
POLISH GROUPS WITH METRIZABLE UNIVERSAL MINIMAL FLOWS

JULIENMELLERAY, LIONEL NGUYEN VAN THÉ, AND TODOR TSANKOV

Abstract. We prove that if the universalminimal flow of a Polish groupG ismetriz-
able and contains a Gδ orbit G · x0, then it is isomorphic to the completion of the
homogeneous spaceG/Gx0 and show how this result translates naturally in terms of
structural Ramsey theory. We also investigate universalminimal proximal flows and
describe concrete representations of them in a number of examples.

. Introduction

The connections between structural Ramsey theory and topological dynamics first
became apparent in the work of Pestov [P], where, using the classical Ramsey the-
orem, he showed that the automorphism group of the dense countable linear order
(Q,<) is extremely amenable (i.e., every time it acts continuously on a compact space,
there is afixedpoint) andproduced thefirst interestingexampleof anon-trivial,metriz-
able, universalminimal flow. Later, Glasner andWeiss [GW], again using the Ramsey
theorem,proved that the spaceof all linearorderingsonacountable set is theuniversal
minimal flow of the infinite permutation group; then, they also calculated the univer-
sal minimal flow of the homeomorphism group of the Cantor space [GW]. Inspired
by those results, Kechris, Pestov, and Todorcevic [KPT], using the general framework
of Fraïssé limits, formulated a precise correspondence between the structural Ram-
sey property for a Fraïssé class and the extreme amenability of the corresponding au-
tomorphism group. They also developed a general method for calculating universal
minimal flows and their work spawned a renewed interest in structural Ramsey the-
ory.

It turns out that formost Fraïssé classes that have been considered in the literature,
even if they do not have the Ramsey property, they are often not far from having it:
namely, it is possible to expand the class by an ordering, and perhaps some additional
structure, in a way that the resulting Fraïssé class does have the Ramsey property. A
corollary of the main result of this paper, Theorem ., is a characterization, in terms
of topological dynamics, of when this happens.

An important motivation for our work was the following question, raised in [BPT],
whether, under rather general conditions, a Ramsey expansion always exists.

Question.. LetFbeaFraïssé structurewhoseagehasonlyfinitelymanynon-isomorphic
structures in every finite cardinality (equivalently, such that the action Aut(F) ↷ F is
oligomorphic). Does F always admit a Ramsey precompact expansion?

Even though initiallyweweremostlymotivatedbyRamsey theory fordiscrete struc-
tures (that is, automorphism groups that are subgroups of S∞), our methods and re-
sults are more naturally placed in the more general setting of Polish groups.

If G is a topological group, a G-flow is a compact Hausdorff space X equipped with
a continuous action ofG . A flow isminimal if it has no proper subflows; it is a standard
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fact in topological dynamics, due toEllis, that every topological groupG hasauniversal
minimal flow M(G) such that every other minimal G-flow is a factor of it, and that it is
unique up to isomorphism.

If G is a topological group and H is a closed subgroup, the homogeneous space
G/H is equipped with a natural uniformity (the quotient of the right uniformity of G),
defined as follows: entourages of the diagonal UV are indexed by symmetric neigh-
borhoods V of 1G and are given by

(.) UV = {(g H , v g H) : g ∈G , v ∈V }.

Note that this uniformity is compatible with the quotient topology on G/H and, in the
case where G is Polish, it is metrizable by the distance

(.) d(g1H , g2H) = inf
h∈H

dR (g1h, g2)

(where dR is some right-invariant distance on G), but usually not complete. We will
denote by �G/H the completion of G/H and will say that G/H is precompact (or some-
times, that H is co-precompact inG) if �G/H is compact. Equivalently, H is co-precompact
inG iff for everyneighborhoodV ∋ 1G , there exists afinite setF ⊆G such thatV F H =G .

In the situation where G is the automorphism group of a Fraïssé structure F and G∗
is the automorphism group of some homogeneous expansion F∗ of F, it is not difficult
to see that �G/G∗ can be identified with the space X of all expansions of F whose age is
contained in the age of F∗ with the topology given by the basis of sets of the form

UA,A∗ = {x ∈ X : x|A = A∗},

whereA is afinite substructureofFandA∗ is anexpansionofA in theageofF∗. Thuswe
see that G/G∗ is precompact iff every finite substructure A ⊆ F has only finitely many
expansions in the age of F∗. For example, if G ↷ M is an oligomorphic permutation
group, G∗ is co-precompact in G iff the action G∗ ↷ M is oligomorphic. See [NVT] for
more on precompact expansions.

Observe that if G/H is precompact, then �G/H is a G-flow and, as G/H is a Polish
space and embeds homeomorphically in its completion, it is always a denseGδ subset
of �G/H . The flow �G/H has the following universal property: ifG ↷ X is anyG-flow and
x0 ∈ X is a point fixed by H , then there is a unique morphism of G-flows π : �G/H → X
such that π(H) = x0. (This is true simply because the map G/H → X , g H 7→ g · x0 is
uniformly continuous.) If it happens that the group H is extremely amenable, then
this implies that the flow �G/H is universal in the sense that it maps to every other G-
flow. If, in addition, the flow �G/H is minimal, then it is the universal minimal flow
of G . This technique for calculating universal minimal flows was first considered by
Pestov in [P, Section .]. It is worth pointing out that all knownmetrizable universal
minimal flows of Polish groups are of this form and it is an open question whether it
is true in general. In the following theorem, we provide a positive answer, under the
additional assumption of the existence of a Gδ orbit.

Theorem .. Let G be a Polish group and M(G) be its universal minimal flow. Then
the following are equivalent:

(i) The flow M(G) is metrizable and has a Gδ orbit.
(ii) There is a closed, co-precompact, extremely amenable subgroup G∗ ≤ G such

that M(G) = �G/G∗.

In the setting of Fraïssé limits,Theorem . translates to the following.

Corollary .. Let F be a Fraïssé structure and let G = Aut(F). The following are equiv-
alent:

(i) The flow M(G) is metrizable and has a Gδ orbit.
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(ii) The structure F admits a Fraïssé precompact expansion F∗ whose age consists of
rigid elements, has the Ramsey property, and has the expansion property rela-
tive to Age(F).

