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1 Introduction

The goal of this memoir is to survey some recent results and emerging re-
search directions in the theory of automorphism groups of discrete and met-
ric structures and their dynamical systems. The focus is on my own work but
I have tried to include enough background and examples in order to make
the text accessible and, hopefully, useful for a non-expert reader who would
like to get acquainted with the subject.

Understanding the automorphism group of a structure goes hand in hand
with understanding the structure itself and if we adopt the perspective of
Klein, we can go further and say that a sufficiently homogeneous structure
is defined by the action of the group of its symmetries. This viewpoint can
be formalized in a number of situations that we are interested in and turns
out to be quite useful. An important reason why we consider dynamical
systems of automorphism groups (apart from their intrinsic interest) is that
they provide a framework to describe interactions between the structures and
other mathematical objects and offer abstract, powerful tools for studying
those interactions.

Most of the structures that we have in mind can be naturally considered
as models in first-order logic. Apart from providing a convenient framework
that encompasses most examples, this also permits the use of concepts, ideas,
and tools from model theory that will be essential throughout this memoir.
While initially model theory only dealt with discrete structures, with the
development of continuous logic, model-theoretic methods can now also be
applied in the metric setting, thus allowing us to study groups of symmetries
of structures appearing in analysis. In continuous logic, one often tries to
employ ideas and generalize results from classical model theory; however,
new phenomena appear that have no analogue in the discrete world and
new tools, often adapted from descriptive set theory and functional analysis,
are required, thus giving the subject its own distinct flavor.

In order to effectively study large (uncountable) groups, it is often nec-
essary to endow them with some additional structure. As most groups we
are interested in appear as groups of isometries, they are naturally equipped
with a topology that makes them into topological groups. Group topologies
also provide several uniform structures on the groups and their homoge-
neous spaces that will be important for us.

Symmetry groups in geometry that are studied classically are usually lo-
cally compact, for the simple reason that the objects considered are most of-
ten of finite dimension. In abstract harmonic analysis as well, the focus is on
locally compact groups: even the most basic tools rely on one’s ability to take
averages with respect to the Haar measure, which is exclusive to them. On
the other hand, in functional analysis, model theory, and descriptive set the-
ory, one has to deal with infinite discrete structures and infinite-dimensional
spaces whose symmetry groups are almost never locally compact. Since we
are mostly interested in structures and groups of the latter kind, it is not
surprising that most of the tools that we use come from those three subjects.

A compromise between the very general setting of topological groups and
the rather restrictive world of the locally compact ones, a class that includes
most groups encountered in analysis, has robust closure properties, and still
admits general methods for its study, is the class of Polish groups (i.e., com-
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pletely metrizable, separable topological groups). This class also includes
all groups that will be considered in this memoir. The combination of ho-
mogeneity, completeness, and the existence of a countable base makes Baire
category tools particularly effective and, in a sense, those can be considered
the unifying method in the subject. Some examples of how Baire category is
used can be found in Section 10.

With the development of the theory of definable equivalence relations in
descriptive set theory, it quickly became apparent that a large number of
natural equivalence relations arise as (or are bi-reducible with) orbit equiv-
alence relations of Polish group actions. This provided a strong impetus for
the development of the theory of Polish dynamical systems and their orbit
equivalence relations: after the pioneering work of Becker and Kechris [BK96]
and the development of the theory of turbulence by Hjorth [Hjo00], a lot of
other work followed; see [Gao09] for a modern account.

From another direction, in model theory, it was realized quite early that
automorphism groups of countable homogeneous structures encode all es-
sential information about the structures and are rich objects interesting to
study in their own right. The subject has developed deep connections with
permutation group theory, combinatorics, and, more recently, theoretical
computer science. See the recent survey by Macpherson [Mac11] for gen-
eral information about classical homogeneous structures and their automor-
phism groups and the monograph by Bodirsky [Bod12] for the applications
in computer science.

As model-theorists seemed to be of a more algebraic mindset, the topol-
ogy on the automorphism groups, while recognized as useful, was regarded
as a secondary structure and they searched to define it solely in terms of
the algebra. It turns out that this is possible in a number of cases, via the so-
called small index property, and the tools that had been developed for studying
it led, in the work of Kechris and Rosendal [KR07], to the automatic continuity
property, which, in a certain sense, is the most general condition that permits
the recovery of topological from algebraic information for Polish groups. We
discuss automatic continuity in Section 11 below.

A special class of Polish groups that behave particularly well in various
settings and play a central role in what follows is the class of Roelcke precom-
pact groups (see Subsection 2.3 for the definition). A recurring theme in this
memoir is that in many situations, in sharp contrast with what happens for
locally compact (non-compact) groups, actions of Roelcke precompact groups
tend to be classifiable and, with enough caution, one can let one’s intuition be
guided by analogy with the simpler situation for compact groups. The clas-
sification results are interesting by themselves but also have consequences in
combinatorics and probability theory. It is also instructive to compare the
theory of the dynamical systems considered here with the theory of orbit
equivalence relations, where the actions of those same groups are used to
prove non-classifiability results (mostly via Hjorth’s theory of turbulence).

Roelcke precompact groups are exactly the automorphism groups of ω-
categorical structures: separable metric models that are determined, up to iso-
morphism, by their first-order theory. Those models are canonical, highly
symmetric objects whose model-theoretic structure is entirely encoded by
the action of the automorphism group. This leads to an interesting corre-
spondence between model-theoretic and dynamical properties, most notably
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in connection with the theory of representations of dynamical systems on
Banach spaces, as developed by Glasner and Megrelishvili. This correspon-
dence, first studied in [BT13], can be exploited in both directions but is not
yet completely understood. We discuss this in Section 9, where we also see
some examples of using model-theoretic tools and intuition to prove purely
topological results.

One of the main topics of this memoir is dynamical systems of auto-
morphism groups, that is, studying their actions on various spaces: more
specifically, topological dynamical systems, i.e., continuous actions on compact
spaces, and measure-preserving dynamical systems, measure-preserving actions
on standard probability spaces. An important feature of studying dynam-
ical systems for general Polish groups is that new, interesting phenomena
appear that have no analogue in the locally compact world, such as extreme
amenability and metrizable universal minimal flows as well as the possibility
of classification of the dynamical systems of certain groups. Pioneering work
in this field was done by Pestov and by Glasner and Weiss.

With the work of Kechris, Pestov, and Todorcevic [KPT05], it became ap-
parent that the topological dynamics of an automorphism group is intimately
connected with the Ramsey theory of the corresponding structure and under-
standing the minimal flows of the group has important combinatorial con-
sequences. Their paper rekindled the interest in structural Ramsey theory
and has inspired a lot of new work in both combinatorics and topological
dynamics. See Section 3 for a description of this correspondence and the
current state of the art.

Measure-preserving dynamical systems of automorphism groups can be
interpreted as families of random variables indexed by (imaginary) elements
of the structure whose joint distribution satisfies certain invariance prop-
erties. Such families are studied in probability theory under the name of
exchangeable random variables and a theory has been developed around de
Finetti’s theorem and its generalizations [Kal05]. The approach to exchange-
ability theory via dynamical systems of automorphism groups gives a new
framework in which different methods, for example, unitary representa-
tions, can be applied and suggests interesting generalizations of the setting
that is usually considered. In Section 7, we briefly explain this framework
and present some preliminary results. Understanding further the measure-
preserving actions of Roelcke precompact groups seems a promising direc-
tion for future work.

As is often done in dynamics, one can combine topological and measure-
theoretic structure in a single system. In this context, amenability is an im-
portant property of the group as it ensures that every topological system
carries an invariant measure. This property has been much studied for dis-
crete and locally compact groups but the theory is less developed for general
Polish groups. In Section 5, we present a criterion for amenability of non-
archimedean groups inspired by the Reiter condition for discrete groups;
unfortunately, verifying this condition in concrete, non-trivial cases seems a
rather daunting combinatorial task.

Some topological dynamical systems carry a unique invariant measure
(one says that they are uniquely ergodic) and in that case, the measure can be
used as a tool to understand the topological system even if a priori one is not
interested in ergodic theory. It is a fascinating phenomenon, studied in detail
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by Angel, Kechris, and Lyons [AKL12], that for many automorphism groups,
all of their minimal flows are uniquely ergodic. In Subsection 7.2, we discuss
an alternative proof of some of their results based on a variant of de Finetti’s
theorem.

Last but not least, unitary representations of groups arise naturally in a va-
riety of settings and understanding them can often be useful. It turns out that
the unitary representations of Roelcke precompact, non-archimedean groups
can be completely classified and the situation is somewhat similar to the one
for compact groups. This classification can be used, for example, to show
that all such groups have property (T), which, in turn, has dynamical conse-
quences. It is an open question whether such a classification can be carried
out for general Roelcke precompact Polish groups. Unitary representations
are the topic of Section 6.

Most of this memoir is based on published (or submitted for publication)
results; however, in Sections 4, 5, and 7, several new results are presented.

2 Automorphism groups

2.1 Discrete and metric structures

Most groups that we will consider are presented as groups of isometries of
separable metric spaces preserving some additional structure and are de-
scribed most naturally in the framework of first-order (continuous) logic.
Even if the group is not initially given as a group of isometries, one can of-
ten consider an alternative presentation: for example, the homeomorphism
group of a compact space K can be viewed as the automorphism group of the
commutative C∗-algebra C(K), and the latter is a metric structure. If every-
thing else fails, every Polish group G can be equipped with a left-invariant
distance and this action can be used to produce an (approximately homoge-
neous) metric structure with automorphism group G (see [Mel14, Section 4.2]
for details on how to achieve this).

We quickly review classical first-order logic. Let M be a set. A basic relation
on M is a subset R ⊆ Mk, where k is called the arity of R. A discrete structure
is a set M equipped with countably many basic relations. The language (or
signature) of M is the set of names for the basic relations together with their
arities. The language always includes the equality relation. A definable relation
on M is a relation that can be obtained from the basic ones using Boolean
operations, substitutions (if R is a definable relation of arity k, then

{(a1, . . . , an) ∈ Mn : (ai1 , . . . , aik ) ∈ R},

are definable relations for all choices of i1, . . . , ik ≤ n), and projections. A
definable relation of arity k can also be thought of as a function Mk → {0, 1}.
Each definable relation has a name, a first-order formula, that describes the
sequence of operations via which it was obtained. Note that a formula, being
a syntactic object, can be evaluated on any structure that has the same sig-
nature as M. A sentence is a formula without free variables, i.e., a definable
0-ary relation. A theory is a collection of sentences with their values. A struc-
ture M is a model of the theory T (notation M |= T) if the sentences of T, when
evaluated on M, take the values prescribed by T.

4



Next we parallel the description above in the metric setting. Let (M, d) be
a complete, bounded metric space (if one takes some care, it is also possible
to include unbounded spaces but we will not detail this here). A basic predi-
cate on M is a uniformly continuous, bounded function P : Mk → R, where k
is called the arity of P. A metric structure is a space M equipped with count-
ably many basic predicates. The language of M is the set of names for the
basic predicates together with their arities, bounds, and uniform continuity
moduli. The language always includes the distance symbol d. A definable
predicate on M is a bounded, uniformly continuous function Mk → R that
can be obtained from the basic predicates by taking continuous combina-
tions, substitutions, suprema (if Q(x1, . . . , xk) is a definable predicate, then
supx1∈M Q(x1, . . . , xk) is one too), and uniform limits. Each definable pred-
icate has a name, a continuous first-order formula, that describes the sequence
of operations via which it was obtained. A sentence is a formula without
free variables, i.e., a definable 0-ary predicate. The theory of M (denoted by
Th(M)) is the set of values of all sentences evaluated on M. As we allow
arbitrary continuous combinations and taking limits in the construction of
formulas, there are uncountably many formulas. However, given a theory T,
there is a natural norm on the set of formulas defined by

∥ϕ∥ = sup
M|=T,ā∈M

|ϕM(ā)|.

Equipped with this norm, the set of formulas on n-variables, tensored with
the complex numbers and divided by the kernel of the norm, naturally carries
the structure of a separable, commutative C∗-algebra, denoted by Wn(T). As
we are only interested in formulas up to logical equivalence, we can redefine
a formula on n variables to be just an element of Wn(T); a formula on infinitely
many variables is an element of the C∗-algebra W∞(T) = lim−→Wn(T). We refer
the reader to [Ben+08] for more details on continuous logic.

Usually one also allows function symbols in the language that are inter-
preted as uniformly continuous functions Mk → M (and we will have func-
tions in some of our examples). However, omitting them in the definitions
entails no loss of generality, as a function f : Mk → M can be replaced by
the k + 1-ary predicate d( f (x̄), y) without losing expressive power of the lan-
guage.

One sees from the above definitions that discrete structures are a special
case of metric ones, where the metric and all basic predicates take only the
values 0 and 1. From here on, we will use the word structure without qualifiers
to signify a metric structure and we will sometimes refer to discrete structures as
classical. We will also exclusively consider separable structures, i.e., structures
admitting a countable dense set.

Let M be a structure and T = Th(M). If L is a set of definable predicates
closed under substitutions, the L-type of a tuple ā ∈ Mk is the set of values
of predicates in L of arity k evaluated on ā. If L is omitted, one takes the set
of all definable predicates. Alternatively, a complete k-type is just an element
of the Gelfand space of the algebra Wk(T).

The automorphism group of M, denoted by Aut(M), is the group of all
isometries of M that preserve the basic predicates (and therefore all defin-
able predicates). Equipped with the pointwise convergence topology, G =
Aut(M) is a Polish group.
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M is called (approximately) L-homogeneous if for every two tuples ā, b̄ ∈ Mk

of the same L-type, G · ā = G · b̄ (G · ā = G · b̄). In this setting, L will
be either the set of definable predicates or the set of basic predicates; in
the former case, we call the structure simply homogeneous and in the latter,
ultrahomogeneous. Thus every ultrahomogeneous structure is homogeneous
but the converse is not necessarily true.

If X is a metric space and G acts on X by isometries, let

X � G = {G · x : x ∈ X}

(note that {(x, y) ∈ X2 : x ∈ G · y} is an equivalence relation). We will write
[x]G for G · x when we consider it as an element of X � G. The set X � G is
naturally a metric space if equipped with the distance

d([x]G , [y]G) = inf
g∈G

d(g · x, y).

If X is a metric space on which the group G acts, then for each n, we equip
Xn with the max distance and the diagonal action of G.

Definition 2.1. Let X be a metric space and let the group G act on X by
isometries. The action is called (approximately) oligomorphic if for every n,
Xn � G is finite (compact).

