
This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

TRANSACTIONS OF THE
AMERICAN MATHEMATICAL SOCIETY
Volume 370, Number 3, March 2018, Pages 2181–2209
http://dx.doi.org/10.1090/tran/7227

Article electronically published on November 28, 2017

EBERLEIN OLIGOMORPHIC GROUPS
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Abstract. We study the Fourier–Stieltjes algebra of Roelcke precompact,
non-archimedean, Polish groups and give a model-theoretic description of the
Hilbert compactification of these groups. We characterize the family of such
groups whose Fourier–Stieltjes algebra is dense in the algebra of weakly almost
periodic functions: those are exactly the automorphism groups of ℵ0-stable,
ℵ0-categorical structures. This analysis is then extended to all semitopological
semigroup compactifications S of such a group: S is Hilbert-representable if
and only if it is an inverse semigroup. We also show that every factor of the
Hilbert compactification is Hilbert-representable.
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Introduction

It has long been recognized in model theory that the action of the automorphism
group of an ℵ0-categorical structure on the structure (and its powers) captures all
model-theoretic information about it. Moreover, by a classical result of Ahlbrandt
and Ziegler [AZ86], the automorphism group remembers the structure up to bi-
interpretability. As most interesting model-theoretic properties are preserved by
interpretations, it is reasonable to expect that those would correspond to natural
properties of the automorphism group.

It turns out that many model-theoretic properties of the structure are reflected in
the behaviour of a certain universal dynamical system associated to the group that
we proceed to describe. First, recall that automorphism groups of ℵ0-categorical
structures are Roelcke precompact in the following sense.
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Definition 0.1. A topological group G is called Roelcke precompact if for every
neighbourhood U of the identity, there exists a finite set F such that UFU = G.

To each Roelcke precompact Polish group G one can naturally associate its
Roelcke compactification R(G), the completion of G with respect to its Roelcke
(or lower) uniformity; see Subsection 2.3 for more details. The natural action
G � R(G) renders it a topological dynamical system. From the model-theoretic
point of view, if we represent G as the automorphism group of an ℵ0-categorical
structure M , R(G) can be considered as a suitable closed subspace of the type
space Sω(M) in infinitely many variables over the model. Thus, there is a natural
correspondence between formulas with parameters from the model, on the one
hand, and continuous functions on R(G), on the other. This allows building a
dictionary between the model-theoretic and the dynamical setting. For example,
stable formulas correspond to weakly almost periodic (WAP) functions and NIP
formulas correspond to tame functions.

Particularly relevant to us is the theory of Banach representations of dynamical
systems as developed by Glasner and Megrelishvili in a series of papers (see [GM14]
and the references therein). If G � X is a topological dynamical system and V is a
Banach space, a representation of X on V is a pair of continuous maps ι : X → B,
π : G → Iso(V ), where B is the unit ball of V ∗ equipped with the weak∗ topology,
Iso(V ) is the group of linear isometries of V , equipped with the strong operator
topology, π is a homomorphism, and

〈v, ι(gx)〉 = 〈π(g)−1v, ι(x)〉,

for all x ∈ X, v ∈ V , g ∈ G (here, 〈v, ϕ〉 = ϕ(v) is the usual pairing of V and V ∗).
A representation is faithful if ι is an embedding. If K is a class of Banach spaces,
we say that G � X is K-representable if it admits a faithful representation on a
Banach space in the class K.

All dynamical systems are representable on some Banach space; however, if
one restricts to some (well-chosen) class of Banach spaces K, the K-representable
systems usually form an interesting family. Somewhat unexpectedly, in the ℵ0-
categorical setting, there are some precise connections between model-theoretic
properties of the structure and the classes of Banach spaces R(G) can be represented
on: for example, M is stable iff R(G) can be represented on a reflexive Banach space
[BT16, §5], [GM14, §5.1] and M is NIP iff R(G) can be represented on a Banach
space that does not contain a copy of �1 [Iba16, §4], [GM14, §8.1]. One of the
main motivating questions for this paper was what the appropriate model-theoretic
condition is for R(G) to be representable on a Hilbert space.

For some classes K of Banach spaces, there are dynamical systems that are uni-
versal for the K-representable ones. For example, W (G), the WAP compactification
of G, is universal for reflexively representable systems, and H(G), the Hilbert com-
pactification, is universal for Hilbert-representable systems. Both W (G) and H(G)
carry the structure of a compact semitopological semigroup and H(G) is a factor of
W (G).

The main focus of this paper are the automorphism groups of ℵ0-categorical
classical, discrete (multi-sorted) structures or, equivalently, Roelcke precompact,
Polish, non-archimedean groups. (A group is non-archimedean if it admits an open
basis at the identity consisting of open subgroups.) We make this assumption tacitly
throughout the paper: when we say “ℵ0-categorical structure”, we will always
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mean a classical one, as opposed to metric. A non-archimedean, Polish, Roelcke
precompact group will be called pro-oligomorphic; it is oligomorphic if the structure
can be chosen one-sorted.

For every non-archimedean group G, the compactification G → H(G) is a topo-
logical embedding. Our first result is a concrete description of H(G) for pro-
oligomorphic groups, in model-theoretic terms. More precisely, we have the fol-
lowing.

Theorem 0.2. Let M be an ℵ0-categorical structure and let G = Aut(M). Then
H(G) is isomorphic to the semigroup of partial elementary embeddings M eq → M eq

with algebraically closed domains.

Using this description, we give two characterizations of pro-oligomorphic groups
for which W (G) = H(G): one model-theoretic, and one in terms of the semigroup
W (G). This is the main result of the paper.

Theorem 0.3. Let M be an ℵ0-categorical structure and let G = Aut(M). The
following are equivalent:

(1) The idempotents of W (G) commute.
(2) M is one-based for stable independence.
(3) W (G) = H(G).

Using Theorem 0.3 and a classical, deep result in model theory, we can now give
a satisfactory answer to our initial question.

Corollary 0.4. Let M be an ℵ0-categorical structure and let G = Aut(M). Then
the following are equivalent:

(1) M is ℵ0-stable.
(2) R(G) is Hilbert-representable.

Corollary 0.4 and a well-known example of an ℵ0-categorical, stable, non-ℵ0-
stable structure, due to Hrushovski, give us the following corollary (cf. Exam-
ple 3.15) which answers a question of Glasner and Megrelishvili [GM14, Ques-
tion 6.10].

Corollary 0.5. There exists an oligomorphic group G that satisfies R(G) = W (G)
�= H(G).

While all factors of W (G) are known to be reflexively representable (or reflexively
approximable, for a general topological group G), it is an open question whether
all factors of H(G) are Hilbert-representable [GM14, Question 5.12.3]. We can
give a positive answer to this question in the case of pro-oligomorphic groups (cf.
Theorem 4.8).

Theorem 0.6. Let G be a pro-oligomorphic group. Then all factors of H(G) are
Hilbert-representable.

The correspondence between model-theoretic properties of ℵ0-categorical struc-
tures and dynamical properties of their automorphism groups is not restricted to the
non-archimedean case. The correct model-theoretic setting for dealing with general
Roelcke precompact Polish groups is that of continuous logic and in both [BT16] and
[Iba16], the results are proved in full generality. However, the two most important
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tools used in this paper are currently only available in the non-archimedean setting:
namely, the classification of the unitary representations on the dynamical side and
the notion of one-basedness on the model-theoretic side. For the moment, we do
not even have a plausible conjecture of what the model-theoretic characterization
of Hilbert-representable functions on a Roelcke precompact Polish group should be
in general. Theorem 0.3 clearly fails in the continuous setting (for example, for
the unitary group). While we do not have a counterexample to Corollary 0.4 for
general separably categorical structures, we strongly suspect that it also fails.

As one of the goals of this paper is to provide a dictionary between model theory
and abstract topological dynamics, we have tried to make the exposition fairly self-
contained (apart from a couple of difficult model-theoretic results) and accessible
to people working in both areas.

1. Preliminaries

1.1. Compactifications of topological groups. Let G be a topological group.
The algebra of complex-valued continuous bounded functions on G will be denoted
by C(G). This algebra always carries the uniform norm, ‖f‖ = supg∈G |f(g)|.
The group G admits a left and a right action on C(G), given, respectively, by
(gf)(h) = f(g−1h) and (fg)(h) = f(hg−1) for every f ∈ C(G) and g, h ∈ G. These
actions are isometric but in general not continuous.

When considering subalgebras of C(G), we will always assume that these are
unital and closed under complex conjugation. If we say that a subalgebra is closed,
we mean closed with respect to the uniform norm. Left-invariant, right-invariant
and bi-invariant refer to the actions of G defined above.

A compactification of G is a compact Hausdorff space X equipped with a con-
tinuous left action of G, together with a continuous G-map α : G → X with dense
image (where G carries the natural left action on itself). This is the same as choos-
ing a point x0 ∈ X with a dense orbit; then one can simply define α(g) = g · x0.
Such a pair (X, x0) is often called a G-ambit in the literature.

To every compactification α : G → X we associate the algebra A(α) := C(X)◦α
consisting of those functions in C(G) that factor through α. The algebra A(α) is
always left-invariant, and the compactification will be called bi-invariant if A(α) is
also right-invariant.

Given two compactifications αX : G → X and αY : G → Y , we say that αY is a
G-factor of αX (or simply that Y is a factor of X) if there is a continuous surjective
G-map π : X → Y such that αY = π ◦ αX . If such a factor map exists, it is always
unique.

A tool that we will use throughout the paper is Gelfand duality : the contravari-
ant equivalence between the category of compact Hausdorff spaces with continu-
ous maps and the category of commutative, unital C∗-algebras with algebra ho-
momorphisms which is given by the functors X 
→ C(X) and A 
→ Â. Here,

Â := Hom(A,C) is the compact space of unital algebra homomorphisms A → C en-
dowed with the topology of pointwise convergence, and is called the Gelfand space
of A. In particular, one can identify A with C(Â). See, for example, [Fol95, Chap-
ter 1] for details. This is similar to the duality between Boolean algebras and their
Stone spaces, which is perhaps more familiar to logicians.

