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AUTOMATIC CONTINUITY FOR THE UNITARY GROUP

TODOR TSANKOV

(Communicated by Thomas Schlumprecht)

Abstract. We show that every homomorphism from the infinite-dimensional
unitary or orthogonal group to a separable group is continuous.

1. Introduction

Many uncountable groups come naturally equipped with a group topology that
greatly facilitates their study. When dealing with topological groups, one can use
powerful tools such as Haar measure, Lie group theory, and Baire category methods.
On the other hand, if one wants to study the groups abstractly, far fewer tools are
available. One way to approach this problem is via reconstruction theorems that
recover the topology of the group from its algebraic structure. Perhaps the strongest
results of this type in the literature have the following form: let G be some Polish
group; then every homomorphism from G to a separable group is continuous. (One
always needs some restriction on the target group to obtain this type of conclusion
in order to avoid the trivial example of the identity map from G to itself equipped
with the discrete topology. Separability is a rather mild and natural restriction in
this setting.) If G is such a group, we will say that it has the automatic continuity
property.

The first automatic continuity results of this type were obtained by Kechris
and Rosendal [9], using the techniques of ample generics developed by Hodges,
Hodkinson, Lascar, and Shelah [4]. Soon thereafter other results in the same vein
followed: Rosendal and Solecki [16], Rosendal [13], Kittrell and Tsankov [10]; see
the recent survey [14] for more details.

The following is the main theorem of this paper. It answers a question of
Rosendal [13].

Theorem 1. The unitary (respectively, orthogonal) group of an infinite-dimen-
sional, separable, complex (respectively, real) Hilbert space, equipped with the strong
operator topology, has the automatic continuity property.

The proof of this theorem relies in an essential way on recent work of Ben Yaa-
cov, Berenstein and Melleray [2], who, extending the approach of [9], developed a
new theory of topometric groups with ample generics that we will briefly describe.
They observed that Polish groups that are naturally represented as isometry groups
of metric spaces, apart from the Polish topology of pointwise convergence, also
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carry a natural bi-invariant uniform structure, namely, the one induced by uni-
form convergence on the metric space. For example, for the unitary group of an
infinite-dimensional Hilbert space, the Polish topology is the strong operator topol-
ogy and the bi-invariant uniform structure is given by the operator norm. One of
the main results of [2] is that if such a group G has ample topometric generics,
then any homomorphism from G to a separable group that is continuous in the
uniform topology is also continuous in the Polish topology. This reduces the task
of proving the automatic continuity property for such a Polish group G to proving
it for G equipped with the uniform topology, which is a priori easier. They also
found examples of groups with ample topometric generics; the ones that will be
important for us are the unitary group and the automorphism group of a Lebesgue
probability space Aut(X,μ). Using this theorem and previous work of Kittrell and
Tsankov [10], they were able to show that Aut(X,μ) has the automatic continuity
property.

To avoid repetition, in the remarks below we concentrate on the unitary group,
but they are also valid for the orthogonal group.

One immediate corollary of our theorem is that every action of the unitary group
U(H) by homeomorphisms on a compact metrizable space or by isometries on a
separable metric space is automatically continuous. Thus, by Gromov and Mil-
man [3], every action of U(H) on a compact metrizable space has a fixed point, and
Kirillov’s and Olshanski’s classification [8,11] of continuous unitary representations
of U(H) becomes a classification of all representations of the discrete group U(H)
on a separable Hilbert space, etc.

Combining Theorem 1 with the result of Stojanov [17] that the unitary group is
totally minimal (i.e. every continuous homomorphism to a Hausdorff topological
group is open), we obtain the following corollary.

Corollary 2. Let G be the unitary or the orthogonal group. Then the following
hold:

(i) G admits a unique separable group topology;
(ii) if G′ is a Polish group and φ : G → G′ a homomorphism, then φ(G) is a

closed subgroup of G′.

Atim [1] had previously shown that the unitary and orthogonal groups admit a
unique Polish group topology.

This corollary rules out the existence of non-trivial homomorphisms from U(H)
to Polish locally compact groups or, more generally, Polish groups admitting a
left-invariant complete metric or Polish totally disconnected groups.

Another corollary of the theorem is that the quotient of the unitary group by the
normal subgroup of unitary operators that differ from the identity by a compact
operator does not admit a non-trivial homomorphism to a separable group. This
generalizes a result of Pickrell [12], who had shown that this group does not admit
continuous (with respect to the quotient of the norm topology) non-trivial unitary
representations on a separable Hilbert space.

