniformément sur tout demi-plan fermé
contenu dans Re(s)> σ f et

L f (s) = ∏
p

L f ,p(s).

(iii) S’il existe c ∈ R tel que

∑
p

∑
m>1

| f (pm)|
pmc <+∞,

alors σ f 6 c et
L f (s) = ∏

p
L f ,s(s)
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pour tout s ∈ C de partie réelle strictement supérieure à c.

Démonstration. (i) Il suffit d’écrire

∑
m>0

∣∣∣∣ f (pm)

pms

∣∣∣∣6 ∑
n>1

| f (n)|
nc <+∞

pour tout s ∈ C tel que Re(s)> c > σ f .

(ii) Notons P6N l’ensemble des nombres premiers inférieurs à N.

∏
p∈P6N

L f ,p(s) = ∏
p∈P6N

(
∑

m>0

f (pm)

pms

)
= ∑

ν :P6N→N
∏

p∈P6N

f (pν(p))

pν(p)s
= ∑

ν :P6N→N

f (nν)

ns
ν

,

où l’on a posé nν = ∏p∈P6N
pν(p). Lorsque ν parcourt l’ensemble des applications de P6N

dans N, nν décrit l’ensemble des entiers strictement positifs dont tous les facteurs premiers
sont inférieurs à N. Puisque ceux-ci contiennent certainement tous les entiers inférieurs à
N, nous en déduisons ∣∣∣∣∣L f (s)− ∏

p∈P6N

L f ,p(s)

∣∣∣∣∣6 ∑
n>N

| f (n)|
nc ,

ce qui établit la convergence de ∏p∈P6N
L f ,p(s) vers L f (s), uniformément sur tout demi-

plan fermé Re(s)> c.

(iii) Cette hypothèse équivaut à la convergence du produit infini

∏
p

(
1+ ∑

m>1

∣∣∣∣ f (pm)

pmc

∣∣∣∣
)
.

En raisonnant comme au point (ii), la multiplicativité de f entraîne la majoration

∑
n6N

∣∣∣∣ f (n)
ns

∣∣∣∣6 ∏
p6N

(
1+ ∑

m>1

∣∣∣∣ f (pm)

pmc

∣∣∣∣
)

pour tout N > 2, et donc la convergence de L f (s), uniformément sur le demi-plan fermé
Re(s)> c. On a donc σ f 6 c, et L f (s) = ∏p L f ,p(s) d’après le point (ii). 2

REMARQUE 3.19 — Lorsque f est complètement multiplicative, c’est-à-dire vérifie f (mn) =
f (m) f (n) pour tous entiers m et n, la formule du point (ii) s’écrit plus simplement sous la
forme

∑
n>1

1
ns = ∏

p

(
1− f (p)

ps

)−1

.

C’est une généralisation de la formule du produit d’Euler.

EXEMPLE 3.20 — On a

∑
n>1

µ(n)
ns = ∏

p

(
1− 1

ps

)
pour tout complexe s tel que Re(s)> 1.
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4. LA FONCTION ZÊTA DE RIEMANN

Nous amorçons dans ce chapitre l’étude de la fonction ζ en établissant l’existence d’un
prolongement méromorphe sur C satisfaisant à une équation fonctionnelle associée à la
symétrie de centre 1

2 .

La fonction Γ d’Euler joue un rôle important dans l’étude de ζ et constitue en soit un
sujet digne d’intérêt...

4.1. La fonction Gamma d’Euler

Euler observa que l’identité

n! =
∫

∞

0
e−ttn dt,

valable pour tout entier n ∈N et que l’on démontre aisément par récurrence et intégration
par parties, permet d’étendre le domaine de définition de la fonction factorielle : le second
membre garde en effet un sens lorsque l’entier n est remplacé par n’importe quel nombre
réel dans ]−1,+∞[.

Plus généralement, pour tout z∈C tel que Re(z)> 0, la fonction t 7→ e−ttz−1 est intégrable
sur ]0,+∞[ et l’on pose

(5) Γ(z) =
∫ +∞

0
e−ttz−1 dt.

REMARQUE 4.1. — On a immédiatement

Γ(1) =
∫

∞

0
e−t dt = 1 et Γ(n) = (n−1)! pour tout n > 1

ainsi que

Γ

(
1
2

)
=
∫

∞

0
e−t dt√

t
= 2

∫
∞

0
e−u2

du =
√

π

∫
R

e−πu2
du =

√
π

si l’on connaît la valeur de l’intégrale de Gauss (6).

PROPOSITION 4.2. — (i) La fonction Γ ainsi définie est holomorphe sur le demi-plan
Re(z)> 0, sur lequel :

(i) elle vérifie l’équation fonctionnelle

(6) Γ(z+1) = zΓ(z) ;

(ii) elle se prolonge de manière unique en une fonction méromorphe (7) sur C, encore no-
tée Γ ;

(iii) la fonction Γ satisfait l’équation fonctionnelle (2) sur C. Ses pôles, tous simples, sont
les entiers négatifs, et le résidu de Γ en−n est (−1)n

n! .

6. C’est un calcul que l’on effectue classiquement en exprimant le carré de cette intégrale sous la forme
d’une intégrale double, puis en passant en coordonnées polaires. On peut également déduire ce résultat de la
formule des compléments pour la fonction Γ, voir la remarque 5.8.

7. Rappelons qu’une fonction méromorphe sur un ouvert U de C est une fonction définie sur le complé-
mentaire dans U d’un ensemble E de points isolés, dont chacun est un pôle pour f : pour tout z0 ∈ E, il existe

un entier k > 0 et une fonction holomorphe h sur un voisinage V de z0 dans U tels que f (z) = h(z)
(z−z0)k pour tout

z ∈V \{z0}.
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Démonstration. (i) Il s’agit d’une application du théorème d’holomorphie sous l’intégrale
(voir les rappels d’analyse complexe à la fin de ce document) :

• la fonction
R>0×C, (t,z) 7→ e−ttz−1 = e−t+(z−1) log t

est continue, donc mesurable et intégrable par rapport à t sur tout segment, et elle
est holomorphe par rapport à la seconde variable ;

• pour tous nombres réels 0< a< b et tout nombre complexe z∈C tel que a6Re(z)6 b,
la majoration

|e−ttz−1|= e−ttRe(z)−1 6

{
e−tta−1 si t ∈]0,1]
e−ttb−1 si t ∈ [1,+∞[

fournit une domination uniforme en z dans la bande verticale Ba,b = {z ∈ C | a 6
Re(z)6 b} par une fonction intégrale sur [0,+∞[.

Sous ces hypothèses, le théorème d’holomorphie sous l’intégrale fournit l’holomorphie de
la fonction Γ sur l’intérieur de Ba,b, et donc sur tout le demi-plan Re(z)> 0 puisqu’il s’agit
d’une propriété locale.

(ii) L’unicité du prolongement méromorphe se déduit directement du principe du pro-
longement analytique (8). En effet, si f et g sont deux fonctions méromorphes sur C qui
coïncident avec Γ sur le demi-plan Re(·) > 0, alors l’ensemble E de leurs pôles est discret
et f et g sont holomorphes sur l’ouvert C\E, qui est connexe ; puisqu’elle coïncident (avec
Γ) sur le demi-plan Re(·) > 0, on obtient f = g. Cette unicité justifie l’abus de notation
consistant à utiliser Γ pour désigner le prolongement méromorphe obtenu.

Existence — Étant donné un entier n > 1, on considère la fonction Γn définie sur le demi-
plan Ωn = {z ∈ C | Re(z)>−n} par

Γn(z) =
Γ(z+n)

z(z+1) · · ·(z+n−1)
.

C’est une fonction méromorphe sur ce demi-plan, ayant des pôles simples en 0,−1, . . . ,−(n−
1). Les fonctions Γn+1 et Γn coïncident sur Ωn puisque

Γn+1(z) =
Γ(z+n+1)

z(z+1) · · ·(z+n)
=

(z+n)Γ(z+n)
z(z+1) · · ·(z+n)

= Γn(z)

pour tout z ∈ Ωn \ {0,−1, . . . ,−(n− 1)} en vertu de l’équation fonctionnelle de Γ. Il existe
donc une unique fonction F sur C \ (−N) telle que F(z) = Γn(z) pour tous n ∈ N et z ∈ C \
(−N) vérifiant Re(z) > −n. Cette fonction est méromorphe sur C, avec un pôle simple en
tout entier négatif.

(iii) L’identité Γ(z+1) = zΓ(z) entre fonctions holomorphes sur l’ouvert connexe C\(−N)
est vérifiée sur le demi-plan Re(z)> 0, donc également sur tout C\ (−N) en vertu du prin-
cipe du prolongement analytique. Considérons finalement n ∈ N et écrivons

Γ(z) = Γn+1(z) =
Γ(z+n+1)

z(z+1) · · ·(z+n)

pour tout z ∈Ωn+1 \{0,−1, . . . ,−n}. Comme Γ(1) = 1, nous en déduisons l’équivalent

Γ(z)∼ 1
(−n)(−n+1) · · ·(−1)(z+n)

=
(−1)n

n!
· 1

z+n

au voisinage de−n. Ceci prouve que Γ admet un pôle simple en−n, de résidu (−1)n

n! . 2

8. Soit f et g deux fonctions méromorphes sur un ouvert connexe U de C. Si f et g coïncident sur une partie
A de U admettant un point d’accumulation dans U , alors f = g.
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Le prolongement méromorphe de la fonction Γ que nous venons de construire à partir
de l’équation fonctionnelle peut s’obtenir différemment, en écrivant explicitement une
fonction méromorphe qui coïncide avec Γ sur le demi-plan Re(·) > 0 (voir également
l’exercice 1 sur la fiche TD4).

Pour ce faire, on commence par écrire

e−t = lim
n→+∞

(
1− t

n

)n

pour tout t ∈ R. La domination(
1− t

n

)n
= exp

(
n log

(
1− t

n

))
6 exp n

(
− t

n

)
= e−t

vaut pour n > |t| en vertu de l’inégalité log(1+ x) 6 x pour tout x > −1. Le théorème de
convergence dominée nous permet donc d’écrire :

Γ(z) =
∫ +∞

0
e−ttz−1 dt = lim

n→+∞

∫ +∞

0

(
1− t

n

)n
tz−11[0,n](t) dt = lim

n→+∞
nz
∫ 1

0
(1−u)nuz−1 du

pour tout nombre complexe z tel que Re(z)> 0. On définit classiquement la fonction Bêta
d’Euler en posant

B(x,y) =
∫ 1

0
(1−u)x−1uy−1 du

pour x,y dans le demi-plan Re(·)> 0. En utilisant de façon répétée l’identité

B(x+1,y) =
x

x+ y
B(x,y)

(cf. le lemme ci-dessous), il vient

Γ(z) = lim
n→+∞

n
z+n

B(n,z)nz = lim
n→+∞

n!
(z+1) · · ·(z+n)

B(1,z)nz,

d’où au final

(7) Γ(z) = lim
n→+∞

n!nz

z(z+1) · · ·(z+n)

puisque B(1,z) = 1
z .

LEMME 4.3. — Pour tous nombres complexes x,y tels que Re(x),Re(y)> 0,

B(x+1,y) =
x

x+ y
B(x,y).

Démonstration. Une intégration par parties conduit à

B(x+1,y) =
∫ 1

0
(1−u)xuy−1 du =

x
y

∫ 1

0
(1−u)x−1uy du =

x
y

B(x,y+1).

En développant (1−u)y = (1−u)y−1(1−u), il vient

B(x,y+1) = B(x,y)−B(x+1,y).

La conclusion s’obtient en combinant ces deux identités. 2

L’identité (7) s’écrit de manière équivalente sous la forme

(8)
1

Γ(z)
= lim

n→+∞

z(z+1) · · ·(z+n)
n!

n−z (Re(z)> 0).

Au membre de droite figure une suite de fonctions holomorphes sur C tout entier. Nous
allons voir que la convergence est uniforme sur tout compact, et donc que la limite est
holomorphe sur C ; c’est l’expression de Γ que l’on souhaitait obtenir.
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PROPOSITION 4.4 (FORMULE DE GAUSS) — Pour tout z ∈ C,

1
Γ(z)

= lim
n→+∞

z(z+1) · · ·(z+n)
n!

n−z

et la convergence est uniforme sur tout compact. En particulier, la fonction Γ ne s’annule en
aucun point de C.

