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Abstract Let a group Γ act on a paracompact, locally compact, Hausdorff space M by homeomorphisms
and let 2M denote the set of closed subsets of M. We endow 2M with the Chabauty topology, which is
compact and admits a natural Γ-action by homeomorphisms. We show that for every minimal Γ-invariant
closed subset Y of 2M consisting of compact sets, the union

⋃
Y ⊂ M has compact closure.

As an application, we deduce that every compact uniformly recurrent subgroup of a locally compact
group is contained in a compact normal subgroup. This generalizes a result of Ušakov on compact
subgroups whose normalizer is compact.

Keywords: Uniformly recurrent subgroups; Chabauty space; minimal dynamical systems; locally
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1. Introduction

Let G be a group. Given a locally compact, Hausdorff G-space M, the set 2M of closed
subsets of M, endowed with the Chabauty topology, is naturally a compact G-space. This
dynamical system has been extensively studied in the case where M itself is compact and
turned out to play a relevant role in the study of the G-spaceM itself, see, for example, [3,
6, 15] or the more recent papers [1, 2, 24] and references therein. A particular emphasis has
been put on minimal subsystems of 2M , which are sometimes referred to as quasi-factors.
If M is compact, every element of 2M is obviously compact. In this note, we allow M

to be non-compact; this is already done in [1] with G = Z, but in the study of minimal
subsystems of 2M , the authors restrict themselves to the case where M is compact. Our
goal is to study those minimal subsystems Y of 2M that entirely consist of compact
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subsets of M. An obvious sufficient condition is that all elements of Y are contained in a
compact subset of M ; in other words, the union

⋃
Y has compact closure.

Our main results show that this sufficient condition is also necessary, provided the
space M satisfies mellow conditions. One of these conditions is that the space M is
paracompact, i.e., every open cover of this space admits a locally finite open refinement.
Locally finite means that each point admits a neighbourhood that intersects only finitely
many of the sets of the cover. For example, any σ-compact space is paracompact; more
generally, a locally compact Hausdorff space is paracompact if and only if it is a disjoint
union of open σ-compact subsets, see Proposition 2.8.
We can now state the following.

Theorem 1.1. Let a group Γ act by homeomorphisms on a paracompact, locally com-
pact, Hausdorff space M and consider the associated action of Γ on the compact space
2M of closed subsets of M. Let Y be a minimal, closed, Γ-invariant subset of 2M.
Then all elements of Y are compact if and only if

⋃
Y has compact closure.

We shall also show that the same conclusion holds if the paracompactness of M is
replaced by other formally independent conditions (see § 4), notably by the hypothesis
that some Y ∈ Y has finitely many connected components (see Theorem 4.1). However,
we do not know whether the conclusion holds in full generality for a locally compact
Hausdorff space M without any further restriction.

Question 1.2. Can the hypothesis of paracompactness be discarded in Theorem 1.1?

Our initial motivation to study this question arose from the special case where the
space M is a locally compact group G. The conjugation action of G on itself yields a
continuous G-action on 2G , which preserves the closed subset Sub(G) formed by the
closed subgroups of G. A minimal subsystem of Sub(G) is called a uniformly recurrent
subgroup or URS. The notion of a URS was first introduced in [14], where it was shown
that every minimal action of a group on a compact space gives rise to a URS on the
group. The converse is also true [22, 12], and this duality makes URS a powerful tool for
studying minimal group actions.
The growing interest in URS is driven by their broad applications, particularly in

operator algebras. For instance, an intrinsic characterization of C∗-simplicity in terms of
URS is provided in [18] (building on [16]), with additional developments in [19, 12, 17].
URSs have also been used to study lattice embeddings [20], as well as commensurated
subgroups [11]. In addition, recent papers study URS for specific classes of groups, such
as locally finite groups [26], arithmetic groups [5], lattices in higher rank Lie groups [10]
and topological full groups [21].
Using Theorem 1.1, we establish the following:

Corollary 1.3. Let G be a locally compact group and let Y be a URS of G consisting
of compact subgroups. Then

⋃
Y is contained in a compact normal subgroup.

