METRIC FRAÏSSÉ LIMITS VIA JOININGS

TODOR TSANKOV

The goal of this note is to provide a new proof of the existence and uniqueness of metric Fraïssé limits. The original theorem is due to Ben Yaacov [BY] and while the underlying ideas of the proof are similar, our approach uses a different formalism and relies on joinings (inspired from ergodic theory) and the Baire category theorem.

We quickly recall the definitions. Let \mathcal{L} be a metric language and let \mathcal{K} be a class of finitely generated \mathcal{L} -structures. We will suppose that \mathcal{K} is *hereditary* (i.e., closed under substructures) and *directed* (i.e., every two structures in \mathcal{K} embed into a third). If M is a structure and \bar{a} is a tuple from M, $\langle \bar{a} \rangle$ denotes the (closed) substructure generated by \bar{a} . We denote by $S_n(\mathcal{K})$ the space of quantifier-free n-types in \mathcal{K} , that is

$$S_n(\mathcal{K}) = \{ \operatorname{tp} \bar{a} : \bar{a} \in A^n, A \in \mathcal{K} \}.$$

Here and below, tp always means quantifier-free type. tp \bar{a} is nothing but the isomorphism type of $\langle \bar{a} \rangle$. We will also use the notation $S_I(\mathcal{K})$ instead of $S_n(\mathcal{K})$ if I is a set of variables of size n.

Define the function ∂ : $S_n(\mathcal{K}) \times S_n(\mathcal{K}) \to \mathbf{R}^+$ by

$$\partial(p,q) = \inf\{d^{\mathbb{C}}(\bar{a},\bar{b}): \bar{a},\bar{b}\in\mathbb{C}^n, \mathbb{C}\in\mathcal{K}, \bar{a}\models p,\bar{b}\models q\}.$$

Note that $\partial(p,q) < \infty$ because \mathcal{K} is directed. Note also that $\partial(p,q) = 0$ implies that p = q. This follows from the fact that a quantifier-free \mathcal{L} -formula has the same modulus of continuity in all elements of \mathcal{K} (this is part of the definition of a metric language). If $I \subseteq J$ are sets of variables, we denote by $p \mapsto p|_I$ the natural projection $S_I(\mathcal{K}) \to S_I(\mathcal{K})$. Note that this map is surjective.

In order for ∂ to be a metric, we need an additional condition. \mathcal{K} satisfies the *near amalgamation property* (*NAP*) if for every I_1, J_1, I_2, J_2 finite, $p \in S_{I_1 \cup J_1}$, $q \in S_{I_2 \cup J_2}$, and $\epsilon > 0$, if $p|_{I_1} = q|_{I_2}$, then there exists $r \in S_{I_1 \cup J_1 \cup I_2 \cup J_2}(\mathcal{K})$ with $r|_{I_1 \cup J_1} = p, r|_{I_2 \cup J_2} = q$, and $d^r(I_1, I_2) < \epsilon$. (Here and below d^r denotes the metric as evaluated in the type *r*. When we evaluate the metric on tuples, the sup metric is assumed.)

If *M* is an \mathcal{L} -structure, we denote by Age(*M*) the class of finitely generated substructures of *M*. The structure *M* is called *ultrahomogeneous* if for all *n* and all $\bar{a}, \bar{b} \in M^n$,

$$\operatorname{tp} \bar{a} = \operatorname{tp} \bar{b} \implies \bar{b} \in \overline{\operatorname{Aut}(M) \cdot \bar{a}}.$$

The following is the main theorem, generalizing well-known results of Fraïssé in the classical setting.

Theorem 1 (Ben Yaacov). Let \mathcal{L} be a metric language and \mathcal{K} be a class of finitely generated \mathcal{L} -structures. Then the following are equivalent:

- (i) 𝔅 is hereditary, directed, satisfies NAP, and for every n, (S_n(𝔅), ∂) is a complete, separable metric space.
- (ii) There exists a unique separable ultrahomogeneous structure M with $Age(M) = \mathcal{K}$.