Démonstration. La stratégie de démonstration est très classique : on établit tout d’abord
que le membre de droite définit une fonction holomorphe sur C en prouvant que la
convergence est uniforme sur tout compact, puis, en notant Z l’ensemble (discret) des
zéros de Γ, on observe que les deux membres sont des fonctions holomorphes sur l’ouvert
connexe C \Z qui, comme on vient de le voir, coïncident sur l’ouvert non vide Re(z) > 0 ;
l’égalité vaut alors sur C\Z en vertu du principe du prolongement analytique. Le membre
de droite étant holomorphe sur C, on en déduit immédiatement Γ(z) 6= 0 pour tout z ∈ C

Pour tout n ∈ N∗ et z ∈ C, posons

un(z) =
z(z+1) · · ·(z+n)

nzn!
.

Il s’agit d’une fonction holomorphe sur C ayant un zéro simple en 0,−1, . . . ,−n. Écrivons

un(z) = n−zz
n

∏
k=1

(
1+

z
k

)
et

n−z = e−z logn = exp

(
−z

n−1

∑
k=1

log(k+1)− log(k)

)
= exp

(
−z

n

∑
k=1

log
(

1+
1
k

))
·exp

(
z log

(
1+

1
n

))
(le second facteur du membre de droite compense le terme d’indice k = n dans la somme),
d’où

un(z) = z
n

∏
k=1

(
1+

z
k

)
e−z log(1+ 1

k ) · ez log(1+ 1
n).

Le facteur ez log(1+ 1
n) tend vers 1 uniformément sur tout compact, donc nous pouvons le

négliger dans ce qui suit. Fixons R > 0 et z tel que |z|6 R. Pour k > R, il vient∣∣∣ z
k

∣∣∣< 1, et donc 1+
z
k
= elog(1+ z

k ),

en définissant log(1+x) par la série entière usuelle ∑n>1
(−1)n+1

n xn. Ceci permet donc d’écrire

z
n

∏
k=1

(
1+

z
k

)
e−z log(1+ 1

k ) = z ∏
16k6R

(
1+

z
k

)
e−z log(1+ 1

k ) · ∏
R<k6n

elog(1+ z
k )−z log(1+ 1

k )

= z ∏
16k6R

(
1+

z
k

)
e−z log(1+ 1

k )evR,n(z)

en posant

vR,n(z) = ∑
R<k6n

(
log
(

1+
z
k

)
− z log

(
1+

1
k

))
.

Il existe un nombre C(R)> 0 tel que

| log(1+ x)− x|6C(R)|x|2 pour tout x ∈ C tel que |x|6 max
k∈N, k>R

R
k
=

R
R+1

.
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On en déduit la majoration suivante pour tous entiers m,n tels que R < m < n :

|vR,n(z)− vR,m| 6
n

∑
k=m+1

∣∣∣∣log
(

1+
z
k

)
− z log

(
1+

1
k

)∣∣∣∣
6

n

∑
k=m+1

∣∣∣log
(

1+
z
k

)
− z

k

∣∣∣+ |z| n

∑
k=m+1

∣∣∣∣log
(

1+
1
k

)
− 1

k

∣∣∣∣
6 (C(R)R2 +R) · ∑

R<k6n

1
k2

pour tout z ∈ C tel que |z|6 R. Le membre de droite tend vers 0 lorsque m et n tendent vers
+∞, donc ceci établit la convergence uniforme de la suite (vR,n) sur le disque fermé D(0,R).

Nous avons obtenu ainsi la convergence uniforme de la suite (un) sur D(0,R) vers une
fonction u∞ s’écrivant

u∞(z) = z ∏
16k6R

(
1+

z
k

)
e−z log(1+ 1

k )evR,∞(z)

pour tout z ∈D(0,R). Cette fonction est holomorphe sur l’intérieur de D(0,R), avec un zéro
simple en chacun des points 0,−1, . . . ,−bRc. Puisque R a été choisi arbitrairement, la fonc-
tion u∞ est donc holomorphe sur C, avec un zéro simple en chaque entier négatif. 2

COROLLAIRE 4.5 (FORMULE DU PRODUIT DE WEIERSTRASS) — Pour tout z ∈ C,
1

Γ(z)
= eγzz ∏

n>1

(
1+

z
n

)
e−z/n

où γ désigne la constante d’Euler.

Démonstration. Il suffit d’écrire, comme dans la démonstration de la proposition précé-
dente,

z(z+1) · · ·(z+n)
n!

n−z = ez log(1+ 1
n)z

n

∏
k=1

(
1+

z
k

)
e−z log(1+ 1

k ) = ezanz
n

∏
k=1

(
1+

z
n

)
e−

z
k

avec

an = log
(

1+
1
n

)
+

n

∑
k=1

(
1
k
− log

(
1+

1
k

))
=

n

∑
k=1

1
k
− logn = γ +o(1).

2

REMARQUE 4.6. — La non-annulation de Γ sur C constituera une information importante
dans l’étude des singularités (zéros et pôles) du prolongement méromorphe de la fonction
ζ sur C.

Outre l’équation fonctionnelle, la fonction Γ satisfait à plusieurs identités remarquables.
Parmi celles-ci, en voici qui joueront un rôle important par la suite.

PROPOSITION 4.7 (FORMULE DES COMPLÉMENTS) — Pour tout z ∈ C\Z,

Γ(z)Γ(1− z) =
π

sin(πz)
.

Démonstration. L’équation fonctionnelle et la formule du produit de Weierstrass per-
mettent d’écrire

1
Γ(z)Γ(1− z)

=− 1
zΓ(z)Γ(−z)

= z ∏
k>1

(
1+

z
k

)(
1− z

k

)
= z ∏

k>1

(
1− z2

k2

)
.
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On remarque que le produit infini figurant à droite est uniformément convergent sur tout

compact de C en vertu de l’estimation log
(

1+ z2

k2

)
= z2

k2 + z4O
( 1

k4

)
et de la convergence de

la série de terme général 1
k2 (cf. la démonstration de la formule de Gauss ci-dessus).

La conclusion provient immédiatement de la formule du produit pour la fonction sinus
(Euler) : pour tout z ∈ C,

sin(πz)
πz

= ∏
k>1

(
1− z2

k2

)
(voir l’exposé 9 pour une démonstration).

2

REMARQUE 4.7. — En faisant z = 1
2 , la formule des compléments fournit

Γ

(
1
2

)−2

=
2
π

sin
(

π

2

)
=

1
π
, et donc Γ

(
1
2

)
=
√

π.

Vu la remarque 5.1, ce calcul fournit donc une manière de retrouver la valeur de l’intégrale
de Gauss.

PROPOSITION 4.8 (FORMULE DE DUPLICATION) — Pour tout z ∈ C\ (−N),

Γ

( z
2

)
Γ

(
z+1

2

)
= 21−z√

πΓ(z).

Démonstration. En vertu de la formule de Gauss, le membre de gauche est la limite,
lorsque n tend vers +∞, de

n
z
2 n!

z
2

( z
2 +1

)
· · ·
( z

2 +n
) · n!n

z+1
2

z+1
2

( z+1
2 +1

)
· · ·
( z+1

2 +n
) =

22n+2(n!)2nz+ 1
2

z(z+1)(z+2) · · ·(z+2n+1)

=
(n!)2nz+ 1

2 22(n+1)

(2n+1)!(2n+1)z ·
(2n+1)!(2n+1)z

z(z+1)(z+2) · · ·(z+2n+1)
.

On a (
n

2n+1

)z

∼ 2−z

et, par la formule de Stirling,

(n!)2

(2n+1)!
∼

(n
e

)2n 2πn(2n+1
e

)2n+1√2(2n+1)π
∼
(

n
2n+1

)2n+1

n−
1
2 e
√

π ∼ 2−(2n+1)n−
1
2
√

π,

donc
n

z
2 n!

z
2

( z
2 +1

)
· · ·
( z

2 +n
) · n!n

z+1
2

z+1
2

( z+1
2 +1

)
· · ·
( z+1

2 +n
) ∼ 21−z√

π Γ(z).

La conclusion en découle immédiatement en faisant tendre n vers +∞. 2

REMARQUE 4.9. — En faisant z = 1, on retrouve de nouveau

Γ

(
1
2

)
=
√

π.



33

4.2. Prolongement de la fonction zêta : première méthode

Commençons par définir les nombres de Bernoulli (voir également l’exposé 4).

La fonction z 7→ z
ez−1 est méromorphe sur C, avec des pôles simples le long de 2iπZ \

{0}. Elle se prolonge par continuité en 0 puisque ez− 1 ∼ z, donc elle est holomorphe au
voisinage de 0. Son développement en série entière à l’origine s’écrit

z
ez−1

= ∑
n>0

Bn

n!
zn

avec Bn ∈ R. La série entière obtenue a pour rayon de convergence 2π (la distance de l’ori-
gine au pôle le plus proche).

Le nombre Bn est par définition le n-ième nombre de Bernoulli. Il s’agit manifestement
d’un nombre rationnel en vertu des règles de calcul sur les séries entières.

Le calcul des premiers nombres de Bernoulli s’effectue facilement :

z
ez−1

=

(
1+

z
2!

+
z2

3!
+

z3

4!
+ · · ·

)−1

= 1−
(

z
2
+

z2

3!
+

z3

4!
+ . . .

)
+

(
z
2
+

z2

3!
+

z3

4!
+ . . .

)2

− . . .

= 1− z
2
+

(
− 1

3!
+

1
4

)
z2 +

(
− 1

4!
+

1
3!
− 1

8

)
z3 + . . .

= 1− z
2
+

z2

12
+0 · z3 + . . .

donc

B0 = 1, B1 =−
1
2
, B2 =

1
6
, B3 = 0.

PROPOSITION 4.10. — Les nombres de Bernoulli sont rationnels et B2n+1 = 0 pour tout n> 1.

Démonstration. La première assertion découle immédiatement de la rationnalité des
coefficients de la série exponentielle et des règles de calcul sur les séries entières. Pour
obtenir la seconde, il suffit de vérifier que la fonction f définie par

f (z) =
z

ez−1
+

z
2
=

z
2

(
2

ez−1
+1
)
=

z
2
· e

z +1
ez−1

est paire, ce qui est immédiat. 2

En poussant plus loins les calculs, on obtient

B4 =−
1

30
, B6 =

1
12

, B8 =−
1
30

, B10 =
5
66

. . .

Nous en savons assez pour construire un prolongement méromorphe de la fonction
zêta sur C. Pour Re(s)> 0 et n ∈ N∗,

Γ(s) =
∫

∞

0
e−tts dt

t
= ns

∫
∞

0
e−ntts dt

t
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par le changement de variable t← nt, donc

Γ(s)
ns =

∫
∞

0
e−ntt−s dt

t
.

En sommant, nous en déduisons, pour Re(s)> 1 :

Γ(s)ζ (s) = ∑
n>1

∫
∞

0
e−ntts dt

t
=
∫

∞

0

(
∑
n>1

e−nt

)
ts dt

t
=
∫

∞

0

e−t

1− e−t ts dt
t
=
∫

∞

0

ts

et −1
dt
t
.

L’interversion de l’intégrale et de la somme est ici justifiée par le théorème de Fubini-
Tonelli puisque la quantité∫

∞

0
∑
n>1
|e−ntts−1| dt =

∫
∞

0

e−t

1− e−t tRe(s)−1 dt

est finie (l’intégrabilité en 0 pour Re(s) > 1 découle de l’estimation tRe(s)−1(et − 1)−1 ∼
tRe(s)−2).

Pour aller plus loin, nous allons traiter séparément les bornes 0 et ∞ :

Γ(s)ζ (s) =
∫ 1

0

ts

et −1
dt
t
+
∫

∞

1

ts

et −1
dt
t
.

Dans le membre de droite, la seconde intégrale définit une fonction holomorphe sur tout
C : il suffit en effet d’invoquer le théorème d’holomorphie sous l’intégrale, avec la domi-
nation ∣∣∣∣ ts−1

et −1

∣∣∣∣6 ta

et −1

pour tout s dans le demi-plan Re(s)6 a. Dans la première intégrale, nous pouvons rempla-
cer t

et−1 par son développement en série entière en 0 et intervertir la somme et l’intégrale
puisque le segment [0,1] est contenu dans l’intérieur du disque de convergence D(0,2π) :∫ 1

0

ts

et −1
dt
t
= ∑

n>0

Bn

n!