If M is discrete, then Aut(M) is a closed group of permutations of a
countable set, so embeds as a subgroup of the group of all permutations of M,
S(M). When the set M is not important, we will denote this group by S∞. A
characterizing property for closed subgroups of S∞ is that they admit a basis
at the identity consisting of open subgroups (the pointwise stabilizers of finite
subsets of M). Groups with this property are also called non-archimedean. A
discrete structure M is homogeneous iff it is approximately homogeneous
and an action G ↷ M on a discrete M is oligomorphic iff it is approximately
oligomorphic.

A structure M is called ω-categorical if Th(M) has a unique separable
model up to isomorphism. The following theorem is due independently to
Ryll-Nardzewski, Engeler, and Svenonius in the classical setting and was gen-
eralized to metric structures by Ben Yaacov, Berenstein, Henson, and Usvy-
atsov [Ben+08]. It is commonly referred to as the Ryll-Nardzewski theorem.

Theorem 2.2. Let M be a metric structure. Then the following are equivalent:

(i) M is ω-categorical;
(ii) The action Aut(M) ↷ M is approximately oligomorphic.

Moreover, for every k, the predicates on Mk preserved by Aut(M) are exactly the
k-ary definable predicates and every ω-categorical structure is approximately homo-
geneous.

This theorem provides a crucial link between model-theoretic notions and
the action of Aut(M) on powers of M.
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2.2 Examples

A canonical construction of countable, discrete, ultrahomogeneous structures
was described by Fraïssé [Fra54]. An age is a countable class of finite struc-
tures that is closed under taking substructures and that is directed in the the
sense that every two structures in the class embed into a third. If M is a
countable structure, its age, Age(M), is the class of its finite substructures;
conversely, for every age A, there exists a countable structure M such that
Age(M) = A. Fraïssé isolated a crucial additional property, called the amal-
gamation property, that ensures that an age A can be realized as the class
of substructures of an ultrahomogeneous structure; moreover, this ultrahomo-
geneous structure is unique up to isomorphism. It is called the Fraïssé limit
of A. An age A has the amalgamation property if for every A, B, C ∈ A and
embeddings i1 : A → B and i2 : A → C, there exists D ∈ A and embeddings
j1 : B → D and j2 : C → D such that the diagram

D

B

j1
??

C

j2
__

A
i1

__

i2

??

commutes.
An analogous (albeit somewhat more technical) construction can also be

carried out in the metric case (see Ben Yaacov [Ben12]). The main new fea-
tures are that the age now forms a Polish metric space and one relaxes the
amalgamation property to the near amalgamation property where the diagram
above is required to commute only approximately.

Below we list several examples of ultrahomogeneous structures that will
reappear throughout the text. All of them are easy to describe and the amal-
gamation property is not difficult to check. This should, however, not mislead
the reader: the world of ultrahomogeneous structures is very rich and prov-
ing amalgamation can sometimes be a challenging combinatorial problem. A
lot of work has been done in the 1980s and 1990s in classifying ultrahomo-
geneous structures with a given signature: a culminating point of this effort
was the work of Cherlin [Che98] who, building on previous results of Lachlan
and Woodrow [LW80] and Lachlan [Lac84], classified all ultrahomogeneous
directed graphs (of which there are uncountably many).
Discrete examples:

• The Fraïssé limit of all finite sets without structure is a countably infi-
nite set. The corresponding group is S∞, the group of all permutations
of this set.

• The Fraïssé limit of all finite linear orders is the countable dense linear
order without endpoints (Q,<). We denote the corresponding auto-
morphism group by Aut(Q).

• The Fraïssé limit of all finite Boolean algebras is the countable atomless
Boolean algebra which is isomorphic to the algebra of all clopen subsets
of the Cantor space 2N. The corresponding automorphism group is
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Homeo(2N), the group of all homeomorphisms of 2N.
• The Fraïssé limit of all finite vector spaces over a fixed finite field Fq is

the infinite-dimensional vector space over Fq. The automorphism group
is the general linear group GL(∞, Fq).

• The Fraïssé limit of all finite graphs is the random graph, the unique
countable graph such that for every two finite disjoint sets of vertices
U, V, there exists a vertex x which is connected by an edge to all vertices
in U and to no vertices in V.

• Let m ≥ 3 be a natural number. The class of all finite graphs that do not
contain a copy of Km (an m-clique) amalgamates and its Fraïssé limit is
the ultrahomogeneous Km-free graph.

Continuous examples:

• The Fraïssé limit of all finite metric spaces is the Urysohn space U; if
one considers instead the finite metric spaces of diameter bounded by 1,
one obtains the variant U1 (which is isometric to a sphere of radius 1/2
in U); the corresponding automorphism groups are denoted by Iso(U)
and Iso(U1).

• The Fraïssé limit of all finite-dimensional Hilbert spaces is the infinite-
dimensional, separable Hilbert space H. Its automorphism group is the
unitary group U(H).

• The Fraïssé limit of all finite probability algebras is the standard, non-
atomic measure algebra (all measurable subsets of [0, 1] up to differ-
ences of measure 0 equipped with the Lebesgue measure µ). The au-
tomorphism group is the group of all measure-preserving transforma-
tions Aut(µ).

• The Fraïssé limit of all finite-dimensional Banach spaces is the Gurarij
space G. As opposed to the previous examples, the Gurarij space is only
approximately ultrahomogeneous and not homogeneous.

2.3 Roelcke precompact Polish groups

There are four natural uniformities compatible with the topology on every
topological group G: the left uniformity, generated by entourages of the form

{(g, gv) : g ∈ G, v ∈ V}, V is a symmetric neighborhood of 1G ,

the right uniformity, generated by the entourages

{(g, vg) : g ∈ G, v ∈ V},

the two-sided uniformity, generated by intersections of entourages of the left
and the right uniformities, and finally, the Roelcke uniformity generated by
entourages of the form

{(g, v1gv2) : g ∈ G; v1, v2 ∈ V}.

The Roelcke uniformity was first studied by Roelcke and Dierolf [RD81] and
was given its name by Uspenskij.
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A topological group is Polish iff it is Hausdorff, second countable, and
its two-sided uniformity is complete. In general, the other three uniformi-
ties need not be complete. Specifying different properties of these uniformi-
ties defines different classes of Polish groups that have been widely studied:
for example, the SIN groups for which the left and right uniformities coin-
cide (those include the abelian and the compact groups), the larger class of
CLI groups for which the left (equivalently, the right) uniformity is complete
(those include the locally compact groups), and, finally, the Roelcke precom-
pact groups for which the Roelcke uniformity is precompact. This latter class
plays a central role in this memoir.

An equivalent definition is the following.

Definition 2.3. A topological group G is Roelcke precompact if for every neigh-
borhood V ∋ 1G, there exists a finite set F ⊆ G such that VFV = G.

Roelcke precompact groups were introduced in the book [RD81] by Roel-
cke and Dierolf and were systematically studied by Uspenskij [Usp98; Usp01;
Usp02; Usp08], who also found a number of examples.

The following theorem, proved in [BT13] (and also, independently, by
Rosendal [Ros13]), generalizing a similar result for the non-archimedean case
[Tsa12], makes it fairly easy to check whether a group of isometries is Roelcke
precompact.

Theorem 2.4 ([BT13]). For a Polish group G, the following are equivalent:
(i) G is Roelcke precompact;

(ii) Whenever G acts continuously by isometries on a complete metric space X and
X � G is compact, the action is approximately oligomorphic;

(iii) There exists a Polish metric space X and a homeomorphic group embedding
G ↪→ Iso(X) such that the induced action G ↷ X is approximately oligomor-
phic.

Theorem 2.4 readily applies in a number of situations to recover some old
results: for example, the unitary group of a separable Hilbert space [Usp98],
the automorphism group of a standard probability space [Gla12], the isome-
try group of the bounded Urysohn space [Usp08], and the isometry group of
the Gurarij space are all Roelcke precompact. On the other hand, the isome-
try group of the unbounded Urysohn space U is not Roelcke precompact: it
acts transitively on U but U2 � Iso(U) = R+ is not compact. As for discrete
examples, all automorphism groups from Subsection 2.2 are Roelcke precom-
pact, as is the automorphism group of any structure ultrahomogeneous in a
finite relational language.

Combining the Ryll-Nardzewski theorem with Theorem 2.4 yields the fol-
lowing corollary.

Corollary 2.5. Let G = Aut(M), where M is a metric structure and suppose that
M � G is compact. Then the following are equivalent:

(i) Th(M) is ω-categorical;
(ii) G is Roelcke precompact.

It turns out that in a number of situations, Roelcke precompact Polish
groups exhibit tame behavior and their actions can be classified: this is the
topic of several of the next sections.
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3 Topological dynamics and Ramsey theory

Let G be a topological group. A G-flow is a compact Hausdorff topological
space equipped with a continuous action of G. A flow is minimal if it has no
proper subflows, or equivalently, if every orbit is dense. A simple application
of Zorn’s lemma yields that every flow contains a minimal subflow; thus,
while there is, in general, no decomposition of flows into minimal subflows,
understanding the minimal flows of a certain group G is an important step
in studying its topological dynamics.

A G-ambit is a G-flow with a distinguished point whose orbit is dense. A
continuous map π : X → Y is a morphism of G-flows if it commutes with the
G-action. It is a morphism of ambits if, moreover, it sends the distinguished
point of X to the distinguished point of Y. Note that there exists at most one
morphism between two ambits.

For every group G, there exists a universal G-ambit, one that maps onto
every other ambit. It can be constructed as the Gelfand space S(G) of the
C∗-algebra RUCB(G) of bounded, right uniformly continuous functions on
G (also known as the Samuel compactification of G). G embeds naturally as a
dense subset of S(G) and it is easy to see that (S(G), 1G) is a universal ambit.
It follows that every minimal subset of S(G) is universal for the minimal
flows of G, that is, it maps onto every minimal G-flow. It is a classical result
of Ellis that this universal property defines a unique (up to isomorphism)
minimal flow, called the universal minimal flow (UMF) of G and denoted by
M(G). See Uspenskij [Usp00] for a short proof of this fact.

Universal minimal flows are usually complicated and difficult to under-
stand. For example, if G is a discrete group, then its universal ambit is
(βG, 1G), where βG is the Stone–Čech compactification of G, the space of all
ultrafilters on G. Then every minimal subset of βG is isomorphic to M(G);
note that if G is infinite, then M(G) is never metrizable simply because βG
has no non-trivial convergent sequences. Similarly, for a locally compact,
non-compact group G, M(G) is never metrizable.

It is a remarkable fact, discovered by Herer and Christensen [HC75], that
there exist Polish groups that admit no non-trivial minimal flows whatsoever,
the so called extremely amenable groups. Equivalently, a topological group is
extremely amenable if every time it acts continuously on a compact space, there
is a fixed point. The proof of Herer and Christensen proceeds by showing
that the group that they construct (the completion of C(2N) with respect to a
distance defined using a pathological submeasure) admits no non-trivial uni-
tary representations, or is exotic according their terminology; as it is amenable
(being abelian), every time it acts on a compact space, there is an invariant
measure µ and the fact that the natural representation G ↷ L2(µ) is triv-
ial implies that µ concentrates on the set of G-fixed points. The terminol-
ogy used in their paper suggests that they regarded the phenomenon that
they had discovered as rather exceptional. It was not until Gromov and Mil-
man [GM83] showed that the unitary group U(H) is extremely amenable by
using concentration of measure that it was realized that extreme amenabil-
ity is, in fact, quite widespread. Soon thereafter, many new examples were
found using similar techniques. In fact, all of the continuous examples from
Subsection 2.2 except the isometry group Iso(G) of the Gurarij space are ex-
tremely amenable and this can be proved using the concentration of measure
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technique (see Section 10 for a slightly different approach to these results),
and it is an open question whether Iso(G) is extremely amenable. See the
book by Pestov [Pes06] for more background, examples, and references on
extreme amenability.

A turning point in the theory of extremely amenable groups was marked
by the work of Pestov [Pes98], who used the Ramsey theorem to show that
the group Aut(Q) is extremely amenable. As Aut(Q) embeds as a dense sub-
group of the group of orientation-preserving homeomorphisms of the reals,
Homeo+(R), this also implies that Homeo+(R) is extremely amenable. Since
Homeo+(R) is isomorphic to the stabilizer of a point in the homeomorphism
group of the circle Homeo(S1), one obtains that the UMF of Homeo(S1)
is S1. Indeed, S1 ∼= Homeo(S1)/ Homeo+(R) is a homogeneous space of
Homeo(S1) and every time Homeo(S1) acts on a compact space X, there is a
point x0 ∈ X fixed by Homeo+(R) and so one obtains a natural continuous
map Homeo(S1)/ Homeo+(R) → Homeo(S1) · x0 which must be onto X if X
is minimal. As we will see below, a variation of this technique for calculating
universal minimal flows turns out to be quite versatile.

Still using the Ramsey theorem, Glasner and Weiss [GW02] proved that
the universal minimal flow of S∞ is isomorphic to LO, the compact space of
all linear orderings on a countable set (on which S∞ acts naturally by permu-
tations). This provided the first example of a non-transitive, metrizable UMF.
Using similar methods, they also calculated [GW03] the UMF of Homeo(2N).

Inspired by these results, Kechris, Pestov, and Todorcevic [KPT05], work-
ing in the framework of ultrahomogeneous structures, described a precise
correspondence between the Ramsey property (elaborated by combinatori-
alists in the 1970s and 1980s) and extreme amenability. They used this
correspondence and known results from structural Ramsey theory to find
many new examples of extremely amenable, non-archimedean groups: the
automorphism groups of the random ordered graph, lexicographically or-
dered vector spaces over finite fields, the lexicographically ordered atomless
Boolean algebra, etc. They also developed tools for calculating the UMF of
groups using the extreme amenability of a subgroup (more on this below).
Their paper inspired a lot of new work in structural Ramsey theory: see
Nguyen Van Thé [Ngu13] for many examples and an account of recent de-
velopments.

The equivalence proved by Kechris, Pestov, and Todorcevic also suggested
the possibility of proving structural Ramsey theorems using dynamical meth-
ods. The idea of using topological dynamics in Ramsey theory is certainly
not new: for example, there are well-known dynamical proofs of Van der
Waerden’s theorem and Hindman’s theorem. However, proofs from struc-
tural Ramsey theory are significantly more complicated and often not very
transparent, so the possibility of a uniform approach to those results using
dynamics seems particularly attractive.

3.1 The Ramsey property and extreme amenability

Let M be a classical, ultrahomogeneous structure and let A and B be finite
structures in the age of M. We will denote by (B

A) the set of all embeddings
of A into B and by (M

A) the set of all embeddings of A into M.
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Definition 3.1. We say that M has the Ramsey property if for every natural
number k, every pair of finite substructures A, B ⊆ M, and every coloring
c : (M

A) → k, there exists f ∈ (M
B ) such that c| f ◦(B

A)
is constant.

