METRIC SCOTT ANALYSIS

ITAI BEN YAACOV, MICHAL DOUCHA, ANDRE NIES, AND TODOR TSANKOV

ABsTRACT. We develop an analogue of the classical Scott analysis for metric struc-
tures and infinitary continuous logic. Among our results are the existence of Scott
sentences for metric structures and a version of the Lépez-Escobar theorem. We
also derive some descriptive set theoretic consequences: most notably, that iso-
morphism on a class of separable structures is a Borel equivalence relation iff
their Scott rank is uniformly bounded below wj. Finally, we apply our methods
to study the Gromov-Hausdorff distance between metric spaces and the Kadets
distance between Banach spaces, showing that the set of spaces with distance 0
to a fixed space is a Borel set.
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1. INTRODUCTION

Two of the foundational results in classical infinitary logic are Scott’s theo-
rem [S], producing for every countable structure a canonical sentence that uniquely
describes it up to isomorphism, and the theorem of Lopez-Escobar [LE], charac-
terizing the isomorphism-invariant Borel sets of models. These results and the
techniques developed around them, Scott analysis (based on the back-and-forth
method of Ehrenfeucht and Fraissé) and the Vaught transforms (introduced by
Vaught [V] to give a new proof of the Lépez-Escobar theorem) have become a
cornerstone of infinitary model theory as well as of the descriptive set theoretic
study of the complexity of isomorphism of countable models. See, e.g., Gao [G2]
for an exposition of the general theory, and Hjorth-Kechris [HK] and Hjorth—
Kechris-Louveau [HKL] for some more detailed results. The notion of Scott rank,
an ordinal that measures the model-theoretic complexity of structures, is also an
indispensable tool.
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The goal of this paper is to develop a parallel theory for infinitary continuous
logic. In recent years, there has been a lot of activity in first order continuous
logic (see [BBHU] for a gentle introduction) and it turns out that much of the
classical first order model theory extends to this setting, often with interesting
twists. Perhaps more importantly, it seems that continuous logic is the “correct”
setting for applying model-theoretic ideas to functional analysis and operator
algebras, areas that have been hitherto far removed from model theory (see, for
example, [FHS] and the references therein).

Some progress has been made towards the study of metric structures using
classical infinitary logic (see, for example, [D1]). However, it seems that classical
logic is too expressive in this setting and continuous logic is more appropriate for
descriptive set theoretic applications. We discuss the connections of our approach
with classical logic in Section 10.

An extended form of continuous logic, called infinitary here, allows connec-
tives to act on certain infinite collections of formulas. It was introduced in [BI],
where the authors obtain some applications to Banach space theory. Two other
papers that focus on various versions of the omitting types theorem for infinitary
continuous logic (that we also use here) are Caicedo and Iovino [CI] and Eagle [E].
However, their framework is somewhat more general (for example, they do not
always require that structures be complete), while we keep the setting from [BI]
as it seems to be the most relevant to our purposes.

Our results are inspired by their classical counterparts but, as is usual in con-
tinuous logic, new difficulties and interesting phenomena appear that have no
analogue in the classical setting. On a philosophical level, this is perhaps best ex-
plained by descriptive set theory: the isomorphism equivalence relation of classi-
cal countable models (which, in view of Scott’s results, is one of the main objects
of study) is strictly less complicated than isomorphism of separable metric struc-
tures. More precisely, the former is a universal orbit equivalence relation of an
action of Se and the latter is (bi-reducible with) the universal orbit equivalence
relation for Polish group actions [EFP']; by Hjorth’s results [H] on turbulence,
the latter is strictly more complicated.

The basis for classical Scott analysis is given by the back-and-forth equivalence
relations =, (originally defined by Fraissé) indexed by the countable ordinals «.
These can be considered as Borel approximations of the analytic equivalence re-
lation of isomorphism. The first novelty in the metric setting is that these equiv-
alence relations are replaced by pseudo-distances r, (i.e., distinct points can have
distance 0) that measure how different two tuples, of the same length and possi-
bly coming from different structures, are. These pseudo-distances naturally give
rise to equivalence relations Ey: aExb <= 1,(a,b) = 0, and Ee = (N, Ex. The
inductive definition is mostly uneventful, apart from the base case. For classical
structures, two tuples are declared to be =jp-equivalent if all quantifier-free for-
mulas agree on them; in the metric situation, we would like to define rg as the
supremum of the difference of the values that quantifier-free formulas take when
evaluated on the tuples. This approach meets an immediate obstacle: the differ-
ence can be arbitrarily amplified by scaling formulas by a multiplicative constant.
Thus we are led to consider formulas with a fixed modulus of continuity and in
order to organize this, we introduce the notion of a weak modulus of continuity (de-
noted by ) that controls what formulas we are allowed to use in the definition
of rp. It turns out that the weak modulus is an additional parameter in the con-
struction that has no analogue in the classical setting; by varying it one obtains
different equivalence relations Eo at the end.
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The basic results of the general theory are independent of the choice of a weak
modulus. Our first theorem is that the pseudo-distances r, capture exactly the
expressive power of formulas of quantifier rank at most a.

Theorem 1.1. Let A, B be metric structures in the same signature and let a € A"Db €
B". Then, for any o < wy,

7a(A%, BE) = sup ¢ (@) — ¢ (D),
where the sup is taken over all n-ary Q-formulas of quantifier rank «.

We also obtain analogues of Scott’s results from the classical setting.