This corollary emerged as an attempt to identify a purely topological analogue of a
theorem by Bader–Duchesne–Lécureux [4], asserting that an amenable invariant random
subgroup of a locally compact, second countable group G is almost surely contained in
an amenable normal subgroup of G.
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In the special case where the URS Y is homogeneous, i.e., when it consists of a single
conjugacy class (equivalently, every Q ∈ Y has a cocompact normalizer in G), we recover
a result of V. Ušakov, see the lemma on the first page of [28].
As an application, we get a result about confined subgroups. A closed subgroup H ≤ G

is called confined if the closure of the conjugacy class of H in Sub(G) does not contain the
trivial subgroup. In particular, H itself must be non-trivial. The following consequence
of Corollary 1.3 is immediate.

Corollary 1.4. Let G be a locally compact group whose only compact normal subgroup
is the trivial one. Let K ≤ G be a compact subgroup. If K is confined, then the Chabauty-
closure of the conjugacy class of K contains a non-compact subgroup.

The following additional consequence of Corollary 1.3 is inspired by a suggestion made
by a referee.

Corollary 1.5. In a discrete group G, a finite subgroup is confined if and only if it
has a non-trivial intersection with a finite normal subgroup of G.
In particular, the group G has a finite confined subgroup if and only if G has a finite

normal subgroup of order at least 2.

2. Preliminaries

Pursuing the aim of making the paper as self-contained as possible, we have included
complete proofs of preliminary lemmas whenever we found it justified, without altering
the overall conciseness of this note.

2.1. Minimal systems

Let Γ be a group and let X be a topological space. When Γ acts on X by homeomor-
phisms we say that X is a Γ -space, and the pair (X,Γ) is called a dynamical system,
or simply a system. If (X,Γ) is a dynamical system and Y ⊂ X is a non-empty, closed,
Γ-invariant subset, then (Y,Γ) is a subsystem of (X,Γ).

Definition 2.1. A dynamical system (X,Γ) is called minimal if X is non-empty and
there is no non-empty closed, Γ-invariant subset Y ( X. Equivalently, every Γ-orbit is
dense in X.

We note that it is a standard application of Zorn’s lemma that every dynamical system
with X compact contains a minimal subsystem.
A subset S of a group Γ is called syndetic if there is a finite set F ⊂ Γ such that

Γ = FS. The following lemma is well known in many dynamical settings.

Lemma 2.2. Let Γ be a group and X a compact Γ-space. If (X,Γ) is minimal, then
for any point x ∈ X and any non-empty open subset U ⊂ X, the set R(x,U) := {g ∈ Γ |
gx ∈ U} is syndetic.

https://doi.org/10.1017/S0013091525100783 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091525100783


4 P.-E. Caprace, G. Goffer, W. Lederle and T. Tsankov

Proof. Let U ⊂ X be open and non-empty. By minimality, X =
⋃

g∈Γ gU , and by
compactness, there is a finite F ⊂ Γ such that X =

⋃
g∈F gU . Then, for any x, we have

G = FR(x,U). �

Suppose further that X is Hausdorff, then a converse to this lemma also holds. Namely,
let x ∈ X be any point. If for every open neighbourhood U of x, the setR(x,U) is syndetic,
then (Γx,Γ) is minimal.

2.2. Minimal systems consisting of subsets

Let M be a locally compact, Hausdorff topological space. We denote by 2M the space of
closed subsets of M equipped with the Chabauty topology. This topology is also known as
the Fell topology, the topology of closed convergence or, if expressed in terms of sequences,
the Painlevé–Kuratowski convergence. For an introduction, we refer to [7] and [8]. A
subbasis for the Chabauty topology is given by

Hit(U) := {A ∈ 2M |A ∩ U 6= ∅} and Miss(K) := {A ∈ 2M |A ∩K = ∅},

where U ranges over all open and K over all compact subsets of M. The space 2M is
compact, and the group of homeomorphisms of M acts on 2M by homeomorphisms.
In particular, given a group Γ, if M is a Γ-space, then 2M is also a Γ-space. By

convention, when referring to a system of the form (2M ,Γ), with M a Γ-space, we mean
that the Γ-action on 2M is the one induced from the Γ-action on M. The goal of this
article is to address the following.

