
METRIC FRAÏSSÉ LIMITS VIA JOININGS

TODOR TSANKOV

The goal of this note is to provide a new proof of the existence and uniqueness
of metric Fraïssé limits. The original theorem is due to Ben Yaacov [BY] and
while the underlying ideas of the proof are similar, our approach uses a different
formalism and relies on joinings (inspired from ergodic theory) and the Baire
category theorem.

We quickly recall the definitions. Let L be a metric language and let K be a
class of finitely generated L-structures. We will suppose that K is hereditary (i.e.,
closed under substructures) and directed (i.e., every two structures in K embed
into a third). If M is a structure and ā is a tuple from M, ⟨ā⟩ denotes the (closed)
substructure generated by ā. We denote by Sn(K) the space of quantifier-free
n-types in K, that is

Sn(K) = {tp ā : ā ∈ An, A ∈ K}.

Here and below, tp always means quantifier-free type. tp ā is nothing but the
isomorphism type of ⟨ā⟩. We will also use the notation SI(K) instead of Sn(K) if
I is a set of variables of size n.

Define the function ∂ : Sn(K)× Sn(K)→ R+ by

∂(p, q) = inf{dC(ā, b̄) : ā, b̄ ∈ Cn, C ∈ K, ā |= p, b̄ |= q}.

Note that ∂(p, q) < ∞ because K is directed. Note also that ∂(p, q) = 0 implies
that p = q. This follows from the fact that a quantifier-free L-formula has the
same modulus of continuity in all elements of K (this is part of the definition of a
metric language). If I ⊆ J are sets of variables, we denote by p 7→ p|I the natural
projection SJ(K)→ SI(K). Note that this map is surjective.

In order for ∂ to be a metric, we need an additional condition. K satisfies
the near amalgamation property (NAP) if for every I1, J1, I2, J2 finite, p ∈ SI1∪J1 ,
q ∈ SI2∪J2 , and ϵ > 0, if p|I1 = q|I2 , then there exists r ∈ SI1∪J1∪I2∪J2(K) with
r|I1∪J1 = p, r|I2∪J2 = q, and dr(I1, I2) < ϵ. (Here and below dr denotes the metric
as evaluated in the type r. When we evaluate the metric on tuples, the sup metric
is assumed.)

If M is an L-structure, we denote by Age(M) the class of finitely generated
substructures of M. The structure M is called ultrahomogeneous if for all n and all
ā, b̄ ∈ Mn,

tp ā = tp b̄ =⇒ b̄ ∈ Aut(M) · ā.

The following is the main theorem, generalizing well-known results of Fraïssé in
the classical setting.

Theorem 1 (Ben Yaacov). Let L be a metric language and K be a class of finitely
generated L-structures. Then the following are equivalent:

(i) K is hereditary, directed, satisfies NAP, and for every n, (Sn(K), ∂) is a complete,
separable metric space.

(ii) There exists a unique separable ultrahomogeneous structure M with Age(M) =
K.
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Suppose that K is a class that satisfies condition (i) of Theorem 1. We define
Sω(K) as lim←− Sn(K) and equip it with the complete metric

∂(p, q) =
∞

∑
n=0

2−n min
(
∂(p|n, q|n), 1

)
.

Note that any p ∈ Sω(K) is realized in some structure with age contained in
K; this is basically because the class of structures with age contained in K is
closed under direct limits. We denote by Mp the isomorphism type of the (closed)
structure generated by any realization of p.

Definition 2. Let X ∩Y = ∅ be sets of variables, p ∈ SX(K), q ∈ SY(K). A joining
of p and q is an element r ∈ SX∪Y such that r|X = p and r|Y = q. We will denote
the set of all joinings of p and q by J(p, q).

Note that J(p, q) is a closed subset of SX∪Y and thus a Polish space (if X and
Y are countable). The fact that K is directed implies that for all X, Y finite,
p ∈ SX(K), q ∈ SY(K), J(p, q) is non-empty. Proposition 3 will imply this for
countable X, Y.

The following proposition is the main fact about extension of types that we
will need. It follows easily from an iterated application of NAP.

Proposition 3. Let I ⊆ X, J ⊆ Y with |I| = |J| finite and X, Y countable, X ∩Y = ∅,
ϵ > 0. Let p ∈ SX(K), q ∈ SY(K) with ∂(p|I , q|J) < ϵ. Then there exists r ∈ J(p, q)
with dr(I, J) < ϵ.