∫ 1

0
tn+s−2 dt = ∑

n>0

Bn

n!
1

s− (1−n)
.

La série de fonctions obtenue est normalement convergente sur tout compact K de C \
{1,0,−1,−2, . . .} : en effet, il existe δ > 0 tel que |s− (1−n)|> δ pour tout s ∈ K et n ∈ N, et

∑
n>0

∣∣∣∣Bn

n!
1

s− (1−n)

∣∣∣∣6 1
δ

∑
n>0

|Bn|
n!

est fini puisque 1 est à l’intérieur du disque de convergence de la série entière ∑n>0
Bn
n! zn.

La somme de cette série de fonctions holomorphes est donc elle-même holomorphe sur
C\{1,0,−1,−2, . . .}. Il s’agit plus précisément d’une fonction méromorphe sur C ayant un
pôle simple en 1 et en chaque entier négatif ; en effet, étant donné n0 ∈ N, il suffit d’écrire
cette somme sous la forme

∑
n>0

Bn

n!
1

s− (1−n)
=

Bn0

n0!
1

s− (1−n0)
+gn0(s), avec gn0(s) = ∑

n>1, n6=n0

Bn

n!
1

s− (1−n)

et d’observer que gn0 est holomorphe au voisinage de n0.

Au final, l’identité

(9) Γ(s)ζ (s) = ∑
n>0

Bn

n!
1

s− (1−n)
+
∫

∞

1

ts

et −1
dt
t
,
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valable sous la condition Re(s) > 1, fournit bien un prolongement méromorphe de ζ sur
C : le membre de droite est une fonction méromorphe f sur C, donc Γ−1 f est une fonction
méromorphe sur C qui coïncide avec ζ sur son demi-plan de définition.

L’étude des singularités de ce prolongement est aisée. En posant

f (s) = ∑
n>0

Bn

n!
1

s− (1−n)
+
∫

∞

1

ts

et −1
dt

et en utilisant les développements asymptotiques

Γ(s) = 1+Os→1(s−1)

et

Γ(s) =
(−1)n

n!
1

s+n
+Os→−n(1), n ∈ N,

il vient :

– d’une part

ζ (s) =
1

Γ(s)
f (s) = (1+O(s−1)) ·

(
B1

1!
1

s−1
+O(1)

)
=

1
s−1

+O(1)

au voisinage de 1 puisque B1 = 1, donc ce prolongement a un pôle simple en 1, de
résidu 1 ;

– d’autre part

ζ (s) =
1

Γ(s)
f (s) =

(
(−1)n−1(n−1)!(s+n−1)+O((s+n−1)2) ·(Bn

n!
1

s+n−1
+O(1)

)
=

(−1)n−1Bn

n
+O(s+n−1)

au voisinage de−(n−1), pour tout n > 1, donc

ζ (−(n−1)) = (−1)n−1 Bn

n
,

ou encore

ζ (−n) = (−1)n Bn+1

n+1
pour tout n > 0.

En se rappelant que Bn s’annule pour tout n> 3 impair, nous obtenons donc l’annulation
(du prolongement) de ζ en tous les entiers strictement négatifs pairs ; ce sont les zéros
triviaux de cette fonction.

REMARQUE 4.11. — Les valeurs ζ (0) =−1
2 et ζ (−1) = 1

12 peuvent s’écrire de manière pro-
vocatrice

1+1+1+ . . .=−1
2

et

1+2+3+4+ . . .=− 1
12

,

où les membres de gauche sont les séries divergentes obtenues en évaluant terme à terme
∑n>1 n−s en 0 et en 1. Ces deux identités sont à comprendre de la façon suivante : étant
donnée une suite a = (an)n>1 de nombres complexes, considérons la série de Dirichlet
D(s) = ∑n>1 ann−s ; en supposant

(a) que D(s) a une abscisse de convergence finie ;

(b) et que D(s) admet un prolongement méromorphe sur un demi-plan contenant 0 et
holomorphe en 0
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cela fait sens de poser
ΣD(a) = lim

s→0
D(s).

Il est clair que les suites a vérifiant les deux conditions ci-dessus forment un espace vec-
toriel complexe et que l’application a 7→ ΣD(a) est linéaire. En outre, si an > 0 et si la série
∑n>1 an associée à la suite a est convergente, alors

ΣD(a) = ∑
n>1

an.

En effet,
D(0) = lim

s→0, s>0
D(s) = lim

s→0, s>0
∑
n>1

an

ns = ∑
n>1

lim
s→0, s>0

an

ns = ∑
n>1

an

en vertu du théorème de convergence monotone.L’opérateur ΣD est un exemple de procédé
de sommation.

4.3. Prolongement de la fonction zêta : deuxième méthode

(4.3.1) Préliminaires d’analyse de Fourier

LEMME 4.12. — Soit f une fonction continue sur R, périodique de période 1. Posons

cn =
∫ 1

0
f (t)e−2iπnt dt

pour tout entier n ∈ Z. Si la famille (cn)n∈Z est sommable, alors

f (t) = ∑
n∈Z

cne2iπnt

pour tout t ∈ R.

Démonstration. Posons g(t) = ∑n∈Z cne2iπnt pour tout t ∈ R. Il s’agit de la somme d’une
série de fonctions normalement convergente sur R, donc g est continue et vérifie∫ 1

0
g(t)e−2iπnt dt = cn

pour tout n ∈ Z. La fonction f − g est continue, 1-périodique et à coefficients de Fourier
identiquement nuls, donc est orthogonale à toutes les fonctions (t 7→ e2i πnt) dans L2([0,1]) ;
ces dernières formant une base hilbertienne, on en déduit f − g = 0 dans L2([0,1]), d’où
f −g = 0 presque partout puis, par continuité, f = g. 2

LEMME 4.13 ( TRANSFORMÉE DE FOURIER D’UNE GAUSSIENNE) — Pour tout ξ ∈ R,∫
R

e−πx2
e−2iπxξ dx = e−πξ 2

.

Démonstration. En complétant le carré dans l’exponentielle, nous obtenons :∫
R

e−πx2
e−2iπxξ dx = e−πξ 2 ·

∫
R

e−π(x+iξ )2
dx.

Nous allons calculer l’intégrale apparaissant au membre de droite à l’aide du théorème
des résidus. Fixons R > 0 et considérons le chemin γR constitué par le bord du rectangle de
sommets −R,R,R+ iξ et −R+ iξ parcouru dans le sens indirect. La fonction z 7→ e−πz2

est
holomorphe sur C, donc ∫

γR

e−πz2
dz = 0.
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On a d’autre part :∫
γR

e−πz2
dz =

∫ R

−R
e−πx2

dx+ i
∫

ξ

0
e−π(R+it)2

dt +
∫ −R

R
e−π(x−iξ )2

dx+ i
∫

ξ

0
e−π(−R+it)2

dt

et ∣∣∣∣∫ ξ

0
e−π(±R+it)2

dt
∣∣∣∣6 |ξ | sup

|t|6|ξ |
e−π(R2−t2) 6 |ξ |e−R2−ξ 2

,

donc, en faisant tendre R vers +∞,∫
R

e−π(x+iξ )2
dx =

∫
R

e−πx2
dx.

Il est bien connu que l’intégrale de droite est égale à 1 (on calcule son carré en appliquant
le théorème de Fubini et en passant en coordonnées polaires). 2

PROPOSITION 4.14 (FORMULE SOMMATOIRE DE POISSON) — Soit f une fonction continue et
intégrable sur R telle que :

(i) la famille ( f̂ (n))n∈Z soit sommable ;

(ii) la série ∑n∈Z f (x+n) soit uniformément convergente sur [0,1].

On a : Pour tout x ∈ R,

∑
n∈Z

f (x+n) = ∑
n∈Z

f̂ (n)e−2iπnx

et, en particulier :

∑
n∈Z

f (n) = ∑
n∈Z

f̂ (n).

Démonstration. Posons F(x) =∑n∈Z f (x+n) pour tout x∈R. La condition (ii) garantit que
F est une fonction continue et 1-périodique; en outre, elle permet d’écrire

cn(F)=
∫ 1

0
F(x)e−2iπnx dx= ∑

k∈Z

∫ 1

0
f (x+k)e−2iπnx dx= ∑

k∈Z

∫ k+1

k
f (x)e−2iπnx dx=

∫
R

f (x)e−2iπnx dx= f̂ (n).

La famille (cn(F))n∈Z étant supposée sommable, nous pouvons appliquer le lemme précé-
dent : pour tout x ∈ R,

F(x) = ∑
n∈Z

cn(F)e2iπnx,

c’est-à-dire

∑
n∈Z

f (x+n) = ∑
n∈Z

f̂ (n)e2i πnx.

Il reste à évaluer les deux membres en 0 pour obtenir l’identité souhaitée :

∑
n∈Z

f (n) = ∑
n∈Z

f̂ (n).

2

COROLLAIRE 4.15 (ÉQUATION FONCTIONNELLE DE LA FONCTION THÊTA) — Posons, pour
tout t ∈ R>0,

θ(t) = ∑
n∈Z

e−πn2t .

On a, pour tout t > 0,

θ

(
1
t

)
=
√

tθ(t).
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Démonstration. Étant donné t > 0, la fonction f définie sur R par f (x) = e−πx2t appartient
à l’espace de Schwartz S (R) et

f̂ (ξ ) =
∫

R
e−πx2te−2iπxξ dx =

1√
t

∫
R

e−πy2
e−2iπy ξ√

t dy =
1√
t
e−π

ξ 2
t

en vertu du lemme 14. La famille des f̂ (n) est manifestement sommable et la série des
f (x+n) converge normalement sur [0,1] puisque

| f (x+n)|= e−πt(x+n)2
6 e−πt(n2)

sur ce segment. Nous pouvons donc appliquer la formule sommatoire de Poisson à f , ce
qui conduit à l’identité

θ(t) = ∑
n∈Z

f (n) = ∑
n∈Z

f̂ (n) =
1√
t
θ

(
1
t

)
.

2

(4.3.2) Prolongement méromorphe et équation fonctionnelle de ζ

Considérons la fonction holomorphe Λ définie sur le demi-plan {s ∈ C | Re(s) > 1}
par

Λ(s) = π
− s

2 Γ

( s
2

)
ζ (s).

THÉORÈME 4.16. — La fonction Λ se prolonge en une fonction méromorphe sur C ayant
pour uniques singularités des pôles simples en 0 et 1, de résidus respectifs −1 et 1. En outre,
ce prolongement satisfait à l’équation fonctionnelle

∀s ∈ C, Λ(s) = Λ(1− s).

Démonstration. Pour tout nombre complexe s tel que Re(s)> 1,

Λ(s) = π
− s

2 Γ

( s
2

)
ζ (s) = ∑

n>1

∫ +∞

0
e−tt

s
2 n−s

π
− s

2
dt
t
= ∑

n>1

∫ +∞

0
e−πn2uu

s
2

du
u
.

L’interversion de la somme et de l’intégrale se déduit du théorème de Fubini sur l’espace
produit Z×R>0, muni du produit de la mesure de comptage et de la mesure de Lebesgue.
En effet, en posant σ =Re(s), il vient :

∑
n>1

∫ +∞

0

∣∣∣e−n2πuu
s
2−1
∣∣∣ du = ∑

n>1

∫ +∞

0
e−n2πuu

Re(s)
2 −1 du = π

− σ

2 Γ

(
σ

2

)
ζ (σ)< ∞,

donc

Λ(s) =
∫ +∞

0
∑
n>1

e−πn2uu
s
2

du
u
.

Nous reconnaissons la fonction θ de Jacobi :

Λ(s) =
∫ +∞

0

1
2
(θ(u)−1)u

s
2

du
u

=
∫ 1

0

1
2
(θ(u)−1)u

s
2

du
u
+
∫ +∞

1

1
2
(θ(u)−1)u

s
2

du
u
.