Theorem 1 should be contrasted with the situation for finite-dimensional uni-
tary groups: it is a result of Kallman [6], and independently of Thomas [18], that
GL(n,C) embeds as a subgroup of S∞ and, as U(n) is connected, the restriction
of this embedding to U(n) cannot be continuous.
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Remark. In [13], Rosendal asks whether there is an (infinite) compact metrizable
group that satisfies the automatic continuity property. It follows from the Peter–
Weyl theorem and the result mentioned above that every compact metrizable group
embeds in S∞, and therefore if such a group satisfies the automatic continuity
property, it must be profinite.

2. Proofs

We set to prove Theorem 1 and first concentrate on the complex case. Let H
be an infinite-dimensional, separable, complex Hilbert space and U(H) its unitary
group.

A subset W of a group is called symmetric if W = W−1. A symmetric set is
called countably syndetic if countably many left (or, equivalently, right) translates
of it cover the group. By [16, Proposition 2], to establish Theorem 1, it suffices to
prove the following.

Theorem 3. If W is a symmetric, countably syndetic subset of U(H), then W 506

contains an open (in the strong operator topology) neighborhood of the identity.

The constant 506 above has no special significance and is an artifact of the proof;
any fixed constant would do for our purposes.

By the results of [2], to prove Theorem 3, it suffices to find a subset of W 496

that is open in the norm topology, and this is what we do below. As we are going
to use automatic continuity results for various subgroups of U(H), we start with
the following preliminary lemma.

Lemma 4. Suppose that G is a group, G′ is a subgroup and W is a countably
syndetic set for G. Then G′ ∩W 2 is countably syndetic for G′.

Proof. Let G =
⋃

n gnW and A = {n ∈ N : gnW∩G′ �= ∅}. For every n ∈ A, choose
hn ∈ gnW∩G′ so that hn = gnwn with wn ∈ W . Now let h ∈ G′ be arbitrary. There
exists n ∈ A and w ∈ W such that h = gnw. Then h = hnw

−1
n w ∈ hn(W

2 ∩ G′),
showing that G′ =

⋃
n∈A hn(W

2 ∩G′). �
We establish some notation. If K is a closed subspace of H, denote by U(K)

the unitary group of K and by GK the pointwise stabilizer of K in U(H):

GK = {u ∈ U(H) : ux = x for all x ∈ K}
so that U(K) is naturally isomorphic to GK⊥ . Denote by IK the setwise stabilizer
of K in U(H) and note that IK = GK ×GK⊥ . Define PK : IK → GK⊥ as follows:
if u = u1u2 ∈ IK with u1 ∈ GK and u2 ∈ GK⊥ , let PKu = u2. If K is a subspace
of H, say that K is balanced if both K and K⊥ are infinite-dimensional.

Now fix a countably syndetic W ⊆ U(H). Then there exists a countable subset
{sn : n ∈ N} ⊆ U(H) such that U(H) =

⋃
n snW .

Say that a set A ⊆ U(H) is full for a subspace K ⊆ H if for every u ∈ U(K),
there exists v ∈ A∩ IK such that v|K = u. The following diagonalisation argument
has by now become quite standard.

Lemma 5. Suppose that H =
⊕

n Kn, where each Kn is infinite-dimensional.
Then there exists n such that W 2 is full for Kn.

Proof. It suffices to see that some snW is full for Kn because then

W 2 = (snW )−1(snW )



This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

3676 TODOR TSANKOV

would be full as well. If not, then for each n, there exists un ∈ U(Kn) such that
for all u ∈ snW that leave Kn invariant, u|Kn

�= un. Then
⊕

k uk ∈ U(H), but⊕
k uk /∈ snW for all n, a contradiction. �

The proof of the following lemma is similar to the one of [10, Lemma 3.3].

Lemma 6. Suppose that H =
⊕

n Kn, where each Kn is infinite-dimensional.
Then there exists n such that GK⊥

n
⊆ W 24.

Proof. A unitary operator u ∈ U(H) is called a symmetry if u2 = 1; i.e. there
exists a decomposition H = H1⊕H2 such that ux = x for all x ∈ H1 and ux = −x
for all x ∈ H2. Note that every two symmetries for which the corresponding
eigenspaces H1 and H2 are infinite-dimensional are conjugate in U(H). Halmos
and Kakutani [5] have shown that every unitary operator is the product of four
symmetries. Even though they do not mention it explicitly, it follows from their
proof that one can choose the symmetries so that they have infinite-dimensional
eigenspaces.