Remark 3.2. The property defined above is usually referred to as the Ramsey
property for embeddings. If finite substructures of M are rigid (i.e., have no
automorphisms), then the Ramsey property for embeddings is equivalent to
the regular Ramsey property where one colors copies of A in M rather than
embeddings, but in general, coloring embeddings is better adapted to our
framework.

The classical Ramsey theorem can be stated as the fact that the structure
(Q,<) has the Ramsey property.

The correspondence discovered by Kechris, Pestov, and Todorcevic can
now be formulated as follows.

Theorem 3.3 (Kechris–Pestov–Todorcevic). Let M be a discrete, ultrahomoge-
neous structure and let G = Aut(M). Then the following are equivalent:

(i) M has the Ramsey property;
(ii) G is extremely amenable.

In connection with Remark 3.2, one should note that G always acts on the
compact space of linear orderings on M, so in particular, if G is extremely
amenable, then there is always a G-invariant linear order on M, which means
that all finite substructures of M are automatically rigid.

While most ω-categorical structures do not have the Ramsey property (as
noted above, the Ramsey property for an ω-categorical structure requires a
definable ordering), in many cases, it suffices to expand the structure by an
appropriate ordering and, possibly, some other relations to obtain another
structure which does have the Ramsey property and is still ω-categorical. If
that happens, we obtain complete information about the Ramsey theory of
the original structure and it is easy to calculate the universal minimal flow of
its automorphism group as we explain in the next subsection. The question
whether such an expansion always exists was raised by Bodirsky, Pinsker and
the author in [BPT13].

Question 3.4 ([BPT13]). Let M be an ω-categorical structure. Does there al-
ways exist an ω-categorical expansion M′ of M with the Ramsey property?

A variant of this question asks whether if M is ultrahomogeneous in a
finite relational language, one can find a Ramsey expansion M′ with the same
property. See Section 8 for some further motivation for those questions.

3.2 Precompact homogeneous spaces and universal minimal flows

If G is a topological group and H ≤ G is a closed subgroup, the homogeneous
space G/H carries a natural uniform structure (which is the quotient of the
right uniform structure on G) whose entourages are of the form

UV = {(gH, vgH) : g ∈ G, v ∈ V}, where V is a symmetric nbhd of 1G.

Note that this uniformity is usually not complete; we will denote its com-
pletion by Ĝ/H. As the action G ↷ G/H is by uniform isomorphisms, it
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extends to a continuous action G ↷ Ĝ/H.
We say that the homogeneous space G/H is precompact (or that H is co-

precompact in G) if Ĝ/H is compact; equivalently, if for every open V ∋ 1G,
there is a finite set F ⊆ G such that VFH = G. Then (Ĝ/H, H) is a metrizable
G-ambit that has the following universal property: for every G-ambit (X, x0)

such that x0 is a fixed point of H, there exists a unique morphism π : Ĝ/H →
X such that π(H) = x0. Note also that the orbit of H in Ĝ/H is a dense Gδ

set and a simple Baire category argument shows that, if Ĝ/H is minimal, the
orbit G · x0 is dense Gδ in any quotient (X, x0) of (Ĝ/H, H).

An easy criterion for co-precompactness of subgroups of automorphism
groups is the following. Let M be an ω-categorical structure, G = Aut(M),
and let H ≤ G. Then G/H is precompact iff the action H ↷ M is approxi-
mately oligomorphic.

The notion of a precompact homogeneous space gives us yet another
equivalent definition of Roelcke precompactness: a non-archimedean Pol-
ish group G = Aut(M) is Roelcke precompact iff for every open subgroup
V ≤ G, the (discrete) homogeneous space G/V is precompact. In this case,
the compactification Ĝ/V can be identified with the space of types of the
sort determined by V with parameters from the model M. As an example, if
G = Aut(Q) and V is the stabilizer of a single point, Ĝ/V can be identified
with the unit interval [0, 1] where each rational point except 0 and 1 is split
into three. In this case G/V, being discrete, is open in the compactification.
This also gives a convenient characterization of ω-stability in terms of the
automorphism group: an ω-categorical, discrete structure M with automor-
phism group G is ω-stable if Ĝ/V is countable for every open V ≤ G. See
Section 9 for a bit more on stability theory.

If M is an ω-categorical structure and M′ is an expansion of M, then
Aut(M′) is co-precompact in Aut(M) iff M′ is ω-categorical.

A common strategy for calculating the universal minimal flow of a group
G, first elaborated by Pestov [Pes06], is the following. First one finds a closed,
co-precompact, extremely amenable subgroup H ≤ G, for example, by guess-
ing and proving a Ramsey theorem for an appropriate expansion of the orig-
inal structure. By the extreme amenability of H and the universal property
of Ĝ/H, every minimal subflow of Ĝ/H is isomorphic to M(G); in practice,
if one has guessed correctly, it often happens that Ĝ/H is already minimal.
To illustrate this method, consider the case G = S∞ and H = Aut(Q): then
the homogeneous space G/H is precompact and one can naturally view it as
the space of all linear orderings isomorphic to (Q,<); the completion Ĝ/H
is isomorphic to the space LO of all linear orderings; by inspection, LO is
minimal; finally, as H is extremely amenable, LO is the universal minimal
flow of S∞.

Quite remarkably, all known metrizable UMFs are of the form G ↷ Ĝ/H
for some closed, co-precompact, extremely amenable subgroup H ≤ G. This
suggests the following strategy for exploiting the equivalences from Corol-
lary 2.5 and Theorem 3.3 to answer Question 3.4 in the affirmative.

(i) Prove that the universal minimal flow of a Roelcke precompact, non-
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archimedean Polish group is always metrizable;
(ii) Show that (possibly under some hypothesis on the group) a metrizable

universal minimal flow necessarily has a Gδ orbit (which, by the Baire
category theorem, must be unique);

(iii) Prove that the stabilizer of a point in the Gδ orbit of a UMF is extremely
amenable.

Item (ii) was also asked as a question by Angel, Kechris, and Lyons in
[AKL12].

In [MNT14], jointly with J. Melleray and L. Nguyen Van Thé, we investi-
gated item (iii) and proved the following theorem.

Theorem 3.5 ([MNT14]). Let G be a Polish group and M(G) be its universal
minimal flow. Then the following are equivalent:

(i) The flow M(G) is metrizable and has a Gδ orbit.
(ii) There is a closed, co-precompact, extremely amenable subgroup H ≤ G such

that M(G) = Ĝ/H.

In an independent effort, using very different techniques, Zucker [Zuc14b]
proved, in the case of non-archimedean groups, a stronger theorem in which
items (ii) and (iii) are dealt with simultaneously.

Theorem 3.6 (Zucker). Let G be a non-archimedean Polish group with a metriz-
able universal minimal flow. Then there exists a closed, co-precompact, extremely
amenable subgroup H ≤ G such that M(G) ∼= Ĝ/H.

In view of Theorem 3.6 and the discussion above, a positive answer to
the following question will imply a positive answer to Question 3.4 (and is
equivalent to it in the case of non-archimedean groups).

Question 3.7 ([MNT14]). Is it true that the universal minimal flow of a Roelcke
precompact Polish groups is always metrizable?

3.3 General consequences about the minimal flows

If the universal minimal flow of a group G is of the form Ĝ/H for some
closed, co-precompact H ≤ G, this gives a lot of information about the other
minimal flows of G as the next couple of results show.

The way one proves the uniqueness of the UMF is by showing that it is
coalescent, i.e., that every endomorphism of the flow is an automorphism. If
the universal minimal flow of a group G is of the form Ĝ/H, then all minimal
flows of G are coalescent.

Theorem 3.8 ([MNT14]). Let G be a Polish group. Then the following statements
hold:

(i) Every minimal G-flow of the form Ĝ/H is coalescent and has a compact auto-
morphism group;

(ii) If M(G) = Ĝ/H for some closed, co-precompact H ≤ G, then the conclusion
of (i) is true for every minimal G-flow.
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An important concept in topological dynamics is that of proximality: two
points x and y in a G-flow X are proximal if there exists a net {gα}α of elements
of G such that limα gα · x = limα gα · y; a flow is proximal if every two points are
proximal. Every topological group G admits a universal minimal proximal flow
of which every other minimal proximal flow is a factor (see Glasner [Gla76]
for details).

Theorem 3.9 ([MNT14]). Let G be a Polish group and H a closed, co-precompact
subgroup such that M(G) = Ĝ/H. Let N(H) denote the normalizer of H in G.
Then the universal minimal proximal flow of G is isomorphic to ̂G/N(H).

4 Classification of the minimal flows

4.1 Smoothness of isomorphism

As we saw in the previous section, once we know that the UMF of a group G
is of the form Ĝ/H, this provides ample information about all minimal flows
of G. Here we show that the minimal flows of G are classifiable in a sense
that we explain below.

Recall that an equivalence relation E on a Polish space X is smooth if there
is a standard Borel space Y and a Borel function f : X → Y such that

x1 E x2 ⇐⇒ f (x1) = f (x2).

Smooth equivalence relations are those that can be classified using real num-
bers (or elements of any other uncountable Polish space) as invariants.

An example of a smooth equivalence relation is measure-theoretic iso-
morphism of Bernoulli shifts: by a well-known theorem of Ornstein, they are
classified by their entropy. However, smoothness of isomorphism is a rather
rare phenomenon for dynamical systems of discrete groups and, in general,
isomorphism equivalence relations are rather complicated. An example of a
recent non-classification result in topological dynamics, due to Gao, Jackson,
and Seward [GJS12], is that isomorphism of minimal subshifts of any infinite,
countable group is not smooth.

In contrast, if the UMF of a Polish group G is metrizable and has a Gδ

orbit (by Zucker’s Theorem 3.6, the second condition is automatic if G is
non-archimedean), the techniques developed in [MNT14] easily yield that the
equivalence relation of isomorphism of minimal flows of G is smooth. First,
to make sense of this statement, we need a parametrization of the minimal
flows of G by the elements of a Polish space. As M(G) is metrizable and every
minimal flow of G is a quotient of M(G) by an invariant closed equivalence
relation (icer), it is natural to parametrize the minimal flows of G by the space
of all icers on M(G) (the space of icers is a Gδ subset of the hyperspace of
compact subsets of M(G)2 and therefore Polish). Then one can prove that for
two icers R1 and R2,

M(G)/R1
∼= M(G)/R2 ⇐⇒ ∃h ∈ Aut(M(G)) h · R1 = R2.

As Aut(M(G)) is a compact group, we obtain the following.
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Theorem 4.1 ([MNT14]). Let G be a Polish group such that M(G) is metrizable
with a generic orbit. Then the equivalence relation of isomorphism of minimal flows
of G is smooth.

4.2 The minimal flows of S∞

The fact that isomorphism of minimal flows of a group G is smooth means
that, at least in principle, the minimal flows can be classified. Of course,
the simplest case is when G is extremely amenable: then there is only one
minimal flow. In this subsection, we study the less trivial example of S∞
and give a complete description of the category of minimal flows of this
group: it turns out that it admits only countably many minimal flows (up to
isomorphism) and morphisms between them.

Let G be a group such that its UMF is of the type Ĝ/H for some closed,
co-precompact subgroup H ≤ G. If G ↷ X is any minimal G-flow and
π : Ĝ/H → X is a G-map, it is not difficult to see that the orbit of x0 = π(H)
in X is also Gδ and the stabilizer Gx0 is a closed subgroup of G containing H.
In particular, π factors as the composition of the two maps:

Ĝ/H → Ĝ/Gx0 → X,

where the second is one-to-one on the Gδ orbit of Ĝ/Gx0 (we will call such
maps almost one-to-one). Thus we see that the task of finding all quotients of
Ĝ/H splits into two: finding all closed subgroups K between H and G and
then identifying the almost one-to-one quotients of each Ĝ/K.

If H is the automorphism group of an ω-categorical structure M, the
closed subgroups between H and S∞ correspond to the first-order reducts of
M: structures that can be defined in M using first-order formulas. Reducts
have been classified for a number of structures; see Section 8 for more infor-
mation about them.

Recall that, by the result of Glasner and Weiss [GW02], the universal mini-
mal flow of S∞ is the space LO of all linear orderings on the natural numbers,
which can be represented as Ŝ∞/H for H = Aut(Q). The reducts of (Q,<)
have been explicitly described by Cameron [Cam76] (but his results can be
deduced from earlier work of Frasnay [Fra65]): the non-trivial ones are the
betweenness relation, the circular order, and the separation relation (see be-
low for the definitions), marked in bold in Figure 1.

The most convenient way for us to describe the minimal flows is via
equivariant maps LO → 2Nk

for various numbers k; then the images of LO by
those maps will be necessarily minimal flows and our main theorem states
that they will exhaust all minimal flows of S∞. Glasner and Weiss [GW02]
had previously proved that for every k, 2Nk

contains only finitely many min-
imal subsets without describing them; however it is not a priori clear that
all minimal flows of S∞ embed in 2Nk

for some k and not even that they are
zero-dimensional.

Another easy fact that we will need is that the automorphism group of
the flow LO is of order 2; we will denote its non-identity element, the flip, by
θ.
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Figure 1: The minimal flows of S∞ and the morphisms between them

The betweenness relation. For every x ∈ LO, define the betweenness relation
Bx ⊆ N3 by

Bx(a, b, c) ⇐⇒ (a <x b <x c) ∨ (c <x b <x a).

Let BR = {Bx : x ∈ LO} ⊆ 2N3
. BR can be regarded as the quotient of

LO by the flip.
The circular order. If x ∈ LO, define the circular order Kx ⊆ N3 by

Kx(a, b, c) ⇐⇒ (a <x b <x c) ∨ (b <x c <x a) ∨ (c <x a <x b).

Let CO = {Kx : x ∈ LO} ⊆ 2N3
.

The separation relation. For x ∈ LO, define the separation relation Sx ⊆ N4

by

Sx(a, b, c, d) ⇐⇒
(
Kx(a, b, c) ∧ Kx(b, c, d) ∧ Kx(c, d, a)

)
∨(

Kx(d, c, b) ∧ Kx(c, b, a) ∧ Kx(b, a, d)
)

⇐⇒ Bx(a, b, c) ∧ Bx(b, c, d) ∧ Bx(c, d, a) ∧ Bx(d, a, b).

Let SR = {Sx : x ∈ LO} and note that SR = CO/θ.
Almost one-to-one factors of LO. For m, n ≥ 1 and x ∈ LO, define Px

m,n ⊆
Nm+n+1 as follows:

Px
m,n(a1, . . . , am, b, c1, . . . , cn) ⇐⇒(∧

i
ai <x b

)
∧
(∧

i
b <x ci

)
∧
( ∧

i ̸=j

ai ̸= aj
)
∧
( ∧

i ̸=j

ci ̸= cj
)
.