Dans le membre de droite, l’intégrale sur [1,+∞[ définit une fonction holomorphe sur C
tout en entier : c’est une application du théorème d’holomorphie sous l’intégrale, en utili-
sant la domination

1
2
|θ(u)−1| · |u

s
2−1|6 u

Re(s)
2 −1

eπu−1
= O

(
e−π

u
2

)
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uniformément sur tout compact de C. L’intégrale sur [0,1] est plus problématique : on a
θ(u)∼ 1√

u au voisinage de 0 puisque

θ(u) =
1√
u

θ

(
1
u

)
∼ 1√

u

en vertu de l’équation fonctionnelle, donc l’intégrabilité en 0 ne vaut que si Re(s) > 1. Le
changement de variable t = 1

u permet cependant de réécrire cette intégrale sous la forme∫ +∞

1

1
2

(
θ

(
1
t

)
−1
)

t−
s
2

dt
t

=
∫ +∞

1

1
2
(√

tθ(t)−1
)

t−
s
2

dt
t

=
∫ +∞

1

1
2
(θ(u)−1)u

1−s
2

du
u
+

1
2

∫ +∞

1

(
u

1−s
2 −u−

s
2

) du
u

=
1

s−1
− 1

s
+
∫ +∞

1

1
2
(θ(u)−1)u

1−s
2

du
u
.

La dernière intégrale obtenue définit de nouveau une fonction holomorphe sur C tout
entier. Nous avons ainsi obtenu l’identité

Λ(s) =
1

s−1
− 1

s
+
∫ +∞

1

1
2
(θ(u)−1)

(
u

s
2 +u

1−s
2

) du
u

pour tout nombre complexe s tel que Re(s) > 1. Le membre de droite est une fonction
méromorphe sur C dont les seules singularités sont deux pôles simples en 0 et 1, de résidus
respectifs−1 et 1, et qui est invariante par l’involution s 7→ 1− s. 2

L’équation fonctionnelle

π
s−1

2 Γ

(
1− s

2

)
ζ (1− s) = π

− s
2 Γ

( s
2

)
ζ (s)

peut se réécrire un peu plus simplement. En écrivant 1−s
2 = 1− s+1

2 , la formule des complé-
ments et la formule de duplication conduisent à

Γ

(
1− s

2

)
=

π

sin
(

π(s+1)
2

)
Γ
( s+1

2

)
=

πΓ
( s

2

)
sin
(

π(s+1)
2

)√
π21−sΓ(s)

=
2s−1√π Γ

( s
2

)
sin
(

π(s+1)
2

)
Γ(s)

,

d’où

ζ (1− s) = 21−s
π
−s sin

(
π(s+1)

2

)
Γ(s)ζ (s)

et

ζ (s) = 2s
π

s−1 sin
(

πs
2

)
Γ(1− s)ζ (1− s)

pour tout s ∈ C\{0,1}.

COROLLAIRE 4.17. — Pour tout entier n > 1,

ζ (2n) =
(2π)2n

2 · (2n)!
(−1)n+1B2n.



40

Démonstration. L’équation fonctionnelle fournit l’identité

ζ (1−2n) = 21−2n
π
−2n sin

(
(2n+1)π

2

)
Γ(2n)ζ (2n) = (−1)n21−2n

π
−2n(2n−1)!ζ (2n).

On connaît par ailleurs les valeurs de zêta aux entiers négatifs :

ζ (−k) = (−1)k Bk+1

k+1
pour tout k ∈ N, donc

ζ (1−2n) =−B2n

2n
.

La formule

ζ (2n) =
(2π)2n

2 · (2n)!
(−1)n+1B2n

en découle immédiatement. 2

COROLLAIRE 4.18. — La fonction zêta admet un prolongement méromorphe sur C dont
l’unique singularité est un pôle simple en 1, de résidu 1. Elle s’annule en tous les entiers pairs
strictement négatifs (les zéros triviaux). Ses autres zéros sont tous contenus dans la bande
verticale {s ∈ C | 0 6 Re(s) 6 1} et ils sont globalement préservés par les transformations
s 7→ 1− s et s 7→ s.

Démonstration. Le prolongement méromorphe de Λ et de Γ sur C donnent évidemment
naissance à un prolongement méromorphe de ζ sur C :

ζ (s) = π
s
2 Γ

( s
2

)−1
Λ(s).

Le membre de droite est holomorphe sur C \ {0,1}, et même sur C \ {1} puisque Λ(s) =
−1

s +O(1) et Γ
( s

2

)−1
= s

2 +O(s2) au voisinage de s = 0. En outre, l’holomorphie de Λ sur
C \ {0,1} force la fonction zêta à s’annuler en tout entier strictement négatif pair puisque
tel est la cas de la fonction holomorphe s 7→ Γ

( s
2

)−1.
Pour aller plus loin, observons que la fonction zêta ne s’annule pas sur le demi-plan

Re(·)> 1 en vertu de l’identité

ζ (s) ·∑
n>1

µ(n)
ns = 1

sur ce demi-plan (rappelons qu’il s’agit d’une reformulation de l’identité de convolution
δ1 = 1∗µ). Comme la fonction Γ ne s’annule pas sur C (9), on en déduit que

Λ(s) = π
− s

2 Γ

( s
2

)
ζ (s)

ne s’annule pas davantage pour Re(s) > 1, et donc également pour Re(s) < 0 en vertu de
l’équation fonctionnelle. On en déduit que chaque entier strictement négatif pair est un
zéro simple de ζ (ce serait sinon un zéro de Λ), et que ζ ne s’annule nulle part ailleurs sur
le demi-plan Re(s)< 0. Comme Γ ne s’annule pas, les zéros non triviaux de ζ , c’est-à-dire
de partie réelle dans [0,1], sont précisément les zéros de Λ ; il sont donc invariants par la
transformation s 7→ 1− s (symétrie de centre 1

2 ). On a par ailleurs

ζ (s) = ζ (s)

pour tout s ∈ C \ {1} puisque les fonctions ζ et s 7→ ζ (s) sont holomorphes sur cet ouvert
connexe et coïncident sur l’intervalle réel ]1,+∞[, qui contient des points d’accumulations.

9. Rappelons que son inverse est holomorphe sur C...
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On en déduit immédiatement que l’ensemble des zéros de ζ est stable par conjugaison
complexe. Tout zéro non trivial s0 = σ0 + iτ0 de ζ dans la bande critique 0 6 σ0 6 1 vient
donc accompagnés des zéros s0,1− s0 et 1− s0. 2

Pour aller plus loin, observons que la fonction zêta ne s’annule pas sur le demi-plan
Re(·)> 1 en vertu de l’identité

ζ (s) ∑
n>1

µ(n)
ns = 1

sur ce demi-plan (rappelons qu’il s’agit d’une reformulation de l’identité de convolution
δ1 = 1∗µ). Comme la fonction Γ ne s’annule pas sur C (10), on en déduit que

Λ(s) = π
− s

2 Γ

( s
2

)
ζ (s)

ne s’annule pas davantage pour Re(s) > 1, et donc également pour Re(s) < 0 en vertu de
l’équation fonctionnelle. On en déduit que chaque entier strictement négatif pair est un
zéro simple de ζ (ce serait sinon un zéro de Λ), et que ζ ne s’annule nulle part ailleurs sur
le demi-plan Re(s)< 0. Comme Γ ne s’annule pas, les zéros non triviaux de ζ , c’est-à-dire
de partie réelle dans [0,1], sont précisément les zéros de Λ ; il sont donc invariants par la
transformation s 7→ 1− s (symétrie de centre 1

2 ). On a par ailleurs

ζ (s) = ζ (s)

pour tout s ∈ C \ {1} puisque les fonctions ζ et s 7→ ζ (s) sont holomorphes sur cet ouvert
connexe et coïncident sur l’intervalle réel ]1,+∞[, qui contient des points d’accumulations.
On en déduit immédiatement que l’ensemble des zéros de ζ est stable par conjugaison
complexe. Tout zéro non trivial s0 = σ0 + iτ0 de ζ dans la bande critique 0 6 σ0 6 1 vient
donc accompagnés des zéros s0,1− s0 et 1− s0. 2

4.4. Non-annulation de ζ (s) pour Re(s)> 1.

Rappelons que, si f est une fonction méromorphe non identiquement nulle au voisi-
nage d’un point z0 de C, alors f s’écrit localement

f (z) = (z− z0)
mg(z),

où m∈Z est l’ordre de f en z0, noté m= ordz0( f ), et g est une fonction holomorphe inversible
définie au voisinage de z0. On en déduit (11)

f ′

f
(z) =

m
z− z0

+
g′

g
(z),

et g′/g est une fonction holomorphe au voisinage de z0. Ainsi, si f est définie sur un ouvert
Ω de C, alors f ′

f est une fonction méromorphe sur Ω ayant un pôle simple en tout zéro ou
pôle z0 de f , de résidu ordz0( f ), et

lim
z→z0

(z− z0)
f ′

f
(z) = ordz0( f ).

10. Rappelons que son inverse est holomorphe sur C...
11. En utilisant le fait que la dérivée logarithmique d’un produit est la somme des dérivées logarithmiques

des facteurs :
(uv)′

uv
=

u′

u
+

v′

v
.
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THÉORÈME 4.19. — La fonction zêta ne s’annule en aucun point du demi-plan {s ∈
C | Re(s)> 1}.

Démonstration. La non-annulation de ζ (s) lorsque Re(s) > 1 découle directement de
l’identité

ζ (s) ·
∞

∑
n=1

µ(n)
ns = 1

qui vaut sous cette condition et, rappelons-le, traduit l’identité de convolution 1 ∗ µ = δ1
(cf. Chapitre 2).

Pour Re(s)> 1 toujours, la formule du produit

ζ (s) = ∏
p
(1− p−s)−1

permet d’exprimer la dérivée logarithmique de la fonction zêta sous la forme

ζ ′

ζ
(s) =−∑

p

(log p)p−s

1− p−s =−∑
p

log p
ps−1

=−∑
p

log p
ps −∑

p

log p
ps(ps−1)

.

La série

−∑
p

log p
ps(ps−1)

est normalement convergente sur le demi-plan fermé Re(s) > c pour tout c > 1
2 , donc sa

somme Ψ est une fonction holomorphe sur le demi-plan ouvert Ω 1
2
= {s ∈ C | Re(s) > 1

2}.
En posant

Φ(s) =−∑
p

log p
ps

et en écrivant

Φ(s) =
ζ ′

ζ
(s)−Ψ(s),

on obtient une fonction méromorphe Φ sur sur le demi-plan Ω1 = {s ∈ C | Re(s) > 1} ad-
mettant un prolongement méromorphe au demi-plan Ω 1

2
ayant les mêmes pôles que ζ ′/ζ ,

avec les mêmes résidus.

Considérons maintenant un nombre complexe s0 = 1 + it0, avec t0 ∈ R∗, ainsi que le
nombre complexe s1 = 1+2it0. Introduisons les entiers naturels

m = ords0ζ , n = ords1(ζ )

et rappelons que l’on a
ord1(ζ ) =−1.

En vertu de l’identité ζ (s) = ζ (s) pour tout nombre complexe z 6= 1, il vient

ords0(ζ ) = m et ords1(ζ ) = n.

La fin de la démonstration est astucieuse. Elle consiste à considérer l’expression

A(ε) = Φ(1+ ε−2it0)+4Φ(1+ ε− it0)+6Φ(1+ ε)+4Φ(1+ ε + it0)+Φ(1+ ε +2it0)

=
2

∑
k=−2

(
4

k+2

)
Φ(1+ ε +2ikt0)

pour ε ∈R>0 suffisamment petit et à calculer la limite de εA(ε) lorsque ε tend vers 0. D’une
part, nous avons

lim
ε→0

εA(ε) = 2n+4m−6
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puisque

lim
z→z0

(z− z0)Φ(z) = lim
z→z0

ζ ′

ζ
(z) = ordz0(ζ )

pour tout z0 ∈Ω 1
2

en vertu du rappel effectué avant l’énoncé du théorème. D’autre part,

A(ε) =
2

∑
k=−2

(
4

k+2

)
Φ(1+ ε +2ikt0)

= −
2

∑
k=−2

(
4

2+ k

)
∑
p

log p
p1+ε+2ikt0

= −∑
p

log p
p1+ε

2

∑
k=−2

(
4

k+2

)
p−2ikt0

= −∑
p

log p
p1+ε

(
p−it0/2 + pit0/2

)4

= −∑
p

log p
p1+ε

(
2cos

( t0
2

log p
))4

donc A(ε)6 0 pour tout ε . On en déduit l’inégalité

2n+8m−6 6 0,

puis
m = 0,

ce qu’il fallait démontrer. 2

COROLLAIRE 4.20. — La fonction

s 7→ ζ ′

ζ
(s)+

1
s−1

admet un prolongment holomorphe sur un voisinage du demi-plan fermé {s ∈ C | Re(s) >
1}.