We will be particularly interested in algebras of the form A(α) for some compact-
ification α of G. Among them there is a maximal one, the algebra RUC(G) of right
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uniformly continuous, bounded functions. (A function f ∈ C(G) is right uniformly
continuous if the orbit map g ∈ G 
→ gf ∈ C(G) is norm-continuous.) If α : G → X
is a compactification of G, then A(α) ∼= C(X) is a left-invariant, closed subalgebra
of RUC(G). Conversely, if A is a left-invariant, closed subalgebra of RUC(G), then

X = Â is equipped with a continuous G-action (namely, (gx)(f) = x(g−1f)), and
the natural map α : G → X (given by α(g)(f) = f(g)) is a compactification of G,
which satisfies A(α) = A. We list below some facts and conventions regarding this
duality that we use throughout the paper:

• When considering compactifications, we may omit the map α and refer only
to the space X if no confusion arises. In particular, we may write A(X)
instead of A(α).

• A compactification X1 is a factor of X2 iff A(X1) ⊂ A(X2). If A(X1) ⊂
A(X2), then, under the identification Xi = Hom(A(αi),C), the factor map
π : X2 → X1 is simply the restriction of homomorphisms.

• (Stone–Weierstrass) Let A0 ⊂ A ⊂ C(G), where A is a closed subalgebra
and A0 is any set. Then, A is the closed subalgebra generated by A0 iff A0

separates the points of Â (here we make the usual identification of A with

C(Â)).

• A closed subalgebra A ⊂ C(G) is separable if and only if Â is metrizable.

1.2. The Fourier–Stieltjes algebra and the WAP algebra of a topological
group. Recall that if H is a Hilbert space, its unitary group U(H) equipped with
the strong operator topology (pointwise convergence) is a topological group.

Definition 1.1. A (unitary) matrix coefficient of a topological group G is a func-
tion f ∈ C(G) of the form

f(g) = 〈v, π(g)w〉 = 〈π(g)−1v, w〉,
where π : G → U(H) is a continuous unitary representation and v, w ∈ H. We will
use the notation f = mv,w, or f = mπ

v,w if we wish to specify π.

By considering orthogonal sums, tensor products, and duals of representations,
one sees that the matrix coefficients of a topological group G form a subalgebra
of C(G). The family of all matrix coefficients of G is called the Fourier–Stieltjes
algebra of G, and is denoted by B(G).

Next we recall the definition of weakly almost periodic functions, Grothendieck’s
double limit criterion, and the reflexive representation theorem of Megrelishvili.
(See [Gro52, Théorème 6], and [Meg03, Theorem 5.1].)

Definition 1.2. A function f ∈ C(G) is weakly almost periodic if the following
equivalent conditions hold:

(1) The orbit Gf is precompact (i.e., has compact closure) for the weak topol-
ogy of C(G).

(2) For all sequences gi, hj ∈ G, the following limits coincide whenever they
exist:

lim
i

lim
j

f(gihj) = lim
j

lim
i

f(gihj).

(3) There exists a continuous, isometric representation π : G → Iso(V ) on a
reflexive Banach space V and vectors v ∈ V , w ∈ V ∗ such that, for all
g ∈ G,

f(g) = 〈π(g)−1v, w〉.
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It follows easily that the family WAP(G) of weakly almost periodic functions
on G is a closed, bi-invariant subalgebra of RUC(G) containing B(G). On the
other hand, B(G) is almost never closed in C(G) (see the beginning of Section 3).

Following [GM14, §6], we will denote the closure B(G) by Hilb(G). The algebra
B(G) is bi-invariant, hence so is Hilb(G).

Thus we have

Hilb(G) ⊂ WAP(G),

or, equivalently, the Hilbert compactification G → H(G) associated to the closed
left-invariant algebra Hilb(G) is aG-factor of theWAP compactification G → W (G)
associated to WAP(G). We will review the main properties of these compactifica-
tions in Section 2.

Finally, we recall that a function f : G → C is Roelcke uniformly continuous if
the map (g, g′) ∈ G × G 
→ gfg′ ∈ C(G) is norm-continuous. The family of all
Roelcke uniformly continuous functions on G is a closed, bi-invariant subalgebra of
RUC(G), denoted by UC(G). We always have WAP(G) ⊂ UC(G) (see, for instance,
[GM14, Theorem 3.19]).

Definition 1.3. Let G be a topological group.

(i) G is Eberlein if Hilb(G) = WAP(G).
(ii) G is a WAP group if WAP(G) = UC(G).
(iii) G is strongly Eberlein if Hilb(G) = UC(G).

In his fundamental work [Ebe49], Eberlein introduced weakly almost periodic
functions (in the context of locally compact abelian groups) and proved the inclusion
B(G) ⊂ WAP(G). In fact, all his examples of WAP functions lay in the closure
of B(G). Rudin writes in [Rud59] that Eberlein asked him whether the closure of
B(G) may in fact coincide with WAP(G). Of course, by the Peter–Weyl theorem,
this is the case for compact groups (indeed, Hilb(G) = C(G)). However, Rudin
showed that this is not true in general. As an example, he exhibited a concrete
function f ∈ WAP(Z) \ Hilb(Z). Later, Chou [Cho82] proved that the inclusion
Hilb(G) ⊂ WAP(G) is strict for any non-compact, locally compact, nilpotent group.
On the other hand, he remarked that equality does hold for some non-compact,
locally compact groups, and introduced the name Eberlein for this class. The
definitions of WAP groups and strongly Eberlein groups were introduced by Glasner
and Megrelishvili in [GM14].

Examples of non-compact Eberlein groups include SLn(R) (and any semisim-
ple Lie group with finite centre; see [Vee79]), the unitary group U(�2) (essentially
[Usp98]), the group Aut(μ) of measure-preserving transformations of the unit inter-
val [Gla12], and the symmetric group of a countable set, S∞ [GM14]. The last three
are in fact strongly Eberlein. We will give some new examples in Subsection 3.3.

1.3. Representations on Hilbert spaces. Let X be a compactification of a
Polish group G. We say that X is Hilbert-representable if there exist a Hilbert
space H, an embedding ι : X → H (where H carries the weak topology) and a
unitary representation π : G → U(H) such that ι(gx) = π(g)ι(x) for all x ∈ X and
g ∈ G. By the Riesz representation theorem, this definition coincides, for the class
of Hilbert spaces, with the notion of K-representability given in the introduction.

Given a function f ∈ RUC(G), let Xf be the compactification of G associated
to the left-invariant closed subalgebra of RUC(G) generated by f . In [GW12, §2],
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it is observed that Xf is Hilbert-representable whenever f is positive definite, in
the case G = Z; more generally, the following holds.

Lemma 1.4. If f ∈ B(G), then Xf is Hilbert-representable.

Proof. Write f = mπ0
v0,w0

for some continuous unitary representation π0 : G →
U(H0). Let H1 be the closed linear span of π(G)w0 and let v be the orthogonal
projection of v0 to H1. Next let H be the closed linear span of π(G)v and let w
be the orthogonal projection of w0 to H. Consider the restriction π = π0|H. Then
f = mπ

v,w.
Recall that the unit ball of a Hilbert space is weakly compact; hence, if we let

Z be the weak closure of π(G)w in H, this is naturally a (Hilbert-representable)
compactification of G via the map g 
→ π(g)w. Consider for each h ∈ G the function
Fh ∈ C(Z), Fh(z) = 〈π(h)v, z〉, and note that Fh(π(g)w) = hf(g). Since H is
generated by π(G)v, we have z = z′ in Z iff for every h we have 〈π(h)v, z− z′〉 = 0,
i.e., Fh(z) = Fh(z

′); that is, the functions Fh separate points of Z. Hence, by the
Stone–Weierstrass theorem, A(Z) is the closed algebra generated by Gf . In other
words, Z is isomorphic to Xf . �

In contrast, if instead of a matrix coefficient we take any f ∈ Hilb(G), it is
unknown whether Xf is necessarily Hilbert-representable; see Question 1.7 below.

Proposition 1.5. Let α : G → X be a metrizable compactification of G. Then the
following are equivalent:

(1) α is Hilbert-representable.

(2) A(α) = A(α) ∩B(G).

Proof. Suppose (ι, π) is a representation of (X,G) on a Hilbert space H. The
functions Fv : w 
→ 〈v, w〉 separate points of H, hence the algebra generated by
{Fvια}v∈H is dense in A(α) and contained in B(G).

Conversely, suppose that (2) holds. The metrizability assumption on X says
that A(α) is separable. Thus, let B ⊂ A(α) ∩ B(G) be a countable dense subset.
By the previous lemma, for each f ∈ B there is a representation (ιf , πf ) of (Xf , G)
on a Hilbert space Hf . We consider

H =
⊕
f∈B

Hf

and let π =
⊕

f∈B πf : G → U(H) be the orthogonal sum of the representations

πf . For each f ∈ B, let wf = ιfα(1) ∈ Hf . Since B is countable, by rescaling
we may assume that w = (wf )f∈B is summable, i.e., w ∈ H. Now we define
α′ : G → H by α′(g) = π(g)w, and let Z be the weak closure of α′(G) in H. Then
the restriction α′ : G → Z is a Hilbert-representable compactification of G, which
we claim is isomorphic to α. To see this, we note first that Z is G-isomorphic to a
subspace of the product

∏
f∈B Xf ; indeed, H (with the weak topology) is a subspace

of the product space
∏

f∈B Hf (each Hf carrying the weak topology), hence the

G-embedding
∏

f∈B Xf →
∏

f∈B Hf (induced by the maps ιf ) restricts to a G-

isomorphism between a subspace of
∏

f∈B Xf and Z. Under this identification, the
projection maps Z → Xf separate points of Z, and each composition G → Z → Xf

is just the compactification G → Xf . Hence, by Stone–Weierstrass, A(α′) is the
closed algebra generated by the algebras A(Xf ), f ∈ B. Since B is dense in A(α),
we deduce that A(α′) = A(α), which proves our claim. �
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Remark 1.6.