TODOR TSANKOV

Suppose that \mathcal{K} is a class that satisfies condition (i) of Theorem 1. We define $S_{\omega}(\mathcal{K})$ as $\lim S_n(\mathcal{K})$ and equip it with the complete metric

$$\partial(p,q) = \sum_{n=0}^{\infty} 2^{-n} \min \big(\partial(p|_n,q|_n), 1 \big).$$

Note that any $p \in S_{\omega}(\mathcal{K})$ is realized in some structure with age contained in \mathcal{K} ; this is basically because the class of structures with age contained in \mathcal{K} is closed under direct limits. We denote by M_p the isomorphism type of the (closed) structure generated by any realization of p.

Definition 2. Let $X \cap Y = \emptyset$ be sets of variables, $p \in S_X(\mathcal{K})$, $q \in S_Y(\mathcal{K})$. A *joining of* p and q is an element $r \in S_{X \cup Y}$ such that $r|_X = p$ and $r|_Y = q$. We will denote the set of all joinings of p and q by J(p,q).

Note that J(p,q) is a closed subset of $S_{X\cup Y}$ and thus a Polish space (if *X* and *Y* are countable). The fact that \mathcal{K} is directed implies that for all *X*, *Y* finite, $p \in S_X(\mathcal{K}), q \in S_Y(\mathcal{K}), J(p,q)$ is non-empty. Proposition 3 will imply this for countable *X*, *Y*.

The following proposition is the main fact about extension of types that we will need. It follows easily from an iterated application of NAP.

Proposition 3. Let $I \subseteq X$, $J \subseteq Y$ with |I| = |J| finite and X, Y countable, $X \cap Y = \emptyset$, $\epsilon > 0$. Let $p \in S_X(\mathcal{K})$, $q \in S_Y(\mathcal{K})$ with $\partial(p|_I, q|_J) < \epsilon$. Then there exists $r \in J(p, q)$ with $d^r(I, J) < \epsilon$.

Proof. Let $X = \bigcup_n I_n$, $Y = \bigcup_n J_n$ with $I_0 = I$, $J_0 = J$, $I_0 \subseteq I_1 \subseteq \cdots$, $J_0 \subseteq J_1 \subseteq \cdots$ finite. Fix $\epsilon' < \epsilon$ such that $\partial(p|_I, q|_J) < \epsilon'$. We construct by induction $r_n \in J(p|_{I_n}, q|_{I_n})$ such that for all n:

- $\partial(r_{n+1}|_{I_n \cup J_n}, r_n) < 2^{-n}$; and
- $d^{r_n}(I,J) < \epsilon'$.

 r_0 exists by definition because $\partial(p|_I, q|_I) < \epsilon'$. Suppose that r_n is already constructed. We amalgamate r_n and $p|_{I_{n+1}}$ over $r_n|_{I_n} = p|_{I_n}$ to obtain $s \in S_{I_{n+1} \cup I'_n \cup J_n}$ that satisfies $s|_{I_{n+1}} = p|_{I_{n+1}}$, $s|_{I'_n \cup J_n} = r_n$, and $d^s(I_n, I'_n) < \min(2^{-(n+1)}, \epsilon' - d^{r_n}(I, J))$. Let $r'_n \in J(p|_{I_{n+1}}, q|_{J_n})$ be defined by $r'_n = s|_{I_{n+1} \cup J_n}$. Then r'_n satisfies $d^{r'_n}(I, J) < \epsilon'$ and $\partial(r'_n|_{I_n \cup J_n}, r_n) < 2^{-(n+1)}$.

Similarly, by amalgamating r'_n and $q|_{J_{n+1}}$ over $r'_n|_{J_n} = q|_{J_n}$, find r_{n+1} a joining of $p|_{I_{n+1}}$ and $q|_{J_{n+1}}$ satisfying $d^{r_{n+1}}(I,J) < \epsilon'$ and $\partial(r_{n+1}|_{I_{n+1}\cup J_n},r'_n) < 2^{-(n+1)}$. This together with the fact that projections are ∂ -contractions implies the two required properties for r_{n+1} .