Démonstration. En effet, ζ ′/ζ est une fonction méromorphe sur C ayant un unique pôle,
simple, en s = 1, de résidu−1. 2

Nous verrons au dernier chapitre que le théorème des nombres premiers découle « di-
rectement » de cet énoncé; plus exactement, il s’agit de la seule information requise sur la
fonction zêta pour établir le TNP.
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5. CARACTÈRES ET FONCTIONS L DE DIRICHLET

5.1. Caractères de Dirichlet

DÉFINITION 5.1. — Soit N > 1 un nombre entier. Un caractère de Dirichlet modulo N est
une fonction χ : Z→ C induite par un morphisme de groupes χ : (Z/NZ)×→ C×. Plus pré-
cisément :

χ(n) =
{

0 si pgcd(n,N) 6= 1
χ(n (mod N)) si pgcd(n,N) = 1.

Le caractère de Dirichlet modulo N tel que χ(n) = 1 pour tout entier n premier à N est dit
principal (ou trivial).

Il peut arriver qu’un caractère de Dirichlet modulo N se factorise par (Z/MZ)× avec M|N
et M 6= N, c’est-à-dire que χ provienne d’un caractère de Dirichlet modulo M via la projec-
tion canonique

(Z/NZ)×→ (Z/MZ)× .
Cette observation motive la définition suivante.

DÉFINITION 5.2. — Le conducteur d’un caractère de Dirichlet χ est le plus petit entier M
(au sens de la divisibilité) tel que χ se factorise à travers (Z/MZ)×. On dit qu’un caractère de
Dirichlet modulo N est primitif si son conducteur est égal à N.

De façon évidente, le conducteur du caractère principal modulo N est égal à 1.

EXEMPLE 5.3. — 1. Les caractères de Dirichlet modulo 4.

Le groupe (Z/4Z)× est cyclique d’ordre 2, engendré par la classe de −1. Il y a deux ca-
ractères de Dirichlet modulo 4 : le caractère principal χ1, défini par χ1(−1) = χ1(1) = 1, et
le caractère χ2, défini par χ2(1) = 1 et χ2(−1) =−1.

2. Les caractères de Dirichlet modulo 8.

Le groupe (Z/8Z)× est abélien d’ordre 4. Tous ses éléments sont de carré trivial, donc il
est à Z/2Z×Z/2Z. Plus précisément :

(Z/8Z)× ' 〈−1〉×〈3〉.

Un caractère de Dirichlet modulo 8 envoie tout élément de (Z/8Z)× sur un élément d’ordre
(au plus) 2 dans C×, donc sur 1 ou−1, et il est entièrement déterminé par la connaissance
des images de−1 et de 3. Ces observations permettent de dresser aisément la liste de tous
les caractères de Dirichlet modulo 8 :

1 −1 3 −3 conducteur
χ1 1 1 1 1 1
χ2 1 −1 −1 1 4
χ3 1 1 −1 −1 8
χ4 1 −1 1 −1 8

Les caractères qui se factorisent à travers (Z/4Z)× sont ceux qui sont triviaux sur le
noyau {1,−3} de la projection canonique (Z/8Z)×→ (Z/4Z)×.
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5.2. Fonctions L de Dirichlet

On associe à tout caractère de Dirichlet χ modulo N la série de Dirichlet

L(χ,s) = ∑
n>1

χ(n)
ns .

Comme |χ(n)| 6 1, cette série de Dirichlet est absolument convergente sur le demi-plan
Re(s)> 1 et

L(χ,s) = ∏
p

(
1− χ(p)

ps

)−1

= ∏
p-N

(
1− χ(p)

ps

)−1

sur ce demi-plan par multiplicativité complète de χ .

PROPOSITION 5.4. — Soit χ un caractère de Dirichlet modulo N.

1. Si χ = 1 est le caractère principal, alors l’abscisse de convergence (absolue) de L(1,s) est
égale à 1 et

L(1,s) = ∏
p|N

(
1− 1

p

)
ζ (s)

pour tout nombre complexe s tel que Re(s)> 1.

2. Si χ n’est pas principal, alors :

(i) ∣∣∣∣∣∑n6x
χ(n)

∣∣∣∣∣6 ϕ(N)

pour tout nombre réel x > 0 ;

(ii) l’abscisse de convergence (resp. de convergence absolue) de la série de Dirichlet
L(χ,s) est égale à 0 (resp. à 1).

Démonstration. 1. L’abscisse de convergence (absolue) de L(1,χ) est égale à 1 puisque la
série ∑p-N

1
p diverge. On a immédiatement

L(1,s) = ∏
p-N

(
1− 1

ps

)−1

= ∏
p|N

(
1− 1

p−s

)
ζ (s)

sur le demi-plan Re(s)> 1.

2. Considérons maintenant un caractère χ non principal.

Pour établir (i), il suffit d’observer que la fonction sommatoire de χ est N-périodique,
puisque

∑
n∈I

χ(n) = 0

pour tout intervalle I de longueur N par orthogonalité de χ et du caractère principal, et
d’observer que l’on a trivialement∣∣∣∣∣∑n6x

χ(n)

∣∣∣∣∣6 ∑
n6N
|χ(n)|= ϕ(N)

pour tout x ∈ [0,N].

Le fait que la fonction sommatoire de χ soit bornée entraîne que l’abscisse de conver-
gence σc de L(χ,s) vérifie σc 6 0 (TD 3, exercice 2), et l’on obtient σc = 0 en observant que la
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série ∑n>1 χ(n) ne converge pas puisque |χ(n)|= 1 pour tout n premier à N. On a par ailleurs
σa = 1 puisque |χ(n)| 6 1 pour tout n et que la série ∑n>1 |χ(n)|n−1 = ∑n>1, pgcd(n,N)=1 n−1 di-
verge. 2

5.3. Non-annulation de L(χ,s) pour Re(s)> 1.

PROPOSITION 5.5. — Pour tout caractère de Dirichlet modulo N non principal,

L(χ,1) 6= 0.

Démonstration. Pour s de partie réelle > 1, posons

Z(s) = ∏
χ mod N

L(χ,s)

= ∏
χ mod N

∏
p-N

(
1− χ(p)

ps

)−1

= ∏
p-N

∏
χ mod N

(
1− χ(p)

ps

)−1

= ∏
p-N

(
1− 1

p f (p)s

)−g(p)

,

où f (p) désigne l’ordre de p dans (Z/NZ)× et g(p) = ϕ(N)/ f (p). En effet, χ(p) est toujours
une racine f (p)-ième de l’unité, et chacune apparaît g(p) fois (voir les rappels sur les ca-
ractères des groupes abéliens finis dans l’appendice). La dernière égalité découle de la
factorisation

1−X f = ∏
ξ

(1−ξ X)

dans C[X ], où ξ parcourt l’ensemble des racines f -ièmes de l’unité dans C.

On reconnaît à droite un produit des séries géométriques ∑m>0
1

pms , donc nous pouvons
écrire

(10) ∏
χ mod N

L(χ,s) = ∑
n>1

an

ns

avec an > 0 pour tout n ; c’est une propriété remarquable, puisque chacune des séries L(χ,s)
est à coefficients complexes !

Désignons par σ l’abscisse de convergence (absolue) de cette série de Dirichlet.

En observant que l’on a

1− 1
p f (p)/ϕ(N)

= 1− 1
p1/g(p)

6 1− 1
p
,

il vient

∏
p-N

(
1− 1

p f (p)/ϕ(N)

)−g(p)

= ∏
p-N

(
1− 1

p1/g(p)

)−g(p)

> ∏
p-N

(
1− 1

p

)−g(p)

> ∏
p-N

(
1− 1

p

)−1

.

Comme le produit de droite est divergent (12), on obtient déjà

σ >
1

ϕ(N)
.

12. Cela équivaut à la divergence de la série des inverse des nombres premiers.
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Raisonnons maintenant par l’absurde en supposant qu’il existe un caractère non prin-
cipal χ0 tel que L(χ0,1) = 0. La fonction

L(1,s)L(χ0,s) = ∏
p|N

(1− p−s)ζ (s)L(χ0,s)

se prolonge alors en une fonction holomorphe sur tout le demi-plan Re(s) > 0 puisque,
comme nous l’avons établi précédemment, ζ (s) admet un prolongement méromorphe
sur ce demi-plan ayant un unique pôle, simple, en s = 1. La série de Dirichlet Z(s) admet
donc un prolongement holomorphe sur le demi-plan Re(s)> 0, ce qui impose σ 6 0 pour
son abscisse de convergence (absolue) σ en vertu de la proposition suivante. Nous avons
abouti à une contradiction, ce qui termine la démonstration. 2

PROPOSITION 5.6 (Lemme de Landau) — Soit (an)n>1 une suite de nombres réels positifs
telle que la série de Dirichlet ∑n>1 ann−s ait une abscisse de convergence σ <+∞. La fonction
f (s) = ∑n>1 ann−s, définie sur le demi-plan Re(s) > σ , n’admet pas de prolongement holo-
morphe au voisinage de σ .

Démonstration. Si l’on pose bn = ann−σ , de sorte que ann−s = bnn−(s−σ), la série de Diri-
chlet ∑n>1 bnn−t est encore à coefficients positifs, a pour abscisse de convergence 0 et se
prolonge holomorphiquement au voisinage de 0 si et seulement si f se prolonge holomor-
phiquement au voisinage de σ . Cette observation montre qu’il suffit donc de considérer le
cas σ = 0.

Supposons que f admette un prolongement holomorphe sur un disque ouvert D de
centre 0. En observant que ann−s croît vers an lorsque s tend vers 0 dans ]0,+∞[, nous pou-
vons écrire

f (0) = lim
s→0, s>0

f (s) = sup
s>0

f (s)> sup
s>0

N

∑
n=1

an

ns =
N

∑
n=1

an

pour tout N > 1, donc la série numérique de terme général an > 0 est convergente. Ceci
permet d’appliquer le théorème de convergence dominée, qui fournit l’égalité

f (0) = ∑
n>1

an.

Nous pouvons reproduire ce raisonnement avec la série de Dirichlet ∑n>1 an(logn)n−s, de
somme− f ′(s) sur le demi-plan Re(s)> 0 et à coefficients tous positifs ; nous obtenons

f ′(0) =−∑
n>1

an(logn).

Plus généralement, en itérant ce raisonnement,

f (k)(0) = (−1)k
∑
n>1

an(logn)k

pour tout k > 0.

Par hypothèse, la série entière

∑
k>0

1
k!

f (k)(0)zk = ∑
k>0

∑
n>1

(−1)kan(logn)kzk

converge sur le disque D. En l’évaluant en un nombre réel t < 0 dans D, nous obtenons une
série double convergente à termes positifs ; il est donc licite d’intervertir les deux sommes
et de conclure à la convergence de la série numérique

∑
n>1

an ∑
k>0

1
k!
(−t logn)k = ∑

n>1
ane−t logn = ∑

n>1

an

nt .
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Il en découle que l’abscisse de convergence σ de notre série de Dirichlet est inférieure à t,
et donc strictement négative. Comme σ = 0, c’est une contradiction et f ne peut donc pas
avoir de prolongement hololomorphe au voisinage de σ . 2

REMARQUE 5.7. — Soit χ un caractère de Dirichlet et soit Re(s)> 1. La formule du produit

L(χ,s) = ∏
p
(1−χ(p)p−s)−1

implique
L′(χ,s)
L(χ,s)

=−∑
p

χ(p)(log p)p−s

1−χ(p)p−s =−∑
p

χ(p)(log p)
ps−χ(p)

,

c’est-à-dire

(11) −L′(χ,s)
L(χ,s)

= Φχ(s)+Ψχ(s)

où

Φχ(s) = ∑
p

χ(p) log p
ps

et

Ψχ(s) = ∑
p

χ(p)2 log p
ps(ps−χ(p))

est holomorphe pour Re(s)> 1
2 .

COROLLAIRE 5.8 (Théorème de la progression arithmétique de Dirichlet) — Soit a et N deux
entiers strictement positifs tels que pgcd(a,N) = 1. L’ensemble

P ∩ (a+ZN)

des nombres premiers congrus à a modulo N est infini.