(1) A basic consequence of the first implication of the above proposition (which
does not use the metrizability assumption) is that all Hilbert-representable
compactifications of G are factors of H(G).

(2) Another consequence is that Hilb(G) consists precisely of the f ∈ C(G)
that factor through Hilbert-representable compactifications of G. One of
the implications is immediate. For the other, if f ∈ Hilb(G), there is a
sequence fn → f with fn ∈ B(G), and hence f factors through the com-
pactification associated to the closed algebra A generated by the functions
fn, which is metrizable (since A is separable) and Hilbert-representable (by
the proposition).

Question 1.7 ([GM14, Question 5.12.3]; [Meg07, Question 7.6]). Are Hilbert-
representable dynamical systems closed under factors? For ambits, and assuming
H(G) is metrizable, we may ask equivalently: are all factors of H(G) Hilbert-
representable?

This question has also been investigated in [GW12]. In Section 4, we will see
that the answer is positive for pro-oligomorphic groups.

We should note that reflexively representable dynamical systems are preserved
under factors. In fact, the reflexively representable (or rather, when W (G) is not
metrizable, reflexively approximable) compactifications of G are exactly the factors
of W (G). See [Meg08] and the references therein.

2. Semitopological semigroup compactifications

2.1. Definitions. A semitopological semigroup is a semigroup that carries a topo-
logical structure such that the product operation is separately continuous (i.e.,
multiplying by an arbitrary fixed element on the left is continuous, and similarly
on the right). We shall be interested in semitopological semigroups arising in the
following manner.

Definition 2.1. A compactification α : G → S is a semitopological semigroup com-
pactification if S admits a semitopological semigroup law that makes α a homo-
morphism.

Remark 2.2. Suppose α : G → S is a semitopological semigroup compactification.

(1) Then S is in fact a monoid: α(1) is an identity.
(2) By Lawson’s joint continuity theorem, α(G) is a topological group ([Law74,

Corollary 6.3]).
(3) The compactification is bi-invariant.

Both the Hilbert and the WAP compactifications, H(G) and W (G), are semi-
topological semigroup compactifications. The semigroup law in W (G) is given as
follows: if p = lim gi and q = limhj , where gi, hj belong to the homomorphic copy
of G in W (G), then the product pq is defined as the iterated limit limi limj gihj .
Grothendieck’s double limit criterion (cf. Definition 1.2) and the bi-invariance of
W (G) ensure that the product is well-defined and yields a semitopological semi-
group. The same construction works for H(G) and other bi-invariant factors of
W (G). Conversely, one can use the double limit criterion to see that W (G) is
universal among semitopological semigroup compactifications of G in the following
sense.
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Fact 2.3. Let S be a compactification of G. The following are equivalent:

(1) S is a semitopological semigroup compactification.
(2) S is a bi-invariant factor of W (G).

Proof. See, for instance, [BJM78, Ch. III, §8], Corollary 8.5. �

Given a reflexive Banach space V , the semigroup Θ(V ) of linear contractions of
V ,

Θ(V ) = {T ∈ L(V ) : ‖T‖ ≤ 1},
endowed with the weak operator topology, is compact and semitopological. It
turns out that every compact semitopological semigroup can be seen as a closed
subsemigroup of Θ(V ) for some reflexive Banach space V [Sht94, Meg01]. Thus
every compact semitopological semigroup is reflexively representable.

Definition 2.4. A semitopological semigroup S is Hilbert-representable if it can be
embedded in the compact semitopological semigroup Θ(H) of linear contractions
of a Hilbert space H.

It is not difficult to see the following.

Fact 2.5. Let G be a topological group.

(1) H(G) is a Hilbert-representable semitopological semigroup, and is universal
with this property among G-ambits (i.e., any other is a factor of H(G)).

(2) In particular, G is Eberlein if and only if W (G) is Hilbert-representable as
a semitopological semigroup.

The universality of H(G) is clear (as per Remark 1.6(1)) if we admit that the two
notions of representability on Hilbert spaces discussed so far coincide on semigroup
ambits, which is essentially the case:

Fact 2.6. Let α : G → S be a metrizable semitopological semigroup compactifica-
tion of G. Then, S is a Hilbert-representable semitopological semigroup if and only
if α is a Hilbert-representable compactification.

See Lemma 4.5 in [Meg08]. In the non-metrizable case, Definition 2.4 is the cor-
rect property to consider, while Hilbert-representability of dynamical systems has
to be relaxed. However, the semigroups that we study in this paper are metrizable.

Definition 2.7. Let α : G → S be a semitopological semigroup compactifica-
tion. We will say that α is ∗-closed or, equivalently, that α is a semitopological
∗-semigroup compactification, if the inverse operation on the group α(G) extends
to a continuous map ∗ : S → S. (Then ∗ is automatically an involution on S, i.e.,
(p∗)∗ = p and (pq)∗ = q∗p∗ for every p, q ∈ S.)

Fact 2.8. The map α : G → S is ∗-closed if and only if, whenever f ∈ A(α), the
function g 
→ f(g−1) is also in A(α).

Proof. Let us denote the function g 
→ f(g−1) by f∗. Suppose α is ∗-closed and
let f ∈ A(α) = C(S). Then the function p 
→ f(p∗) belongs to C(S), whence
its restriction to G, which is f∗, belongs to A(α). For the other direction, the

involution is given by p∗(f) = p(f∗) for f ∈ A(α) and p ∈ S = Â(α). �
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It follows readily that W (G) is ∗-closed, for instance by applying Grothendieck’s
double limit criterion to check the above condition. By looking at unitary matrix
coefficients, it is also easy to deduce that H(G) is ∗-closed; more generally, we have
the following.

Proposition 2.9. Every Hilbert-representable semitopological semigroup compact-
ification is ∗-closed.

Proof. Let α : G → S be a compactification with an embedding β : S → Θ(H). It
suffices to see that the image of β is closed under the adjoint operation ∗ : Θ(H) →
Θ(H); indeed, then we can define s∗ as the preimage of β(s)∗, and this gives a
continuous map ∗ : S → S that extends the inverse operation on α(G). Now, if s ∈ S
is the limit of a net α(gi) ∈ α(G), then βα(g−1

i ) converges to β(s)∗; by compactness,

we may assume that α(g−1
i ) converges to some s′ ∈ S, so β(s′) = β(s)∗. Hence

β(s)∗ ∈ β(S). �

2.2. Inverse semigroups. In this short subsection, we review some general no-
tions of the theory of semigroups, and some particular facts that hold for compact
semitopological ∗-semigroups with a dense subgroup.

An element e in a semigroup S is an idempotent if e2 = e. If S has an involution ∗,
then e ∈ S is self-adjoint if e∗ = e.

Definition 2.10. Let S be a semigroup.

(i) An element p ∈ S is regular if there exists q ∈ S such that p = pqp.
(ii) S is regular if every element is regular.
(iii) An element q ∈ S is an inverse for p ∈ S if p = pqp and q = qpq.
(iv) S is an inverse semigroup if every element has a unique inverse.

The canonical example of an inverse semigroup is the symmetric inverse semi-
group of all partial bijections of a set, with composition where it is defined.

A proof of the following general characterization can be found in [How95, The-
orem 5.1.1].

Fact 2.11. The following are equivalent for a semigroup S:

(1) S is an inverse semigroup.
(2) S is regular and the idempotents commute.

When a compact semitopological structure is available, and the semigroup con-
tains a dense subgroup, much more is true. We formulate these additional properties
in the case that we are interested in.

Fact 2.12. Let G → S be a semitopological ∗-semigroup compactification.

(1) For every p, q ∈ S we have Sq = Spq if and only if q = p∗pq.
(2) Every idempotent is self-adjoint.
(3) Let e, f ∈ S be idempotents. The following are equivalent:

(a) e and f commute.
(b) ef is also an idempotent.

(4) Let p ∈ S. The following are equivalent:
(a) p is regular.
(b) pp∗p = p.
(c) p has a unique inverse.
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(5) In particular, the following are equivalent:
(a) S in an inverse semigroup.
(b) S is regular.

Proof.

(1) See Lawson [Law84, Proposition 4.1].
(2) This follows easily from (1).
(3) One implication is immediate and the other is clear using that idempotents

are self-adjoint.
(4) Suppose p is regular, so p = pqp for some q. Hence Spqp ⊂ Sqp ⊂ Sp =

Spqp, so Sqp = Spqp. Then, by (1), we have qp = p∗pqp = p∗p, and thus
p = pqp = pp∗p.

If now we suppose that p = pp∗p, then p∗ = p∗pp∗, so p and p∗ are
inverses. If q is another inverse of p, then as before, we have qp = p∗p.
Also, q∗ is an inverse for p∗, so q∗p∗ = pp∗ and pq = pp∗. Then q = qpq =
qpp∗ = p∗pp∗ = p∗.

(5) Clear. �

2.3. The WAP compactification of pro-oligomorphic groups. In this sub-
section we will recall the model-theoretic description of the WAP compactification
given in [BT16] for Roelcke precompact Polish groups. Since the results of the
present paper are concerned with pro-oligomorphic groups, our presentation here
will be restricted to these, i.e., to automorphism groups of classical ℵ0-categorical
structures (as opposed to metric). Still, it will be convenient to consider formulas
as real-valued functions, taking values in {0, 1}.

We refer to [TZ12] for the necessary background in model theory and for the
basics of ℵ0-categorical structures. Let us recall the definition of the family of
groups we will study.

Definition 2.13. A group G is oligomorphic if it can be presented as a closed
permutation group G ≤ S(X) of a countable set X such that the orbit spaces
Xn/G are finite for every n < ω; or, equivalently, if G is the automorphism group
of an ℵ0-categorical, one-sorted structure.

A Polish group G obtained as an inverse limit of oligomorphic groups will be
called pro-oligomorphic. Equivalently, G is pro-oligomorphic if it can be presented
as the automorphism group of an ℵ0-categorical, multi-sorted structure. These
are exactly the Roelcke precompact, non-archimedean, Polish groups; see [Tsa12,
Theorem 2.4].