Question 2.3. Let (Y,Γ) be a minimal subsystem of (2M ,Γ), whose elements are all
compact. When is the closure of

⋃
Y compact?

In this paper, we only find several sufficient conditions that are independent of each
other. The question whether the statement holds without any condition on M whatsoever
remains open.

Remark 2.4. We note that Question 2.3 has a trivial answer if for every compact
set K ⊂ M there is γ ∈ Γ with K ∩ γK = ∅. Then ∅ ∈ ΓK for all compact K ⊂ M
and thus ({∅},Γ) is the only minimal subsystem of (2M ,Γ) consisting of compact sets.
A non-paracompact example of this kind will be discussed in § 4.

We need two lemmas regarding the closure of
⋃
Y.

Lemma 2.5. Let Γ be a group, let M be a locally compact, Hausdorff Γ-space, and let
(Y,Γ) be a minimal subsystem of (2M ,Γ). Then for every Y ∈ Y, we have

⋃
ΓY =

⋃
Y.

Proof. The containment ⊆ is clear since ΓY ⊆ Y for any Y ∈ Y. The containment

⊇ follows by observing that Y ∩ 2
⋃

ΓY is a closed, non-empty, Γ-invariant subset of Y,
while Y is minimal. �

Lemma 2.6. Let Γ be a group, let M be a locally compact, Hausdorff Γ-space, and
let (Y,Γ) be a minimal subsystem of (2M ,Γ) whose elements are compact. Suppose that

https://doi.org/10.1017/S0013091525100783 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091525100783


On compact uniformly recurrent subgroups 5

the closure of
⋃
Y is non-compact. Then for every Y ∈ Y, every non-empty open subset

W ⊂ Y, and every compact subset K ⊂ M , there exists g ∈ Γ such that gY ∈ W and
gY * K.

Proof. Assume that the lemma does not hold. Thus there exists Y ∈ Y, a non-
empty open subset W ⊂ Y, and a compact K ⊂ M such that gY ⊆ K for every
g ∈ R = R(Y,W) = {g ∈ Γ | gY ∈ W}. In particular,

⋃
g∈R gY ⊆ K. By Lemma 2.2,

there exists a finite subset F ⊂ Γ with FR = Γ. It follows that⋃
g∈Γ

gY =
⋃
f∈F

⋃
g∈R

fgY ⊂
⋃
f∈F

fK.

Since F is finite, the latter set is compact. However, by Lemma 2.5, we have that⋃
g∈Γ gY =

⋃
Y, contradicting the assumption that

⋃
Y is not compact. �

2.3. Paracompact spaces

We recall the following elementary fact about paracompact spaces.

Lemma 2.7. Let M be a paracompact, locally compact, Hausdorff space. Let U be a
locally finite cover of M, and let K ⊂ M be a compact subset. Then the set {U ∈ U :
U ∩K 6= ∅} is finite.

Proof. Suppose {Un ∈ U : n ∈ N} are infinitely many sets from U such that Un∩K 6=
∅ for all n ∈ N. For every n ∈ N, let xn ∈ Un ∩K. Let x ∈ K be an accumulation point
of {xn : n ∈ N}. Any neighbourhood U of x contains xn for infinitely many indices n,
and so U ∩ Un 6= ∅ for infinitely many indices n. This contradicts the assumption that
U is locally finite. �

Lastly, we will use the following characterizations of paracompact spaces.

Proposition 2.8. For a locally compact, Hausdorff topological space M, the following
are equivalent:

(i) M is paracompact.
(ii) M admits a locally finite open cover in which every set has compact closure.
(iii) M admits a partition into σ-compact, open sets.