Démonstration. Pour s ∈ C tel que Re(s)> 1, posons

Φa(s) = ∑
p≡a (mod N)

log p
ps = ∑

p

1a(p)
ps .

Cette série est normalement convergente sur tout demi-plan fermé Re(s)> c > 1, donc Φa
est une fonction holomorphe sur le demi-plan ouvert Ω1 = {s∈C | Re(s)> 1}. La théorème
de la progression arithmétique va simplement découler du fait que Φa(s) tend vers +∞

lorsque s tend vers 1 dans R>1, ce que nous allons établir.

La fonction 1a : (Z/NZ)×→ C se décompose dans la base des caractères de (Z/NZ)× :

1a = ∑
χ

(χ|1a)χ =
1

ϕ(N) ∑
χ

χ(a)χ.

Nous pouvons donc réécrire Φa(s) sous la forme :

(12) Φa(s) =
1

ϕ(N) ∑
p

∑
χ

χ(a)
χ(p) log p

ps =
1

ϕ(N) ∑
χ

χ(a) ∑
p

χ(p) log p
ps ,

où χ parcourt l’ensemble des caractères de Dirichlet modulo N. Grâce au calcul effectué à
la remarque 5.7, nous obtenons, toujours pour Re(s)> 1 :

Φa(s) =
1

ϕ(N) ∑
χ

χ(a)Φχ(s) =−
1

ϕ(N) ∑
χ

χ(a)
L′(χ,s)
L(χ,s)

− 1
ϕ(N) ∑

χ

χ(a)Ψχ(s)
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Dans le membre de droite, le second terme est une fonction holomorphe sur le demi-plan
Ω 1

2
= {s ∈C | Re(s)> 1

2}. Le premier terme est une fonction méromorphe sur le demi-plan
Ω0 = {s ∈ C | Re(s)> 0} qui :

• possède un pôle simple en s = 1, de résidu 1
ϕ(N) , si χ est le caractètre trivial modulo

N ;

• est holomorphe au voisinage de 1 si χ est non trivial, en vertu de la proposition 5.5.

Ces observations montrent que Φa admet un pôle simple en s = 1, de résidu 1
ϕ(N) ; on a

donc

lim
s→1
|Φa(s)|=+∞,

ce qu’il fallait démontrer. 2

THÉORÈME 5.9. — Soit χ un caractère de Dirichlet modulo N.

(i) Si χ est non trivial, alors L(χ,s) ne s’annule pas pour Re(s)> 1.

(ii) Si χ = 1, alors L(χ,s) ne s’annule pas pour Re(s)> 1 et s 6= 1.

Démonstration. Pour c ∈ R, désignons par Ωc le demi-plan ouvert {s ∈ C | Re(s) > c}.
Considérons de nouveau la fonction Z définie pour s ∈Ω1 par

Z(s) = ∏
χ

L(χ,s),

où χ parcourt l’ensemble des caractères de Dirichlet modulo N (cette fonction a été intro-
duite dans la démonstration de la proposition 5.5). Il s’agit d’une fonction holomorphe sur
Ω1 admettant un prolongement méromorphe sur Ω0, et le théorème a démontrer équivaut
au fait que Z possède un pôle en s = 1 et ne s’annule pas sur Ω1 \{1}. La première assertion
est acquise en vertu de la proposition 5.5 et Z(s) 6= 0 pour tout s ∈Ω1 en vertu de la formule
du produit

Z(s) = ∏
χ

∏
p
(1−χ(p)p−s)−1.

Il reste donc à démontrer que Z ne s’annule en aucun nombre complexe s 6= 1 tel que
Re(s) = 1. On reprend pour cela la stratégie de démonstration du théorème 4.19, en étu-
diant la dérivée logarithmique de Z.

Fixons s0 = 1+ it0, avec t0 ∈ R∗ et considérons également le point s1 = 1+2it0. Posons

m = ords0(Z) et n = ords1(Z).

La série de Dirichlet Z étant à coefficients réels (voir le début de la démonstration du théo-
rème 5.5), elle vérifie Z(s) = Z(s) pour tout s ∈Ω1, donc

ords0(Z) = m et ords1(Z) = n.

En reprenant le calcul effectué à la remarque 5.7, nous pouvons écrire, pour s ∈Ω1,

−Z′(s)
Z(s)

=−∑
χ

L′(χ,s)
L(χ,s)

= ΦN(s)+ΨN(s),

où

ΨN(s) =−∑
χ

Ψχ(s)
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est holomorphe sur le demi-plan Ω 1
2

et

ΦN(s) = −∑
χ

Φχ(s)

= −∑
p

log p
ps ∑

χ

χ(p)

= − ∑
p≡1 (mod N)

log p
ps

en vertu des relations d’orthogonalité satisfaites par les caractères de Dirichlet. Les fonc-
tions méromorphes−Z′

Z et ΦN ont les mêmes parties polaires sur le demi-plan Ω 1
2
.

Considérons maintenant l’expression

A(ε) =
2

∑
k=−2

(
4

k+2

)
ΦN(1+ ε + ikt0)

= −∑
p

log p
p1+ε

2

∑
k=−2

(
4

k+2

)
p−ikt0

= −∑
p

log p
p1+ε

(
2cos

( t0
2

log p
))4

pour ε > 0. Il s’agit d’un nombre réel positif. On a par ailleurs

lim
ε→0

εA(ε) = − lim
ε→0

2

∑
k=−2

(
4

k+2

)
ε

Z′

Z
(1+ ε +2ikt0)

= −
4

∑
k=−2

(
4

k+2

)
ord1+ikt0(Z)

= −2n−8m+6

puisque ΦN et Z′
Z ont les mêmes parties polaires sur Ω 1

2
. Nous en déduisons l’inégalité

2n+8m−6 6 0,

d’où
m = 0,

ce qu’il fallait démontrer. 2

Nous concluons ce chapitre en formulant le résultat d’analyse complexe qui nous per-
mettra d’établir au chapitre suivant une version renforcée du théorème de la progression
arithmétique.

COROLLAIRE 5.10. — Soit a et N deux nombres entiers strictement positifs tels que
pgcd(a,N) = 1. Posons

Φa(s) = ∑
p≡a (mod N)

log p
ps .

La fonction

s 7→Φa(s)−
1

ϕ(N)

1
s−1

admet un prolongement holomorphe sur un voisinage du demi-plan fermé Ω1 = {s ∈
C | Re(s)> 1}.
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Démonstration. Pour Re(s) > 1, nous avons établi dans la démonstration du corollaire
5.7 l’identité

Φa(s) =−
1

ϕ(N) ∑
χ

χ(a)
L′(χ,s)
L(χ,s)

−Ψa(s),

où χ parcourt l’ensemble des caractères de Dirichlet modulo N et

Ψa(s) =
1

ϕ(N) ∑
χ

χ(a) ∑
p

χ(p)2 log p
ps(ps−χ(p))

est une fonction holomorphe sur le demi-plan ouvert Ω 1
2
= {s ∈ C | Re(s) > 1

2}. Il découle
du théorème précédent que la fonction L′(χ, ·)/L(χ, ·) est :

• holomorphe au voisinage de Ω1, si χ est non trivial ;

• méromorphe au voisinage de Ω1, avec un unique pôle, simple et de résidu −1, en
s = 1, si χ est trivial.

La conclusion s’en déduit immédiatement. 2
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6. LE THÉORÈME DES NOMBRES PREMIERS

Rappelons que l’on désigne par π la fonction de comptage des nombres premiers :

∀x ∈ R>0, π(x) = Card ({p premier et p 6 x}) .
Nous allons voir dans ce chapitre une démonstration du théorème des nombres premiers.

THÉORÈME 6.1. — Quand x tend vers +∞,

π(x)∼ x
lnx

.

La première preuve a été obtenue (de façon indépendante) par Jacques Hadamard et
Charles de la Vallée Poussin en 1896. Le cœur en est le prolongement méromorphe de
la fonction ζ sur le demi-plan Ω0 = {z ∈ C | Re(z) > 0} et sa non-annulation sur le demi-
plan fermé Ω1 = {z ∈ C | Re(s) > 1}, mais elle requiert en fait une étude plus fine de ζ

afin d’obtenir, en particulier, un voisinage explicite de Ω1 dans Ω0 sur lequel ζ ne s’annule
pas (13).

En 1909, Edmund Landau a donné une démonstration plus simple de ce théorème, qui
ne requiert que la non-annulation de ζ sur Ω1 et la croissance au plus polynomiale de
ζ ′(s)/ζ (s) lorsque s tend vers+∞ dans Ω1. En 1931, finalement, Shikaro Ikehara est parvenu
à déduire le théorème des nombres premiers de la seule non-annulation de ζ sur Ω1, en
utilisant pour cela les travaux fondamentaux et contemporains de Norbert Wiener (théorie
taubérienne). Ceci est particulièrement satisfaisant car il est assez facile de montrer que,
réciproquement, le théorème des nombres premiers entraîne la non-annulation de ζ sur
Ω1 (cf. section 6.4). C’est cette démonstration que nous allons présenter dans ce qui suit,
avec une simplification apportée par Donald Newman en 1980.

En bonus, nous obtiendrons un renforcement du théorème de la progression arithmé-
tique. Étant donné deux entiers naturels a,N > 1 tels que pgcd(a,N) = 1, posons

∀x ∈ R>0, πa,N(x) = Card({p premier, p≡ a (mod N) et p 6 x}) .

THÉORÈME 6.2. — Soit a,N ∈ N∗ avec pgcd(a,N) = 1. Quand x tend vers +∞,

πa,N(x)∼
1

ϕ(N)
π(x).

Autrement dit, les nombres premiers sont équidistribués parmi les suites arithmétiques de
raison N.

6.1. Une reformulation du théorème des nombres premiers

Pour tout x ∈ R>0, posons
θ(x) = ∑

p6x
ln p.

PROPOSITION 6.3. — Le théorème des nombres premiers équivaut à l’estimation asympto-
tique

θ(x)∼ x
quand x tend vers +∞.

13. Rappelons que l’hypothèse de Riemann affirme que le domaine optimal est le demi-plan Ω 1
2

.
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Démonstration. Pour tout x ∈ R>0, la majoration

θ(x) = ∑
p6x

ln p 6 (lnx) ∑
p6x

1 = π(x) lnx

est immédiate. Pour tous nombres réels y < x dans R>0, on dispose par ailleurs de la mino-
ration

θ(x)> ∑
y<p6x

ln p > (lny)(π(x)−π(y))> π(x) lny− y lny.

En fixant α dans ]0,1[ et en posant y = xα , on en déduit

θ(x)> απ(x) lnx−αxα lnx,

donc
θ(x)

x
> α

π(x)
x/ lnx

−αxα−1 lnx

et, en faisant tendre x vers +∞,

α liminf
π(x)

x/ lnx
6 liminf

θ(x)
x

, α limsup
π(x)

x/ lnx
6 limsup

θ(x)
x

.

Puisque α a été choisi arbitrairement dans ]0,1[, nous obtenons au final

liminf
x→+∞

π(x)
x/ lnx

= liminf
x→+∞

θ(x)
x

et limsup
x→+∞

π(x)
x/ lnx

= limsup
x→+∞

θ(x)
x

et donc la reformulation annoncée du théorème des nombres premiers. 2

REMARQUE 6.4. — Le théorème de Tchébychev établi au premier chapitre (théorème 1.9)
entraîne l’estimation

θ(x) = O(x)

quand x tend vers +∞, que nous allons utiliser au cours de la preuve du théorème des
nombres premiers.

Considérons maintenant deux nombres entiers a,N ∈ N∗ tels que pgcd(a,N) = 1 et po-
sons

θa,N(x) = ∑
p6x, p≡a (mod N)

ln p.

La même démonstration permet d’établir une reformulation du théorème 6.2.

PROPOSITION 6.5. — Quand x tend vers +∞ :

πa,N(x)∼
1

ϕ(N)

x
lnx

⇐⇒ θa,N(x)∼
1

ϕ(N)
x.

6.2. Le théorème de Wiener-Ikehara

Considérons une série de Dirichlet

f (s) =
+

∑
n=1

∞
an

ns

à coefficients complexes. Pour tout x ∈ R>0, on pose

A(x) = ∑
n6x

an.