See [NVT] for details and for the definition of the Ramsey and the expansion prop-
erty.

It is natural to ask whether the assumption of the existence of the Gδ orbit can be
omitted from item (i) ofTheorem .. In fact, this question had already been raised by
Angel, Kechris, and Lyons in [AKL]:

Question .. If the universal minimal flow M(G) of a Polish group G is metrizable,
does M(G) necessarily have a Gδ orbit?

While thispaperwasbeingcompleted, AndyZucker informedus thathehadproved
[Z], in the important case where G is a subgroup of S∞, a result stronger than Theo-
rem . in which the hypothesis of the existence of a Gδ orbit can be omitted from (i),
thus answeringQuestion . in this case. Hisworkwas independent fromours and his
methods are quite different. Question . remains open in general.

Zucker’s result also implies that Question . is equivalent to the question whether
every oligomorphic permutation group has a metrizable universal minimal flow. It
was shown in [T] that oligomorphic permutation groups are (more or less) the Roel-
cke precompact subgroups of S∞. (A topological group G is Roelcke precompact if for
every neighborhood U of 1G , there is a finite set F ⊆ G such that U FU = G .) It seems
plausible that Roelcke precompactness alone may imply the metrizability of the uni-
versal minimal flow.

Question .. Is M(G) metrizable for every Roelcke precompact Polish group G?

A positive answer to Questions . and/or . would show that Ramsey classes are
rather ubiquitous objects and not at all exceptional, as was initially believed. Since
[KPT], a number of new precompact Ramsey expansions have been found for various
kinds of Fraïssé classes: metric spaces with rational distances [N], all classes of posets
(and essentially all classes of undirected graphs) [S, S], ω-categorical linear orders
[DGMR], boron trees [J], and all classes of directed graphs [JLNVTW]. Those results
could be considered as evidence for a positive answer to Question .. On the other
hand, several natural problems about the Ramsey property remain open: finite met-
ric spaces with distances in some fixed set, Euclidean metric spaces (this problem is
mentioned in [KPT]), projective Fraïssé classes (those are developed in [IS] and are
connected to Fraïssé classes of finite Boolean algebras) and equidistributed Boolean
algebras (this problem appears in [KST]).

Flows of the type �G/H are usually not difficult to understand and when it happens
that M(G) = �G/G∗ for some closed, co-precompact G∗ ≤G , this provides ample infor-
mation for the dynamical properties of all minimal G-flows. Recall that a G-flow X is
called coalescent if every endomorphismof X is an automorphism. Theuniversalmin-
imal flow M(G) is always coalescent (this fact is due toEllis; for a proof, see for example
[U, Proposition .]) but if M(G) = �G/G∗, muchmore is true.

Theorem .. Let G be a Polish group. Then the following statements hold:

(i) Every minimal G-flow of the form �G/H is coalescent and has a compact auto-
morphism group;

(ii) If M(G) = �G/G∗ for some closed, co-precompact G∗ ≤G , then the conclusion of
(i) is true for every minimal G-flow.

Another consequence is the fact that if M(G) = �G/G∗, then minimal flows of G are
easy to classify, at least in the sense of descriptive set theory: in Subsection ., we
show that the equivalence relation of isomorphism of minimal flows of G is smooth.



 J. MELLERAY, L. NGUYEN VAN THÉ, AND T. TSANKOV

Next we show how to calculate the universal minimal proximal flow of groups for
which M(G) is of the form �G/G∗ and isolate a criterion for such a groupG to be strongly
amenable (see Section  for the definitions).

Theorem .. Let G be a Polish group and G∗ a closed, co-precompact subgroup such
that M(G) = �G/G∗. Let N (G∗) denote the normalizer of G∗ in G . Then the following
statements hold:

(i) The universal minimal proximal flow of G is isomorphic to áG/N (G∗);
(ii) G is strongly amenable iff G∗ is normal in G .

In the case of automorphism groups of Fraïssé structures,Theorem . can be used
to characterize strong amenability in Ramsey-theoretic terms.

The paper is organized as follows. In Section , we study minimal flows with a Gδ

orbit and prove Theorem .; in Section , we prove Theorem .; in Section , we
discuss proximal flows and prove Theorem .; and, finally, in Section , we calculate
the universal minimal proximal flow for several examples.

Acknowledgements. L.N.V.T.would like to acknowledge the support of theCNRS and
thehospitalityof the InstitutCamille Jordan (Université Lyon), and to thankBohuslav
Balcar for pointingout thenotionof strong amenability, aswell asGregoryCherlin, Ar-
naud Hilion, and Mauro Mariani for helpful discussions. T.T. would like to thank the
Caltech mathematics department, during a visit to which part of this work was done
as well as Alexander Kechris for useful discussions. The last stage of the project was
completed during the program on Universality and Homogeneity held at the Haus-
dorff Research Institute for Mathematics in Bonn, and we would like to thank the In-
stitute and the organizers of the program for having made this possible. We are also
grateful to the anonymous referees for catching some imprecisions as well as making
suggestions that helped us improve the exposition.

. Coalescence and automorphisms of minimal flows

In this section, we study endomorphisms ofminimal flows that have aGδ orbit with
a co-precompact stabilizer. Throughout G will be a Polish group.

We start with the following well-known fact.

Lemma .. Let G ↷ X be a metrizable minimal flow with a Gδ orbit G · x0, Y be a
minimal G-flow, and let π : X → Y be a factor map. Then the orbit G ·π(x0) is also Gδ.
In particular, if π : X → X is an endomorphism, then π(G · x0) =G ·x0.

Proof. Thefirst assertion follows, for example, from [MT, PropositionA.]. The second
is a consequence of the Baire category theorem. □

Recall that if H ≤G is a closed subgroup, the homogeneous space G/H is equipped
with a natural distance defined by (.). The next lemma shows that under a precom-
pactness assumption, all endomorphisms of the homogeneous G-space G/H are in
fact isometries for this distance.