Let LOm,n = {Px
m,n : x ∈ LO}. Denote by RLO

m,n the equivalence relation
on LO given by

x RLO
m,n y ⇐⇒ Px

m,n = Py
m,n.
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It is clear from the definition that θ(RLO
m,n) = RLO

n,m, so that LOm,n and
LOn,m are isomorphic. The automorphism θ of LO factors to an auto-
morphism of LOm,n iff m = n.
The flow LOm+1,n is a factor of LOm,n as can be seen from the represen-
tation:

Px
m+1,n(a1, . . . , am+1, b, c1, . . . , cn) ⇐⇒

Px
m,n(a1, . . . , am, b, c1, . . . , cn) ∧ Px

m,n(a2, . . . , am+1, b, c1, . . . , cn).

Almost one-to-one factors of BR. For n ≥ 1 and x ∈ LO, define Qx
n ⊆ N2n+1

by

Qx
n(a1, . . . , an, b, c1, . . . , cn) ⇐⇒

∧
i,j

Bx(ai , b, cj) ∧
∧
i,j
¬Bx(ai , b, aj)∧

∧
i,j
¬Bx(ci , b, cj)

⇐⇒ Px
n,n(ā, b, c̄) ∨ Px

n,n(c̄, b, ā).

Denote BRn = {Qx
n : x ∈ LO}. The first definition shows that BRn

is a factor of BR and the second that it is isomorphic to the quotient
LOn,n/θ. The factor map BR → BRn is almost one-to-one and it is an
isomorphism iff n = 1.
The flow BRn+1 is a factor of BRn via the map defined by

Qx
n+1(a1, . . . , an+1, b, c1, . . . , cn+1) ⇐⇒
Qx

n+1(a1, . . . , an, b, c1, . . . , cn) ∧ Qx
n+1(a2, . . . , an+1, b, c2, . . . , cn+1).

Theorem 4.2. The diagram on Figure 1 represents the category of minimal flows of
S∞, that is all minimal flows of S∞ and all morphisms between them, in the sense
that every morphism is a composition of arrows on the diagram. (The trivial flow
and the morphisms to it are omitted.)

After this theorem had been proved, I became aware of the work of Fras-
nay [Fra65] on the classification of monomorphic relations and it turns out that
the description of the S∞-equivariant factors of LO can be derived from it.
For this reason and because the proof of Theorem 4.2 is rather long and not
very enlightening, I do not include it here. Not surprisingly, the main com-
binatorial tool used in the argument is the Ramsey theorem.

It will be very interesting to describe the minimal flows of other groups
for which the UMF is metrizable, for example, GL(∞, Fq) or the automor-
phism group of the random graph. In problems of this type, it is difficult to
conjecture the answer in advance as new objects appear during the process
of classification: for instance, the flows LOm,n and BRn were discovered dur-
ing my attempts to prove that non-trivial, almost one-to-one quotients do not
exist.

Two more general questions are the following.

Question 4.3. What Polish groups admit only countably many minimal flows?

Of course, here one cannot hope for a complete answer but it will be in-
teresting to have a somewhat general sufficient condition. Good candidates
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are non-archimedean Polish groups G whose UMFs are finitely generated, i.e.
there exists a finite clopen partition of M(G) such that its G-translates sepa-
rate the points of M(G). Some condition of this type is necessary as even very
simple compact groups such as (Z/2Z)N admit uncountably many minimal
flows.

Question 4.4. For which non-archimedean, Polish groups are all of their min-
imal flows zero-dimensional?

This is true for S∞ by Theorem 4.2 but only a fortiori. A non-archimedean
Roelcke precompact group that admits a connected minimal flow is the auto-
morphism group G of the dense circular order (the stabilizer of a point in the
Gδ orbit of CO) as it acts minimally on the circle (with two orbits). In fact, the

universal minimal flow of G is ̂G/ Aut(Q) and it has only two other minimal
flows: the circle and the one-point flow. A natural condition to impose in
order to avoid this type of example is to require that the group be minimal in
the sense of Subsection 9.2.

5 A criterion for amenability of non-archimedean Polish
groups

For a topological group G, denote by RUCB(G) the algebra of bounded, right
uniformly continuous functions on G equipped with the sup norm. The
group G acts continuously by isometries on RUCB(G) by

(s · f )(x) = f (s−1x). (5.1)

A mean on a commutative C∗-algebra with unit is a positive linear functional
m such that m(1) = 1.

Definition 5.1. A topological group G is amenable if there exists a G-invariant
mean on the algebra RUCB(G).

Equivalently, G is amenable iff every time it acts continuously on a com-
pact space, there is an invariant measure. For locally compact groups, there
is also an equivalent combinatorial definition in terms of almost invariant
L1 functions or Følner sets (see, e.g., [Gre69]). It turns out that there is also
a similar combinatorial condition for non-archimedean Polish groups. It is
based on the simple fact that if V is an open subgroup of G, then ℓ∞(V\G)
embeds naturally in RUCB(G) as functions on G constant on right V-cosets
and, moreover, if G is non-archimedean, the union of ℓ∞(V\G) over all open
V ≤ G is dense in RUCB(G).

Let G be non-archimedean, g ∈ G and let V, K ≤ G be open subgroups
such that K ≤ gVg−1. Let Φg : ℓ1(G\K) → ℓ1(V\G) denote the linear con-
traction defined by

Φg(θ)(Vy) = ∑
{Kx:Vg−1x=Vy}

θ(Kx).

The analogue of the Reiter condition for non-archimedean Polish groups is
given by the following theorem.
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Theorem 5.2. Let G be a non-archimedean Polish group. Then the following are
equivalent:

(i) G is amenable;
(ii) for every open subgroup V ≤ G, finite set Q ⊆ G with 1G ∈ Q, and every

ϵ > 0, there exists a function θ ∈ ℓ1(K\G) such that θ ≥ 0, ∥θ∥1 = 1 and
for all g ∈ Q,

∥Φg(θ)− Φ1G (θ)∥1 < ϵ,

where K =
∩

g∈Q gVg−1.

Proof. (ii) ⇒ (i). It suffices for every finite set f1, . . . , fn ∈ RUCB(G) with
∥ fi∥∞ = 1 for all i, finite Q ⊆ G, and ϵ > 0, to find a mean m ∈ RUCB∗(G)
such that |m( fi)− m(g · fi)| < ϵ for every g ∈ Q and then apply a compact-
ness argument. Since f1, . . . , fn ∈ RUCB(G), there exists an open subgroup
V ≤ G and functions f̃1, . . . , f̃n ∈ ℓ∞(V\G) of norm not greater than 1 such
that for every x ∈ G and every i, | fi(x)− f̃i(Vx)| < ϵ. Let now K ≤ G and
θ ∈ ℓ1(K\G) be as in (ii) and for each coset τ ∈ K\G choose a representative
xτ ∈ τ. Define m ∈ RUCB∗(G) by

m( f ) = ∑
τ∈K\G

θ(τ) f (xτ).

We have, for any g ∈ Q and i ≤ n,

|m(g · fi)− m( fi)| = | ∑
τ∈K\G

θ(τ) fi(g−1xτ)− ∑
τ∈K\G

θ(τ) fi(xτ)|

≤ | ∑
τ∈K\G

θ(τ) f̃i(Vg−1xτ)− ∑
τ∈K\G

θ(τ) f̃i(Vxτ)|+ 2ϵ

= | ∑
Kx∈K\G

θ(Kx) f̃i(Vg−1x)− ∑
Kx∈K\G

θ(Kx) f̃i(Vx)|+ 2ϵ

= |⟨ f̃i , Φg(θ)⟩ − ⟨ f̃i , Φ1G (θ)⟩|+ 2ϵ

≤ ∥ fi∥∞∥Φg(θ)− Φ1G (θ)∥1 + 2ϵ

< 3ϵ.

(i) ⇒ (ii). Now suppose that m is an invariant mean on RUCB(G). Fix
an open V ≤ G and a finite Q ⊆ G. Let K =

∩
g∈Q gVg−1. Since ℓ∞(K\G)

embeds in RUCB(G), we can consider m as an element of ℓ∞(K\G)∗.
Let D be the convex set of all positive functions in ℓ1(K\G) of norm 1

(which we also consider as a subset of ℓ∞(K\G)∗). By a standard Hahn–
Banach argument, D is weak∗ dense in the set of means in ℓ∞(K\G)∗, so in

particular, m ∈ Dw∗
.

Now consider the following subset of ℓ1(V\G)Q:

E = {(Φg(θ)− Φ1G (θ))g∈Q : θ ∈ D}.

Claim. 0 ∈ Ew.

Proof. Let {θα}α be a net in D that weak∗ converges to m. Fix g ∈ Q and
let f ∈ ℓ∞(V\G). Let the function f g ∈ ℓ∞(K\G) be defined by f g(Kx) =
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f (Vg−1x). Note that if one considers both f and f g as elements of RUCB(G)
and a is the action G ↷ RUCB(G) given by (5.1), then f g = a(g) · f . Since
θα → m, by the invariance of m, we have that

⟨ f g, θα⟩ → ⟨ f g, m⟩ = ⟨a(g) · f , m⟩ = ⟨ f , m⟩. (5.2)

We now have

⟨ f , Φg(θα)− Φ1G (θα)⟩ = ∑
Vy∈V\G

f (Vy)
(
Φg(θα)(Vy)− Φ1G (θα)(Vy)

)
= ∑

Vy∈V\G
f (Vy)

(
∑

{Kx:Vg−1x=Vy}
θα(Kx)− ∑

{Kx:Vx=Vy}
θα(Kx)

)
= ∑

Kx∈K\G
θα(Kx) f (Vg−1x)− ∑

Kx∈K\G
θα(Kx) f (Vx)

= ⟨ f g, θα⟩ − ⟨ f , θα⟩.

Taking limits and applying (5.2), one obtains the claim.

The set E is convex as an affine image of the convex set D. By the Claim
and Mazur’s theorem, we conclude that 0 is in the norm closure of E, whence
the result.

Remark 5.3. A related condition also appeared in a recent paper of Moore
[Moo13]. Theorem 5.2, however, predates his work.

Condition (ii) in Theorem 5.2 seems difficult to verify in practice. Most
known non-locally compact, amenable subgroups of S∞ are either extremely
amenable (and one checks this via the Ramsey property) or admit an increas-
ing sequence of compact subgroups whose union is dense. Another practi-
cal way to verify whether a group is amenable is to calculate the universal
minimal flow: then it is a matter of checking whether it admits an invari-
ant measure. This method was used by Kechris and Sokić [KS12] to show
that the automorphism group of the universal ultrahomogeneous partial or-
der, among others, is not amenable. Their approach was further refined by
Zucker [Zuc14a], who showed that the automorphism groups of the homo-
geneous directed graph S(3) and the boron tree homogeneous structure are
also not amenable.

6 Unitary representations and property (T)

If G is a topological group, a unitary representation of G is an action G ↷π H

on a complex Hilbert space H by unitary isomorphisms. We will always
assume that representations are continuous, i.e., for every ξ ∈ H, the map
G → H, g 7→ π(g) · ξ is continuous. An important property of unitary rep-
resentations is their complete reducibility: if K ⊆ H is an invariant subspace,
then H = K⊕K⊥, where K⊥ is also invariant. A representation π is called
irreducible if H(π) does not admit non-trivial invariant subspaces.

The main goal of representation theory is to describe the irreducible rep-
resentations of a given group G and how other important representations are
decomposed in terms of irreducibles. A satisfactory theory has been devel-
oped for locally compact groups (see, e.g., Folland [Fol95]): the Haar measure
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on the group ensures the existence of at least one non-trivial representation
(the left regular representation G ↷ L2(G)), the Gelfand–Raikov theorem af-
firms that there always exists a sufficient supply of irreducibles, and there is
an an elaborate theory for decomposing general representations into direct
integrals of irreducibles. Decomposition of representations is particularly
well behaved and understood for abelian and compact groups as well as,
more generally, for the so called groups of type I.

Definition 6.1. A topological group is said to be of type I if for every repre-
sentation π for which the von Neumann algebra generated by π is a factor,
it is a factor of type I.

Groups of type I are those whose unitary dual can be classified. Glimm
has shown that for a locally compact Polish group, the equivalence rela-
tion of isomorphism on the space of irreducible representations is smooth
iff the group is of type I. In the the other direction, for discrete groups,
Hjorth [Hjo97] showed that when G is not of type I (equivalently, abelian-
by-finite [Tho68]), the irreducible representations of G are not classifiable
by countable structures. In this section, following [Tsa12], we will see that
non-archimedean, Roelcke precompact Polish groups are of type I and will
provide an explicit description of their representations.

For non-locally compact groups, many of the basic results in harmonic
analysis break down. There are groups that do not admit any non-trivial
representations, but sometimes there are subtler problems: for example, the
group L0(T) of measurable maps from the interval to the torus admits plenty
of unitary representations but has no irreducible ones (see Solecki [Sol12] for
a complete classification).

As for non-archimedean groups, continuous actions on discrete sets sep-
arate points, they always admit enough unitary representations. (If G ↷ M
is a continuous action on a discrete set, there is a natural associated unitary
representation on ℓ2(M).) It turns out that for those groups, there are also
plenty of irreducible representations and we have the following analogue of
the Gelfand–Raikov theorem.

Theorem 6.2 ([Tsa12]). Let G be a non-archimedean Polish group. Then for every
x, y ∈ G, x ̸= y, there exists a continuous, irreducible, unitary representation π of
G such that π(x) ̸= π(y).

This theorem indicates that for non-archimedean Polish groups, one can
still hope for a satisfactory theory.

A natural class of Polish groups that includes the non-archimedean and
the locally compact groups and is closed under subgroups and countable
products was isolated in recent work of Kwiatkowska and Solecki [KS11],
namely, the class of isometry groups of Polish locally compact metric spaces.
Perhaps more informatively, a Polish group G belongs to this class iff every
neighborhood of 1G contains a closed subgroup H such that G/H is locally
compact and the normalizer of H is open in G (see [KS11] for details). We
are therefore led to the following question.

Question 6.3. If G is an isometry group of a locally compact Polish metric
space, is it true that irreducible unitary representations of G separate points?
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Despite the hurdles outlined above, it is possible to obtain rather explicit
classification results for the unitary representations of some special classes
of non-locally compact groups. In fact, it seems quite plausible that Roelcke
precompact groups behave in a manner similar to compact groups as far as
unitary representations are concerned.