54

THÉORÈME 6.6. — Supposons an ∈R>0 et A(x) = O(x) quand x tend vers +∞, ce qui garantit
la convergence de f (s) pour Re(s)> 1. S’il existe un nombre réel α tel que

f (s)− α

s−1

se prolonge en une fonction holomorphe sur un voisinage du demi-plan fermé Ω1 = {s ∈
C | Re(s)> 1}, alors

lim
x→+∞

A(x)
x

= α.

L’essentiel de la preuve du théorème de Wiener-Ikaehara est contenu dans les deux
lemmes suivants.

LEMME 6.7. — Soit u : [1,+∞[→ R une fonction croissante et soit α ∈ R. Si l’intégrale géné-
ralisée ∫ +∞

1

u(x)−αx
x2 dx

converge, alors

lim
x→+∞

u(x)
x

= α.

Démonstration. Nous allons raisonner par l’absurde.
Supposons tout d’abord

limsup
x→+∞

u(x)
x

> λ > α.

Il existe alors une suite (xk) de nombres réels strictement positifs tendant vers +∞ et telle
que u(xk)> λxk pour tout k.

Par croissance de u, nous obtenons la minoration∫ λ

α
xk

xk

u(x)−αx
x2 dx >

∫ λ

α
xk

xk

λxk−αx
x2 dx =

∫ λ

α

1

λ −αt
t2 dt.

Une contradiction en découle, puisque le membre de droite est un nombre réel stricte-
ment positif indépendant de k tandis que le membre de gauche tend vers 0 quand k tend
vers +∞, par convergence de l’intégrale généralisée.

Supposons maintenant

liminf
x→+∞

u(x)
x

< µ < α

et considérons de nouveau une suite (xk) de nombres réels strictement positifs tendant
vers +∞ et telle que u(xk)6 µxk pour tout k.

Par croissance de u, nous obtenons la majoration∫ xk

µ

α
xk

u(x)−αx
x2 dx 6

∫ xk

µ

α
xk

λxk−αx
x2 dx =

∫ 1

µ

α

µ−αt
t2 dt.

Une contradiction en découle de nouveau, puisque le membre de droite est un nombre
réel strictement négatif ne dépendant pas de k tandis que le membre de gauche tend vers
0 quand k tend vers +∞ par convergence de l’intégrale généralisée.

Nous venons d’établir l’encadrement

α 6 liminf
x→+∞

u(x)
x

6 limsup
x→+∞

u(x)
x

6 α,
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donc

lim
x→+∞

u(x)
x

= α.

2

LEMME 6.8. — Soit h : R>0 → C une fonction mesurable bornée. Soit g la fonction holo-
morphe définie sur le demi-plan Ω0 = {z ∈ C | Re(z)> 0} par

g(z) =
∫ +∞

0
h(t)e−zt dt.

Si g se prolonge holomorphiquement sur un voisinage du demi-plan fermé Ω0, alors l’inté-
grale généralisée

∫ +∞

0 h(t) dt est convergente et∫ +∞

0
h(t) dt = g(0).

Démonstration. Pour tout nombre réel T > 0 et tout nombre complexe s, posons gT (s) =∫ T
0 h(t)e−st dt. La fonction gT est holomorphe sur C et nous devons prouver que gT (0) tend

vers g(0) quand T tend vers ++∞.

Pour R > 0 fixé, il existe δ > 0 tel que g soit holomorphe au voisinage de l’adhérence de
l’ouvert

Ω = {s ∈ C | Re(s)>−δ et |z|< R}.
En traitant la frontière de Ω comme un lacet γ orienté positivement,le théorème des rési-
dus fournit l’identité

g(0)−gT (0) =
1

2iπ

∫
γ

(g(z)−gT (z))ezT
(

1
z
+

z
R2

)
dz.

(i) Si Re(z)> 0, alors g(z) =
∫ +∞

0 h(t)e−zt dt et donc

|g(z)−gT (z)|=
∣∣∣∣∫ +∞

T
h(t)e−zt dt

∣∣∣∣6 ||h||∞ ∫ +∞

T
e−Re(z)t dt =

||h||∞
Re(z)

e−Re(z)T .

(ii) Si |z|= R, alors∣∣∣∣ezT
(

1
z
+

z
R2

)∣∣∣∣= eRe(z)T

R

∣∣∣∣ z
|z|

+
z
|z|

∣∣∣∣= 2|Re(z)|eRe(z)T

R2 .

En combinant les majorations (i) et (ii), on obtient que la contribution de l’intégrale sur le
demi-arc de cercle C+ formé des z tels que |z|= R et Re(z)> 0 est majorée par∣∣∣∣ 1

2iπ

∫
C+

(g(z)−gT (z))ezT
(

1
z
+

z
R2

)
dz
∣∣∣∣6 2||h||∞

2πR2 πR =
||h||∞

R
.

Notons γ− la partie du lacet γ contenu dans le demi-plan Re(z)6 0 et soit C− le demi-arc
de cercle formé des z tels que |z| = R et Re(z) 6 0. La fonction gT étant holomorphe sur C,
on a ∫

γ−
gT (z)ezT

(
1
z
+

z
R2

)
dz =

∫
C−

gT (z)ezT
(

1
z
+

z
R2

)
dz

car l’intégrande est holomorphe sur le demi-plan Re(z)< 0.

Pour tout z ∈C−,

|gT (z)|6 ||h||∞
∫ T

0
e−Re(z)t dt =

||h||∞
|Re(z)|

(
e−Re(z)T −1

)
6
||h||∞
|Re(z)|

e−Re(z)T .
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En combinant cette majoration avec (ii), on en déduit∣∣∣∣ 1
2iπ

∫
γ−

gT (z)ezT
(

1
z
+

z
R2

)
dz
∣∣∣∣6 2||h||∞

2πR2 πR =
||h||∞

R
.

Considérons enfin l’intégrale

1
2iπ

∫
γ−

g(z)ezT
(

1
z
+

z
R2

)
dz.

La fonction z 7→ g(z)
(1

z +
z

R2

)
est holomorphe, donc bornée, au voisinage du support de γ−.

Comme

|ezT |= eRe(z)T

tend vers 0 quand T tend vers +∞ pour tout z tel que Re(z)< 0, on a immédiatement

lim
T→+∞

1
2iπ

∫
γ−

g(z)ezT
(

1
z
+

z
R2

)
dz = 0

par application du théorème de convergence dominée.

En mettant bout à bout les trois estimations ci-dessus, nous obtenons

|g(0)−gT (0)|6 2
||h||∞

R
+ I(R,T ),

où I(R,T ) tend vers 0 quand T tend vers +∞ à R fixé. Étant donné ε > 0, on pose R0 =
4||h||∞

ε

puis l’on considère T0 > 0 tel que |I(R0,T )|6 ε/2 pour tout T > T0 ; on a alors

|g(0)−gT (0)|6 ε

pour tout T > T0.
Cela démontre l’assertion souhaitée :

lim
T→+∞

gT (0) = g(0).

2

Nous sommes maintenant en mesure de démontrer le théorème de Wiener-Ikehara.
Étant donné s ∈ C et N ∈ N∗, la formule sommatoire d’Abel (TD3, exercice 1) permet
d’écrire

N

∑
n=1

an

ns =
A(N)

Ns + s
∫ N

1

A(x)
xs+1 dx.

Si Re(s) > 1, l’hypothèse A(x) = O(x) montre que les deux membres convergent et l’on
aboutit à l’identité

f (s) = s
∫ +∞

1

A(x)
xs+1 dx.

Puisque ∫ +∞

1

dx
xs =

1
s−1

,

f (s)− α

s−1
= f (s)− αs

s−1
+α = s

∫ +∞

1

A(x)−αx
xs+1 dx+α.

En posant s = 1+ z et en effectuant le changement de variable x = et , il vient :
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f (s)− α

s−1
−α = f (z+1)− α

z
−α

= (z+1)
∫ +∞

1

A(x)−αx
x2+z dx

= (z+1)
∫ +∞

0

A(et)−αet

e(2+z)t
et dt

= (z+1)
∫ +∞

0

(
A(et)e−t −α

)
e−zt dt.

Par hypothèse, le membre de droite se prolonge en une fonction holomorphe sur un voi-
sinage du demi-plan fermé Ω0 = {z ∈ C | Re(z)> 0}. La fonction h définie sur R>0 par

h(t) = A(et)e−t −1

est continue par morceaux et bornée, puisque A(x) = O(x). Nous pouvons ainsi appliquer
le lemme 6.8 et en déduire la convergence de l’intégrale généralisée∫ +∞

0
h(t) dt =

∫ +∞

1

A(x)−αx
x2 dx,

puis conclure grâce au lemme 6.7 puisque l’hypothèse an > 0 fournit la croissance de la
fonction A.

6.3. Démonstration du théorème des nombres premiers

Grâce à la reformulation établie en 6.1, le théorème de Wiener-Ikehara permet de dé-
duire très facilement le théorème des nombres premiers de la non-annulation de ζ sur le
demi-plan fermé Ω1 = {z ∈ C | Re(z)> 1} (Théorème 4.19).

Démonstration du théorème 6.1. Considérons en effet la série de Dirichlet à coefficients
positifs définie par

an =

{
ln p si n = p est un nombre premier
0 sinon.

On a

A(x) = θ(x) = O(x)

et

f (s) =
+∞

∑
n=1

an

ns = ∑
p

log p
ps =−ζ ′(s)

ζ (s)
+Ψ(s),

où Ψ est une fonction holomorphe sur le demi-plan Ω 1
2

(voir la démonstration du théo-

rème 4.19). La non-annulation de ζ sur Ω1 et son pôle simple en s = 1 garantissent que

f (s)− 1
s−1

=−ζ ′(s)
ζ (s)

− 1
s−1

+Ψ(s)

se prolonge holomorphiquement sur un voisinage de Ω1, donc

θ(x)∼ x

quand x tend vers +∞ en vertu du théorème de Wiener-Ikehara. Grâce à la proposition 6.3,
le théorème des nombres premiers est donc démontré. 2
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Démonstration du théorème 6.2. Considérons maintenant deux nombres entiers a,N ∈ N∗
tels que pgcd(a,N) = 1 et introduisons la série de Dirichlet à coefficients positifs définis par

an =

{
ln p si n = p est un nombre premier etp≡ a (mod N)
0 sinon.

On a
A(x) = θa,N(x) = O(x)

et

f (s) = ∑
p≡a (mod N), p6x

log p
ps

= − 1
ϕ(N) ∑

χ mod N
χ(a)

L′(χ,s)
L(χ,s)

+Ψa,N(s)

où Ψa,N désigne de nouveau une fonction holomorphe sur le demi-plan Ω 1
2

(voir la dé-
monstration du corollaire 5.8). On a démontré que les fonctions L(χ, ·) sont holomorphes
sur Ω0 et ne s’annulent pas sur Ω1 si χ est non trivial, tandis que L(1, ·) est méromorphe
sur Ω0 avec un unique pôle, simple, en s = 1, et ne s’annule pas ailleurs sur Ω1 (Théorème
5.9). On en déduit que

f (s)− 1
ϕ(N)

1
s−1

se prolonge holomorphiquement au voisinage de Ω1, donc

θa,N(x)∼
1

ϕ(N)
x

quand x tend vers +∞ en vertu du théorème de Wiener-Ikehara. Grâce à la proposition 6.4,
la forme renforcée du théorème de la progression arithmétique est donc démontrée. 2

6.4. Complément

Nous venons de déduire le théorème des nombres premiers de la non-annulation de ζ

sur le demi-plan fermé Ω1. Il est assez facile de prouver que, réciproquement, cette non-
annulation peut se déduire du théorème des nombres premiers.

PROPOSITION 6.9. — Considérons une fonction mesurable localement bornée u : [1,+∞[→
R telle que u(x) = O(x) quand x tend vers +∞. Posons

∀s ∈Ω1, g(s) =
∫ +∞

1

u(x)
xs+1 dx.

S’il existe α ∈ R tel que u(x)
x tende vers α quand x tend vers +∞, alors :

(i) (s−1)g(s) tend vers α quand s tend vers 1 dans un secteur angulaire de la forme

|Im(s−1)|6C(Re(s)−1);

(ii) pour tout s0 ∈ C\{1} tel que Re(s) = 1,

(s− s0)g(s) = o(1)

quand s tend vers s0 dans un secteur angulaire de la forme

|Im(s− s0)|6CRe(s− s0).