Proof. For the equivalence of (i) and (iii), see [9] Chapitre 1, §9. That (i) implies (ii)
is immediate, and (ii) implies (iii) as a consequence of Lemma 2.7. �

3. The main result for paracompact spaces and locally compact groups

3.1. Proof of main theorem

Proof of Theorem 1.1. Assume by contradiction that the closure of
⋃
Y is not

compact. Fix a locally finite open cover U of M in which every set has compact closure
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(see Proposition 2.8). Let Y ∈ Y. We will construct by induction a sequence (Un)n of
distinct sets from the cover U and a sequence (gn)n of elements of Γ such that gnY ∩Ui 6=
∅ for all indices n and i with n ≥ i.
For the base case, we take g0 = 1Γ and U0 any element of U that intersects Y. Suppose

now that U0, . . . , Un and gn have already been constructed. Let W =
⋂

i≤n Hit(Ui) ∩ Y
and note that W is non-empty because it contains gnY. By Lemma 2.6, there exists g ∈ Γ
such that gY ∈ W and gY *

⋃
i≤n U i. Choose a point z ∈ gY not contained in

⋃
i≤n U i.

As U is a cover, there exists U ∈ U containing z. By construction, we have U 6= U0, . . . , Un

and gY ∩ U 6= ∅. Now we define gn+1 = g and Un+1 = U .
Let Y0 be any accumulation point of the net {gnY : n ∈ N}. Since Hit(Ui) is closed,

and contains gnY for every n ≥ i, it follows that the intersection Y0 ∩ U i is non-empty
for all i. Since Y0 is compact and since the cover U is locally finite, this contradicts
Lemma 2.7. �

3.2. Uniformly recurrent subgroups

We now show how this purely topological theorem yields an application to URSs, whose
definition can be found in the introduction.
A group element is called elliptic if it is contained in a compact subgroup. The following

basic proposition is concerned with the structure of compact normal subgroups of a
locally compact group. For totally disconnected groups, it was proved by Ušakov [27],
the generalization to all locally compact groups is due to Wang.

Proposition 3.1. (Theorem 5.5 in [29]). Let G be a locally compact group and
let B ⊂ G be a subset of elliptic elements, invariant under conjugation, whose closure
B is compact. Then the subgroup 〈B〉 generated by B is normal, and its closure 〈B〉 is
compact.

For a group G denote by Inn(G) the group of inner automorphisms of G, i.e.,
all automorphisms given by conjugation by a group element, and by Aut(G) the
group of all topological automorphisms of G, i.e., group automorphisms that are also
homeomorphisms. We note the following immediate corollary of Proposition 3.1.

Corollary 3.2. Let G be a locally compact group. Let Γ be a group of automorphisms
of G with Inn(G) ≤ Γ ≤ Aut(G). Let B ⊂ G be a subset of elliptic elements, with compact
closure, that is invariant under Γ. Then the group 〈B〉 generated by B is a Γ-invariant
subgroup of G whose closure is compact.

Remark 3.3. Some assumption on Γ is clearly necessary in this corollary, since in
general, even in a discrete group, two elliptic elements may generate an infinite subgroup.

Let G be a locally compact group. As in the case of a general topological space M, we
denote by 2G the space of closed subsets of G, equipped with the Chabauty topology. Let
Sub(G) ⊂ 2G denote the subspace of closed subgroups of G with the induced topology. It
is often called the Chabauty space of G. It is a closed subset of 2G , therefore also compact
and Hausdorff. The conjugation G-action turns Sub(G) into a G-space.
In what comes next, we wish to apply Theorem 1.1 with M =G a locally compact

group. For that purpose, we need the following basic fact.
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Proposition 3.4. Locally compact topological groups are paracompact.

Proof. Let G be a locally compact group and K a compact identity neighbourhood.
Let P =

⋃
n≥1(K ∪ K−1)n be the subgroup of G generated by K. Hence P is an open

subgroup, and it is σ-compact. The group G is partitioned into the left cosets of P. This
proves that G is paracompact by Proposition 2.8. �

By this proposition, every locally compact group satisfies the assumptions on the space
M in Theorem 1.1. We derive the following.

Theorem 3.5. Let G be a locally compact group. Consider a group Γ with Inn(G) ≤
Γ ≤ Aut(G). Let (Y,Γ) be a minimal subsystem of (Sub(G),Γ), such that all elements of
Y are compact. Then

⋃
Y is contained in a compact, Γ-invariant subgroup of G.

Proof. By Theorem 1.1,
⋃
Y has compact closure. Since

⋃
Y is Γ-invariant and con-

sists only of elliptic elements, Corollary 3.2 implies that it must be contained in a compact
subgroup that is Γ-invariant. �

We obtain Corollary 1.3 as an immediate consequence.