Question 6.4. Let G be a Roelcke precompact Polish group. Is it true that G
has only countably many irreducible representations and that every repre-
sentation splits as a direct sum of irreducibles?

The main result of [Tsa12] is that this is indeed the case for Roelcke pre-
compact, non-archimedean, Polish groups and moreover, for those groups, it
is possible to describe the irreducible representations quite explicitly. Such
descriptions are also known for the unitary group (Kirillov [Kir73] and Ol-
shanski [Ols78]) and Aut(µ) (Neretin [Ner96]). There are also many Roelcke
precompact Polish groups that do not admit unitary representations whatso-
ever (see Section 9 for some examples).

In the rest of this section, we proceed to describe the representations in
the non-archimedean case.

6.1 A description of the representations

Induction of representations is a standard method to obtain representations
of a group G from representations of a subgroup H. One way to view in-
duction is as the left adjoint of the functor that restricts a representation of
G to a representation of H. In general, to be able to define an induced rep-
resentation, one needs a measure on the homogeneous space G/H that is
quasi-invariant with respect to the action of G. Such a measure always ex-
ists if G is locally compact but not in general. Recently, Ackermann, Freer
and Patel [AFP12], following work of Petrov and Vershik [PV10], found a
necessary and sufficient condition on H for an invariant probability measure
to exist on G/H in the case where G = S∞; it is an interesting open ques-
tion to decide what happens in general. In any case, here we will only need
to induce from open subgroups, and in that case, one can use the counting
measure.

Let H be an open subgroup of a topological group G and let σ be a rep-
resentation of H on the Hilbert space H(σ). Let K be the Hilbert space of all
functions f : G → H(σ) that are H-equivariant, i.e. such that

f (xh−1) = σ(h) · f (x) for all x ∈ G, h ∈ H, (6.1)

equipped with the norm

∥ f ∥2 = ∑
g∈T

∥ f (g)∥2,

where T is a subset of G that meets each right H-coset in a single point. Then
the action of G on K

(g · f )(x) = f (g−1x)

defines a representation of G which is denoted by IndG
H(σ).
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Of course, in general, the induction construction does not preserve irre-
ducibility nor does the induced representation remember the group it was in-
duced from. However, in the special case of inducing from open subgroups
of Roelcke precompact groups, this does happen, provided that one takes
some care. Say that an open subgroup H ≤ G has no supergroups of finite index
if there is no group H′ such that H < H′ ≤ G and [H′ : H] < ∞. If M is
an ω-categorical, discrete structure and G = Aut(M), open subgroups of G
with no supergroups of finite index are exactly the stabilizers of algebraically
closed elements of Meq.

Proposition 6.5 ([Tsa12]). Let G be Roelcke precompact. Then the following hold:

(i) If H ≤ G has no supergroups of finite index, V ⊴ H is open, and σ is a
representation of H/V, then IndG

H(σ) is irreducible iff σ is.
(ii) If H1, H2 ≤ G have no supergroups of finite index, V1 ⊴ H1, V2 ⊴ H2 are open,

and σ1, σ2 are irreducible representations of H1/V1, H2/V2, respectively, then
IndG

H1
(σ1) ∼= IndG

H2
(σ2) iff there exists g ∈ G such that H2 = Hg

1 and
σ2 ∼= σ

g
1 , where Hg

1 = gH1g−1 and the representation σ
g
1 of H2 is defined by

σ
g
1 (h) = σ1(g−1hg).

If G is a Roelcke precompact subgroup of S∞, it turns out that the repre-
sentations in Proposition 6.5 exhaust all irreducible representations of G.

Theorem 6.6 ([Tsa12]). Let G be a Roelcke precompact, non-archimedean Polish
group. Then every irreducible unitary representation of G is of the form IndG

H(σ),
where H ≤ G is an open subgroup, V ⊴ H, is a normal, open subgroup of finite
index, and σ is an irreducible representation of the group H/V. Moreover, every
unitary representation of G is a sum of irreducibles.

Special cases of Theorem 6.6 had been known before: Lieberman [Lie72]
had classified the representations of S∞ and Olshanski [Ols85] had described
the representations of a certain Roelcke precompact subgroup of GL(∞, Fq).

As every Roelcke precompact, non-archimedean group has only count-
ably many open subgroups, Theorem 6.6 implies that every such group has
only countably many irreducible representations.

If M is an ω-categorical structure, Theorem 6.6 allows to describe the
representations of G = Aut(M) in terms of the structure M. In general,
this requires understanding the imaginary elements of M and we will refer the
reader to [Tsa12] for details; instead we will describe several simple examples
in which we have elimination of imaginaries, so no difficulties appear.

• If G = Aut(Q), then all irreducible representations of G are of the form
G ↷ ℓ2(Q[n]), where Q[n] denotes the set of n-element subsets of Q.

• If G = S∞, then the irreducible representations of G are indexed by
pairs (n, σ), where n is a natural number and σ is an irreducible repre-
sentation of the finite symmetric group Sn.

• If G is the automorphism group of the random graph, then the irre-
ducible representations of G (up to isomorphism) are indexed by pairs
(A, τ), where A is a finite graph and τ is an irreducible representation
of the finite group Aut(A).
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• If G = GL(∞, Fq), the irreducible representations of G are indexed by
pairs (n, σ), where n is a natural number and σ is an irreducible repre-
sentation of GL(n, Fq).

6.2 Property (T)

Property (T) was introduced by Kazhdan [Kaz67], where he used it to show
that lattices in higher rank, simple Lie groups are finitely generated, and
since then has found a large number of applications in group theory, ergodic
theory, and operator algebras. We refer the reader to [BHV08] for an account
of the basic theory.

Definition 6.7. Suppose G is a topological group, Q ⊆ G and ϵ > 0. If
π : G → U(H) is a unitary representation of G, we say that a non-zero vector
ξ ∈ H is (Q, ϵ)-invariant for π if supx∈Q∥π(x)ξ − ξ∥ < ϵ∥ξ∥.

We say that (Q, ϵ) is a Kazhdan pair for G if every unitary representation π
of G that admits a (Q, ϵ)-invariant vector also admits a (non-zero) invariant
vector. A compact set Q ⊆ G is a Kazhdan set for G if there is ϵ > 0 such that
(Q, ϵ) is a Kazhdan pair. G has Kazhdan’s property (T) if admits a Kazhdan
set.

Most of the applications of property (T) have been found in the realm of
locally compact groups, most notably discrete groups, where it is, in general,
impossible to classify the unitary representations.

There is another closely related property, called property (FH), which
states that every affine isometric action of the group on a Hilbert space has
a fixed point. In general, property (T) implies property (FH) and the reverse
implication is true for locally compact Polish groups. It is easy to see that all
Roelcke precompact groups have property (FH) (they have the stronger prop-
erty that every time they act on a metric space, all orbits are bounded; see
Rosendal [Ros09a] for more on this); however proving the stronger property
(T) requires some understanding of the representations and combinatorial
work.

Property (T) was proved in [Tsa12] for a large class of Roelcke precompact,
non-archimedean Polish groups but the question whether it holds for all of
them was left open. This question was positively resolved by Evans and the
author [ET13], where the following theorem was proved.

Theorem 6.8 ([ET13]). Let G be a non-archimedean, Roelcke precompact Polish
group. Then G has property (T). Moreover, if G has only finitely many open sub-
groups of finite index, it admits a finite Kazhdan set.

The main combinatorial result if [ET13] that, combined with the tech-
niques from [Tsa12], permits to deduce Theorem 6.8 is the following.

Theorem 6.9 ([ET13]). Suppose G is a non-archimedean, Roelcke precompact Polish
group and G◦ is the intersection of the open subgroups of finite index in G. Suppose
G◦ ̸= {1G}. Then there exist f , g ∈ G◦ which generate a (non-abelian) free sub-
group F of G◦ with the property that if V ≤ G is open and of infinite index, then F
acts freely on the coset space G/V.
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Combining Theorem 6.8 with a result of Glasner and Weiss [GW97], one
obtains the following interesting corollary.

Corollary 6.10 ([ET13]). Let G be a non-archimedean, Roelcke precompact, Polish
group and G ↷ X a continuous action on a compact Hausdorff space X. Then the
simplex of G-invariant measures on X is a Bauer simplex, i.e., the set of its extreme
points is closed.

As we currently lack sufficient information about unitary representations
of general Polish Roelcke precompact groups, the following question remains
open.

Question 6.11 ([Tsa12]). Does every Roelcke precompact Polish group have
property (T)?

7 Invariant measures

7.1 A generalization of de Finetti’s Theorem

Every measure-preserving action of a group G on a probability space (X, µ)
gives rise to a natural unitary representation on L2(X, µ), the Koopman repre-
sentation associated with the action, defined by:

(g · f )(x) = f (g−1 · x), for g ∈ G, f ∈ L2(X).

The Koopman representation is a classical tool in ergodic theory and many
important concepts can be expressed in terms of this representation: for ex-
ample, ergodicity, weak mixing, mixing, etc. In principle, unitary representa-
tions are easier to understand than measure-preserving actions thus provide
a useful tool for understanding the original action. In view of this, it is natu-
ral to expect that an understanding of the unitary representations of a group
will give us some information about its measure-preserving actions.

If G = Aut(M) is the automorphism group of an ω-categorical, dis-
crete structure M, it turns out that the theory of exchangeable random variables
[Kal05] gives a natural source of measure-preserving actions of G as follows.

Let {ξa : a ∈ M} be a family of random variables indexed by the structure
M whose joint distribution satisfies the following condition (∗):

if ā and b̄ are tuples in M of length n that have the same quantifier-
free type, then (ξa0 , . . . , ξan−1) and (ξb0 , . . . , ξbn−1) have the same
distribution.

An easy example of this situation is when the variables {ξa : a ∈ M} are
independent and the classical de Finetti theorem states that in the case where
M is a countable set without structure, this is essentially the only possible
situation: every family that satisfies the condition (∗) is a mixture of iid (inde-
pendent identically distributed) random variables. Ryll-Nardzewski [Ryl57]
generalized this theorem by proving that the same conclusion holds if M
is the set of natural numbers equipped with its order (thus weakening the
hypothesis).

Without loss of generality, we can assume that the random variables take
values in [0, 1], so the question becomes to classify all measures on [0, 1]M
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that satisfy the invariance condition (∗). Observe that (∗) depends only on
the age of M in the sense that if M and M′ have the same age, then any
distribution on [0, 1]M satisfying (∗) gives rise to a distribution on [0, 1]M

′

satisfying (∗) and vice versa. If the age satisfies the amalgamation property,
it makes sense to assume that M is homogeneous (so, for example, in the the-
orem of Ryll-Nardzewski consider (Q,<) in the place of (N,<)) in order to
obtain a dynamical system of the group Aut(M). Then the problem of classi-
fying all joint distributions that satisfy the condition (∗) can be rephrased as
follows.

Question 7.1. Assume G ↷ M is an oligomorphic action on a countable set.
What are the probability measures on [0, 1]M that are invariant and ergodic
with respect to the natural action G ↷ [0, 1]M?

Recall that a probability measure µ on a standard Borel space X invari-
ant under an action of a group G is ergodic if every measurable set A ⊆ X
that satisfies µ(A△g · A) = 0 for all g ∈ G has measure 0 or 1. The ergod-
icity assumption in Question 7.1 entails no loss of generality: the ergodic
decomposition theorem [Phe01] ensures that every invariant measure can be
represented as an integral of ergodic measures.

The following theorem answers this question in a very particular case,
where the conclusion is the same as in de Finetti’s theorem: the variables
must be independent. In order to state it, we will need two auxiliary no-
tions from model theory. We say that an ω-categorical structure M has no
algebraicity if for every finite set A ⊆ M, the pointwise stabilizer GA of A in
G has infinite orbits on M \ A. M has weak elimination of imaginaries if for
every open subgroup V ≤ G, there exists a finite A ⊆ M such that GA ≤ V
and [V : GA] < ∞. Of the discrete examples considered in Section 2, the set
without structure, the dense linear order, the random graph, and the ultra-
homogeneous Km-free graphs have both of those properties.

Theorem 7.2. Let M be an ω-categorical structure with no algebraicity and weak
elimination of imaginaries and G = Aut(M). Then the only ergodic, G-invariant
measures on [0, 1]M are of the type νM, where ν is a Borel measure on [0, 1].

Proof. Let µ be an invariant ergodic measure on [0, 1]M. For a ∈ M, denote
by ξa the random variable on [0, 1]M, which is the projection on the a-th
coordinate. It suffices to prove that if A and B are disjoint subsets of M and
ηA and ηB are bounded random variables that are measurable with respect
to the σ-fields generated respectively by {ξa : a ∈ A} and {ξb : b ∈ B}, then
ηA and ηB are uncorrelated, i.e.,

E(ηA − E ηA)(ηB − E ηB) = 0.

By replacing ηA and ηB by ηA − E ηA and ηB − E ηB respectively, we can
assume that ηA and ηB have expectation 0, and therefore belong to the Hilbert
space

L2
0([0, 1]M) = {ξ ∈ L2([0, 1]M , µ) : E ξ = 0}.

By ergodicity, L2
0([0, 1]M) has no invariant vectors, so, by Theorem 6.6 and the

assumption of weak elimination of imaginaries, every irreducible subrepre-
sentation π of L2

0([0, 1]M) has the form IndG
G(C)

(σ), where C is a finite sub-
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structure of M, G(C) is the setwise stabilizer of C, and σ is an irreducible rep-
resentation of G(C)/GC. Let π be such an irreducible subrepresentation and
let fA, fB be the projections of ηA, ηB on H(π) viewed as functions G → H(σ)
as in (6.1).

Suppose, for contradiction, that ⟨ fA, fB⟩ ̸= 0. Then there exists g0 ∈ G
such that fA(g0) ̸= 0 and fB(g0) ̸= 0. As fA is fixed by G(A), we have that
[GA : (GA ∩ g0GCg−1

0 )] < ∞ (otherwise the norm of fA would be infinite).
By the no algebraicity assumption, GA ≤ g0GCg−1

0 and therefore g0 · C ⊆ A.
Similarly, g0 · C ⊆ B, which contradicts the assumption that A and B are
disjoint.

Easy examples show that if one wants to obtain independence in the con-
clusion, the assumptions above are optimal. However, in the cases G = S∞
and G = Aut(Q), there are classification results, due to Aldous [Ald81],
Hoover [Hoo79], and Kallenberg [Kal89] (see also Austin [Aus08]), where
one considers actions on tuples, that is, a classification of the invariant mea-
sures on [0, 1]N

k
and [0, 1]Q

k
. In that case, there exist interesting factor maps

[0, 1]N
m → [0, 1]N

k
for m < k that produce invariant, ergodic measures on

[0, 1]N
k

by pushing forward the product measure on [0, 1]N
m

. A typical ex-
ample is given by the map Φ : 2N → 2N2

defined by

Φ(x)(i, j) = 1 ⇐⇒ x(i) ̸= x(j).