Throughout this paper, whenever G is a pro-oligomorphic group and we write
G = Aut(M), we understand that M is an ℵ0-categorical structure and G is its
automorphism group. By the homogeneity of ℵ0-categorical structures, we have
the following.

Fact 2.14. Let G = Aut(M) be a pro-oligomorphic group and ĜL be the com-
pletion of G with respect to its left uniformity, which is a topological semigroup.

Then ĜL can be identified with the topological semigroup E(M) of elementary
embeddings of M into itself with the topology of pointwise convergence.

Proof. Let ξ ∈ Mω be an enumeration of M and define the distance dL on E(M) by
dL(x, y) = supi<ω 2−id(x(ξi), y(ξi)), where d is the discrete, {0, 1}-valued distance



This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.
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on M . It induces the topology of pointwise convergence on E(M). The restriction
of dL to G is a compatible, left-invariant metric, which induces the left uniformity
of G. By homogeneity, G is dense in E(M) with respect to dL. Since, moreover,
E(M) is complete with respect to dL, it is the left completion of G. �

Recall that if (X, d) is a metric space and G acts on X by isometries, then

X � G = {Gx : x ∈ X}

is a metric space with induced distance

(2.1) d(Gx,Gy) = inf{d(x, gy) : g ∈ G}.

When X is complete, so is X � G.
One important instance of this construction is

R(G) = (ĜL × ĜL) � G,

where G acts diagonally on ĜL× ĜL by left translation. Given elements x, y ∈ ĜL,
we denote the class of (x, y) in R(G) by [x, y]R. The group G embeds densely in

R(G) via the map g 
→ [1, g]R = [g−1, 1]R; if gn → x and hn → y in ĜL, we will
have [1, g−1

n hn]R → [x, y]R in R(G). This makes R(G) a completion of G with
respect to the distance

d(g, f) = inf
{
dL(1, h) + dL(g, hf) : h ∈ G

}

coming from (2.1). Two group elements g and f are close in R(G) if and only
if there is h ∈ G such that dL(1, h) + dL(g, hf) is small. Letting h′ = g−1hf ,
we see that g and f are close in R(G) if and only if there exist h, h′ close to 1
such that f = h−1gh′. In other words, the distance on R(G) induces on G the
Roelcke uniformity, namely the infimum of the left and right uniformities, and
the completion R(G) is the Roelcke completion of G. The group G is Roelcke
precompact precisely when R(G) is compact. That is, when the completion R(G)
coincides with the compactification of G associated to the algebra UC(G). Since
the completion R(G) is metrizable by construction, for Roelcke precompact Polish
groups, this is a metrizable compactification, and so are all its factors.

For the rest of this section, we fix a pro-oligomorphic group G = Aut(M).
By Fact 2.14, in this case we can write R(G) = (E(M) × E(M)) � G, allowing
us to identify formulas with Roelcke uniformly continuous functions. Indeed, let
ϕ(u, v) be a formula and a, b ∈ M tuples of the appropriate length. The function
(x, y) 
→ ϕ

(
x(a), y(b)

)
is continuous on E(M)2 and G-invariant, so it factors via

R(G):

ϕa,b

(
[x, y]R

)
= ϕ

(
x(a), y(b)

)
.

Its restriction to G ⊂ R(G), namely g 
→ ϕ(a, gb), is therefore in UC(G). Con-
versely, by [BT16, Theorem 5.4], such functions generate a dense subalgebra of
UC(G). Therefore, the functions ϕa,b separate points of R(G) or, in other words,
[x, y]R ∈ R(G) is determined by the values ϕ(x(a), y(b)), where ϕ(u, v) varies over
the formulas of M and a, b vary over tuples of M of the appropriate length. Coding
x ∈ E(M) by a tuple x̃ = x(ξ) ∈ Mω, where ξ ∈ Mω is a fixed enumeration of M ,
we see that [x, y]R can be identified with the type tp(x̃, ỹ).
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By Gelfand duality, factors of R(G) correspond to closed subalgebras of UC(G):
of these, we will mostly concentrate on UC(G) ⊃ WAP(G) ⊃ Hilb(G). Interest-
ingly, the correspondence between UC(G) and formulas gives rise to correspon-
dences between these subalgebras and special classes of formulas that have been
independently studied in model theory.

For the subalgebra WAP(G), this correspondence was treated in [BT16]. Its
Gelfand space is the WAP compactification W (G), which is therefore a factor of
R(G). We will denote the image of [x, y]R in W (G) simply by [x, y]: it is de-
termined by the values of WAP functions at [x, y]R. A formula ϕ(u, v) is stable
(when restricted to tp(a, b), which is a definable set by ℵ0-categoricity) if and only
if ϕa,b(g) = ϕ(a, gb) is WAP, and conversely, such functions generate a dense sub-
algebra of WAP(G) ([BT16, Theorem 5.4]). Therefore, [x, y] is determined by the
values ϕ(x(a), y(b)), as before, only that ϕ(u, v) ranges over the stable formulas. In
particular, G is a WAP group if and only if the theory of M is stable.

The canonical G-map G → W (G) is given by

g 
→ [1, g],

and the G-action by

g[x, y] = [xg−1, y].

The involution ∗ : W (G) → W (G) extending the inverse on the image of G is given
by

[x, y]∗ = [y, x].

Moreover, the semitopological semigroup law of W (G) can be described in terms of
the stable independence relation of M . In order to explain this, we first recall the
definition of imaginaries and some notions from stability theory.

Let M be a structure. An imaginary element of M is the a class of a definable
equivalence relation on some finite power of M . In other words, if a formula ϕ(u, v)
defines an equivalence relation on Mn, then each class [a]ϕ ∈ Mn/ϕ is an imaginary
of M .

A standard model-theoretic construction allows us to consider all the imaginaries
of M as actual elements in a larger (multi-sorted) structure, denoted M eq. See
[TZ12, §8.4] for the details. This enlargement of M is in many senses innocuous;
in particular, the natural restriction map Aut(M eq) → Aut(M) is an isomorphism
between their automorphism groups. Thus, for many purposes, it is convenient to
work directly with the structure M eq.

Moreover, imaginary elements of ℵ0-categorical structures are in correspondence
with the open subgroups of its automorphism group. Indeed, a subgroup V ≤ G is
open if and only if it is the stabilizer of an imaginary element of M . That is to say,
if and only if there is a definable equivalence relation ϕ(u, v) and a tuple c such
that

V = {g ∈ G : M |= ϕ(c, gc)} = {g ∈ G : [c]ϕ = g[c]ϕ}.

See, for example, [Tsa12, §5].
A special kind of imaginary is given as follows. If ϕ(u, v) is any formula, we can

define a formula Eϕ(u, u
′) by

Eϕ(u, u
′) := ∀v(ϕ(u, v) ↔ ϕ(u′, v)).
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Then Eϕ defines an equivalence relation on M |u|. An imaginary [c]Eϕ
∈ M |u|/Eϕ

should be seen as representing the formula ϕ(c, v); [c]Eϕ
(also denoted simply by

[c]ϕ) is called the canonical parameter of ϕ(c, v),
Given a type t ∈ Su(M) and a formula ϕ(u, v), the ϕ-definition of t is the

function dtϕ : M |v| → {0, 1} given by

dtϕ(b) := ϕ(u, b)t,

where the right term denotes the value of ϕ(u, b) in the type t. Then, the formula
ϕ(u, v) is stable if and only if dtϕ is an M -definable predicate for every t ∈ Su(M).
(We only need to consider the model M because of ℵ0-categoricity; for a treatment
of stability in the general case, see for instance [TZ12, Ch. 8].) In this case we can
write dtϕ(v) in the form ψ(c, v), and then consider the canonical parameter of this
formula; we denote this canonical parameter by Cbϕ(t). (The choice of the formula
ψ can be done uniformly in t, that is, c depends on t but ψ(w, v) does not.) The
tuple

Cb(t) = (Cbϕ(t))ϕ stable

is the canonical base of t.
Finally, an element d ∈ M eq is in the algebraic closure of a set A ⊂ M eq if, for

some finite tuple a ⊂ A, d has only finitely many conjugates by automorphisms
fixing a. We denote the algebraic closure of A by acl(A) (which is always a subset
of M eq). The set A is algebraically closed if A = acl(A).

Fact 2.15. Let a ∈ (M eq)|u| be a tuple and B ⊂ M eq be any subset. There is an
extension of the type tp(a/ acl(B)) to a type t ∈ Su(M) such that Cb(t) ⊂ acl(B).
Moreover, Cb(t) does not depend on the particular extension; in other words, if
s ∈ Su(M) is another such extension, then dtϕ = dsϕ for every stable formula
ϕ(u, v).

Definition 2.16.

(i) If a, B and t are as in the previous fact, we define Cbϕ(a/B) := Cbϕ(t),
Cb(a/B) := Cb(t).

(ii) Given any sets A,B,C ⊂ M eq, we say that A is stably independent from C
over B, denoted

A |�
B

C,

if for any tuple a ∈ A|u| we have Cb(a/B) = Cb(a/BC).
(iii) If a, c are tuples from M eq and B is any subset, we write a ≡s

B c to mean
that a and c have the same stable type over B, that is, ϕ(a, b) = ϕ(c, b) for
any stable formula ϕ(u, v) and parameter b ∈ B|v|. When B is empty we shall
write simply a ≡ c, since a ≡s

∅ c is indeed equivalent to tp(a/∅) = tp(c/∅).
Note that the natural identification of Aut(M) and Aut(M eq) extends to an

identification of E(M) and E(M eq).

Convention 2.17. We may consider the elements of E(M) as sets (notably, to
apply the relations |� and ≡s to them), and this shall be done in the following
way: an element x ∈ E(M) is interpreted as the set x(M eq) ⊂ M eq (which is the
same as acl(x(M))). For instance, x ∩ y will denote x(M eq) ∩ y(M eq).

If appearing as arguments of the relation ≡s, the elements of E(M) will be
considered as infinite tuples indexed by M (or by ω via a fixed enumeration ξ, as
before).
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In these contexts, the juxtaposition xy will denote the juxtaposed tuple (or
merely the union of sets).

The pair ( |�,≡s) satisfies the following usual properties.