Now let Kn be such that W 2 is full for Kn as given by Lemma 5. Let e1, e2, . . .
be an orthonormal basis of Kn and let {Ai : i ∈ 2ℵ0} be a family of subsets of
N such that Ai1	Ai2 is infinite and co-infinite if i1 �= i2. Let vi ∈ U(Kn) be the
symmetry defined by

viej =

{
ej , if j ∈ Ai;

−ej , if j /∈ Ai,

and let ui = vi ⊕ 1K⊥
n

∈ U(H). By the pigeonhole principle, there exist i1 �= i2
and n such that ui1 , ui2 ∈ snW . Then ui1ui2 = u−1

i1
ui2 ∈ W 2, and by the choice

of the sets Ai, vi1vi2 is a symmetry of Kn with infinite-dimensional eigenspaces.
Applying the result of [5], we obtain that every element of U(Kn) is a product of
four conjugates of v−1

i1
vi2 . Finally, by the fullness of W 2 for Kn and the fact that

conjugation of elements of GK⊥
n

by elements of IKn
cancels out on K⊥

n , we have

that GK⊥
n
⊆ (W 2W 2W 2)4 = W 24. �

Let (X,μ) be a standard probability space (isomorphic to the interval [0, 1] with
Lebesgue measure) and denote by Aut(X,μ) the group of all measure-preserving
automorphisms of (X,μ). We equip this group with the weak topology, which is the
coarsest topology that makes the maps Aut(X,μ) → R, T 
→ μ(T (A)	B), for A
and B measurable subsets of X, continuous. We also consider the uniform distance
d on Aut(X,μ) defined by

d(T1, T2) = μ({x ∈ X : T1x �= T2x}).
Note that the topology defined by d is strictly finer than the weak topology.

Lemma 7. Let V ⊆ Aut(X,μ) be a countably syndetic subset of Aut(X,μ). Then
V 48 contains a weak neighborhood of the identity.

Proof. This is a combination of results of [10] and [2]. By [10, Theorem 3.1], V 38

contains a d-ball Bε of radius ε around the identity in Aut(X,μ) for some ε > 0.
(Even though the paper [10] deals with full groups of equivalence relations, this
proof works equally well for the entire group Aut(X,μ).) Applying the fact that
Aut(X,μ) has ample topometric generics (see [2, Section 5.4]) and [2, Theorem 4.4],
we obtain that V 38V 10 = V 48 contains a weak neighborhood of the identity. �
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We now return to the unitary group.

Lemma 8. There exists a balanced subspace K of H such that GK ⊆ W 24 and
W 120 contains an open neighborhood of the identity in IK .

Proof. Let H =
⊕

n Kn be a decomposition of H into infinite-dimensional sub-
spaces and let Kn be the subspace given by Lemma 6. Put K = K⊥

n so that
GK ⊆ W 24.

Consider the probability space (X,μ) = (RN, νN), where ν denotes the standard
Gaussian measure. Then there exists an embedding γ : U(K) → Aut(X,μ) which
has the following property: if κ : Aut(X,μ) → U(L2(X,μ)) denotes the standard
embedding, then there exists a balanced subspace K ′ ⊆ L2(X,μ) and a unitary
isomorphism Φ: K → K ′ such that

(κ ◦ γ)(u)|K′ = ΦuΦ−1 for every u ∈ U(K).

This is the so-called Gaussian construction; see, for example, [7, Appendix E] for
details.

Identify H with L2(X,μ) via an isomorphism which sends K to K ′ and whose
restriction to K is equal to Φ. We thus obtain embeddings

U(K)
γ−→ Aut(X,μ)

κ−→ U(H)

such that if we put θ = κ ◦ γ, then K is invariant under θ(U(K)), and for every
u ∈ U(K), θ(u)|K = u.

Equip the three groups U(K), Aut(X,μ) and U(H) with their Polish topologies
and observe that both γ and κ are homeomorphic embeddings. By Lemma 4,
W 2 ∩ κ(Aut(X,μ)) is countably syndetic in κ(Aut(X,μ)). By Lemma 7,

(W 2 ∩ κ(Aut(X,μ)))48 ⊆ W 96

contains an open neighborhood of the identity in κ(Aut(X,μ)), and, in particular,
there exists an open neighborhood of the identity O in θ(U(K)) such that O ⊆ W 96.