Of course, the actions S∞ ↷ Nk and Aut(Q) ↷ Qk are oligomorphic but
they have both algebraicity and imaginaries and the simple-minded approach
in the proof of Theorem 7.2 does not work. However it remains plausible that,
using more sophisticated techniques, it is possible to classify the invariant
measures of the action G ↷ [0, 1]M for an arbitrary oligomorphic action
G ↷ M.

7.2 Unique ergodicity

In [AKL12], Angel, Kechris, and Lyons studied the phenomenon of unique
ergodicity for minimal flows of automorphism groups of classical, ultraho-
mogeneous structures. Recall that a G-flow X is uniquely ergodic if it carries
a unique G-invariant measure. If the universal minimal flow of an amenable
group G is uniquely ergodic, then every minimal G-flow is uniquely ergodic.1

Quite remarkably, all known metrizable universal minimal flows of amenable
Polish groups are uniquely ergodic and it is an open question whether this
is always the case.

Question 7.3 ([AKL12]). Let G be an amenable Polish group with a metrizable
universal minimal flow M(G). Must M(G) be uniquely ergodic?

The first example of this phenomenon was provided by Glasner and
Weiss [GW02] who showed that the flow S∞ ↷ LO is uniquely ergodic.
Angel, Kechris, and Lyons found many more examples, including the auto-
morphism groups of the random graph and the Km-free ultrahomogeneous
graphs. In this subsection, we provide an alternative proof of their theorem
as an application of Theorem 7.2.

1I am grateful to Eli Glasner for explaining to me the proof of this fact.
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Theorem 7.4 (Angel–Kechris–Lyons). Let M be the random graph or the Km-
free ultrahomogeneous graph (m ≥ 3) and let G = Aut(M). Then the universal
minimal flow of G is uniquely ergodic.

By [KPT05], the universal minimal flow of G is LO(M), the set of all linear
orderings on M. There is a natural measure µ0 on LO(M) invariant under the
full permutation group S(M) defined as follows. Let ρ : [0, 1]M → LO(M) be
the S(M)-equivariant map defined by

a <ρ(x) b ⇐⇒ x(a) < x(b) (7.1)

and let µ0 be the push-forward of λM by π, where λ denotes the Lebesgue
measure on [0, 1]. The map ρ is well-defined only on the set

{x ∈ [0, 1]M : x(a) ̸= x(b) for all a, b ∈ M, a ̸= b}

but this set has full measure. In fact, one can use in the place of λ any other
non-atomic measure ν on [0, 1] and will obtain the same measure on LO(M)
because S(M) ↷ LO(M) is uniquely ergodic [GW02]. To see this, note that,
by invariance, one must have, for any S(M)-invariant measure µ on LO(M),

µ({x ∈ LO(M) : a1 <x a2 <x · · · <x an}) = 1/n!

for every n-tuple of distinct elements a1, . . . , an ∈ M and those equations
determine the measure µ uniquely. Our goal is to show that µ0 is the only
measure invariant under the smaller group G.

Let F0 ⊆ F1 ⊆ · · · be a collection of finite substructures of M with
∪

n Fn =
M. For a ∈ M, denote

D(a) = {b ∈ M : b ̸= a and b and a are not connected by an edge}.

Fix a G-invariant measure µ on LO(M).

Lemma 7.5. Let a ∈ M and let A ⊆ D(a) be a definable, infinite set. Then for
µ-a.e. x,

lim
n→∞

#{b ∈ Fn ∩ A : b <x a}
#Fn ∩ A

exists and is independent of A.

Proof. Denote by Ga the stabilizer of a in G and note that Ga acts oligomor-
phically on D(a) in a way that satisfies the hypothesis of Theorem 7.2. Let
the Ga-map πa : LO(M) → 2D(a) be defined by

πa(x) = {b ∈ D(a) : b <x a}.

Then (πa)∗µ is a Ga-invariant measure on 2D(a) and by Theorem 7.2 and the
ergodic decomposition theorem, there exists a measure ν on [0, 1] such that

(πa)∗µ =
∫

κp dν(p),

where κp denotes the Bernoulli (p, 1 − p) measure on 2 = {0, 1}. Let B ⊆
LO(M) be the set of x for which the conclusion of the lemma is satisfied, i.e.,
the limit exists and is the same for all definable sets A. By the strong law of
large numbers, κp(πa(B)) = 1 for all p, whence µ(B) = 1.
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Note that the hypothesis that A is definable is not really important; what
matters is that A belongs to a predetermined countable collection of infinite
sets.

Proof of Theorem 7.4. For a ∈ M, define

ηa(x) = lim
n→∞

#{b ∈ Fn ∩ D(a) : b <x a}
#Fn ∩ D(a)

By Lemma 7.5, ηa is an a.e. well-defined random variable. Let π : LO(M) →
[0, 1]M be defined by π(x)(a) = ηa(x). π is a G-equivariant map and by the
ergodicity assumption on µ, π∗µ is a G-invariant ergodic measure on [0, 1]M.
Applying Theorem 7.2 one more time, we obtain that {ηa : a ∈ M} are iid.

First, we check that almost surely,

a <x b =⇒ ηa(x) ≤ ηb(x).

Indeed, let x be such that a <x b. By Lemma 7.5, as D(a) ∩ D(b) is infinite
and definable, almost surely,

ηa(x) = lim
n→∞

#{c ∈ Fn ∩ D(a) ∩ D(b) : c <x a}
#Fn ∩ D(a) ∩ D(b)

.

If c <x a, then c <x b, so

ηa(x) ≤ lim
n→∞

#{c ∈ Fn ∩ D(a) ∩ D(b) : c <x b}
#Fn ∩ D(a) ∩ D(b)

= ηb(x).

Next, we see that for all a ̸= b, almost surely ηa ̸= ηb. Suppose this is
not the case. Then because ηa and ηb are independent, the distribution of ηa
must have an atom, i.e., there exists p ∈ [0, 1] such that P(ηa = p) > 0. In
particular, almost surely, for infinitely many a ∈ M, ηa = p. Therefore, by
invariance, for fixed a, b, c ∈ M such that there are no edges between a, b,
and c, the event

a <x b <x c and ηa = ηb = ηc = p

has positive probability. Let

q = P(a <x b <x c | ηa = ηc = p and a <x c). (7.2)

By the preceding discussion, q > 0. If b varies in D(a) ∩ D(c), q does not
change as, by invariance, it depends only on the type of the triple (a, b, c) in
M. (7.2) yields that for every n,

E
(#{b ∈ Fn ∩ D(a) ∩ D(c) : a <x b <x c}

#Fn ∩ D(a) ∩ D(c)

∣∣∣ ηa = ηc = p and a <x c
)
= q.

On the other hand, taking limits,

E
(

lim
n→∞

#{b ∈ Fn ∩ D(a) ∩ D(c) : a <x b <x c}
#Fn ∩ D(a) ∩ D(c)

∣∣∣ ηa = ηc = p and a <x c
)

= E(ηc − ηa | ηa = ηc = p and a <x c)
= 0,
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contradiction.
We conclude that almost surely, for all a, b ∈ M,

a <x b =⇒ ηa(x) < ηb(x).

As <x is a linear ordering, this implies that

a <x b ⇐⇒ ηa(x) < ηb(x). (7.3)

Therefore the map π : (LO(M), µ) → ([0, 1]M , νM), where ν is the distri-
bution of ηa, is measure-preserving and a.e. one-to-one. Let ρ : [0, 1]M →
LO(M) be its inverse. Then ρ is given by (7.3), which is the same as the map
defined by (7.1). As µ = ρ∗(νM), we conclude that µ = µ0, thus completing
the proof.

Remark. The proof above does not use in an essential way the hypothesis that
the structure M is a graph; however, for the moment, it is not clear what the
correct generality is for the statement of Theorem 7.4 and I have preferred to
present this most transparent case.

8 Reducts of ω-categorical structures

Let M be a classical, ω-categorical structure. If R ⊆ Mk is a relation on M
and f : M → M is a function, say that f preserves R if

∀a1, . . . , ak ∈ M R(a1, . . . , ak) =⇒ R( f (a1), . . . , f (ak)).

It is a consequence of the Ryll-Nardzewski theorem that the relations pre-
served by the automorphism group of M are exactly the relations that are
first-order definable in M.

Recall that a reduct of M is a structure with the same underlying set as
M and a collection of relations each of which is first-order definable in M.
Naturally, the automorphism group of a reduct M′ of M is a closed group
of permutations of M that contains Aut(M). Conversely, as a closed group
of permutations of M is entirely determined by its orbits on powers of M,
it follows from the above remark that every such group corresponds to a
reduct of M and two reducts have the same automorphism group iff they
are first-order interdefinable, i.e., the relations in each reduct are first-order
definable in the other. Thus the lattice of closed permutation groups of M
between Aut(M) and S(M) is isomorphic to the lattice of reducts of M with
the partial order “is first-order definable in.” For many structures of interest,
it is possible to completely classify their reducts: for example, we saw in
Section 4 a list of all reducts of (Q,<). Thomas [Tho91] classified the reducts
of the random graph and his results prompted him to make the following
conjecture.

Conjecture 8.1 (Thomas). Let M be a classical, ultrahomogeneous structure in a
finite, relational language. Then M has only finitely many reducts up to first-order
interdefinability.

This conjecture has motivated a number of papers that have verified it in
particular cases but so far no general results have been obtained. The main
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tool used in the proofs is structural Ramsey theory and it seems that a prereq-
uisite for proving the conjecture (at least by using this type of techniques) is a
general Ramsey theorem for homogeneous structures. This was an important
motivation for asking Question 3.4 in [BPT13].

In theoretical computer science, and more precisely, in the study of con-
straint satisfaction problems (see Bodirsky [Bod12] for more on that), it is im-
portant to consider reducts up to finer notions of equivalence than first-order
interdefinability, by restricting the type of formulas used in the definitions.
Two of the most important classes of formulas considered are the existential
formulas, i.e., formulas of the type ∃ȳ ϕ(x̄, ȳ), where ϕ(x̄, ȳ) is quantifier-free
and the subclass of primitive positive formulas, where ϕ(x̄, ȳ) must be a con-
junction of positive literals. There are analogous preservation theorems for
these types of formulas: the relations definable by existential formulas are
exactly the ones preserved by the self-embeddings of M and the relations
definable by primitive positive formulas are the ones preserved by the poly-
morphisms of M. Thus the lattice of closed monoids of injective functions
M → M containing the monoid of self-embeddings of M corresponds to the
lattice of reducts up to existential interdefinability and the lattice of closed
clones containing the polymorphism clone of M corresponds to the lattice of
reducts up to primitive positive interdefinability.

The following theorem, proved jointly with M. Bodirsky and M. Pinsker
in [BPT13], provides some information about those lattices in a rather general
situation. If Γ and ∆ are closed monoids of injective functions on M, say that
Γ is minimal above ∆ if ∆ < Γ and there is no closed monoid Γ′ such that
∆ < Γ′ < Γ. If N is a structure, denote by Emb(M) the monoid of self-
embeddings of M.

Theorem 8.2 ([BPT13]). Let M be a structure ultrahomogeneous in a finite rela-
tional signature and suppose that it has the Ramsey property. Let M′ be a reduct of
M in a finite signature. Then there are only finitely many minimal closed monoids
above Emb(M′) and every closed monoid of injective functions on M properly con-
taining Emb(M′) contains a minimal one.

A similar theorem holds for polymorphism clones.
Theorem 8.2 allows to decide algorithmically the problem of definability

in this setting. For this, one needs an additional finiteness assumption that
ensures that the original structure is effectively presented. We say that a ul-
trahomogeneous structure M in a finite relational language is finitely bounded
if there exists a finite collection F of finite structures in the language of M
such that for every finite structure A,

A ∈ Age(M) ⇐⇒ no element of F embeds into A.

The elements of F are called forbidden configurations. Typical examples of
structures with this property are (Q,<), the random graph, and the Km-free
graphs.

Theorem 8.3 ([BPT13]). Let M be a finitely bounded, ultrahomogeneous structure
with the Ramsey property. Then there exists an algorithm which given formulas
ϕ1, . . . , ϕn and ψ, decides whether ψ can be defined using ϕ1, . . . , ϕn as basic rela-
tions by an existential (primitive positive) formula.
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Unfortunately, our methods do not allow us to replace monoids by groups
in Theorem 8.2 and existential formulas by general first-order formulas in
Theorem 8.3, so whether the conclusions of those two theorems hold in that
situation remains an open problem.

9 Connections with model theory

It is a well-known fact in model theory that was first formulated by Ahlbrandt
and Ziegler [AZ86] (but is really already visible in the Ryll-Nardzewski theo-
rem) that the automorphism group of an ω-categorical structure contains all
essential information about the structure. More precisely, the category of ω-
categorical structures with interpretations (up to homotopy) as morphisms is
equivalent to the category of Roelcke precompact Polish groups with group
morphisms ϕ : G → H such that ϕ(G) is co-precompact in H. In particular,
if M and N are ω-categorical structures, Aut(M) ∼= Aut(N) iff M and N are
bi-interpretable. This correspondence has also recently been extended to the
continuous setting by Ben Yaacov and Kaïchouh [BK14].
Remark 9.1. For the equivalence of categories, one does need the continuous
setting even for non-archimedean groups: there is no ω-categorical, classical
structure that can be associated to a compact infinite group.

This means that all properties that are stable under bi-interpretability
(which includes the vast majority of concepts studied in model theory) cor-
respond, in the case of ω-categorical structures, to properties of the automor-
phism groups. One could thus hope to be able to use the well-developed
and sophisticated model-theoretic machinery to gain better understanding
about the groups, and, conversely, apply tools from the theory of dynamical
systems to obtain results in model theory. This was the starting point of our
joint work with Itaï Ben Yaacov [BT13] the results of which are described in
this section.

9.1 Functions as formulas

Let M be an ω-categorical structure and let G = Aut(M). Recall (Theo-
rem 2.4) that then G is Roelcke precompact. By the Ryll-Nardzewski theorem,
a formula ϕ(x) (in order to avoid complicating the notation, we will only con-
sider formulas on infinitely many variables) is nothing but a bounded, uni-
formly continuous function ϕ : MN → C invariant under the diagonal action
of G.