Lemma .. Let G be a Polish group and H ≤ G a closed, co-precompact subgroup.
Suppose ϕ : G/H → G/H is a G-map. Then there exists f0 ∈ N (H) such that ϕ(g H) =
g f0H for all g ∈G . In particular, ϕ is an isometry.

Proof. Let f0 ∈ G be such that ϕ(H) = f0H . The set of all g ∈ G fixing ϕ(H) is f0H f −1
0 .

Furthermore, as ϕ is a G-map, ϕ(H) is fixed by H , i.e., H ⊆ f0H f −1
0 , or, which is the

same, f −1
0 H f0 ⊆ H . For the reverse inclusion, we first check that ϕ is a contraction for
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the distance d defined by (.): for any g1, g2 ∈G and h ∈ H , we have

d
(
ϕ(g1H),ϕ(g2H)

)= d(g1 f0H , g2 f0H)

= d(g1 f0( f −1
0 h f0)H , g2 f0H)

≤ dR (g1h f0, g2 f0)

= dR (g1h, g2),

so
d

(
ϕ(g1H),ϕ(g2H)

)≤ inf
h∈H

dR (g1h, g2) = d(g1H , g2H).

The map ϕ extends to a surjective contraction of the compact metric space �G/H and
is therefore an isometry (see [E, Exercise .., p. ]). In particular, ϕ is injective, so
for any g ∈G , if g fixesϕ(H), then g H = H , and g ∈ H . Hence, f0H f −1

0 ⊆ H , completing
the proof. □

Observe that if H ≤G is co-precompact, then N (H)/H is a Polish groupwhose right
uniformity is precompact (as a subspace of the precompact spaceG/H) and therefore
compact (see, for instance, [S, Lemma .]).

If X is a G-flow, the automorphism group of X is the topological group

Aut(X ) = {γ ∈ Homeo(X ) : γ(g ·x) = g ·γ(x) for all g ∈G , x ∈ X }.

Aut(X ) is a closed subgroup of Homeo(X ) (the latter being equipped with the uniform
convergence topology) and the action Aut(X )↷ X is continuous.

Theorem .. Let G be a Polish group, G ↷ X be a minimal G-flow with a Gδ orbit
G ·x0 such that the stabilizer H =Gx0 is co-precompact. Then X is coalescent and Aut(X )
embeds naturally as a closed subgroup of the compact group N (H)/H . If X ∼= �G/H , then
this embedding is an isomorphism.

Proof. First consider theambit (i.e., flowwith adistinguishedpointwith adenseorbit)
(Y , y0) = (�G/H , H). For f ∈ N (H), define θ f : G · y0 → G · y0 by θ f (g · y0) = g f −1 · y0.
This is an isometry of G/H (with the distance (.)) that commutes with the action of
G and therefore extends to an automorphism Y → Y , still denoted by θ f . The map
Φ : N (H) → Aut(Y ), Φ( f ) = θ f is a homomorphism whose kernel is H . By Lemma .,
Aut(Y ) is a subgroup of the isometry group Iso(Y ), where the pointwise convergence
and uniform convergence topologies coincide (see [P, Proposition ..]). The map
Φ, beingobviously continuous for the former, is therefore also continuous for the latter.
Lemma . also implies thatΦ is surjective. We conclude that Aut(Y ) ∼= N (H)/H .

Now let ϕ : X → X be an endomorphism. Denote by π : Y → X the factormap given
by π(y0) = x0 and note that the existence of this map implies that X is metrizable. By
Lemma ., ϕ(G · x0) = G · x0. By Lemma ., identifying G · x0 and G/H , there exists
fϕ ∈ N (H) such that ϕ(x0) = f −1

ϕ · x0. Denote by θ the automorphism θ fϕ ∈ Aut(Y ) and
consider the diagram

Y

π

��

θ fϕ // Y

π

��
X

ϕ // X .

It commutes on the dense set G · y0 and therefore everywhere.
Weproceed to show thatϕ is injective, that isϕ ∈ Aut(X ). LetRπ be the closedequiv-

alence relation on Y defined by

y1Rπ y2 ⇐⇒ π(y1) =π(y2).

As ϕ is an endomorphism of X and the diagram commutes, we have

(.) ∀y1, y2 ∈ Y y1Rπ y2 =⇒ θ(y1)Rπθ(y2).
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Now we show the converse. Let y1, y2 ∈ Y be such that θ(y1)Rπθ(y2). As the group
Aut(Y ) is compact, there exists a sequence of positive integers {nk }k such that θnk → id.
Applying θnk−1 to both sides of the expression θ(y1)Rπθ(y2), using (.), and taking
limits, we obtain that y1Rπy2, thus showing that ϕ is injective.

It is now not difficult to check that the map F : Aut(X ) → Aut(Y ) given by F (ϕ) = θ fϕ
is a well-defined, injective group homomorphism. That F is a topological embedding
follows from the identity ϕ◦π=π◦F (ϕ) and the fact that π is surjective and uniformly
continuous. This completes the proof of the theorem. □

Corollary .. Let G be a Polish group such that M(G) = �G/G∗ for some closed, co-
precompact G∗ ≤G . Then every minimal G-flow is coalescent and has a compact auto-
morphism group.

Proof. By the universality of M(G) and Lemma ., every minimal flow G ↷ X has
a Gδ orbit G · x0. Then Gx0 ≥ G∗ is co-precompact in G and Theorem . yields the
conclusion. □

The next lemma, which will be useful in the next section, describes completely the
H-fixed points in minimal flows of the form �G/H .

Lemma .. Let G be a Polish group, H ≤ G a closed, co-precompact subgroup such
that the G-flow �G/H is minimal. Denote by x0 the point H ∈ �G/H . Then

{x ∈ �G/H : H · x = x} = N (H) · x0.

Proof. Let x ∈ �G/H be an H-fixed point. By the universal property of �G/H , there exists
a G-map π : �G/H → �G/H such that π(x0) = x. By Lemma ., there is g ∈ N (H) such
that π(x0) = g ·x0. The other inclusion is easy. □

. Polish groups with metrizable universal minimal flows

Now we turn to proving Theorem .. The proof is based on two propositions, .
and . below. It is interesting to note that even though the arguments we present
here use only tools from topological dynamics, the original proof of Proposition .
was combinatorial and based on Ramsey theory.