Once the construction is finished, extend r_n to $\hat{r}_n \in S_{X \cup Y}(\mathcal{K})$ arbitrarily, so that $\hat{r}_n|_{I_n \cup J_n} = r_n$. Observe that the sequence $(\hat{r}_n)_n$ is Cauchy, so it converges to some $r \in J(p,q)$. By continuity, we have that $d^r(I,J) \leq \epsilon' < \epsilon$.

Definition 4. Let *X* be a countably infinite set of variables. An element $p \in S_X(\mathcal{K})$ is called \mathcal{K} -existentially closed (or \mathcal{K} -e.c. for short) if for every finite $I \subseteq X$, finite *J* with $J \cap I = \emptyset$, $\epsilon > 0$ and $q \in S_{I \cup J}(\mathcal{K})$ with $\partial(p|_I, q|_I) < \epsilon$, there exists $J' \subseteq X$ with |J'| = |J| such that $\partial(p|_{I \cup I'}, q) < \epsilon$.

Proposition 5. Let X be a countably infinite set of variables. Then

$$\{p \in S_X(\mathcal{K}) : p \text{ is } \mathcal{K}\text{-e.c.}\}$$

is dense G_{δ} in $S_X(\mathfrak{K})$.

2

Proof. For every finite *J*, choose a countable, dense subset $S'_J(\mathcal{K}) \subseteq S_J(\mathcal{K})$. Then *p* is \mathcal{K} -e.c. iff

(1)
$$\forall I \subseteq X \text{ finite } \forall J \text{ finite } \forall \epsilon > 0 \ \forall q \in S'_{I \cup J}(\mathcal{K})$$

 $\partial(p|_{I}, q|_{I}) \ge \epsilon \text{ or } \exists J' \subseteq X \ \partial(p|_{I \cup I'}, q) < \epsilon.$

As for fixed I, J, ϵ, q , the set of p defined on the second line of (1) is G_{δ} , by the Baire category theorem, it suffices to check that it is dense. A basic open set U in $S_X(\mathcal{K})$ is given by

$$U = \{ p \in S_X(\mathcal{K}) : \partial(p|_L, p_0|_L) < \delta \},\$$

where $L \subseteq X$ is finite, $\delta > 0$ and $p_0 \in S_X(\mathcal{K})$. We may assume that $I \subseteq L$ and $\delta < \epsilon$. We may also assume that $\partial(p_0|_I, q|_I) < \epsilon$ in order to prove that there exist $J' \subseteq X$ and $p \in U$ with $\partial(p|_{I \cup J'}, q) < \epsilon$. Let $J' \subseteq X$ be arbitrary with |J'| = |J| and $J' \cap L = \emptyset$. As $\partial(p_0|_I, q|_I) < \epsilon$, by Proposition 3, there exists $r \in S_{L \cup I' \cup J'}$ such that $r|_L = p_0|_L$, $r|_{I' \cup J'} = q$, and $d^r(I, I') < \epsilon$. Finally, take $p \in S_X(\mathcal{K})$ to be any extension to X of $r|_{L \cup J'}$. We will have that $p|_L = p_0|_L$ (so $p \in U$) and $\partial(p|_{I \cup J'}, q) \le d^r(IJ', I'J') < \epsilon$.

Proposition 6. Suppose that $p \in S_X(\mathcal{K})$ is \mathcal{K} -e.c., $Y \cap X = \emptyset$, $|Y| \leq \aleph_0$, $q \in S_Y(\mathcal{K})$. Then for comeagerly many $r \in J(p,q)$, $\langle r|_Y \rangle \subseteq \langle r|_X \rangle$.

Proof. By uniform continuity of terms, we have that $\langle r|_Y \rangle \subseteq \langle r|_X \rangle$ iff

$$\forall i \in Y \ \forall \epsilon > 0 \ \exists i' \in X \quad d^r(i,i') < \epsilon.$$