Proof. Let X =
∪

n In, Y =
∪

Jn with I0 = I, J0 = J, I0 ⊆ I1 ⊆ · · · , J0 ⊆ J1 ⊆ · · ·
finite. Fix ϵ′ < ϵ such that ∂(p|I , q|J) < ϵ′. We construct by induction rn ∈
J(p|In , q|Jn) such that for all n:

• ∂(rn+1|In∪Jn , rn) < 2−n; and
• drn(I, J) < ϵ′.

r0 exists by definition because ∂(p|I , q|J) < ϵ′. Suppose that rn is already con-
structed. We amalgamate rn and p|In+1 over rn|In = p|In to obtain s ∈ SIn+1∪I′n∪Jn

that satisfies s|In+1 = p|In+1 , s|I′n∪Jn
= rn, and ds(In, I′n) < min

(
2−(n+1), ϵ′ −

drn(I, J)
)
. Let r′n ∈ J(p|In+1 , q|Jn) be defined by r′n = s|In+1∪Jn . Then r′n satisfies

dr′n(I, J) < ϵ′ and ∂(r′n|In∪Jn , rn) < 2−(n+1).
Similarly, by amalgamating r′n and q|Jn+1 over r′n|Jn = q|Jn , find rn+1 a joining of

p|In+1 and q|Jn+1 satisfying drn+1(I, J) < ϵ′ and ∂(rn+1|In+1∪Jn , r′n) < 2−(n+1). This
together with the fact that projections are ∂-contractions implies the two required
properties for rn+1.

Once the construction is finished, extend rn to r̂n ∈ SX∪Y(K) arbitrarily, so that
r̂n|In∪Jn = rn. Observe that the sequence (r̂n)n is Cauchy, so it converges to some
r ∈ J(p, q). By continuity, we have that dr(I, J) ≤ ϵ′ < ϵ. □

Definition 4. Let X be a countably infinite set of variables. An element p ∈ SX(K)
is called K-existentially closed (or K-e.c. for short) if for every finite I ⊆ X, finite
J with J ∩ I = ∅, ϵ > 0 and q ∈ SI∪J(K) with ∂(p|I , q|I) < ϵ, there exists J′ ⊆ X
with |J′| = |J| such that ∂(p|I∪J′ , q) < ϵ.

Proposition 5. Let X be a countably infinite set of variables. Then

{p ∈ SX(K) : p is K-e.c.}

is dense Gδ in SX(K).
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Proof. For every finite J, choose a countable, dense subset S′J(K) ⊆ SJ(K). Then
p is K-e.c. iff

(1) ∀I ⊆ X finite ∀J finite ∀ϵ > 0 ∀q ∈ S′I∪J(K)

∂(p|I , q|I) ≥ ϵ or ∃J′ ⊆ X ∂(p|I∪J′ , q) < ϵ.

As for fixed I, J, ϵ, q, the set of p defined on the second line of (1) is Gδ, by the
Baire category theorem, it suffices to check that it is dense. A basic open set U in
SX(K) is given by

U = {p ∈ SX(K) : ∂(p|L, p0|L) < δ},
where L ⊆ X is finite, δ > 0 and p0 ∈ SX(K). We may assume that I ⊆ L and
δ < ϵ. We may also assume that ∂(p0|I , q|I) < ϵ in order to prove that there exist
J′ ⊆ X and p ∈ U with ∂(p|I∪J′ , q) < ϵ. Let J′ ⊆ X be arbitrary with |J′| = |J|
and J′ ∩ L = ∅. As ∂(p0|I , q|I) < ϵ, by Proposition 3, there exists r ∈ SL∪I′∪J′

such that r|L = p0|L, r|I′∪J′ = q, and dr(I, I′) < ϵ. Finally, take p ∈ SX(K) to
be any extension to X of r|L∪J′ . We will have that p|L = p0|L (so p ∈ U) and
∂(p|I∪J′ , q) ≤ dr(I J′, I′ J′) < ϵ. □

Proposition 6. Suppose that p ∈ SX(K) is K-e.c., Y ∩ X = ∅, |Y| ≤ ℵ0, q ∈ SY(K).
Then for comeagerly many r ∈ J(p, q), ⟨r|Y⟩ ⊆ ⟨r|X⟩.

Proof. By uniform continuity of terms, we have that ⟨r|Y⟩ ⊆ ⟨r|X⟩ iff

∀i ∈ Y ∀ϵ > 0 ∃i′ ∈ X dr(i, i′) < ϵ.

Fix i ∈ Y and ϵ > 0 in order to show that Vi,ϵ = {r ∈ J(p, q) : ∃i′ ∈ X dr(i, i′) < ϵ}
is dense in J(p, q) (it is clearly open). Let

U = {r ∈ J(p, q) : ∂(r|I∪J , r0|I∪J) < δ},
where r0 ∈ J(p, q), I ⊆ Y and J ⊆ X are finite, and δ > 0 be an open set. We
will construct r ∈ Vi,ϵ ∩U. We may assume that i ∈ I and δ < ϵ. As p is K-e.c.,
there exists I′ ⊆ X such that ∂(p|J∪I′ , r0|J∪I) < δ. By Proposition 3, there exists
r1 ∈ SX1∪X2∪Y2 such that r1|X1 = p, r1|X2∪Y2 = r0 and dr1(J1 I′1, J2 I2) < δ. (Here
we consider X1 and X2 as copies of X, Y2 as a copy of Y and I1, I′1, J1, I2, J2 are
the corresponding copies of I, I′, J.) Take r = r1|X1∪Y2 ∈ J(p, q). Then dr(I, I′) =
dr1(I2, I′1) < δ < ϵ and

∂(r|I∪J , r0|I∪J) ≤ dr1(J1 I2, J2 I2) = dr1(J1, J2) < δ.