Fact 2.18. Let x, y, z, w be any tuples from M eq.

(1) (Invariance) If x |�y
z and xyz ≡ x′y′z′, then x′ |�y′ z

′. If x |�y
z and

x ≡s
yz x′, then x′ |�y

z.

(2) (Symmetry) If y ⊂ x ∩ z, then x |�y
z if and only if z |�y

x.

(3) (Transitivity) x |�y
zw if and only if x |�yz

w and x |�y
z.

(4) (Existence) There exist x′, y′, z′ such that x′y′≡xy, y′z′≡yz and x′ |�y′ z
′.

(5) (Stationarity) Suppose y is algebraically closed. If x ≡s
y z, x |�y

w and

z |�y
w, then x ≡s

yw z.

(6) (Non-triviality) If x |�y
z, then acl(x) ∩ acl(z) ⊂ acl(y).

Proof. We refer the reader to [Pil96, Ch. 1, §2]. �
Fact 2.19. The semigroup law in W (G) is given by

[x, y][y, z] = [x, z] if x |�
y

z.

The properties of the independence relation stated above ensure that, for any p, q ∈
W (G), we can always find x, y, z ∈ E(M) such that p = [x, y], q = [y, z] and x |�y

z.

The latter allows for a model-theoretic description of the idempotents of W (G).
This was given in [BT16, §5]. Let us end this section by recalling this description
and giving a complete proof. Moreover, we complement it with a characterization
of the regular elements of W (G), which will be used in our main result.

For the definition and properties of the ϕ-rank see [Pil96, Ch. 1, §3].
Lemma 2.20. Let p = [x, y] ∈ W (G), C = x ∩ y.

(1) The following are equivalent:
(a) p is an idempotent (i.e., pp = p).
(b) x ≡s

C y and x |�C
y.

(2) The following are equivalent:
(a) p is regular (i.e., pp∗p = p).
(b) x |�C

y.

Proof. (1) By replacing x, y by an equivalent pair if necessary, we can find z ∈ E(M)
such that x |�y

z and xy ≡ yz. Indeed, using the saturation of ℵ0-categorical

structures to replace tuples by appropriate equivalent tuples if necessary, we may
assume first that there is x′ with xy ≡ yx′. Then, by existence, we may assume
there is z with yx′ ≡ yz and x |�y

z. Thus z satisfies the conditions above. In

particular, pp = [x, y][y, z] = [x, z].
Suppose p is an idempotent. Then [x, y] = [x, z], i.e., y ≡s

x z. From this we see
that C = x∩z ⊂ y∩z. Actually, we can deduce that x ≡s

C y and C = y∩z. Indeed,
if x(a) = y(b) ∈ C, then from y ≡s

x z we get x(a) = z(b) and thus y(b) = z(b).
Since xy ≡ yz, then x(b) = y(b). Hence a = b. If we denote D = x−1(C), we
see that the restrictions x|D = y|D coincide. Thus, with the appropriate orderings,
xC ≡ MD ≡ yC, so in particular x ≡s

C y. Furthermore, since x ∩ y = x(D) and
xy ≡ yz, we have y ∩ z = y(D) = C.
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Next we argue that x |�z
y. This is equivalent to show that, for every stable

formula ϕ, the ϕ-rank of x over yz equals the ϕ-rank of x over z: Rϕ(x/yz) =
Rϕ(x/z). But indeed, since x |�y

z and [x, y] = [x, z], we have

Rϕ(x/yz) = Rϕ(x/y) = Rϕ(x/z).

To see why the second identity holds, take x′ such that xz ≡ x′y. Then [x, y] =
[x′, y], so x and x′ have the same ϕ-type over y, and thus Rϕ(x/y) = Rϕ(x

′/y) =
Rϕ(x/z).

Now we have x |�y
z and x |�z

y, and thus Cb(x/yz) ⊂ y ∩ z = C. This implies

that x |�C
y.

Conversely, suppose x ≡s
C y and x |�C

y. Together with the conditions xy ≡ yz,

x |�y
z, this implies that C = y ∩ z, y ≡s

C z and, by transitivity, x |�C
z. Then, by

symmetry and stationarity, we have y ≡s
x z, i.e., [x, y] = [x, z], which means that p

is an idempotent.
(2) Replacing x, y by an equivalent pair if necessary, we can find z, w ∈ E(M)

with x |�y
z, xy ≡ zy, x |�z

w and xy ≡ zw. In particular,

pp∗p = [x, y][y, z][z, w] = [x,w].

In addition, from xy ≡ zy we get C ⊂ z, and from x |�y
z, by non-triviality, we get

x ∩ z ⊂ y. Hence, C = x ∩ z.
Suppose p is regular. The condition p = pp∗p becomes [x, y] = [x,w], so y ≡s

x w.
Moreover, since e = pp∗ = [x, z] is an idempotent, we have that x |�C

z. From this

and x |�z
w we obtain x |�C

w. Since y ≡s
x w, we deduce that x |�C

y.

Suppose conversely that x |�C
y. From our hypothesis we get x |�C

z, and

then x |�C
w. The condition xy ≡ zy implies x ≡s

C z, and this together with

xy ≡ zw implies y ≡s
C w. Hence, by stationarity, y ≡s

x w. That is, pp∗p = [x,w] =
[x, y] = p. �

3. The Fourier–Stieltjes algebra of pro-oligomorphic groups

3.1. Examples of functions in Hilb(G)\B(G). As mentioned before, the Fourier–
Stieltjes algebra B(G) is, as a general rule, strictly contained in its closure Hilb(G).
For example, if G is compact, then B(G) is not closed in C(G) unless G is finite
(see for instance [HR70, Theorem 37.4]). Let us begin this section with a model-
theoretic argument showing that the same holds for pro-oligomorphic groups.

For locally compact groups, the algebra C0(G) of functions vanishing at infinity
is always contained in Hilb(G). We recall that a function f ∈ C(X) on a locally
compact spaceX vanishes at infinity if for every ε > 0 there is a compact setK ⊂ X
such that |f(x)| < ε for every x outside K. These functions can be extended contin-
uously to the one-point compactification X ′ = X ∪{∞} of X by setting f(∞) = 0.
In the case of a locally compact group G (say, with Haar measure μ), the one-
point compactification of G is a Hilbert-representable semitopological semigroup:
it can be embedded into the linear contractions of L2(G,μ) by sending ∞ to the
zero operator, and otherwise extending the regular representation of G. Thus,
C0(G) ⊂ Hilb(G).
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Similarly, for closed subgroups of S∞, we have a simple way to produce functions
in Hilb(G). Recall that if a group G acts continuously on a discrete set X, then we
have a natural unitary representation π : G → U(�2(X)) defined (on the canonical
basis of �2(X)) by π(g)ex = egx.

Lemma 3.1. Let M be a structure, G = Aut(M). Let F : Mn → C be a function
vanishing at infinity and let a ∈ Mn. Then the function f ∈ C(G) given by
f(g) = F (ga) belongs to Hilb(G).

Proof. We can assume that F is zero everywhere except on a finite set
B ⊂ Mn, since the general case can be uniformly approximated by instances of
this form. Take the natural representation π : G → U(�2(Mn)) and the vectors
v =

∑
b∈B F (b)eb, w = ea. Then we have f(g) = 〈v, π(g)w〉, which shows that

f ∈ B(G). �

It is convenient to introduce the following definition. Given an action by isome-
tries G � X and a sequence (xi)i<ω ⊂ X, let us say that (xi) is indiscernible if for
all indices i1 < i2 < · · · < ik and j1 < j2 < · · · < jk we have the equality

[xi1 , xi2 , . . . , xik ] = [xj1 , xj2 , . . . , xjk ]

in Xk � G. We remark that for the natural action G � M of the automorphism
group of an ℵ0-categorical structure (classical or metric), by (approximate) ho-
mogeneity, this definition coincides with the usual model-theoretic notion of an
indiscernible sequence.

The following folklore lemma characterizes indiscernible sequences in Hilbert
spaces.

Lemma 3.2. Let (wi)i<ω be a sequence of vectors in a Hilbert space H, and suppose
(wi) is indiscernible for the action U(H) � H. Then, there are w′, w′

i ∈ H such
that w′

i ⊥ w′, ‖w′
i‖ = ‖w′

j‖, w′
i ⊥ w′

j for every i �= j, and wi = w′ +w′
i for every i.

In particular, w′ is the weak limit of (wi)i<ω.

Proof. Note that, by homogeneity of the Hilbert space, a sequence (wi) is indis-
cernible iff all wi have the same norm and 〈wi, wj〉 is constant for i �= j. Let w′ be
a weak accumulation point of the wi. Then by indiscernibility, for all i �= j,

〈wi, wj〉 = 〈w′, wi〉 = 〈w′, w′〉.

Setting w′
i = wi − w′, we easily obtain the claimed properties. �

In the following proposition we suppose G is pro-oligomorphic, so in particular

E(M) = ĜL as per Fact 2.14, and indiscernible sequences for the natural action

G � ĜL are the same as indiscernible sequences in E(M) in the usual model-
theoretic sense. We note also that every function f ∈ B(G), being left uniformly
continuous, extends to a function on E(M).

We prove that functions in B(G) vanishing at infinity must decay at a certain
rate along indiscernible sequences.

Proposition 3.3. Let G be a pro-oligomorphic group, say G = Aut(M). Let
F : Mn → C be a function vanishing at infinity, a ∈ Mn, and let f : E(M) → C be
given by f(x) = F (x(a)).
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Suppose (xi)i<ω ⊂ E(M) is an indiscernible sequence such that (xi(a))i<ω is
non-constant. If f |G ∈ B(G), then∣∣∣∣∣

1

n

∑
i<n

f(xi)

∣∣∣∣∣ = O(
1√
n
),

where the implicit constant depends only on f .

Proof. Suppose we have a continuous unitary representation π : G → U(H) such
that f(g) = 〈v, π(g)w〉 for all g ∈ G. Being a homomorphism, π is left uniformly
continuous, so it extends to a representation π : E(M) → E(H). (Here, E(H) is the
semigroup of isometric linear endomorphisms of H, which is also the left completion
of U(H).) We have f(x) = 〈v, π(x)w〉 for all x ∈ E(M).