Proof of Corollary 1.3. Apply Theorem 3.5 with the group Γ = Inn(G). �

Proof of Corollary 1.5. Let G be a discrete group and H ≤ G be a finite subgroup.
If H has a non-trivial intersection with a finite normal subgroup N, then every conjugate
of H contains one of the elements of N \ {1}, so that H is confined.
Assume conversely that H is confined. Then every group in the Chabauty-closure C

of the conjugacy class of H is non-trivial, and of order at most |H|. In particular, the
compact G-set C contains a URS Y all of whose elements are finite of order at most |H|.
Pick any Y ∈ Y. By Corollary 1.3, the subgroup Y is contained in some finite normal
subgroup N of G. Since Y is finite, the collection of subgroups of G containing Y is an
open neighbourhood of Y in Sub(G). Thus some conjugate of H, say gHg−1, contains Y.
It follows that H ∩N contains the non-trivial subgroup g−1Y g. �

4. Some examples of non-paracompact spaces

In this final section, we establish other sufficient conditions, providing further partial
answers to Question 2.3.

4.1. The first uncountable ordinal

Here is an example of a locally compact, Hausdorff space M that is not paracompact,
and a group Γ acting continuously on M such that {∅} is the only minimal subsystem
of (2M ,Γ) whose elements are all compact (see Remark 2.4). Take M = ω1 the first
uncountable ordinal with the order topology. Basic properties of ω1 can be found in [25,
Example 42]. Let Γ be any group of homeomorphisms of ω1 containing all compactly
supported homeomorphisms. For a discussion of the homeomorphism group of ω1, we
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refer to [13]. Recall that an element of 2ω1 is compact if and only if it is contained in a
closed interval. Define for every limit ordinal α the map gα : ω1 → ω1 by

gα(x) =



α+ x+ 1 x < ω0

α+ x ω0 ≤ x ≤ α

n− 1 x = α+ n, 0 < n < ω0

β x = α+ β, ω0 ≤ β ≤ α

x else.

It is a homeomorphism exchanging the clopen intervals [0, α] and [α+1, α · 2], and fixing
everything else. We have that gα ∈ Γ, since it is supported on the compact subset [0, α·2].

4.2. Finitely many connected components

In what follows, we do not impose a condition on M, but rather on elements of Y.

Theorem 4.1. Let Γ be a group and let M be a locally compact, Hausdorff Γ-space.
Let (Y,Γ) be a minimal subsystem of (2M ,Γ), such that all elements of Y are compact. If
Y contains an element with finitely many connected components, then

⋃
Y has compact

closure.

Proof. Suppose towards a contradiction that
⋃
Y is not compact. Let Y ∈ Y be an

element with n connected components Y1, . . . , Yn and let U1, . . . , Un be open subsets of
M with compact closures such that Yi ⊂ Ui and Ui ∩ Uj = ∅ for i ≠ j. Let

W =
(⋂

i

Hit(Ui)
)
∩
(⋂

i

Miss(Ui \ Ui)
)
∩ Y,

and note that W is non-empty because Y ∈ W. Let g ∈ Γ with gY ∈ W. Then, for every
i = 1, . . . , n, there is a connected component gYj of gY with gYj ∩Ui 6= ∅, which implies
gYj ⊂ Ui since gYj is connected and does not intersect the boundary of Ui. Because
U1, . . . , Un are disjoint and because there are precisely n connected components we get
gY ⊂ U1 ∪ · · · ∪ Un ⊂ U1 ∪ · · · ∪ Un. This is a contradiction to Lemma 2.6. �

4.3. Linear continua

A standard example of a space that is not paracompact is the long line. In this subsec-
tion, we prove that our main result still holds for this space, or more generally, for any
linear continuum.
Recall that a linear continuum is a totally ordered space M with the order topology,

such that the order is dense (i.e., for all x, y ∈ M with x < y there is z ∈ M with
x < z < y) and such that M has the least upper bound property (i.e., every subset with
an upper bound has a least upper bound). Equivalently, it is a totally ordered space with
the order topology that is connected. Examples are the real numbers R with the usual
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order, the long line, and [0, 1]2 with the lexicographical ordering (remove the endpoints,
{(0, 0), (1, 1)}, to make it non-compact).
It follows from the density of the order that every linear continuum is Hausdorff.