Recall that if X is a uniform space, its Samuel compactification S(X ) is the Gelfand
space of the C∗-algebra UCB(X ) of uniformly continuous bounded functions on X ;
it can equivalently be defined by the following universal property: if f : X → K is a
uniformly continuous map to a compact Hausdorff space K , then f extends uniquely
to a map S(X ) → K . In the special case where X = G/H with the uniformity defined
by (.), S(X ) is also a G-flow (one easily checks that the action of G on the C∗-algebra
UCB(G/H) is continuous) and we have the following lemma.

Lemma .. Let G be a topological group and H a closed subgroup. Then the Samuel
compactification S(G/H) of the uniform space G/H has the following universal prop-
erty: for everyG-ambit (X , x0) such that H ·x0 = x0, there exists auniqueG-mapψ : S(G/H) →
X such thatψ(g H) = g ·x0 for every g ∈G .

Proof. To prove the lemma, it suffices to observe that the map

Ψ : C (X ) → UCB(G/H), Ψ( f )(g H) = f (g · x0)

is a G-embedding of C∗-algebras. □

Of course, G/G∗ is precompact iff S(G/G∗) = �G/G∗ (this is because if G/G∗ is pre-
compact, then C (S(G/G∗)) = UCB(G/G∗) =C (�G/G∗)).
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Proposition.. LetG be aPolish groupand M(G) its universalminimal flow. Suppose
that M(G) is metrizable and that there is a point x0 ∈ M(G) such that the orbit G · x0 is
Gδ. If G∗ is the stabilizer of x0, then G/G∗ is precompact and the G-spaces �G/G∗ and
M(G) are isomorphic.

Proof. Let Y denote the uniform space G/G∗ and y0 = G∗. Let S(Y ) be the Samuel
compactification of Y and i : Y → S(Y ) denote the natural embedding. Let j : Y →
M(G) be themap given by gG∗ 7→ g ·x0. By Effros’s theorem (see [H,Theorem .]), j
is a homeomorphism onto its image. By Lemma ., there exists a continuous G-map
ψ : S(Y ) → M(G) such that ψ ◦ i = j . By the universal property of M(G), there exists a
continuous G-map ϕ : M(G) → S(Y ), so that we obtain the following diagram

M(G)

ϕ ++
Y

j

OO

i
// S(Y ).

ψ
kk

We are going to show that ϕ is surjective. Let Z = ϕ(M(G)) and z0 = ϕ(x0). Let f =
ϕ ◦ψ. As ψ ◦ϕ is an endomorphism of M(G) and M(G) is coalescent, ϕ : M(G) → Z
and hence f |Z : Z → Z must be isomorphisms. Therefore by precomposing ϕwith an
automorphism of M(G), we can assume that f |Z = id. As the orbit G · i (y0) is dense
in S(Y ), there exists a net (gα)α of elements of G such that gα · i (y0) → z0. Applying ψ

to both sides, we get gα ·ψ(i (y0)) → ψ(z0). Because ψ ◦ i = j , we have ψ(i (y0)) = x0.
Next, because ψ ◦ϕ is the identity on M(G) and z0 = ϕ(x0), we get ψ(z0) = x0. Thus,
gα ·x0 → x0. Applying i ◦ j−1 to both sides of the previous limit, we get gα ·i (y0) → i (y0),
whence z0 = i (y0) andϕ is surjective. Aswe already saw thatϕ is an isomorphismonto
its image, M(G) is isomorphic to S(Y ). In particular, S(Y ) is metrizable, showing that
G/G∗ is precompact and M(G) ∼= S(G/G∗) = �G/G∗. □

Proposition .. Let G∗ ≤G be Polish groups such that G/G∗ is precompact and �G/G∗
is the universal minimal flow of G . Then G∗ is extremely amenable.

Proof. Fix a right-invariant metric dR on G . First note that the space F of 1-Lipschitz
functions (G ,dR ) → [0,1] endowed with the pointwise convergence topology is com-
pact metrizable and equipped with the G-action

(g ·γ)(x) = γ(xg ),

it becomes a G-flow.
Our goal is to show that the right translation action G∗ ↷ (G∗,dR ) is finitely oscilla-

tion stable, which is equivalent to saying that, for any 1-Lipschitz γ : (G∗,dR ) → [0,1],
there exists a G∗-fixed point in G∗ ·γ. By [P, Theorem ..], this will imply that G∗
is extremely amenable. We begin with a 1-Lipschitz γ : (G∗,dR ) → [0,1], which we ex-
tend to a 1-Lipschitz map from (G ,dR ) to [0,1], still denoted by γ; for instance, one
can achieve this by setting γ(g ) = min(1, inf{γ(g∗)+dR (g , g∗) : g∗ ∈G∗}). Consider the
diagonal action of G on F× �G/G∗. To avoid confusion, let x0 denote the point G∗ in�G/G∗.

Since M(G) has a G∗-fixed point, this is true for every G-flow; in particular, there
is an G∗-fixed point (γ0, y) in G · (γ, x0). Then y is an G∗-fixed point in �G/G∗, so by
Lemma ., we know that y = aG∗ for some a in the normalizer of G∗. Then the point
a−1 · (γ0, y) = (γ1, x0) is also fixed by G∗ and belongs to G · (γ, x0). Thus there exists a
sequence (gi )i of elements of G such that gi ·γ→ γ1 and gi G∗ →G∗.

We can find a sequence (hi )i of elements of G∗ such that hi g−1
i → 1G . For any fixed

f ∈G , we have that

|γ( f hi )−γ( f gi )| ≤ dR ( f hi , f gi ) = dR ( f hi g−1
i f −1,1G ) → 0,
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so that γ( f hi ) → γ1( f ). Thus, the G∗-fixed point γ1 belongs to G∗ ·γ, concluding the
proof. □

We are now ready to proveTheorem . from the introduction.

Proof of Theorem .. (i)⇒(ii). Let x0 ∈ M(G) be a point with a generic orbit and let G∗

denote the stabilizer of x0. By Proposition ., M(G) = �G/G∗. By Proposition ., G∗ is
extremely amenable.