Since (xi) ⊂ E(M) is indiscernible for the action of G, the sequence (wi) ⊂ H
given by wi = π(xi)w is indiscernible in the Hilbert space H for the action of π(G),
and thus also for the action of U(H). Let w′ and w′

i be as given by Lemma 3.2.
Since F vanishes at infinity and (xi(a)) is indiscernible and non-constant, we have
that f(xi) → 0. That is, 〈v, w′〉 = 0. We deduce that∣∣∣∣∣

1

n

∑
i<n

f(xi)

∣∣∣∣∣ =
∣∣∣∣∣〈v,

1

n

∑
i<n

w′
n〉

∣∣∣∣∣ ≤
‖v‖ · ‖

∑
i<n w

′
i‖

n

=
‖v‖

√∑
i<n ‖w′

i‖2
n

=
‖v‖ · ‖w′

0‖√
n

≤ ‖v‖ · ‖w‖√
n

.

�

Corollary 3.4. Let G be pro-oligomorphic and infinite. Then B(G) is not closed
in the uniform norm.

Proof. Choose any non-constant indiscernible sequence (xi) ⊂ E(M) (which always
exists if M is ℵ0-categorical) and an element a ∈ M such that (xi(a)) is non-
constant. Then take F : M → C vanishing at infinity and such that F (xi(a)) =
1/i1/3. Then, by Lemma 3.1 and Proposition 3.3, we obtain that the function
defined by f(g) = F (ga) is in Hilb(G) but not in B(G). �
3.2. A model-theoretic description of the Hilbert compactification. As
explained in Subsection 2.3, the WAP compactification of a pro-oligomorphic group
G is the space of types of pairs of embeddings x, y ∈ E(M) restricted to stable
formulas. Dually, this can be stated by saying that WAP(G) is the closed algebra
generated by the functions of the form

ϕa,b(g) = ϕ(a, gb),

where ϕ(u, v) is a stable formula and a, b are tuples from M . For a more detailed
explanation of this duality see [BT16, §5] or [Iba16, §4]. Hence it is natural to ask
which formulas ϕ(u, v) give rise to functions in the subalgebra Hilb(G).

We start with the following basic observation.

Lemma 3.5. Let M be a structure, G = Aut(M). Let ϕ(u, v) be a formula defining
an equivalence relation on Mn and let a, b ∈ Mn. Then the function ϕa,b (which
takes the value 1 if the elements are related and 0 otherwise) is in B(G).

Proof. It suffices to consider the natural representation π : G → U(�2(Mn/ϕ)) and
observe that ϕa,b(g) = 〈e[a]ϕ , π(g)e[b]ϕ〉. �
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The reader can also check that ϕa,b belongs toB(G) under the weaker assumption
that ϕ(x, b) defines a weakly normal set, that is to say, that the canonical parameter
of ϕ(x, b) is in the algebraic closure of any tuple a that satisfies the formula.

We want to give a converse to the previous lemma, for ℵ0-categorical structures.
For this we invoke the classification theorem of unitary representations of pro-
oligomorphic groups proved in [Tsa12].

Fact 3.6 (Classification Theorem). Let G be a pro-oligomorphic group.

(1) Every continuous unitary representation of G is a direct sum of irreducible
representations.

(2) Every irreducible continuous unitary representation is a subrepresentation
of the quasi-regular representation πV : G → U(�2(G/V )) for some open
subgroup V ≤ G.

Proposition 3.7. Let G be pro-oligomorphic, G = Aut(M). Then Hilb(G) is the
closed linear span of the functions of the form

ϕa,b(g) = ϕ(a, gb),

where ϕ(u, v) is a definable equivalence relation on some power Mn and a, b are
tuples in Mn.

Proof. It suffices to show that every f ∈ B(G) can be uniformly approximated
by linear combinations of functions of this form. By the classification theorem,
every continuous unitary representation is a subrepresentation of one of the form
π : G → U

(⊕
k �

2(G/Vk)
)
, where each Vk is an open subgroup of G. Now, every

matrix coefficient of π can be uniformly approximated by a linear combination of
basic matrix coefficients, that is, given by

g 
→ 〈eg0Vk
, π(g)eg1Vk

〉
for vectors eg0Vk

, eg1Vk
from the canonical basis of �2(G/Vk). Fix an open subgroup

V = Vk; it is the stabilizer of some imaginary element [c]ϕ ∈ M eq. If we take a = g0c
and b = g1c, we have that g0V = gg1V if and only if [a]ϕ = g[b]ϕ. In other words,

〈eg0V , π(g)eg1V 〉 = ϕ(a, gb).

The proposition follows. �
Dually, this characterization of Hilb(G) will provide a nice model-theoretic de-

scription of the Hilbert compactification H(G).
We fix a pro-oligomorphic group G = Aut(M). Let K = M eq ∪ {∞} be the

one-point compactification of M eq, and let

Ξ = {p ∈ KK : p(∞) = ∞ and p is injective on p−1(M eq)}.
Then Ξ, equipped with composition and the product topology, is a compact semi-
topological inverse semigroup (in fact, isomorphic to the semigroup of partial bi-
jections of M eq). Let P (M) = G ⊂ Ξ be the closure of G in the product space
KK (where we set g(∞) = ∞ for every g ∈ G). Then, if we think of an element
p ∈ KK as a partial map M eq → M eq (undefined on a whenever p(a) = ∞), we
get the following.

Proposition 3.8. The elements of P (M) are precisely the partial elementary maps
of M eq with algebraically closed domain. Besides, P (M) is closed under composi-
tion, and with this operation it becomes a semitopological ∗-semigroup compactifi-
cation of G, which is moreover an inverse semigroup.
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Proof. It is clear that any p ∈ P (M) is a partial elementary map of M eq, and also
that its domain must be algebraically closed. Conversely, let p : A → M eq be an
elementary map with A algebraically closed. Fix a finite tuple a from A, a finite
tuple b disjoint from A and a finite subset C ⊂ M eq (intended as the complement
of a neighbourhood of ∞ in K); denote a′ = p(a). Choose a tuple b′ such that
ab ≡ a′b′, then take b′′ satisfying b′′a′ ≡ b′a′ and b′′ |�a′ C. Since b is disjoint from

acl(a) ⊂ A we have that b′′ is disjoint from acl(a′), whence b′′ is disjoint from C.
Now, by homogeneity there is g ∈ G such that ga = a′ and gb = b′′. This shows
that p can be approximated by elements of G in the topology of KK .

Finally, P (M), being a closed subsemigroup of Ξ closed under inverses, is also a
compact inverse semitopological semigroup. �

We remark that we have defined P (M) directly as a family of partial maps on
M eq, and not onM . Unlike the case of E(M), which can be identified with E(M eq),
the previous construction applied to M would yield a smaller object (a factor of
P (M)), which may lose information. However, we have the following.

Remark 3.9. The structure M has weak elimination of imaginaries (see for instance
[TZ12, §8.4]) if and only if every algebraically closed set A ⊂ M eq is equal to the
definable closure of A ∩M . It follows that M has weak elimination of imaginaries
if and only if P (M) coincides with its factor consisting of partial elementary maps
of M with (relatively) algebraically closed domain.

We also observe that P (M) can be alternatively defined as the closure of the
image of G inside Θ(�2(M eq)), induced by the natural unitary representation G →
U(�2(M eq)). Indeed, by identifying ∞ ∈ K with the zero of the Hilbert space, we
have natural topological embeddings

G ⊂ Ξ ⊂ Θ(�2(M eq)).

In particular, P (M) is a factor of the Hilbert compactification.

Theorem 3.10. Let G = Aut(M) be a pro-oligomorphic group. Then P (M) coin-
cides with the Hilbert compactification H(G).

Proof. This follows from the previous observation and the fact, implied by the
classification theorem, that every separable continuous unitary representation of G
is a subrepresentation of G → U(�2(M eq)). Nevertheless, let us give an explicit
isomorphism H(G) → P (M) based on the model-theoretic description of W (G).
Given endomorphisms x, y ∈ E(M eq), let [x, y]H denote the image of [x, y] ∈ W (G)
under the canonical map W (G) → H(G): it is determined by the values of all
f ∈ Hilb(G) at [x, y] (or at [x, y]R, for that matter). By Proposition 3.7, these
values are in turn determined by the values ϕa,b

(
[x, y]

)
= ϕ(x(a), y(b)) for definable

equivalence relations ϕ(u, v) and parameters a, b from M (i.e., these ϕa,b separate
points of H(G)). Equivalently, [x, y]H is determined by the values x(a) = y(b) for
parameters a, b ∈ M eq. We consider the map

[x, y]H ∈ H(G) 
→ x−1 ◦ y ∈ Ξ,

where, on the right, x, y are seen as elements of Ξ. By our description of H(G),
this is well-defined and injective, and it is clearly a continuous G-map. Since H(G)
is compact, its image is P (M). �
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3.3. Characterization of Eberlein pro-oligomorphic groups. A corollary of
the previous results is that if a pro-oligomorphic group G is Eberlein (that is, if we
have W (G) = H(G)), then W (G) must be an inverse semigroup. As it turns out,
this is a sufficient condition. Moreover, this property is related to the following
model-theoretic notion.

Definition 3.11. Let M be a structure. We will say that M is one-based for stable
independence if for any algebraically closed sets A,B ⊂ M eq we have

A |�
A∩B

B.

Equivalently: if for any tuple a and set B we have Cb(a/B) ⊂ acl(a).

Theorem 3.12. Let G = Aut(M) be a pro-oligomorphic group. The following are
equivalent:

(1) W (G) is an inverse semigroup.
(2) The idempotents of W (G) commute.
(3) M is one-based for stable independence.
(4) G is Eberlein.

Proof. (1) ⇒ (2) is just a consequence of the general characterization referred in
Fact 2.11.