Let a0 ∈ MN be a fixed tuple that enumerates a dense subset of M. Every
formula ϕ(x, y) gives rise to a (both left and right) uniformly continuous,
bounded function ϕ̃ : G → C defined by

ϕ̃(g) = ϕ(a0, g · a0). (9.1)

Conversely, every function in UCB(G) is of the form ϕ̃ for some ϕ.
The Roelcke compactification of G, denoted by R(G), is the completion of

the Roelcke uniformity, or equivalently, the Gelfand space of the algebra
UCB(G). R(G) is equipped with a continuous involution x 7→ x∗ that ex-
tends the map G → G, g 7→ g−1 and a left and right actions of G that com-
mute. Another way to view R(G) is as the quotient (ĜL × ĜL)� G, where ĜL
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denotes the completion of (G, dL) for some left-invariant metric dL on G and
G acts on ĜL × ĜL diagonally by isometries. The correspondence between
formulas and functions gives us yet another representation of the Roelcke
compactification of G: namely, as the space of types of two copies of M (that
is, the ways two copies of M can be placed relative to each other in a third
one). The reason for this is that the elements of ĜL can be naturally identi-
fied with the elementary embeddings of M into itself. To illustrate how this
works in practice, we briefly describe two simple examples.

• If M is a countable set without structure and G = S∞, the “relative
position” of two copies M1 and M2 of M is determined by the informa-
tion which elements of M1 coincide with which elements of M2, that
is, a partial bijection between M1 and M2. Accordingly, the Roelcke
compactification of S∞ is the set of partial bijections M → M with the
topology inherited from 2M×M. (Here we identify both M1 and M2
with M via the given isomorphisms.)

• If M is a separable, infinite-dimensional Hilbert space H, the “relative
position” of two copies H1 and H2 is determined by the values of the
inner product ⟨ξ1, ξ2⟩, ξ1 ∈ H1, ξ2 ∈ H2. Identifying H1 and H2 with
H, this defines a sesquilinear form ⟨·, ·⟩p on H satisfying |⟨ξ , η⟩p| ≤ 1
for ξ and η in the unit ball, or, which is the same, a linear contraction
T : H → H defined by ⟨Tξ, η⟩ = ⟨ξ, η⟩p. We conclude that the Roel-
cke compactification of U(H) is the space of linear contractions of H

equipped with the weak operator topology. See [BT13] for more exam-
ples.

A number of important tameness concepts in model theory, for example,
stability, NIP, simplicity, etc., are defined locally, i.e., in terms of single formu-
las rather than theories. Typically one considers a formula ϕ(x, y) on two
groups of variables x and y and declares it to be nice if a certain type of com-
binatorial configuration does not appear in the directed graph defined by
the formula. Most of the concepts were isolated by Shelah while developing
his classification theory and by now they have found a number of important
applications in algebra and combinatorics.

The correspondence (9.1) between functions and formulas allows us to
translate directly between those model-theoretic properties and properties
of functions on the automorphism group. Often, we arrive at concepts that
have been independently considered and studied in dynamical systems and
more specifically, in the theory of representations of topological dynamical
systems on Banach spaces as developed by Glasner and Megrelishvili (see
[GM12] and the references therein for more details). Below we give a couple
of examples of how this correspondence can be exploited but it seems likely
that more connections and applications will be discovered.

In classical logic, a formula ϕ(x, y) is called stable if there are no tuples
(an)n∈N, (bn)n∈N in a model M such that

M |= ϕ(ai , bj) ⇐⇒ i < j,

i.e., the formula ϕ cannot order an infinite set. When properly translated to
the continuous setting, this becomes a positive statement: ϕ is stable iff

lim
m→∞

lim
n→∞

ϕ(am, bn) = lim
n→∞

lim
m→∞

ϕ(am, bn) (9.2)
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for all tuples (an)n∈N, (bn)n∈N for which both limits exist. A theory is stable
if every formula is.

This exchanging limits condition first appeared in the work of Grothen-
dieck [Gro52] where he showed that it characterizes weak compactness. This
gives a very natural correspondence between stable formulas on the model-
theoretic side and weakly almost periodic functions on the automorphism
group. Recall that a function f ∈ RUCB(G) is weakly almost periodic (WAP) if
the orbit G · f is weakly precompact in the Banach space RUCB(G). Apply-
ing Grothendieck’s characterization of weak compactness, one can deduce
the following theorem.

Theorem 9.2 ([BT13]). Let G be the automorphism group of an ℵ0-categorical struc-
ture M. Then the following are equivalent:

(i) Th(M) is stable;
(ii) Every Roelcke uniformly continuous function on G is weakly almost periodic.

In the language of Banach space representations, stable formulas corre-
spond to functions coming from representations on reflexive spaces.

If the equivalent conditions of Theorem 9.2 are satisfied (for instance, in
the two examples above, S∞ and U(H)), one can define an associative, sep-
arately continuous multiplication on the Roelcke compactification R(G), so
that it becomes a semitopological semigroup. This phenomenon is well under-
stood in the theory of dynamical systems: in fact, W(G), the Gelfand space
of the algebra WAP(G), is the maximal compactification of G carrying the
structure of a semitopological semigroup; but it is also possible to describe
the multiplication on W(G) model-theoretically using the notion of stable in-
dependence. We refer the reader to [BT13] for more details.

Very recently, in a similar spirit, Ibarlucía [Iba14] proved that NIP formu-
las correspond to tame functions (in the sense of [GM12]) and representations
on Rosenthal Banach spaces (i.e., those not containing ℓ1). He also showed
that every function on a Roelcke precompact Polish group that comes from
a dynamical system representable on an Asplund Banach space is weakly
almost periodic.

9.2 Minimality of topological groups

A topological group G is called minimal if it admits no coarser Hausdorff
group topology, or equivalently, if every bijective continuous homomorphism
to another topological group is a homeomorphism. It is called totally minimal
if all of its quotients are minimal, or equivalently, if every surjective con-
tinuous homomorphism to another Hausdorff topological group is open. A
Roelcke precompact Polish group is totally minimal iff every continuous ho-
momorphic image of it in another Polish group is closed. (This notion has
no connection with the concept of minimality of a dynamical system as dis-
cussed in Section 3; unfortunately, the terminology is rather well established.)
Minimality has been extensively studied in the theory of topological groups
(see the recent survey by Dikranjan and Megrelishvili [DM13] and the ref-
erences therein for more details). Minimality puts severe restrictions on the
ways a group can (continuously) act: the topology on the group induced
from the action must be the same as the original group topology.
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A typical example of a Roelcke precompact group that is not minimal is
Aut(Q) (as it embeds densely in Homeo+(R)). One of the main contribu-
tions of [BT13] is the result that this type of phenomenon cannot occur for
automorphism groups of stable structures, as the following theorem shows.

Theorem 9.3 ([BT13]). Let G be a Roelcke precompact group such that UCB(G) =
WAP(G), or, equivalently, let G be the automorphism group of an ω-categorical,
stable structure. Then G is totally minimal.

Special cases of this theorem had been known before: for example, S∞
(Gaughan [Gau67]), the unitary group (Stojanov [Sto84]; see also Uspen-
skij [Usp98]), and Aut(µ) (Glasner [Gla12]). However, Theorem 9.3 seems
to be the first general result of this kind. Some examples of groups that
satisfy the hypothesis of Theorem 9.3 for which minimality had not been
known before include automorphism groups of Lp lattices, the automor-
phism groups of countably dimensional vector spaces over a finite field,
and classical, ℵ0-categorical, stable, non-ℵ0-stable examples obtained via the
Hrushovski construction ([Wag94, Example 5.3]). We should also note that
the phenomenon of minimality is not restricted to automorphism groups of
stable structures: some other known minimal groups for which our theo-
rem does not apply are Iso(U1) and the automorphism group of the random
graph (Uspenskij [Usp08]), Homeo(2N) (Gamarnik [Gam91]), etc.

Our proof uses the semigroup structure on the WAP compactification
W(G) and is modeled on the proof of Uspenskij [Usp98]. The correspon-
dence between WAP group topologies on G and the central idempotents of
W(G), which is at the heart of the argument, can be traced back to Rup-
pert [Rup90]. The main new contribution in the proof of Theorem 9.3 is the
identification of the central idempotents of the semigroup W(G) under the
general hypotheses of the theorem and the main technical lemma is based on
model-theoretic ideas.

In a different direction, coarser group topologies on non-archimedean
groups that are not minimal can be used to produce examples of groups
that admit no non-constant weakly almost periodic functions, or equivalently,
no non-trivial representations on reflexive Banach spaces. The first exam-
ple of a group with this property, Homeo+(R), was produced by Megrel-
ishvili [Meg01], answering a question of Ruppert. The theorem below, whose
proof is based on the Ryll-Nardzewski fixed point theorem, can be used to
give a different proof of his result and also provides some new examples.

Theorem 9.4 ([BT13]). Let H be a Roelcke precompact subgroup of S∞ and let
π : H → G be a homomorphism to another Polish group with a dense image. Sup-
pose, moreover, that G has no proper open subgroups. Then G admits no non-trivial
representations by isometries on a reflexive Banach space.

This theorem applies to Homeo+(R), where Aut(Q) embeds densely, but
also to some other homeomorphism groups of one-dimensional continua. Ir-
win and Solecki [IS06] constructed a Roelcke precompact, non-archimedean
group that embeds densely in the homeomorphism group of the pseudo-arc
and using a similar technique, Bartošova and Kwiatkowska [BK13] did the
same for the Lelek fan. Theorem 9.4 then implies that the homeomorphism
groups of both the pseudo-arc and the Lelek fan admit no non-trivial repre-
sentations on a reflexive Banach space.
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10 Generic properties of group actions

A representation of a countable, discrete group Γ on a structure M is just a ho-
momorphism π : Γ → G, where G = Aut(M). By varying M, we obtain set-
tings that have rather different flavor. For example, representations on finite-
dimensional vector spaces and Hilbert (or, more generally, Banach) spaces are
the subject of representation theory, actions by homeomorphisms on compact
spaces are studied in topological dynamics, and measure-preserving actions
on a standard probability space are the topic of ergodic theory.

In this section, based on on the paper [MT13] joint with J. Melleray, we de-
scribe some general techniques based on the Baire category theorem that can
be applied in a variety of settings. The space of representations Hom(Γ, G) is
naturally equipped with a Polish topology (as a closed subspace of GΓ) and
a continuous G-action

(g · π)(γ) = gπ(γ)g−1

by conjugation. In general, if the representations π1 and π2 are conjugate,
we regard them as isomorphic or equivalent. We will be interested in prop-
erties of actions that are conjugacy-invariant, i.e., subsets of Hom(Γ, G) that
are unions of orbits of the action. In order to be able to apply Baire cate-
gory methods, we will also assume that the properties we consider satisfy
a mild definability condition: that the sets they define in Hom(Γ, G) have
the Baire property; this is certainly true in all cases of interest. A prop-
erty P is called generic if the set {π ∈ Hom(Γ, G) : π has property P} is
comeager in Hom(Γ, G). In all of the cases that we consider, the action
G ↷ Hom(Γ, G) has a dense orbit, so, by the topological 0–1 law (see [Kec95,
Theorem 8.46]), for every (conjugacy-invariant) property P, either it or its
negation are generic. Real-valued invariants (such as entropy) can also be
considered as properties in our sense: we only need to compare the invariant
with every rational number and use the fact that a countable union of meager
sets is meager.

Some special cases for the group Γ are worth mentioning:

• If Γ = Z, the G-space Hom(Γ, G) is isomorphic to G equipped with the
conjugation action on itself;

• More generally, if Γ = Fn, Hom(Γ, G) = Gn, again equipped with the
diagonal action by conjugation;

• If Γ = Zn, Hom(Γ, G) is the space of commuting n-tuples of elements
of G.

It sometimes happens that the action G ↷ Hom(Γ, G) has a single comea-
ger orbit. In that case, studying generic properties of the actions degenerates
into studying a single isomorphism class. This situation arises often when
Γ is finite but also for some infinite Γ if the structure M is discrete. When
Γ = Z, the action G ↷ Hom(Γ, G) having a comeager orbit corresponds to
the group G having a comeager conjugacy class, a property that has been
extensively studied for automorphism groups of discrete structures. More
generally, we say that G has ample generics if the action G ↷ Hom(Fn, G)
has a comeager orbit for every n. This property was introduced by Hodges,
Hodkinson, Lascar, and Shelah [Hod+93] in order to study the small index
property for automorphism groups (see Section 11 for more details on that).
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The authors of [Hod+93] gave a slightly different definition of ample gener-
ics; ours is borrowed from [KR07]. See [BT13, Section 4] for a clarification of
the relationship between the two definitions. It was proved by Kechris and
Rosendal [KR07] that having ample generics implies very strong structural
properties for the group G; we discuss those further in Section 11. Groups
that are known to have ample generics are the automorphism groups of ω-
categorical, ω-stable, discrete structures, the random graph [Hod+93], the
measured, countable, atomless Boolean algebra with a measure whose values
are the dyadic rationals [KR07], the isometry group of the rational Urysohn
space (Solecki [Sol05]), and the homeomorphism group of the Cantor space
(Kwiatkowska [Kwi12]). It is an open problem if there exists a Polish group
G that is not non-archimedean and that admits ample generics. A recent re-
sult of Wesolek [Wes13] states that a non-trivial Polish locally compact group
cannot even have a comeager conjugacy class.

We concentrate on three continuous examples for G: U(H), Aut(µ), and
Iso(U), but the methods that we develop seem to be general enough to ap-
ply to other situations as well. We also restrict ourselves to abelian groups
Γ for two reasons: first, those are easier to understand and there are more
methods available, and second, some of the questions that we consider (for
example, those concerning the centralizers of the actions) are only meaning-
ful or interesting for abelian Γ. An abelian group is called bounded if there
is an upper bound on the order of its elements, and unbounded otherwise.
Bounded abelian groups are just direct sums of finite cyclic groups, so below
we only state the results for the unbounded case but similar results are also
valid for bounded groups; see [MT13] for details.

In the cases that we consider, the action G ↷ Hom(Γ, G) has a dense orbit
for every countable Γ, so the topological 0–1 law applies. When G = U(H),
orbits are meager for every infinite Γ (Kerr–Li–Pichot [KLP10]), and simi-
larly for G = Iso(U) (Melleray [Mel14]); when G = Aut(µ), this is known
for amenable Γ (Foreman–Weiss [FW04]) and open in general. One gen-
eral method, discovered by Rosendal [Ros09c], for proving meagerness of
conjugacy classes that works well for abelian groups (but could possibly be
applied to more general situations) is to investigate convergence patterns in
π(Γ), that is, proving that for a fixed π0 ∈ Hom(Γ, G), the set

{π ∈ Hom(Γ, G) : π(Γ) and π0(Γ) are isomorphic as topological groups}

is meager.
In view of this, it becomes natural to ask what information one can recover

if one forgets the image of Γ and keeps just the Polish group π(Γ). The main
focus of [MT13] is studying the closure π(Γ) for the generic π ∈ Hom(Γ, G),
that is, generic properties of π that can be read from the group π(Γ). The
situation is simplest for the unitary group, where we have the following the-
orem.