(ii)⇒(i). Immediate after observing that G/G∗ is a generic orbit in �G/G∗. □

.. Smoothness of isomorphism. An important direction inmoderndescriptive set
theory is classifyingdefinableequivalence relationsaccording to their complexity. This
is donemostly via the notion of Borel reducibility: an equivalence relation E on a Pol-
ish space X is Borel reducible to an equivalence relation F on a Polish space Y if there
exists aBorelmap f : X → Y such that for all x1, x2 ∈ X , x1 E x2 ⇐⇒ f (x1)F f (x2). Many
natural examples arise as equivalence relations of isomorphism of variousmathemat-
ical objects. One parametrizes the objects of interest by the elements of some Polish
space and then tries to understand how complex the equivalence relation of isomor-
phism is. An equivalence relation is called smooth if it is Borel reducible to equality
on some Polish space. Smooth equivalence relations are the simplest ones and they
are at the bottom of the Borel reducibility hierarchy. For more on the theory of Borel
reducibility, see, for example, [G].

If the universal minimal flow of a Polish group G is metrizable and has a Gδ-orbit,
this has quite strong implications about all minimal flows of G . In this subsection, we
show that isomorphism of minimal flows of such a group is smooth. This should be
contrastedwitha recentnon-classification result, due toGao, JacksonandSeward [GJS],
stating that isomorphism of minimal subshifts of an infinite, countable group is not
smooth.

Let G be a Polish group such that M(G) is metrizable. If X is any minimal flow of
G , then there is a G-map π : M(G) → X that gives rise to an equivalence relationRπ on
M(G) defined by

z1Rπ z2 ⇐⇒ π(z1) =π(z2).

Rπ is a G-invariant, closed, equivalence relation, icer for short. Conversely, every icer
R defines a minimal flow M(G)/R. We have the following general fact.

Proposition .. Let Y be a compact Polish space and let

E= {R⊆ Y 2 :R is a closed equivalence relation}.

Then E is Gδ in K (Y 2), the space of compact subsets of Y 2 equipped with the Vietoris
topology, and therefore a Polish space.

Proof. Theconditions thatR is reflexive and symmetric are closed. Wecheck that tran-
sitivity is Gδ. We have that

R is not transitive ⇐⇒ ∃x, y, z ∈ Y (x, y) ∈R and (y, z) ∈R and (x, z) ∉R.

The set of (x, y, z,R) ∈ Y 3 ×K (Y 2) that satisfy the condition after the quantifier is an
intersection of an open and a closed set in a compact space, so it is Kσ (a countable
union of compact sets). Therefore its projection on K (Y 2) is also Kσ, hence it is Fσ,
and transitivity is Gδ. □

Let
E= {R⊆ M(G)2 :R is an icer}.

In view of the preceding discussion and Proposition ., it is natural to parametrize
minimal flows of G by elements of the Polish space E (being G-invariant is obviously a
closed condition).
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Theorem .. Let G be a Polish group and suppose that M(G) is metrizable and has
a Gδ orbit. Let R1 and R2 be icers on M(G). Then M(G)/R1 is isomorphic to M(G)/R2

iff there is σ ∈ Aut(M(G)) such that σ ·R1 =R2. In particular, isomorphism of minimal
flows of G is smooth.

Proof. The (⇐) direction being obvious, we set to prove the converse. ByTheorem .,
M(G) = �G/G∗ for some co-precompact, extremely amenable G∗ ≤G . Let z0 be the dis-
tinguished G∗-fixed point of �G/G∗. Let πi : M(G) → M(G)/Ri denote the natural fac-
tor maps and finally, let f : M(G)/R1 → M(G)/R2 be an isomorphism. The point x2 =
f (π1(z0)) ∈ M(G)/R2 is a fixed point for G∗. Let K =π−1

2 ({x2}). Then K is a G∗-invariant
closed subset of M(G) and by the extreme amenability of G∗, there is a G∗-fixed point
z1 ∈ K . By Lemma . and Theorem ., there exists σ ∈ Aut(M(G)) = N (G∗)/G∗ such
that σ(z0) = z1. Then f (π1(z0)) = π2(σ(z0)), so f ◦π1 = π2 ◦σ everywhere. This shows
that σ ·R1 =R2.

For the second conclusion, recall that Aut(M(G)) is a compact group acting contin-
uously on the Polish space E, so E/Aut(M(G)) is a Polish space. □

. Universal minimal proximal flows and strong amenability

.. Universalminimalproximalflows. Twopoints x, y inaG-flow X arecalledprox-
imal if there exists a net (gα)α of elements of G such that limα gα · x = limα gα · y . The
points x and y are distal if x = y or x and y are not proximal. The flow X is called
proximal if every pair of points is proximal and distal if every pair of points is distal.
Every topological group G admits a universal minimal proximal flow Π(G) (i.e., one
thatmaps onto every otherminimal proximal flow) that is unique up to isomorphism.
For a proof of this fact andmore background on distal and proximal flows, see [G].

Ifγ ∈ Aut(X ), then thepoints x andγ(x)aredistal for every x ∈ X (see [G, II, Lemma.]).
As a consequence, in order to construct a proximal factor of M(G), it is necessary to di-
vide by the action of Γ = Aut(M(G)). It turns out that this is also sufficient to yield the
universal minimal proximal flow.

When X is a G-flow and Γ ≤ Aut(X ), we define its maximal Γ-invariant factor Z as
follows: letR denote the smallest closedequivalence relationcontainingall {(x,γ(x)) : γ ∈
Γ}. Then Z is the quotient of X by R, endowed with the quotient topology, which is
compact Hausdorff because R is closed. Observe that G naturally acts on Z , and the
factor map is G-equivariant.

In the special case where Γ = Aut(M(G)) is compact, {(x,γ(x)) : x ∈ M(G),γ ∈ Γ} is
already closed and the quotient by it, denoted by M(G)/Γ, is the maximal Γ-invariant
factor of M(G). By Theorem ., this always happens when M(G) is of the form �G/G∗.
The following theorem implies in particular that, in that case, the universal proximal
flow of G is M(G)/Γ.