En particulier, si l’on sait que g admet un prolongement méromorphe sur un voisinage de
Ω1, alors celui-ci ne s’annule pas sur Ω1 \ {1} et admet au plus un pôle, simple, en s = 1 si
α 6= 0, de résidu α .
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Démonstration. Pour tout s ∈Ω1,

g(s)− αs
s−1

= s
∫ +∞

1

u(x)−αx
xs+1 dx.

Par hypothèse,
u(x)−αx = o(x).

Étant donné ε > 0, il existe donc x0 > 1 tel que |u(x)−αx| 6 εx pour tout x > x0. En notant
M un majorant de (u(x)−αx)/x sur [1,+∞[, on en déduit la majoration∣∣∣∣∫ +∞

1

u(x)−αx
xs+1 dx

∣∣∣∣ 6
∫ +∞

1

|u(x)−αx|
xRe(s)+1 dx

6 ε

∫ +

x0

∞
dx

xRe(s)
+M

∫ x0

1

dx
xRe(s)

6
1

Re(s)−1

(
ε +M(1− x1−Re(s)−1

0 )
)
.

En écrivant
x1−Re(s)

0 = 1+(1−Re(s)) lnx0 +ox0(Re(s)−1)

quandRe(s) tend vers 1, on voit que le membre de droite de la dernière inégalité est majoré
par

2ε

Re(s)−1
si Re(s) est suffisamment proche de 1, donc∣∣∣∣g(s)− αs

s−1

∣∣∣∣= o
(

1
Re(s)−1

)
quand Re(s) tend vers 1.

Nous pouvons maintenant conclure.

(i) On a

(s−1)
(

g(s)− αs
s−1

)
= o

(
|s−1|

Re(s)−1

)
quand s tend vers 1 dans Ω, donc

(s−1)g(s)−α = o(1)

quand s tend vers 1 dans un secteur angulaire de la forme

|Im(s)|6C(Re(s)−1),

car alors
|s−1|

Re(s)−1
6
√

C2 +1.

(ii) Fixons s0 dans C\{1} tel que Re(s0) = 1. On a

(s− s0)

(
g(s)− αs

s−1

)
= o

(
|s− s0|

Re(s)−1

)
quand s tend vers s0 dans Ω, donc

(s− s0)g(s) = o(1)

quand s tend vers s0 dans un secteur angulaire de la forme

|Im(s− s0)|6C(Re(s)−1),
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car alors
|s− s0|

Re(s)−1
6
√

C2 +1.

2

Écrivons

∑
p

ln p
ps = s

∫ +∞

1

θ(x)
xs+1 dx.

On a
θ(x) = O(x)

quand x tend vers +∞ et

∑
p

ln p
ps =−ζ ′(s)

ζ (s)
+Ψ(s),

où Ψ est une fonction holomorphe sur le demi-plan Ω 1
2
. La proposition précédente af-

firme que − ζ ′

ζ
est une fonction méromorphe (sur Ω 1

2
) qui possède dans Ω1 un unique

pôle, simple, au point s = 1, de résidu 1. La fonction ζ possède donc dans Ω1 un unique
pôle, simple, en s = 1 et elle ne s’annule pas sur ce demi-plan fermé.
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RAPPELS D’ANALYSE COMPLEXE

1. Le théorème d’holomorphie sous l’intégrale

Soit (X ,A ,µ) un espace mesuré. Il s’agit d’établir l’holomorphie d’une intégrale∫
X

f (z,x) dµ(x)

en fonction du paramètre complexe z.

Commençons par rappeler l’énoncé bien connu permettant de traiter le problème ana-
logue lorsque le paramètre est à valeurs réelles.

Théorème (Dérivation sous l’intégrale) — Soit I un intervalle ouvert de R et soit f : I×X→
C une fonction satisfaisant aux trois conditions suivantes :

(i) pour tout t ∈ I, le fonction f (t, ·) est mesurable ;

(ii) pour presque tout x ∈ X , la fonction f (·,x) est dérivable sur I ;

(iii) il existe une fonction intégrable ϕ : X → R>O telle que∣∣∣∣∂ f
∂ t

(t,x)
∣∣∣∣6 ϕ(x)

pour tout t ∈ I et presque tout x ∈ X .

La fonction F : I×C définie par

F(t) =
∫

X
f (t,x) dµ(x)

est alors dérivable, et

F ′(t) =
∫

X

∂ f
∂ t

(t,x) dµ(x)

pour tout t ∈ I.

Démonstration. Soit t0 ∈ I et soit h ∈ R∗ tel que t0 + h ∈ I. En vertu de l’inégalité des ac-
croissements finis

| f (t0 +h,x)− f (t0)|6 sup
t∈I

∣∣∣∣∂ f
∂ t

(t,x)
∣∣∣∣ · |h|

l’hypothèse (iii) fournit la majoration∣∣∣∣ f (t0 +h)− f (t0)
h

∣∣∣∣6 ϕ(x)

pour presque tout x ∈ X . Nous pouvons donc appliquer le théorème de convergence do-
minée pour obtenir

lim
h→0

F(t0 +h)−F(t0)
h

= lim
h→0

∫
X

f (t0 +h,x)− f (t0,x)
h

dµ(x)

=
∫

X
lim
h→0

f (t0 +h,x)− f (t0,x)
h

dµ(x)

=
∫

X

∂ f
∂ t

(t0,x) dµ(x).

2

Voici l’énoncé dans le cas complexe.
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Théorème (Holomorphie sous l’intégrale) — Soit Ω un ouvert de C et soit f : Ω×X → C
une fonction satisfaisant aux trois conditions suivantes :

(i) pour tout z ∈Ω, le fonction f (z, ·) est mesurable ;

(ii) pour presque tout x ∈ X , la fonction f (·,x) est holomorphe sur Ω ;

(iii) il existe une fonction intégrable ϕ : X → R>O telle que

| f (z,x)|6 ϕ(x)

pour tout z ∈Ω et presque tout x ∈ X .

La fonction F : Ω×C définie par

F(t) =
∫

X
f (z,x) dµ(x)

est alors holomorphe, et

F ′(z) =
∫

X

∂ f
∂ z

(z,x) dµ(x)

pour tout z ∈Ω.

Il convient de relever la différence de formulation de la condition de domination (iii) :
alors qu’elle porte sur la dérivée dans le cas réel, il suffit de l’imposer sur la fonction elle-
même dans le cas complexe. Il découle en effet de la formule intégrale de Cauchy que
la domination de f induit automatiquement une domination (locale) de ∂ f

∂ z : pour toute
fonction holomorphe g sur Ω,

g′(z0) =
1

2iπ

∫
∂D

g(ξ )
(ξ − z0)2 dξ ,

où D désigne un disque fermé de centre z0 contenu dans Ω, donc, en fixant r > 0,

sup
Ω′r

|g′|6 supΩ |g|
r

où
Ω
′
r = {ω ∈Ω |D(ω,r)⊂Ω}.

Première démonstration. Il suffit de recopier la démonstration du théorème de dériva-
tion sous l’intégrale, en exploitant la domination locale sur ∂ f

∂ z que l’on vient de déduire de
la condition (iii). 2

Rappelons que, si l’homomorphie est définie comme la dérivabilité par rapport à la va-
riable complexe, on dispose d’une caractérisation équivalente ne faisant pas intervenir de
dérivation.

Théorème de Cauchy-Morera — Soit Ω un ouvert de C et soit f : Ω→C une fonction conti-
nue. Les deux conditions suivantes sont équivalentes :

(i) f est holomorphe sur Ω ;

(ii) pour tout triangle fermé T contenu dans Ω,∫
∂T

f (z) dz = 0.

Démonstration. Voir par exemple [3, 10.17] pour une démonstration. 2

Nous pouvons nous appuyer sur ce point de vue pour proposer une autre démonstra-
tion du théorème d’holomorphie sous l’intégrale.
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Seconde démonstration. L’hypothèse de domination (iii) entraîne immédiatement la
continuité de la fonction F sur Ω. Quel que soit le triangle plein T contenu dans Ω,∫

∂T
F(z) dz =

∫
∂T

∫
X

f (z,x) dµ(x) dz =
∫

X

∫
∂T

f (z,x) dz dµ(x) = 0,

donc l’holomorphie de F en découle d’après le théorème de Cauchy-Morera, à condition
que l’interversion des intégrales soit licite. C’est une application du théorème de Fubini-
Tonelli puisque∫

X

∫
∂T
| f (z) dz| dµ(x) =

∫
X

∫ 1

0
| f (γ(t),x)| · |γ ′(t)| dt dµ(x)6 `(∂T )

∫
X

ϕ(x) dµ(x)< ∞,

où γ : [0,1]→C désigne un paramétrage C1 par morceaux de ∂T et `(∂T ) =
∫ 1

0 |γ ′(t)| dt est la
longueur de ∂T . 2
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ANALYSE HARMONIQUE SUR UN GROUPE ABÉLIEN FINI.

Soit G un groupe abélien fini.

1. Un caractère de G est un morphisme de groupes χ : G→ C×. L’ensemble

Ĝ = HomGr(G,C×)

des caractères de G est un groupe pour la multiplication usuelle des fonctions (i.e.
(χ1χ2)(x) = χ1(x)χ2(x)), appelé groupe dual et non canoniquement isomorphe (14) à G. Son
élément neutre est le caractère trivial, qui envoie G sur {1} ; on le note 1.

EXEMPLE — Si G = Z/NZ, alors on dispose d’un isomorphisme canonique Ẑ/NZ→̃µN , χ 7→
χ(1). Choisir un isomorphisme entre Ẑ/NZ et Z/NZ revient à choisir une racine N-ième de
l’unité primitive.

2. [Fonctorialité] Si f : G→G′ est un morphisme de groupes abéliens, alors l’application
f ∗ : Ĝ′→ Ĝ, χ 7→ χ ◦ f , est un morphisme de groupes. Étant donné un sous-groupe H de
G, la suite exacte naturelle

1 // H ι // G π // G/H // 1

induit une suite exacte (15)

1 // Ĝ/H π∗ // Ĝ ι∗ // Ĥ // 1 .

Autrement dit : tout caractère de H se prolonge en un caractère de G, et les caractères du
groupe quotient G/H s’identifient aux caractères de G qui sont triviaux sur H.

En particulier, si a est un élément de G d’ordre f , alors

(i) χ(a) est une racine f -ième de l’unité dans C pour tout caractère χ de G ;

(ii) lorsque χ parcourt l’ensemble Ĝ, chaque racine f -ième de l’unité apparaît exacte-
ment |G|/ f fois parmi les χ(a).

Pour le vérifier, il suffit de considérer la suite exacte courte

1 // 〈a〉⊥ // Ĝ // 〈̂a〉 // 1

où 〈a〉⊥ = {χ ∈ Ĝ | χ(a) = 1}, et de remarquer que l’application χ 7→ χ(a) réalise un isomor-
phisme entre 〈̂a〉 et µ f (C).

3. Les caractères de G forment une base orthonormée du C-espace vectoriel des fonc-
tions complexes sur G relativement au produit scalaire hermitien

( f |g) = 1
|G| ∑x∈G

f (x)g(x).

Nous pouvons donc écrire toute fonction complexe f sur G sous la forme

f = ∑
χ∈Ĝ

(χ| f )χ.

14. C’est facile à établir lorsque G est cyclique, et le cas général s’en déduit en utilisant le théorème de
structure des groupes abéliens finis.

15. Cela signifie que le noyau de chaque flèche et égal à l’image de la flèche précédente.
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En particulier (relations d’orthogonalité) :

(i) pour tout χ ∈ Ĝ,

∑
x∈G

χ(x) = |G|(1|χ) =
{
|G| si χ = 1
0 sinon.

(ii) pour tout x ∈ G,

∑
χ∈Ĝ

χ(x) =
{
|G| si x = 1
0 sinon.

On peut le justifier ainsi :

∑
χ∈Ĝ

χ(x) =

∑
χ∈Ĝ

χ(x)χ

(1)

= |G|

∑
χ∈Ĝ

(1{x}|χ)χ

(1)

= |G|1{x}(1)
où 1{x} désigne la fonction caractéristique du singleton {x}.

On peut aussi invoquer la bidualité : le morphisme de groupes canonique

G→ ̂̂G, x 7→ (χ 7→ χ(x))

est un isomorphisme et (ii) est une reformulation de (i) en remplaçant G par Ĝ.
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