So r ∈ Vi,ϵ ∩U. □
Corollary 7. (i) If p ∈ SX(K) is K-e.c., and A is any structure with Age(A) ⊆

K, then A embeds in Mp.
(ii) If p1, p2 ∈ SX(K) are K-e.c., then Mp1 and Mp2 are isomorphic.

Proof. (i) Let Y be countable and q ∈ SY(K) enumerate a dense subset of A. Then
there exists a joining r ∈ J(p, q) with ⟨r|Y⟩ ⊆ ⟨r|X⟩, showing that A ∼= ⟨r|Y⟩
embeds in ⟨r|X⟩ = Mp.

(ii) We have that for comeagerly many r ∈ J(p1, p2), ⟨r|X⟩ ⊆ ⟨r|Y⟩ and for
comeagerly many r ∈ J(p1, p2), ⟨r|Y⟩ ⊆ ⟨r|X⟩. Thus there exists r ∈ J(p, q) such
that Mp1

∼= ⟨r|X⟩ = ⟨r|Y⟩ ∼= Mp2 , whence the conclusion. □

Proposition 8. Let X be countable, infinite and p ∈ SX(K). The following are equiva-
lent:

(i) p is K-e.c.;
(ii) Age(Mp) = K, Mp is ultrahomogeneous, and p enumerates Mp, i.e., for any

realization ā |= p, the set {a0, a1, . . .} is dense in ⟨ā⟩.
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Proof. (i)⇒ (ii). Let q ∈ Sn(K) be arbitrary. By Proposition 6, for comeagerly
many r ∈ J(p, q), ⟨r|Y⟩ ⊆ ⟨r|X⟩; in particular, Mp realizes q. This shows that
Age(Mp) = K.

Next we show that p enumerates Mp. Let ā |= p and let t(v̄) be an L-term.
Let I ⊆ X and q ∈ SI∪{i0} be defined by q = tp(aI , t(aI)). As p is K-e.c., this
means that for every n ∈ N, there exists jn ∈ X with ∂(p|I∪{jn}, q) < 2−n. By the
equicontinuity of t in K, this implies that limn→∞ ajn = t(aI).

Finally we check that Mp is ultrahomogeneous. Let I, J ⊆ X be finite with
∂(p|I , p|J) < ϵ. By Proposition 3, this implies that {r ∈ J(p, p) ⊆ SX1∪X2 :
dr(I1, J2) < ϵ} ̸= ∅. (Here, as before, I1 and J2 denote the copies of I and
J in X1 and X2, respectively.) By Proposition 6, there exists r ∈ J(p, p) with
⟨r|X1⟩ = ⟨r|X2⟩ and dr(I1, J2) < ϵ. This r yields an automorphism g ∈ Aut(Mp)

with dMp(I, J) < ϵ.
(ii)⇒ (i). Let I ⊆ X and q ∈ SI∪J(K) be such that ∂(p|I , q|I) < ϵ. Let ā |= p.

As Age(Mp) = K, and by Proposition 3, there exists bI1∪I2∪J2 ∈ M2|I|+|J|
p with

tp bI1 = p|I , tp bI2∪J2 = q, and d(bI1 , bI2) < ϵ. As Mp is ultrahomogeneous,
there exist g ∈ Aut(Mp) such that d(g · bI2 , aI) < ϵ. Finally, as p enumerates
Mp, there exists J′ ⊆ X with d(aJ′ , g · bJ2) < ϵ. This implies that ∂(q, p|I∪J′) ≤
d(g · bI2∪J2 , aI∪J′) < ϵ. □
Proof of Theorem 1. (i)⇒ (ii). Let p ∈ SX(K) be K-e.c. (such a p exists by Propo-
sition 5). Then Mp is ultrahomogeneous by Proposition 8. Suppose now that M1
and M2 are separable, ultrahomogeneous with age K. Let p1 and p2 be types in
SX(K) that enumerate dense subsets of M1, M2, respectively. By Proposition 8,
p1 and p2 are K-e.c. and by Corollary 7, M1

∼= Mp1
∼= Mp2

∼= M2.
(ii)⇒ (i). Let M be separable ultrahomogeneous with age K and let G =

Aut(M). Every age is hereditary and directed. Next we check NAP. Let p ∈
SI1∪J1(K), q ∈ SI2∪J2(K) with p|I1 = q|I2 and let ϵ > 0. Let aI1∪J1 and bI2∪J2
be realizations of p and q in M. By ultrahomogeneity, there exists g ∈ G with
d(g · aI1 , bI2) < ϵ. Then ⟨g · aI1∪J1 , bI2,J2⟩ is the required amalgam of p and q. Fi-
nally one easily checks that (Sn(K), ∂) ∼= (Mn � G, d̄), where Mn � G = {G · ā :
ā ∈ Mn} and

d̄(G · ā, G · b̄) = inf{d(g · ā, b̄) : g ∈ G}.
This implies that Sn(K) is separable and complete. □
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