Theorem .. Let G be a topological group, M(G) be its universal minimal flow, and
Γ= Aut(M(G)). Then the universal proximal flow ofG is themaximal Γ-invariant factor
of M(G).

Proof. Let Z be the maximal Γ-invariant factor of M(G) and let σ : M(G) → Z be the
factor map. By definition, σ(γ(x)) = σ(x) for all γ ∈ Γ, x ∈ M(G). To verify that Z is
proximal, it suffices to see that for every point (x, y) ∈ M(G)2, there is γ ∈ Γ such that
x and γ(y) are proximal. To that end, consider an almost periodic point (i.e., one with
a minimal orbit closure) (x ′, y ′) ∈ G · (x, y) and a net (gα)α ⊆ G such that gα · (x, y) →
(x ′, y ′). Then, we claim that there exists γ ∈ Γ such that y ′ = γ(x ′). Indeed, let X =
G · (x ′, y ′) andπ1,π2 : X → M(G) be the two canonical projections. As M(G) is universal
and coalescent, π1 is an isomorphism. It follows that π−1

1 (x ′) = (x ′, y ′). Similarly, π2 is
an isomorphism, and so γ=π2π

−1
1 is an automorphismof M(G) which satisfies γ(x ′) =
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y ′. Now,
gα · (x,γ−1(y)) = (gα ·x,γ−1(gα · y)) → (x ′,γ−1(y ′)) = (x ′, x ′),

whence x and γ−1(y) are proximal.
We next check that Z is universal for proximal flows. Let X be a proximal flow. As

M(G) is universal, there is amapπ : M(G) → X . Weneed tocheck thatπ factors through
Z , i.e.,π(y) =π(γ(y)) for every y ∈ M(G),γ ∈ Γ. Thepointsπ(y)andπ(γ(y))areproximal
in X , so there is x ∈ X and a net (gα)α ⊆ G such that gα · (π(y),π(γ(y))) → (x, x). By
passing to a subnet, we can assume that gα · y and gα ·γ(y) = γ(gα · y) converge to y ′
and γ(y ′), respectively. By applying π to both sides, we see that π(y ′) = x =π(γ(y ′)). As
M(G) is minimal, there is a net (hα)α such that hα · y ′ → y . Then hα ·π(y ′) → π(y) and
hα ·π(γ(y ′)) →π(γ(y)). So π(y) =π(γ(y)) as required. □

Recall that a topological group G is called strongly amenable if it admits no non-
trivial minimal proximal flows, or equivalently, Π(G) is a singleton. This notion is a
strengthening of the notion of amenability, see [G, II.] for more details.

Proposition .. Let G be a Polish group and assume that M(G) = �G/G∗ with G∗ a
closed, co-precompact subgroup of G . Then N (G∗) is strongly amenable and Π(G) =áG/N (G∗).

Proof. AsG∗ is extremely amenable (byTheorem.), the N (G∗)-flow N (G∗)/G∗ is the
universal minimal flow of N (G∗). This flow, being the translation on a compact group,
is distal. As every proximal factor of a distal flow is trivial (see, for example, [G, II,
Corollary .]), this implies that N (G∗) is strongly amenable.

For the second statement, note that, byTheorem . andTheorem .,

Π(G) = M(G)/Aut(M(G)) = �G/G∗/
(N (G∗)/G∗) = áG/N (G∗).

To see why the last equality holds, observe that the natural map G/G∗/
(N (G∗)/G∗) →

G/N (G∗) is a uniform isomorphism and therefore extends to the completions. As the
groupN (G∗)/G∗ is compactandactsby isometries, thecompletionofG/G∗/

(N (G∗)/G∗)
is isomorphic to �G/G∗/

(N (G∗)/G∗). □

From Proposition ., we directly deduce the following corollary.

Corollary .. LetG be a Polish group and assume that M(G) = �G/G∗ withG∗ a closed,
co-precompact subgroup ofG . ThenG is strongly amenable iffG∗ is normal inG iff M(G)
is a compact group quotient of G .

As a consequence of the above Corollary, any strongly amenable Polish group such
that M(G) is metrizable with a generic orbit is uniquely ergodic in the sense of [AKL],
as in that case, the unique invariant probabilitymeasure on M(G) is theHaarmeasure.

.. A characterization of strong amenability in terms of invariant measures. As
indicated previously, strong amenability for a topological group G is a strengthening
of the notion of amenability. However, no equivalent reformulation of it in terms of
the existence of probability measures on G-flows with certain properties seems to be
known. In this subsection, we provide such a characterization under the assumption
that M(G) = �G/G∗ with G∗ closed and co-precompact.

LetM(X ) (resp. Mfin(X )) denote the set of all Borel (resp. finitely supported) prob-
ability measures on X . Recall thatM(X ) is compact if equipped with the weak∗ topol-
ogy, and that its unique compatible uniformity is generated by the familyUX consist-
ing of all finite intersections of closed sets of the form{

(µ,ν) ∈M(X )2 :
∣∣∣∫

X
f dµ−

∫
X

f dν
∣∣∣≤ ε

}
,

where f is a continuous function on X and ε> 0.
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Proposition .. Let G be a Polish group and assume that M(G) = �G/G∗ with G∗ a
closed, co-precompact subgroup of G . Then the following are equivalent:

(i) G is strongly amenable;
(ii) For every G-flow X and ϵ ∈UX , there exists ν ∈Mfin(X ) such that

∀g1, g2 ∈G (g1 ·ν, g2 ·ν) ∈ ϵ.

Proof. (ii)⇒(i). Let G ↷ X be proximal. For ϵ ∈UX , let

Aϵ = {µ ∈M(X ) : ∀g1, g2 ∈G (g1 ·µ, g2 ·µ) ∈ ϵ}.