Theorem 10.1 ([MT13]). Let Γ be an unbounded abelian group. Then the set

{π ∈ Hom(Γ, U(H)) : π(Γ) ∼= L0(T)}

is comeager in Hom(Γ, U(H)).
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Recall that if H is a Polish group, L0(H) denotes the group of all mea-
surable mappings from a standard probability space to H equipped with
pointwise multiplication and the topology of convergence in measure. T
denotes the multiplicative group of complex numbers of absolute value 1.
Theorem 10.1, together with the discussion above, leads naturally to the fol-
lowing question.

Question 10.2 ([MT13]). For G either Aut(µ) or Iso(U), does there exist a
Polish group H such that for the generic π ∈ Hom(Z, G), π(Z) ∼= H? In
particular, is this true for H = L0(T)?

Christian Rosendal has pointed out that for G = Iso(U) it is not possible
that the generic π(Z) is isomorphic to L0(T); however, this remains open for
a general H. This question was also asked by Solecki and by Pestov and a
related problem was posed by Glasner and Weiss [GW05] (all for Aut(µ)).
Solecki [Sol14] has shown that the closed subgroup generated by a generic
element of Aut(µ) is a continuous homomorphic image of a closed subspace
of L0(R) and contains an increasing union of finite dimensional tori whose
union is dense.

The following is a general theorem that is valid for any Γ and G. Its proof
relies on a characterization of extreme amenability due to Pestov.

Theorem 10.3 ([MT13]). Let Γ be a countable group and G a Polish group. Then
the set

{π ∈ Hom(Γ, G) : π(Γ) is extremely amenable}
is Gδ in Hom(Γ, G).

An analogous result for amenability was later obtained by Kaïchouh in
[Kaï13].

In particular, Theorem 10.3 shows that if the set of π that generate an
extremely amenable group is dense (for example, if there is one such π with
a dense orbit), then it is automatically generic, so in some sense, extreme
amenability, rather than being a pathological phenomenon, is a prevalent
property. This happens, in particular, for abelian Γ and G = Aut(µ) or
G = Iso(U).

Theorem 10.4 ([MT13]). Let Γ be a countable, unbounded, abelian group and G be
one of Aut(µ) or Iso(U). Then the set

{π : π(Γ) ∼= L0(T)}

is dense in Hom(Γ, G) and therefore, the generic π(Γ) is extremely amenable.

In the special case of Γ = Z and G = Iso(U) this theorem answers a
question of Glasner and Pestov.

Theorem 10.3 can also be used as a tool to prove extreme amenability for
concrete groups. For every Polish group G, the set

{π ∈ Hom(F∞, G) : π(F∞) = G}

is dense Gδ; therefore to prove that G is extremely amenable, it suffices to
show that

{π ∈ Hom(F∞, G) : π(F∞) is extremely amenable}
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is dense (so, again, it suffices to find a single π with this property that has a
dense orbit). We have the following.

Theorem 10.5 ([MT13]). Let G be either of U(H), Aut(µ), Iso(U); denote by
U(n) the unitary group of dimension n. Then the set

{π ∈ Hom(F∞, G) : ∃n π(F∞) ∼= L0(U(n))}

is dense in Hom(F∞, G).

Corollary 10.6 (Gromov–Milman; Giordano–Pestov; Pestov). The three groups
U(H), Aut(µ), and Iso(U) are extremely amenable.

Thus Theorem 10.5 provides a “uniform” proof for the extreme amenabil-
ity of those three groups. It is arguable whether this proof can be considered
as new: after all, the proof of extreme amenability of L0(U(n)) uses concen-
tration of measure, the same technique that was used in the original proofs
of extreme amenability. However, if K is a compact group, the sequence of
subgroups {K2n

: n ∈ N} of L0(K) is the most basic example of the concentra-
tion of measure phenomenon, while in the original proofs, different systems
adapted to each situation are used.

Another question one might like to consider is how much the generic
properties of π(Γ) depend on the group Γ. Of course, if Γ is abelian, then
π(Γ) must also be abelian. However, it turns out that not much more is
remembered as the following result indicates.

Theorem 10.7 ([MT13]). Let G be one of Aut(µ) or Iso(U) and let d be a positive
integer. Let P be a definable property of abelian Polish groups. Then the following
are equivalent:

(i) for the generic π ∈ Hom(Z, G), π(Z) has property P;

(ii) for the generic π ∈ Hom(Zd, G), π(Zd) has property P.

In particular, the generic π(Zd) is monothetic (i.e., topologically singly generated).

In the case G = Aut(µ), a result of Ageev allows us to replace Zd by any
countable abelian Γ containing an infinite cyclic subgroup. It seems plausible
that the same is true for Iso(U); however, our techniques are insufficient to
prove this.

The techniques developed for the proof of Theorem 10.7 also permit to
study the centralizer of the generic action. If π : Γ → G is a homomorphism,
the centralizer C(π) of π is just the stabilizer of π under the conjugation
action:

C(π) = {g ∈ G : gπ(γ) = π(γ)g for all γ ∈ Γ}.

C(π) is always a closed subgroup of G and if Γ is abelian, π(Γ) ⊆ C(π). The
next theorem shows that, generically, the centralizer is as small as possible.

Theorem 10.8 ([MT13]). Let G be either of Aut(µ) or Iso(U) and let Γ be a
torsion-free abelian group. Then, for the generic π ∈ Hom(Γ, G), C(π) = π(Γ).
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The special case where Γ = Z and G = Aut(µ) is a classical theorem of
King [Kin86] in ergodic theory (proved by a very different method).

We conclude this section with a few words about the techniques used to
prove these results. The proofs of Theorems 10.7 and 10.8 are based on the
notion of a category-preserving map (a map π : X → Y between Polish spaces
X and Y is category-preserving if the preimage of a meager set is meager) and
a generalization of the classical Kuratowski–Ulam theorem to this setting.
In a follow-up paper [Mel12], Melleray further developed these techniques
to prove a more general theorem about extensions of measure-preserving
actions of abelian groups. See also [Mel14] for further discussion on Baire
category methods in the context of Polish groups.

11 Automatic continuity

Many of the results in the previous sections concern the classification of var-
ious actions of Polish groups: actions on compact spaces by homeomor-
phisms, actions on probability spaces by measure-preserving transforma-
tions, or representations on Hilbert spaces by unitary isometries. A common
feature of those results is that they assume that the actions are continuous
in the sense that they can be represented as continuous homomorphisms to
the symmetry groups of the spaces in question and the proofs exploit in an
important way this continuity. It is a classical result in descriptive set theory
due to Banach (see, e.g., [Kec95, Theorem 9.10]) that the continuity assump-
tion can be relaxed significantly: every Baire measurable homomorphism
from a Polish group to a separable group is continuous. It is a theorem of
Shelah [She84] that in order to produce homomorphisms that are not Baire
measurable, one needs the axiom of choice, so, in practice, most homomor-
phisms that arise in a definable fashion are already continuous.

Nevertheless, in the world of locally compact groups, there are several
known ways to produce non-continuous homomorphisms. For example, if K
is a non-trivial, compact group and U is a non-principal ultrafilter on N, then
the homomorphism π : KN → K defined by

π((k)n) = lim
n→U

kn

is not continuous. Similarly, using the fact that vector spaces of the same
dimension over Q are isomorphic, one sees that the additive groups of R,
R2 and Q2 are all isomorphic but obviously, there are no continuous isomor-
phisms. Finally, using non-continuous automorphisms of the field of com-
plex numbers, one sees that GL(n, C) embeds in S∞ (see Kallman [Kal00]
and Thomas [Tho99]) and the restriction of this embedding to any connected
subgroup (for example, U(n)) cannot be continuous.

It is an interesting phenomenon that for large Polish groups, similar tech-
niques to construct homomorphisms often cannot be applied.

Definition 11.1. A topological group G has the automatic continuity property if
every homomorphism from G to a separable topological group is continuous.

The condition of separability on the target group can be somewhat weak-
ened without changing the class of groups under consideration; see [Ros09b]
for details.
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This property was introduced by Kechris and Rosendal [KR07], who were
inspired by a similar property that had been studied for Banach algebras
as well as earlier results in model theory about the small index property.
A topological group G is said to have the small index property if every ho-
momorphism from G to S∞ (or, equivalently, any action on a countable
discrete set) is continuous. One of the reasons model theorists are inter-
ested in this property is because, combined with the result of Ahlbrandt and
Ziegler [AZ86], it allows to show that automorphism groups of ω-categorical,
classical structures up to algebraic isomorphism characterize the structures up
to bi-interpretability.

Recall that a topological group G is said to have ample generics if the diago-
nal conjugacy action G ↷ Gn has a comeager orbit for every n. This property
was introduced by Hodges, Hodkinson, Lascar, and Shelah [Hod+93] in or-
der to prove that automorphism groups of ω-categorical, ω-stable structures
and the random graph have the small index property. Kechris and Rosendal
showed that ample generics in fact imply the stronger automatic continuity
property and thus provided the first examples.

Since then, a number of other groups have been shown to have the auto-
matic continuity property: the automorphism group of (Q,<) and the home-
omorphism group of the Cantor space (Rosendal–Solecki [RS07]), homeo-
morphism groups of compact 2-manifolds (Rosendal [Ros08]); full groups of
ergodic, measure-preserving equivalence relations (Kittrell–Tsankov [KT10]),
etc.

Ample generics is the only natural general condition currently known to
imply automatic continuity. However, it is an open problem whether every
Polish group with ample generics is non-archimedean, and in any case, many
of the automorphism groups of metric structures that we are interested in are
known to have meager conjugacy classes. Inspired by ideas from continuous
logic, Ben Yaacov, Berenstein, and Melleray [BBM13] introduced the weaker
notion of topometric ample generics that is better adapted to the metric setting.

If G = Aut(M) is the automorphism group of a metric structure M, then
apart from the Polish topology on G (which is just the pointwise convergence
topology on M), G also admits another, finer, usually non-separable group
topology, namely, the one of uniform convergence on M. This topology is
induced by a complete, bi-invariant distance ∂ on G defined by:

∂(g, h) = sup
x∈M

d(g · x, h · x).

A Polish topometric group is a Polish group (G, τ) additionally equipped with a
bi-invariant distance ∂ in the fashion described above. G has topometric ample
generics if the diagonal conjugacy action G ↷ Gn admits an orbit whose ∂-
closure is comeager. It was proved in [BBM13] that if G has topometric ample
generics and ϕ : G → H is a homomorphism to a separable group H that is ∂-
continuous, then it is automatically τ-continuous. This result paved the road
for two-step proofs of automatic continuity: first show that if ϕ is an arbitrary
homomorphism to a separable group, then it is ∂-continuous, and then use
topometric ample generics to show that it is τ-continuous. The authors of
[BBM13] also developed a method to prove the existence of topometric ample
generics and provided several examples: U(H), Aut(µ), and Iso(U1).
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This two-step strategy for proving automatic continuity has been success-
fully implemented for two groups. The proof of [KT10] that full groups have
automatic continuity easily adapts to show that (Aut(µ), ∂) does as well;
then Ben Yaacov, Berenstein, and Melleray applied their result to conclude
that Aut(µ) has automatic continuity for its usual Polish topology. Later,
still using topometric ample generics, the following theorem was proved in
[Tsa13], answering a question of Rosendal [Ros08].

Theorem 11.2. The unitary group of a separable, infinite-dimensional Hilbert space
has the automatic continuity property.

More recently, Sabok [Sab13], using a different technique, proved that
Iso(U1) also has automatic continuity; his method also adapts to U(H) and
Aut(µ).

It is interesting to combine automatic continuity results with minimality
(see Subsection 9.2) in order to obtain that certain groups admit a unique sep-
arable group topology. For example, Theorem 11.2 together with the result of
Stojanov [Sto84] implies that U(H) has a unique separable group topology,
so, if ϕ : U(H) → G is an arbitrary embedding of U(H) in a Polish group G,
then its image is closed and ϕ is a homeomorphism. In particular, U(H) does
not embed (abstractly) as a subgroup of any CLI Polish group (for example,
locally compact or SIN).

Combining the results of [Hod+93], [KR07], and [BT13] one obtains the
following corollary.

Corollary 11.3 ([BT13]). Let G be the automorphism group of a classical, ω-
categorical, ω-stable structure. Then G admits a unique separable group topology.

An interesting point about this corollary is that the hypothesis of stability
(or the stronger ω-stability) is used in the proofs of automatic continuity and
minimality in a completely different fashion.

12 Open questions

Open questions are dispersed throughout the text; in this section, we collect
the ones that pertain to actions of large Polish groups, and, in particular, the
Roelcke precompact ones, which are the focus of this memoir.

Question 12.1 (Section 3, [MNT14]). Is it true that every Roelcke precompact
Polish group has a metrizable universal minimal flow?

A positive answer to Question 12.1 for non-archimedean groups is equiv-
alent to [MNT14; Zuc14b] a positive answer to the following one.

Question 12.2 (Section 3, [BPT13]). Let M be a classical, ω-categorical struc-
ture. Does there always exist an ω-categorical expansion M′ of M with the
Ramsey property?

Question 12.3 (Section 3, [AKL12]). Let G be a Polish group such that M(G)
is metrizable. Must M(G) have a Gδ orbit? Equivalently, is every metrizable
UMF of the form Ĝ/H for a closed, co-precompact, extremely amenable H ≤
G?
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This question was answered positively for non-archimedean groups by
Zucker [Zuc14b].

Question 12.4 (Section 3). What are the topological groups that have only
countably many minimal flows up to isomorphism? Is this true for all non-
archimedean Polish groups with a metrizable universal minimal flow that
admits a finite generating partition?

Question 12.5 (Section 6). Is it true that all Roelcke precompact Polish groups
are of type I? More specifically, is it true that every representation of a Roelcke
precompact Polish group decomposes as a sum of irreducibles and that there
are only countably many irreducible representations?

Question 12.6 (Section 6, [Tsa12]). Does every Roelcke precompact Polish
group have property (T)?

Question 12.7 (Section 7). Let M be a countable set and G ↷ M be an oligo-
morphic action. What are the measures on [0, 1]M invariant and ergodic
under the action of G?

Question 12.8 (Section 7, [AKL12]). Let G be an amenable Polish group with a
metrizable universal minimal flow M(G). Must M(G) be uniquely ergodic?
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