Fix $i \in Y$ and $\epsilon > 0$ in order to show that $V_{i,\epsilon} = \{r \in J(p,q) : \exists i' \in X \ d^r(i,i') < \epsilon\}$ is dense in J(p,q) (it is clearly open). Let

$$U = \{r \in J(p,q) : \partial(r|_{I \cup I}, r_0|_{I \cup I}) < \delta\},\$$

where $r_0 \in J(p,q)$, $I \subseteq Y$ and $J \subseteq X$ are finite, and $\delta > 0$ be an open set. We will construct $r \in V_{i,\epsilon} \cap U$. We may assume that $i \in I$ and $\delta < \epsilon$. As p is \mathcal{K} -e.c., there exists $I' \subseteq X$ such that $\partial(p|_{J \cup I'}, r_0|_{J \cup I}) < \delta$. By Proposition 3, there exists $r_1 \in S_{X_1 \cup X_2 \cup Y_2}$ such that $r_1|_{X_1} = p$, $r_1|_{X_2 \cup Y_2} = r_0$ and $d^{r_1}(J_1I'_1, J_2I_2) < \delta$. (Here we consider X_1 and X_2 as copies of X, Y_2 as a copy of Y and I_1, I'_1, J_1, I_2, J_2 are the corresponding copies of I, I', J.) Take $r = r_1|_{X_1 \cup Y_2} \in J(p,q)$. Then $d^r(I, I') = d^{r_1}(I_2, I'_1) < \delta < \epsilon$ and

$$\partial(r|_{I\cup I}, r_0|_{I\cup I}) \leq d^{r_1}(J_1I_2, J_2I_2) = d^{r_1}(J_1, J_2) < \delta.$$

So $r \in V_{i,\epsilon} \cap U$.

Corollary 7. (i) If $p \in S_X(\mathcal{K})$ is \mathcal{K} -e.c., and A is any structure with $Age(A) \subseteq \mathcal{K}$, then A embeds in M_p .

(ii) If $p_1, p_2 \in S_X(\mathcal{K})$ are \mathcal{K} -e.c., then M_{p_1} and M_{p_2} are isomorphic.

Proof. (i) Let *Y* be countable and $q \in S_Y(\mathcal{K})$ enumerate a dense subset of *A*. Then there exists a joining $r \in J(p,q)$ with $\langle r|_Y \rangle \subseteq \langle r|_X \rangle$, showing that $A \cong \langle r|_Y \rangle$ embeds in $\langle r|_X \rangle = M_p$.

(ii) We have that for comeagerly many $r \in J(p_1, p_2)$, $\langle r|_X \rangle \subseteq \langle r|_Y \rangle$ and for comeagerly many $r \in J(p_1, p_2)$, $\langle r|_Y \rangle \subseteq \langle r|_X \rangle$. Thus there exists $r \in J(p, q)$ such that $M_{p_1} \cong \langle r|_X \rangle = \langle r|_Y \rangle \cong M_{p_2}$, whence the conclusion.

Proposition 8. Let X be countable, infinite and $p \in S_X(\mathcal{K})$. The following are equivalent:

- (i) *p* is *K*-e.c.;
- (ii) Age $(M_p) = \mathcal{K}$, M_p is ultrahomogeneous, and p enumerates M_p , i.e., for any realization $\bar{a} \models p$, the set $\{a_0, a_1, \ldots\}$ is dense in $\langle \bar{a} \rangle$.

Proof. (i) \Rightarrow (ii). Let $q \in S_n(\mathcal{K})$ be arbitrary. By Proposition 6, for comeagerly many $r \in J(p,q)$, $\langle r|_Y \rangle \subseteq \langle r|_X \rangle$; in particular, M_p realizes q. This shows that $Age(M_p) = \mathcal{K}$.

Next we show that p enumerates M_p . Let $\bar{a} \models p$ and let $t(\bar{v})$ be an \mathcal{L} -term. Let $I \subseteq X$ and $q \in S_{I \cup \{i_0\}}$ be defined by $q = \operatorname{tp}(a_I, t(a_I))$. As p is \mathcal{K} -e.c., this means that for every $n \in \mathbf{N}$, there exists $j_n \in X$ with $\partial(p|_{I \cup \{j_n\}}, q) < 2^{-n}$. By the equicontinuity of t in \mathcal{K} , this implies that $\lim_{n\to\infty} a_{j_n} = t(a_I)$.