This set is G-invariant and closed inM(X ), and by hypothesis, contains a finitely sup-
ported measure ν. By proximality, we can find a net (gα)α of elements in G and x ∈ X
such that for every y in the support of ν, gα · y → x. Thus, gα ·ν→ δx , the Dirac mea-
sure at x, and Aϵ∩X is not empty (here, X is identified with the set of Dirac measures
in M(X )). By compactness,

∩
ϵ Aϵ∩ X ̸= ; and it remains to observe that any element

of this set is fixed by G .
(i)⇒(ii). Let G ↷ X be a G-flow, which, without loss of generality, we may assume

to beminimal. Let ϵ ∈UX and let K denote the compact group G/G∗. By Corollary .,
the action ofG factors through K and it suffices to find a finitely supported Borel prob-
ability measure ν such that for all k1,k2 ∈ K , (k1 ·ν,k2 ·ν) ∈ ϵ. This is easy: any finitely
supported measure close enough to the push-forward of the Haar measure of K will
do. □

Note that the assumption M(G) = �G/G∗ is not used in the proof of (ii)⇒(i).

.. Strongamenability for automorphismgroups. Anothermotivation for thema-
terial of theprevious sectionwas toextract aRamsey-type statement fromstrongamenabil-
ity when G is a subgroup of S∞. This is the purpose of what follows.

Lemma .. Let G = Aut(F) for an ω-categorical, Fraïssé structure F and assume that
M(G) = �G/G∗ with G∗ a closed, co-precompact subgroup of G . Assume also that G∗ =
Aut(F∗) with F∗ = (F,R1, . . . ,Rk ) a Fraïssé expansion of F by finitely many relation sym-
bols. Then N (G∗)/G∗ is finite.

Proof. Note that the coset gG∗, g ∈ G is determined by the relations g ·R1, . . . g ·Rk . If
g ∈ N (G∗), then g ·Ri is a G∗-invariant relation. Since G∗ is co-precompact and the
action of G on F is oligomorphic by assumption, this is also the case for the action of
G∗, i.e. there are only finitely many orbits for the natural action of G∗ on F k , for all
k. This implies that there are only finitely many G∗-invariant relations in every arity,
whence we conclude that N (G∗)/G∗ must be finite. □

We now have the following corollary of Proposition ..

Corollary .. Under the assumptions of the previous lemma, G is strongly amenable
iff M(G) is finite.

Proof. Since any finite flow is distal, a topological group with a finite universal mini-
mal flowmust be strongly amenable. The other direction is obvious from the previous
lemma and Proposition .. □

Onereason forus to study strongamenabilitywas todetermine itsRamsey-theoretic
content. When the hypotheses above are satisfied, the previous corollary makes this
possible via the work [MP] of Müller and Pongrácz, where it is shown that M(G) is fi-
nite with size at most d iff in Age(F), Ramsey degrees for embeddings are all finite and
atmost d . In the slightlymore general case where F∗ is a Fraïssé expansionwith infin-
itely many symbols, this is still doable thanks to Proposition ., but we do not detail
this here. However, in contrast with amenability (see [M] for details), it is unclearwhat
can be said without an assumption on M(G).
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. Examples

In this section, we calculate the universal minimal proximal flows for some con-
crete examples. We will consider subgroups G ≤ S∞ that are given as automorphism
groups of some Fraïssé limit F, and will assume some familiarity with the framework
of [KPT]. We will cover the cases where F is a homogeneous graph or tournament, but
thanks to the results of [JLNVTW], a similar strategy can be used for all homogeneous
directed graphs. In view ofTheorem ., in order to have M(G) = �G/G∗, it is necessary
and sufficient that there exist a closed, co-precompact, extremely amenable subgroup
G∗ ≤ G such that the G-flow �G/G∗ is minimal. In the setting of Fraïssé limits, this is
equivalent to the existence of a precompact, homogeneous expansion F∗ of F that has
the Ramsey property and the expansion property [KPT,NVT].

.. Betweenness relations. We first consider the (rather common) situation where
the Ramsey expansion is obtained by adding a linear order< to the signature and tak-
ing the limit of an appropriate Fraïssé class. Then one can naturally define the corre-
sponding betweenness relation B by

(.) B(x, y, z) ⇐⇒ (x < y < z ∨ z < y < x).

This relation is relevant for us because in a number of cases, the normalizer of Aut(F,<)
in Aut(F) is Aut(F,B). More precisely, we have the following.

Lemma.. Assume thatF is ahomogeneous structureand that there is anorderFraïssé
expansion F∗ = (F,<) so that M(G) = �G/G∗, whereG = Aut(F) andG∗ = Aut(F∗). Assume
also that there exist u, v ∈ F∗ such that u < v and

∀x < y ∈ F∗ ∃x0, ..., xn+1 ∈ F∗ (
x0 = x and xn+1 = y and

∃g0, . . . , gn ∈G∗∀i gi (u) = xi and gi (v) = xi+1
)
.

(.)

Then N (G∗) = Aut(F,B), where B is the betweenness relation defined by (.).

Proof. Observe that an element g ∈ G is in Aut(F,B) iff it preserves < or it reverses <,
i.e., for all x < y ∈ F, g ·x > g · y , so in particular, G∗ has index at most 2 in Aut(F,B) and
is normal there.

Conversely, suppose that g ∈ N (Aut(F∗)) and let u and v be as in the hypothesis. Let
x < y ∈ F be arbitrary and let x0, . . . , xn+1 be as in (.). Then for every i ≤ n,

g ·u < g · v ⇐⇒ (g gi g−1)g ·u < (g gi g−1)g · v ⇐⇒ g · xi < g · xi+1,

and by transitivity of the ordering, we obtain that

∀x, y ∈ F g ·u < g · v ⇐⇒ g · x < g · y,

i.e., the ordering g · < is either equal to< or to its inverse, depending onwhether g ·u <
g · v or not. In particular, this means that g ∈ Aut(F,B). □

Nowwe consider the case where the universal minimal flow of G is the space of all
linear orderings on F. Denote by BLO(F) the set of all betweenness relations on F that
are induced by some linear ordering in LO(F) by the formula (.). Then it is not diffi-
cult to check that BLO(F) is a closed subset of 2F3

and the completion of G/Aut(F,B) is
isomorphic to BLO(F) (equipped with the logic action of G). Therefore Proposition .
yields the following.

Corollary .. Suppose that F and F∗ = (F,<) are Fraïssé structures that satisfy the hy-
pothesis of Lemma . and suppose moreover that M(G) = LO(F). Then Π(G) = BLO(F).