(2) ⇒ (1): Let p ∈ W (G), say p = [x, y] for x, y ∈ E(M). Identifying x ∈ E(M)
with [1, x] ∈ W (G), we may write p = [x, y] = [x, 1][1, y] = x∗y. Now, for any
z ∈ E(M) we have z∗z = 1, so the element zz∗ is an idempotent. If idempotents
commute, we obtain pp∗p = x∗yy∗xx∗y = x∗xx∗yy∗y = x∗y = p.

(1) ⇒ (3): By hypothesis, every element is regular, so by Lemma 2.20 we have
x |�x∩y

y for any x, y ∈ E(M). Now take algebraically closed sets A,B ⊂ M eq. By

replacing AB by an equivalent copy if necessary, we can find x ∈ E(M) such that
A ⊂ x and x |�A

B. Again, by replacing xAB by an equivalent copy, we can find

y ∈ E(M) such that B ⊂ y and x |�B
y. In particular, x ∩ y = x ∩ B = A ∩ B.

Since x |�x∩y
y and x ∩ y = A ∩B, we have x |�A∩B

y. Hence A |�A∩B
B.

(3) ⇒ (4): We want to show that the canonical map W (G) → H(G) is injective.
Given p, q ∈ W (G), we can always choose x, y, z ∈ E(M) such that p = [x, y] and
q = [x, z]. If the images of p and q in H(G) coincide, then x ∩ y = x ∩ z =: C,
and moreover y ≡s

C z. Since M is one-based for stable independence, y |�C
x and

z |�C
x. By stationarity, we get y ≡s

x z, that is to say, p = q.

(4) ⇒ (1): Clear from the identification H(G) = P (M). �
Corollary 3.13. The following are equivalent:

(1) G is strongly Eberlein.
(2) M is ℵ0-stable (i.e., the space of types Su(M), in any finite variable u, is

countable).
(3) The intersection

⋂
x∈E(M) E(M) · x is non-empty.

Moreover, if the previous conditions hold, the action of G on Su(M) is oligomorphic.

Proof. (1) ⇔ (2): As mentioned before, G is a WAP group if and only if M is
stable. By the previous theorem, G is strongly Eberlein if and only if M is stable
and one-based. A classical result of Zilber (see Theorem 5.12 in [Pil96, Ch. 2], and
also [BBH14], Proposition 3.12) states that an ℵ0-categorical stable structure is
one-based if and only if it is ℵ0-stable.
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(2) ⇔ (3): We will argue that

(3.1) y ∈
⋂

x∈E(M)

E(M) · x

if and only if every type over the image M ′ = y(M) (possibly in countably many
variables) is realized in M . In turn, there exists a submodel M ′ of M with this
property if and only if M is ℵ0-stable.

If every such type is realized and x is any element in E(M), there must be a
countable subset Z ⊂ M such that, with the appropriate orderings, Mx(M) ≡
Zy(M); this induces an element z ∈ E(M) satisfying y = zx. Thus, (3.1) holds.
Conversely, if p is a type over M ′, then there is a realization a of p in a countable
elementary extension N of M ; by ℵ0-categoricity, there is an isomorphism j : N →
M . Let x ∈ E(M) be the composition x = jy, so in particular x(M) = j(M ′). If
(3.1) holds, then there is z ∈ E(M) such that y = zx. Thus, aM ′ ≡ j(a)x(M) ≡
zj(a)zx(M) = zj(a)M ′, i.e., zj(a) realizes p in M .

For the “moreover” part of the statement, it suffices to show that Su(M)/G
is finite. We sketch the (standard) argument. To every indiscernible sequence
(ai)i<ω ⊂ M |u| we assign its limit type p ∈ Su(M). This is a surjective G-map.
SinceM is one-based, the type of an indiscernible sequence (ai)i<ω is determined by
tp(a0a1); indeed, one-basedness implies (ai)i>0 is Morley over acl(a0) (see [Kim14,
Fact 6.1.2]), and then the claim follows by stationarity. By ℵ0-categoricity, there
are only finitely many types tp(a0a1). �

Example 3.14. As mentioned before, the group S∞ of permutations of a countable
set X is (strongly) Eberlein; its Roelcke compactification is the semigroup of partial
bijections of X [GM08]. We can give some new examples. Consider the following
oligomorphic groups:

(1) the automorphism group of a dense linear order, Aut(Q, <);
(2) the homeomorphism group of the Cantor space (or, equivalently, the auto-

morphism group of its algebra of clopen sets), Homeo(2ω);
(3) the automorphism group of the random graph.

It follows from the results in [BT16, §6] (see also [Iba16, §4.2]) that for each of
these groups (as well as for S∞) the algebra WAP(G) is generated by the functions
of the form

(3.2) g 
→ (a = gb)

for elements a, b in the respective structures. Since these are obviously in Hilb(G),
we deduce that these groups are Eberlein. In fact, for any G = Aut(M) from the
above list, we can deduce the stronger result that W (G) = P ′(M), where P ′(M)
denotes the semigroup of partial elementary maps M → M with relatively alge-
braically closed domain. (In particular, as is well-known, these structures have weak
elimination of imaginaries; cf. Remark 3.9.) Indeed, since WAP(G) is generated by
the functions (3.2), an element [x, y] ∈ W (G) is determined by the values of x(a) =
y(b) for a, b ∈ M ; hence, the canonical map [x, y] ∈ W (G) 
→ x−1 ◦ y ∈ P ′(M) is
an isomorphism.

Example 3.15. A famous conjecture of Zilber claimed that an ℵ0-categorical stable
structure should be ℵ0-stable (equivalently, one-based, or still: not encoding a
pseudoplane). This was refuted by Hrushovski, who constructed an ℵ0-categorical
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stable pseudoplane. The details of the construction can be found in [Wag94]. It
follows from Theorem 3.12 that the automorphism group of this pseudoplane is
an oligomorphic WAP group that is not Eberlein. This answers Question 6.10 in
[GM14].

Example 3.16. The previous example can be used to produce a countable compact
dynamical system of finite Cantor–Bendixson rank that is faithfully representable
on a reflexive Banach space, but not on a Hilbert space, in the sense of repre-
sentability defined in the introduction (see [Meg08] for more background). Indeed,
let M be Hrushovski’s stable pseudoplane, G = Aut(M), and choose some formula
ϕ(u, v) and parameters a, b such that f : g 
→ ϕ(a, gb) is not in Hilb(G) (recall the
discussion at the beginning of Subsection 3.2). Now, the space Sϕ(M) of ϕ-types
in the variable v, with parameters from M , induces a compactification X of G via
the map g 
→ tpϕ(gb/M). Since f belongs to the associated algebra, the dynamical
system G � X is not Hilbert-representable; but it is reflexively representable, since
ϕ is stable. Finally, as is well-known, the space of local types Sϕ(M) of a stable
formula over a countable structure is a countable compact zero-dimensional space
of finite Cantor–Bendixson rank (see, for instance, [Pil96], Remark 2.3 and Lemma
3.1).

4. Hilbert-representable factors

In this section we extend our analysis to the factors of H(G) and W (G). We
start by showing that all factors of H(G) are zero-dimensional.

We recall that if π : G → U(H) is a continuous unitary representation, then
π extends naturally to a continuous homomorphism π : H(G) → Θ(H). Indeed,
the closure of π(G) in Θ(H) is a Hilbert-representable semitopological semigroup
compactification of G, and thus a G-factor of H(G) as per Fact 2.5.

Lemma 4.1. Let π : G → U(H) be a continuous unitary representation of a Roelcke
precompact Polish group. Let η ∈ H be a vector such that π(V )η = η for some open
subgroup V ≤ G (i.e., π(v)η = η for all v ∈ V ). Then π(H(G))η is countable.

Proof. First, we may restrict our attention to the separable Hilbert space generated
by π(G)η, which we still denote by H. As G is Roelcke precompact and V is open,
the set of double cosets V \G/V is finite. Since η is fixed by V , the function
g 
→ 〈η, π(g)η〉 factors through V \G/V , hence the set

{〈π(g1)η, π(g2)η〉 : g1, g2 ∈ G}

is finite. By continuity, {〈π(p1)η, π(p2)η〉 : p1, p2 ∈ H(G)} is equal to it, and
therefore also finite. So

inf{‖π(p1)η − π(p2)η‖ : p1, p2 ∈ H(G), π(p1)η �= π(p2)η} > 0

and the separability of H implies that π(H(G))η is countable. �

Proposition 4.2. Let G be a Roelcke precompact Polish group and let f ∈ C(H(G))
be a function such that V f = f for some open subgroup V ≤ G. Then f(H(G)) is
countable.

Proof. Let f = limn fn, where fn(g) = 〈ξn, π(g)ηn〉 for some representation π and
vectors ξn, ηn (recall that every function in Hilb(G) is a limit of matrix coefficients
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and we can assume that they are from the same representation simply by taking
direct sums). First, we may assume that each ξn is fixed by π(V ). Indeed, let n be
such that ‖f − fn‖ ≤ ε and let ξ′n be the element of minimal norm of co(π(V )ξn).
Note that ξ′n is fixed by π(V ) and for every g ∈ G and v ∈ V ,

|〈ξn, π(g)ηn〉 − 〈π(v)ξn, π(g)ηn〉| = |fn(g)− vfn(g)| ≤ 2ε,

implying that

|〈ξn, π(g)ηn〉 − 〈ξ′n, π(g)ηn〉| ≤ 2ε

and thus we can replace ξn by ξ′n without losing much.
Next, by replacing π with a sum of infinitely many copies of itself and rescaling

if necessary, we may assume that ξn = ξ for all n. Finally, apply Lemma 4.1 to
obtain that π(H(G))ξ is countable and let E be the equivalence relation on H(G)
given by p E q ⇐⇒ π(p∗)ξ = π(q∗)ξ (so that E has countably many classes). Now
all fn and f factor through E, so, in particular, the image of f is countable. �

Lemma 4.3. Suppose G is pro-oligomorphic and let A ⊂ WAP(G) be a closed
subalgebra. Let A0 ⊂ A be the subalgebra of functions f such that V f = f for some
open subgroup V ≤ G, and let A1 ⊂ A be the subalgebra of functions with finite
range.