Finally we check that M_p is ultrahomogeneous. Let $I, J \subseteq X$ be finite with $\partial(p|_I, p|_J) < \epsilon$. By Proposition 3, this implies that $\{r \in J(p, p) \subseteq S_{X_1 \cup X_2} : d^r(I_1, J_2) < \epsilon\} \neq \emptyset$. (Here, as before, I_1 and J_2 denote the copies of I and J in X_1 and X_2 , respectively.) By Proposition 6, there exists $r \in J(p, p)$ with $\langle r|_{X_1} \rangle = \langle r|_{X_2} \rangle$ and $d^r(I_1, J_2) < \epsilon$. This r yields an automorphism $g \in \text{Aut}(M_p)$ with $d^{M_p}(I, J) < \epsilon$.

(ii) \Rightarrow (i). Let $I \subseteq X$ and $q \in S_{I \cup J}(\mathcal{K})$ be such that $\partial(p|_{I}, q|_{I}) < \epsilon$. Let $\bar{a} \models p$. As Age $(M_{p}) = \mathcal{K}$, and by Proposition 3, there exists $b_{I_{1} \cup I_{2} \cup J_{2}} \in M_{p}^{2|I|+|J|}$ with tp $b_{I_{1}} = p|_{I}$, tp $b_{I_{2} \cup J_{2}} = q$, and $d(b_{I_{1}}, b_{I_{2}}) < \epsilon$. As M_{p} is ultrahomogeneous, there exist $g \in \operatorname{Aut}(M_{p})$ such that $d(g \cdot b_{I_{2}}, a_{I}) < \epsilon$. Finally, as p enumerates M_{p} , there exists $J' \subseteq X$ with $d(a_{J'}, g \cdot b_{J_{2}}) < \epsilon$. This implies that $\partial(q, p|_{I \cup J'}) \leq d(g \cdot b_{I_{2} \cup J_{2}}, a_{I \cup J'}) < \epsilon$.

Proof of Theorem **1**. (i) \Rightarrow (ii). Let $p \in S_X(\mathcal{K})$ be \mathcal{K} -e.c. (such a p exists by Proposition 5). Then M_p is ultrahomogeneous by Proposition 8. Suppose now that M_1 and M_2 are separable, ultrahomogeneous with age \mathcal{K} . Let p_1 and p_2 be types in $S_X(\mathcal{K})$ that enumerate dense subsets of M_1 , M_2 , respectively. By Proposition 8, p_1 and p_2 are \mathcal{K} -e.c. and by Corollary **7**, $M_1 \cong M_{p_1} \cong M_{p_2} \cong M_2$.

(ii) \Rightarrow (i). Let *M* be separable ultrahomogeneous with age \mathcal{K} and let $G = \operatorname{Aut}(M)$. Every age is hereditary and directed. Next we check NAP. Let $p \in S_{I_1 \cup J_1}(\mathcal{K})$, $q \in S_{I_2 \cup J_2}(\mathcal{K})$ with $p|_{I_1} = q|_{I_2}$ and let $\epsilon > 0$. Let $a_{I_1 \cup J_1}$ and $b_{I_2 \cup J_2}$ be realizations of *p* and *q* in *M*. By ultrahomogeneity, there exists $g \in G$ with $d(g \cdot a_{I_1}, b_{I_2}) < \epsilon$. Then $\langle g \cdot a_{I_1 \cup J_1}, b_{I_2, J_2} \rangle$ is the required amalgam of *p* and *q*. Finally one easily checks that $(S_n(\mathcal{K}), \partial) \cong (M^n /\!\!/ G, \overline{d})$, where $M^n /\!\!/ G = \{\overline{G \cdot \overline{a}} : \overline{a} \in M^n\}$ and

$$\overline{d}(G \cdot \overline{a}, G \cdot \overline{b}) = \inf\{d(g \cdot \overline{a}, \overline{b}) : g \in G\}.$$

This implies that $S_n(\mathcal{K})$ is separable and complete.

References

[BY] I. Ben Yaacov, *Fraïssé limits of metric structures*, J. Symb. Log. **80** (2015), no. 1, 100−115. MR3320585 ↑(document)

E-mail address: todor@math.univ-paris-diderot.fr