Let τ be the natural isomorphism U(K) → GK⊥ given by τ (v) = v ⊕ 1K⊥ and
let ρ = θ ◦ τ−1 so that ρ is an isomorphism GK⊥ → θ(U(K)). We also note that
for every u ∈ GK⊥ , PK(ρ(u)) = u. Let O′ = ρ−1(O) ⊆ GK⊥ . We now check that
O′GK ⊆ W 120, and as O′GK is open in GK⊥ × GK = IK , this will complete the
proof. Let (u1, u2) ∈ O′ ×GK . We have

u1u2 = u1PK⊥(ρ(u1))PK⊥(ρ(u1))
−1u2

= PK(ρ(u1))PK⊥(ρ(u1))PK⊥(ρ(u1))
−1u2

= ρ(u1)
(
PK⊥(ρ(u1))

−1u2

)
∈ OGK ⊆ W 96W 24 = W 120. �

Lemma 9. Let K and L be two infinite-dimensional subspaces of a Hilbert space
H. Then there exist two infinite-dimensional subspaces K ′ ⊆ K and L′ ⊆ L such
that K ′ ⊥ L′.

Proof. We inductively build two orthonormal sequences, e1, e2, . . . ∈ K and f1, f2,
. . . ∈ L, such that 〈ei, fj〉 = 0 for all i, j. First pick a unit vector e1 ∈ K arbitrar-
ily. Assuming that e1, f1, e2, f2, . . . , en have been constructed, choose fn ∈ L and
en+1 ∈ K so that fn is perpendicular to e1, f1, . . . , en and en+1 is perpendicular to
e1, f1, . . . , en, fn (this can be done because both K and L are infinite-dimensional).
Finally, let K ′ = span{ei}, L′ = span{fi}. �
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For the next lemma, recall that S∞ is the Polish group of all permutations of an
infinite, countable, discrete set, equipped with the pointwise convergence topology.

Lemma 10. Let K be a subspace of H that satisfies the conclusion of Lemma 8
and let L ⊆ H be infinite-dimensional. Then there exists v ∈ W 64 and L′ ⊆ L such
that vL′ = K⊥.

Proof. By Lemma 9, there exist infinite-dimensional K1 ⊆ K⊥ and L1 ⊆ L such
that K1 ⊥ L1. Let B1 and B′

1 be orthonormal bases of K1 and L1 respectively
and consider the embedding θ1 : S∞ → G(K1⊕L1)⊥ given by the action of S∞ on

K1⊕L1 by permuting the basis B1∪B′
1. Let Q1 = θ1(S∞). By Lemma 4, W 2∩Q1

is countably syndetic for Q1, so by the proof of [9, Theorem 6.24] (see also [16],
where this fact is mentioned explicitly), (W 2 ∩ Q1)

10 ⊆ W 20 contains an open
subgroup V1 of Q1. Then there exist an element v1 ∈ V1 and infinite-dimensional
subspaces K2 ⊆ K1 and L2 ⊆ L1 such that v1L2 = K2.

Now let B2, B
′
2, B

′′
2 be orthonormal bases of K2, K

⊥ �K2, and K, respectively.
Let θ2 : S∞ → U(H) be the embedding given by the action of S∞ on H by permut-
ing the basis B2 ∪B′

2 ∪B′′
2 and let Q2 = θ2(S∞). Then, as above, W 20 contains an

open subgroup V2 of Q2. A basic open subgroup of Q2 is the stabilizer of finitely
many elements of the basis B2 ∪B′

2 ∪B′′
2 . Suppose that V2 is the stabilizer (in Q2)

of A∪A′∪A′′, where A,A′, A′′ are finite subsets of B2, B
′
2, B

′′
2 , respectively. As B2

is infinite, there exists v2 ∈ GK ∩Q2 such that v2(B2) ⊇ A∪A′. Finally, let v3 ∈ V2

be such that v3(v2(B2)) = B2 ∪B′
2 so that v3(v2(K2)) = K⊥. (We can achieve this

as follows: let C ′′
1 � C ′′

2 be any splitting of B′′
2 \ A′′ into two infinite pieces; then

define v3 to be a permutation of B′′
2 ∪ B2 ∪ B′

2 that fixes A ∪ A′ ∪ A′′ and sends
B′′

2 \ A′′ to C ′′
1 , v2(B2) \ (A ∪ A′) to (B2 ∪ B′

2) \ (A ∪ A′), and (B2 ∪ B′
2) \ v2(B2)

to C ′′
2 .)