(1) If A is left-invariant, then A0 is dense in A.
(2) If A is bi-invariant, then A1 is dense in A.

Proof. This follows almost verbatim from the proofs of Proposition 4.7 and Theorem
4.8 in [BT16]. �

Theorem 4.4. If G is a pro-oligomorphic group, then every factor of H(G) is
zero-dimensional.

Proof. Let S be a factor of H(G). Since A(S) is left-invariant, by Lemma 4.3 (4.3),
the subalgebra of functions f ∈ A(S) that are fixed by some open subgroup V ≤ G
is dense in A(S). By Proposition 4.2, those functions have countable range, and, by
density, they separate points in S. This implies the conclusion of the theorem. �

Question 4.5. Is the same true for all factors of W (G)?

The automorphism group of the dense, countable circular order acts minimally on
the circle and this dynamical system is a quotient of the Roelcke compactification of
the group. So certainly some hypothesis is necessary to obtain zero-dimensionality.

The previous theorem, restated as follows, is useful to show that Hilbert-
representability is preserved under factors.

Corollary 4.6. Let A ⊂ Hilb(G) be a left-invariant closed subalgebra, and let
A1 ⊂ A be the subalgebra of functions with finite range. Then A1 is dense in A.

Proof. Let S be the factor of H(G) corresponding to A, so that A = A(S) ∼= C(S).
By Theorem 4.4, S is zero-dimensional, so functions in C(S) with finite range
separate points in S. By Stone–Weierstrass, they are dense in C(S). �

Proposition 4.7. Let G be a pro-oligomorphic group. If f ∈ Hilb(G) has finite
range, then f ∈ B(G).



This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

EBERLEIN OLIGOMORPHIC GROUPS 2205

Proof. Suppose first that f is {0, 1}-valued. By Proposition 3.7, we know that
f can be approximated in norm by a linear combination of {0, 1}-valued matrix
coefficients m0, . . . ,mn−1 ∈ B(G), say∥∥f −

∑
i<n

λimi

∥∥ < 1/2.

Hence there is a Boolean function b : {0, 1}n → {0, 1} such that b
(
(mi(g))i<n

)
=

f(g) for every g ∈ G. This implies that f can be written as a Boolean combination
of the matrix coefficients mi. Now it is enough to note that, first, the negation of
a {0, 1}-valued function m ∈ B(G) is again in B(G), since we can write it as the
difference ¬m = 1−m, and, second, the conjunction of two {0, 1}-valued functions
m0,m1 ∈ B(G) is again in B(G), since it is simply the product m0 ∧m1 = m0m1.
We conclude that f is a matrix coefficient.

Finally, every f ∈ Hilb(G) with finite range is a linear combination of {0, 1}-
valued functions in Hilb(G). Indeed, if the range of f is {λ1, . . . , λk} and Ai =
f−1({λi}), we have that f =

∑
i λi1Ai

, and each 1Ai
can be written as 1Ai

= Fi ◦f
for some continuous function Fi : C → C. If f ∈ Hilb(G), then Fi ◦ f ∈ Hilb(G)
as well (both f and Fi ◦ f factor through H(G)). Therefore 1Ai

∈ B(G) and
f ∈ B(G). �

We can finally give an answer to Question 1.7 for pro-oligomorphic groups.

Theorem 4.8. Let G be a pro-oligomorphic group. Every factor of H(G) is Hilbert-
representable.

Proof. Let A be a subalgebra of Hilb(G) and let A1 ⊂ A be the subalgebra of
functions with finite range. By Corollary 4.6 and Proposition 4.7, we have that
A1 is dense in A and contained in A ∩ B(G). Hence A = A ∩B(G) and, by
Proposition 1.5, the factor of H(G) corresponding to A is Hilbert-representable. �
Corollary 4.9. Every semitopological semigroup factor of H(G) is ∗-closed and is
an inverse semigroup.

Proof. The first claim follows from the previous theorem and Proposition 2.9. Now,
any such G-factor H(G) → S must preserve the involution. It follows that pp∗p = p
for every p ∈ S, hence S is an inverse semigroup. �

It turns out that the converse of the above corollary also holds. The following is
a generalization of Theorem 3.12.

Theorem 4.10. Let S be a semitopological ∗-semigroup compactification of a pro-
oligomorphic group G. The following are equivalent:

(1) S is an inverse semigroup;
(2) the idempotents of S commute;
(3) S is Hilbert-representable.

Proof. We recall that S is a factor of the WAP compactification, as per Re-
mark 2.2(3) and Fact 2.3. The equivalence (1) ⇔ (2) is then proved exactly as
in Theorem 3.12. The implication (3) ⇒ (1) is clear, for example by the previous
corollary.

(1) ⇒ (3): Let A ⊂ WAP(G) be the closed algebra generated by the union of
A(S) and Hilb(G), and let SH be the compactification of G associated to A. By
Theorem 4.8, to prove (3), it is enough to show that SH = H(G).
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It follows from Facts 2.3 and 2.8 that SH is a semitopological ∗-semigroup com-
pactification. Moreover, since S and H(G) are inverse semigroups, so is SH . To
justify this, let π : SH → S denote the canonical factor map, which is a homomor-
phism of ∗-semigroups; also, recall that we may identify each function f ∈ A(S) ⊂ A
with its continuous extensions to S and SH . Then, given q ∈ SH , we have
f(q) = f(π(q)) = f(π(qq∗q)) = f(qq∗q), since the equality π(q) = π(qq∗q) holds
in S. Similarly, f(q) = f(qq∗q) for each f ∈ Hilb(G) ⊂ A. Now, since SH is the
Gelfand space of the closed algebra generated by A0 = A(S) ∪ Hilb(G), the set
A0 (seen as a subset of C(SH)) separates points of SH . Hence q = qq∗q, and this
proves our claim that SH is an inverse semigroup.

Let φ0 : W (G) → SH and φ1 : SH → H(G) be the canonical factor maps. We
need to show that φ1 is injective, so that SH = H(G). The proof of Theorem 3.12
shows that the canonical factor map φ1φ0 : W (G) → H(G) is injective on the set
of regular elements of W (G).

Let p ∈ W (G) be any element, and let P be the closed subsemigroup of W (G)
generated by p∗p. Then P ∗ = P , so by [BT16, Lemma 3.6], there exists an idem-
potent ep ∈ P such that the set W (G)ep is contained in every set W (G)s for s ∈ P .
Then W (G)ep ⊂ W (G)p∗pep ⊂ W (G)pep ⊂ W (G)ep, so W (G)pep = W (G)ep. It
follows from Fact 2.12(1) that ep = p∗pep. We set σ(p) = pep and we note, using
Fact 2.12(2), that σ(p) is regular.

We claim that φ0(σ(p)) = φ0(p). Since P is generated by p∗p, there is a sequence
ni < ω such that (p∗p)ni → ep. By continuity, φ0(p(p

∗p)ni) → φ0(pep), but we
also have φ0(p(p

∗p)ni) = φ0(p) since φ0 is a homomorphism and SH is an inverse
semigroup.

Finally, let q, q′ ∈ SH and suppose φ1(q) = φ1(q
′). Let p, p′ ∈ W (G) be any

elements with φ0(p) = q and φ0(p
′) = q′. The associated elements σ(p) and σ(p′)

are regular and have the same image in H(G), hence σ(p) = σ(p′). It follows that
q = q′. �

We point out that, even for the group of integers G = Z, a Hilbert-representable
semitopological semigroup compactification of G need not be an inverse semigroup.
The semigroup considered in [BLM01] serves as a counterexample.

To conclude, we give a bound on the complexity of the countable factors ofH(G).

Proposition 4.11. Let Z ⊂ H be a countable, weakly compact subset of a Hilbert
space H. Denote D(Z) = {‖ξ−η‖ : ξ, η ∈ Z} and assume that D(Z) is finite. Then
D(Z ′) � D(Z) (here Z ′ is the Cantor–Bendixson derivative of Z). In particular,
the Cantor–Bendixson rank of Z is bounded by |D(Z)|.

Proof. Let δ = maxD(Z); we show that δ /∈ D(Z ′). Suppose, towards a contradic-
tion, that ξ, η ∈ Z ′ are such that ‖ξ − η‖ = δ. By translating Z, we can assume
that ξ = 0. Let ηn →w η with ηn distinct elements of Z. As δ is maximal, D(Z)
is finite, ηn →w η, and the norm is lower semicontinuous in the weak topology,
we must have that eventually ‖ηn‖ = ‖η‖. This, in turn, implies that ηn → η
in norm, which means that ηn is eventually constant (again, since D(Z) is finite).
This contradicts the choice of the sequence ηn. �

Recall that a G-ambit (X, x0) is just a compactification of G where x0 is the
image of 1. If X is countable, then x0 must be isolated.
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Corollary 4.12. Let G be a Roelcke precompact group and let (X, x0) be a Hilbert-
representable G-ambit. Then X is countable if and only if the stabilizer Gx0

is
open, and in this case we have

rankX ≤ |{Gx0
gGx0

: g ∈ G}|.
Proof. Follows from Lemma 4.1 (and its proof) and Proposition 4.11. �

Note that the previous result is a generalization of the following model-theoretic
fact, which follows from one-basedness: in an ℵ0-categorical ℵ0-stable theory, the
Morley rank of any finite tuple a is bounded by the number of distinct types tp(b/a)
with tp(b) = tp(a).

Question 4.13. Do countable ambits of pro-oligomorphic groups necessarily have
finite Cantor–Bendixson rank?

We remark that every countable compactification of a Roelcke precompact Polish
group G is a factor of W (G). Indeed, since countable compact systems are Asplund-
representable (see, for instance, [GM06, Corollary 10.2]), this follows from [Iba16,
Theorem 2.9].

Akin and Glasner [AG14] construct countable WAP Z-ambits of arbitrarily high
rank. But of course, the group Z is not pro-oligomorphic.
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Univ Lyon, Université Claude Bernard Lyon 1, Institut Camille Jordan, CNRS UMR

5208 43 boulevard du 11 novembre 1918 69622 Villeurbanne Cedex France
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