Moreover, the proof that all closed intervals in R are compact carries over to linear
continua, showing that they are also locally compact.

Proposition 4.2. Let Γ be a group acting by homeomorphisms on a linear continuum
(M,<). Let (Y,Γ) be a minimal subsystem of (2M ,Γ), such that all elements of Y are
compact. Then

⋃
Y has compact closure.

Proof. We recall the following facts, most of which can be found in [23, §24]. The set
M has the greatest lower bound property. A subset ofM is connected if and only if it is an
interval. A subset of M is compact if and only if it is closed and contained in a bounded
interval. It is now easy to see from the least upper and greatest lower bound property
that every non-empty compact subset has a maximum and a minimum. Also, it is an
easy consequence of the Intermediate Value Theorem that every homeomorphism either
preserves or reverses the order. It follows that after passing to an index two subgroup if
necessary, we can assume that Γ preserves the order on M.
We assume that ∅ /∈ Y, since otherwise Y = {∅} and we would be done already.
For a compact subset A ⊂ M denote by conv(A) := [minA,maxA] its convex hull.

Since Γ preserves the order on M, we have that conv(gA) = g(conv(A)) for all g ∈ Γ.
The maps min,max: 2M → M are not continuous, not even when restricted to compact
sets. However, we have the following.

Claim 1. The maps min and max are continuous on 2K for every compact K ⊂ M .

Proof. Fix a compact K ⊂ M , and assume without loss of generality that K =
[k−, k+] is a closed interval. Let a ∈ [k−, k+] and A ∈ 2K . We have that minA < a ⇐⇒
A∩(−∞, a) 6= ∅ and minA > a ⇐⇒ A∩[k−, a] = ∅, both of which are open conditions.
The proof for max is similar. �

Claim 2. There exists Z ∈ Y such that conv(Z) is inclusion-minimal among all
conv(Y ) with Y ∈ Y.

Proof. Let � be the partial order on Y defined by Y � Y ′ if conv(Y ) ⊂ conv(Y ′). We
need to show that there exists a �-minimal element in Y. By Zorn’s lemma, it is enough
to show that every �-chain in Y has a lower bound. Let {Yi : i ∈ I} be such a chain;
note that it is also a net (directed downwards). By compactness of Y, the net {Yi : i ∈ I}
admits an accumulation point Z ∈ Y; note that Z 6= ∅, because ∅ /∈ Y. Fix i0 ∈ I. From

the continuity of min and max on 2
Yi0 , it follows that conv(Z) ⊂ conv(Yi) for all i and

we are done. �

Suppose towards a contradiction that
⋃
Y is unbounded in M. Let Z be as in the last

claim and denote convZ = [z−, z+]. Note that, by the inclusion-minimality of conv(Z),
for any g ∈ Γ, the sets conv(Z) and conv(gZ) cannot be strictly included in one another,
i.e., one of the three possibilities must happen: conv(Z) = conv(gZ), or z− < gz− and
z+ < gz+, or z− > gz− and z+ > gz+.
First consider the case where min

⋃
ΓZ = z−. By Lemma 2.6, there exists g0 ∈ Γ

such that g0Z * conv(Z) and then we must have that g0z
− > z−. Again by Lemma 2.6,

there exists g1 ∈ Γ such that g1z
− < g0z

− and g1Z * conv(Z ∪ g0Z). Now g1z
− < g0z

−
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and g1z
+ > g0z

+, so conv(g0Z) ( conv(g1Z), implying that conv(g−1
1 g0Z) ( conv(Z),

contradiction. We treat the case where max
⋃

ΓZ = z+ similarly.
Finally, suppose that there exist g1, g2 ∈ Γ such that g1z

− < z− and g2z
+ > z+. Again,

by Lemma 2.6, there exists g ∈ Γ with gz− < g2z
−, gz+ > g1z

+ and gZ * [g1z
−, g2z

+].
The other case being symmetric, we may assume that gz+ > g2z

+. Then g2Z ( gZ and
we arrive at a contradiction as before. �
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