We finally have that v3v2v1L2 = K⊥ and

v3v2v1 ∈ V2GKV1 ⊆ W 20W 24W 20 = W 64,

completing the proof of the lemma. �

If r > 0, denote by Br the open ball of radius r around the identity in U(H) in
the operator norm.

Lemma 11. There exists ε > 0 such that Bε ⊆ W 496.

Proof. Suppose K ⊆ H is as in the conclusion of Lemma 8 and let ε > 0 be such
that Bε∩ IK ⊆ W 120. We will now check that Bε ⊆ W 496. Let u ∈ Bε and let L be
a balanced subspace of H invariant under u (which exists by the spectral theorem).
Let u1 = PLu and u2 = PL⊥u so that u = u1u2 and note that u1, u2 ∈ Bε. By
Lemma 10, there exists L′ ⊆ L⊥ and v1 ∈ W 64 such that v1L

′ = K⊥; in particular,
v1u1v

−1
1 ∈ GK⊥ ⊆ IK . As the norm is invariant under conjugation, we have that

v1u1v
−1
1 ∈ Bε ∩ IK ⊆ W 120, whence u1 ∈ W 64W 120W 64 = W 248. A similar

argument shows that u2 ∈ W 248, so u ∈ W 496 and we are done. �

Now it is easy to complete the proof of Theorem 3. If A ⊆ U(H), denote

(A)ε = {u ∈ U(H) : ∃a ∈ A ‖a− u‖ < ε}.
Let ε be the one given by Lemma 11. By [2, Theorem 4.4], (W 10)ε contains an
open (in the strong operator topology) neighborhood of the identity, but (W 10)ε =
W 10Bε ⊆ W 506. This concludes the proof of Theorem 3 in the complex case.
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We now indicate the necessary changes in the proof to establish the theorem in
the case of a real Hilbert space H. As the proof contains practically no analytic
arguments, these changes are rather minor. We replace the occasional use of the
spectral theorem by the following standard lemma.

Lemma 12. Let H be a real, infinite-dimensional Hilbert space and T an orthogonal
operator. Then there exists a decomposition H =

⊕
n∈N Hn such that each Hn is

infinite-dimensional and invariant under T .

Proof. Let HC = H ⊗C be the complexification of H and let TC be the complex-
ification of T so that TC ∈ U(HC). There is a natural operation of conjugation
on HC, ξ ⊗ z 
→ ξ ⊗ z, one can identify H with the real subspace of HC given by
{η ∈ HC : η = η}, TC commutes with conjugation, and TC|H = T . By the spec-
tral theorem, HC decomposes as a sum

⊕
n Kn of TC-invariant infinite-dimensional

subspaces, and by rearranging, we can further assume that Kn = Kn for each n.
Then for each n, Hn = {η + η : η ∈ Kn} is an infinite-dimensional subspace of H,
and the Hns are pairwise orthogonal and invariant under T . �

We go through the lemmas above one by one. The proof of Lemma 5 goes through
verbatim in the real case. The proof of Lemma 6 goes through verbatim as well
except that in the proof of the Halmos–Kakutani theorem we need to replace the use
of the spectral theorem by Lemma 12. Lemmas 8, 9, and 10 survive without changes
(we note that the Gaussian construction works equally well and, in a sense, even
more easily in the real case). In Lemma 11, we need once again to invoke Lemma 12.
Finally, to complete the proof, in order to apply [2, Theorem 4.4], we need to check
that the orthogonal group has ample topometric generics. To verify this for the
unitary group, the authors of [2] use a result of Rosendal ([15, Proposition 6.6]). As
the author of [15] notes explicitly, his proof works equally well for the orthogonal
group.

Proof of Corollary 2. (i) Let τ denote the natural Polish topology on G and let
τ ′ be some other separable topology. Then the identity map (G, τ ) → (G, τ ′) is
continuous by Theorem 1 and open by the theorem of Stojanov [17] and is therefore
a homeomorphism.

(ii) If G′ is Polish and φ : G → G′ is a homomorphism, then φ is continuous by
Theorem 1 and open by [17]. Then φ(G) is isomorphic (as a topological group)
with G/ kerφ, therefore Polish, whence closed in G′. �
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