The last corollary applies to many structures, including the structure in the empty
language, the random graph, all Henson graphs, the rational Urysohn space, and the
random tournament (see [KPT] for the calculation of the universal minimal flows).
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One case where it does not apply is the countable generic poset P. Denote by LE(P)
the space of all linear orderings that extend the poset relation ≤P. This is of course a
proper subset of LO(P). It was shown in [KPT] (see the Addendum at the end) that
LE(P) is the universal minimal flow of G = Aut(P). We are in the situation of Lemma
., where F∗ is of the form (P,≤P,⪯), the Fräissé limit of all finite posets endowedwith
an ordering extending the poset relation. Denoting as usual by G∗ the automorphism
groupof (P,≤P,⪯), the reasoningof Lemma. (the converse direction) shows that any
g belonging to the normalizer of G∗ in G must either preserve or reverse ⪯; clearly, in
this case, there are no elements of G which reverse ⪯, so we obtain that G∗ is normal
in G . Proposition . now tells us that Π(Aut(P)) = M(Aut(P)), i.e., every minimal flow
of Aut(P) is proximal.

Another group forwhich allminimal flows are proximal is the automorphismgroup
of the countable atomless Boolean algebra (see [GW]); we are grateful to one of the
referees for pointing this out.

.. Ultrahomogeneous graphs. We already computedΠ(G) in the case of the auto-
morphism groups of the infinite complete graph KN, the Henson graphs and the ran-
dom graph. The remaining cases of countable ultrahomogeneous graphs are, up to a
switch of the edges and the non-edges:

(i) In[KN], made of n many disjoint copies of KN, where n ∈ N is fixed;
(ii) IN[Kn], made of infinitely many disjoint copies of Kn , where n ∈ N is fixed;
(iii) IN[KN], made of infinitely many disjoint copies of KN.

(i). G = Sn ⋉Sn∞, Sn being the symmetric group of [n] acting on Sn∞ by permuting
the coordinates. In that case, G∗ = Aut(In[KN]∗), where In[KN]∗ is obtained by adding
n many unary predicates A∗

i , i ∈ [n] (one for each copy of KN), and by adding a linear
ordering < so that each A∗

i is isomorphic to (Q,<) and A∗
0 < A∗

1 < ... < A∗
n−1. So G∗ =

Aut(Q,<)n and N (G∗) = Sn ⋉Aut(Q,B)n . Therefore, Π(G) is given by the natural action
of Sn ⋉Sn∞ on BLO(N)n .

(ii). G = S∞⋉SN
n , where S∞ acts on SN

n by permuting the coordinates. For conve-
nience, we will see this group as S∞⋉SQ

n . Then, G∗ = Aut(IN[Kn]∗), where IN[Kn]∗ is
obtained by adding a linear ordering that leaves the copies of Kn convex and orders
the set of copies as (Q,<). The corresponding groupG∗ is Aut(Q,<) and corresponds to
the set of permutations that only move the copies of Kn in an order-preserving way
and no non-trivial permutations are allowed within the copies. From this, we see
that an element of N (G∗) may reverse the ordering on the set of copies, and inside
each copy may permute the elements according to a common σ ∈ Sn . Hence, denot-
ing by ∆(SQ

n ) the diagonal image of Sn in SQ
n , we obtain N (G∗) = Aut(Q,B)⋉∆(SQ

n ) ⊆
S∞⋉SQ

n . Therefore, the flowΠ(G) can be identified with the natural action of S∞⋉SQ
n

on BLO(N)× (SQ
n /∆(SQ

n )).
(iii). G = S∞⋉SN∞, which, as previously, we will see as S∞⋉SQ

∞ where S∞ acts on
SQ

n by permuting the coordinates. Then G∗ = Aut(IN[KN]∗), where IN[KN]∗ is obtained
by adding a convex linear ordering<∗, so thatG∗ = Aut(Q,<)⋉Aut(Q,<)Q. An element
g of N (G∗) may reverse the ordering on the set of parts. Moreover, if x <∗ y are in the
same copy of KN, then g (x) <∗ g (y) iff g is order-preserving on each copy of KN, and
g (y) <∗ g (x) iff g reverses <∗ on each copy of KN. Therefore, denoting by (LO(N)N/ ∼)
the set obtained from LO(N)N by identifying each element (<i )i with its reverse version
(>i )i , the flow Π(G) can be identified with the natural action of S∞ ⋉ SN∞ on the set
BLO(N)× (LO(N)N/ ∼).

.. Ultrahomogeneous tournaments. Thethreecountableultrahomogeneous tour-
naments are (Q,<), the random tournament, and the dense local order S(2). The first
two caseswere considered in the previous sections, so the only remaining case to treat
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is S(2). In what follows, wewriteG for Aut(S(2)). For this structure, it was shown [NVT]
that M(G) = �G/G∗, where G∗ = Aut(S(2),P∗

0 ,P∗
1 ) ≤ G and P∗

0 ,P∗
1 is the partition of S(2)

into right part and left part. Let E∗ denote the equivalence relation induced by the
partition (P∗

0 ,P∗
1 ).

Lemma .. N (G∗) = Aut(S(2),E∗).

Proof. Let x E∗ y ∈ S(2). Let g ∈ N (G∗) and g∗ ∈G∗ so that g∗(x) = y . Fix j ∈ {0,1} such
that g (x) ∈ P∗

j . Then because g g∗g−1 ∈G∗, we have g g∗g−1(g (x)) ∈ P∗
j , i.e., g (y) ∈ P∗

j .
In other words, g (x)E∗ g (y). So N (G∗) ⊆ Aut(S(2),E∗). The other inclusion is easy. □

Proposition . now yields the following.

Corollary .. Π(Aut(S(2))) = Aut(S(2)) ·E∗, where the closure is taken in 2S(2)×S(2).

Note that as in the case of M(Aut(S(2))) in [NVT], it is possible to make an explicit
description of the space Aut(S(2)) ·E∗: roughly, it is the space obtained from the unit
circle, where points with rational angle are doubled, and where antipodal points are
then identified.
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cedex , France

E-mail address: todor@math.univ-paris-diderot.fr