Theorem 1.2. For every separable structure A, there exists a L, -sentence o4 (the
Scott sentence of A) such that for every separable structure B,

AEwB <= 04(B) =0.

Moreover, the quantifier rank of ¢4 is equal to the Scott rank of A plus w. In particular,
the Eco-class of A is Borel and its complexity is bounded by the Scott rank of A.

With a certain choice of the weak modulus Q) (which we call universal), one
obtains isomorphism as E.-equivalence, exactly as in the classical case. All sep-
arable metric structures for a fixed language can be seen as points in a Polish
space, as explained in detail in Section 4. Applying Theorem 1.2 tells us that
isomorphism classes of separable metric structures are Borel (which is one of the
classical applications of Scott sentences). This result, however, is not new: it can
be deduced from [EFP "], where the authors prove that isomorphism is reducible
to the orbit equivalence relation of a group action. Our approach, however, gives
more detailed information and bounds for the Borel complexity of the equiva-
lence class in terms of the Scott rank.

Our next theorem characterizes exactly when the isomorphism equivalence
relation is Borel (again inspired by a similar result in the classical setting).

Theorem 1.3. Let = denote the isomorphism equivalence relation of separable structures
(in a fixed signature) and let X be an =-invariant Borel set of structures. Then the
following are equivalent:

(i) = |x is Borel;

(ii) the supremum of the Scott ranks of the elements of X is bounded below w-.

In particular, this theorem provides a new method to show that certain iso-
morphism equivalence relations are not Borel, so long as one is able to calculate
the Scott ranks.

An important connection between infinitary logic and descriptive set theory is
provided by the Lépez-Escobar theorem which asserts that the o-algebra of Borel,
-invariant sets in the space of models coincides with the algebra of sets definable
by L., w-sentences. We obtain an analogue of this theorem in the continuous
setting.

Theorem 1.4. Let U be a bounded, Borel function on the space of separable models
that is invariant under isomorphism. Then there exists a L, -sentence ¢ such that

U(A) = ¢ for every structure A.

Our proof of this theorem is based on Vaught transforms [V]. However, as we do
not have a group action readily available, we develop the transforms in a different
setting, better adapted to our situation.

A theorem similar to Theorem 1.4 was independently and simultaneously
proved by Coskey and Lupini [CL]. The main difference between their approach
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and ours is that they only consider structures with universe the Urysohn sphere
Uj. In that case, the equivalence relation of isomorphism is given by the action
of Iso(U;) and Vaught transforms can be used directly.

With a different natural choice of a weak modulus (the 1-Lipschitz one), the
pseudo-distance 7o = sup, 7, defines a coarser equivalence relation than iso-
morphism and specializes to Gromov-Hausdorff distance for metric spaces and
Kadets distance for Banach spaces. This approach to the Gromov-Hausdorff dis-
tance has the advantage that it does not require embeddings into a third structure
and is defined for arbitrary metric structures, even ones that do not have amalga-
mation (and where the original definition is not applicable). Combining this with
our general results, we obtain the following.

Corollary 1.5. For a Polish metric space A, the set of Polish metric spaces such that the
Gromov-Hausdorff distance to A is 0 is Borel. A similar fact holds for Banach spaces and
the Kadets distance.

Finally, generalizing a theorem of Gao [G1] from the classical setting, we char-
acterize the separable structures with a Scott sentence that has only separable
models (that is, it is absolutely categorical).

Theorem 1.6. Let A be a separable metric structure. Then the following are equivalent:

(i) The Scott sentence of A only has separable models;
(ii) The left uniformity of the group Aut(A) is complete.
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2. CONTINUOUS INFINITARY LOGIC

2.1. Moduli of continuity. An important feature of classical £, -logic is that
when one forms an infinite conjunction (or disjunction) of the formulas {¢;(%) :
i € N}, all ¢; share the same finite set of free variables X; as a result, every
L w-formula has only finitely many free variables. The analogous uniformity
condition in infinitary continuous logic is ensured by mandating that all ¢; obey
the same continuity modulus. This ensures that the interpretations of all formu-
las are uniformly continuous functions (with a modulus that can be determined
syntactically). To formalize this, we start with several basic definitions and facts
about moduli of continuity.

Definition 2.1. Let n be a natural number or N. A modulus of arity n is a function
A: [0,00)" — [0,00) that is:
(i) non-decreasing, subadditive, vanishing at zero:
A) <AB+6) <AG)+A), A0)=0;

(ii) continuous.
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A weak modulus is a function Q: [0,00)N — [0, o] that satisfies (i) and is

(ii") lower semi-continuous in the product topology and separately continuous
in each argument.

The main use of a modulus is to measure the uniform continuity of a function
defined on a product of finitely many metric spaces.

Definition 2.2. Let A be an n-ary modulus, and let X = [];,, X; be a product of
metric spaces. On X?, define

d®(x,y) = A(d%i(x;,y;) 1i € n).

If Z is another metric space and f: X — Z is a map, we say that f respects (or
obeys) A if for all x,y € X, we have

dz(f(x), f(y)) < d*(x,y).

The conditions in the definition of a modulus are chosen in such a way that d®
is a continuous pseudo-distance on any product of metric spaces. If A is moreover
faithful, i.e., A(§) = 0 implies that § = 0, then d® is a distance compatible with the
product uniform structure.

If K C R" is a product of compact intervals and f: K — R is a continuous
function, we define its modulus of continuity A by

(2.1) Af(8) = sup{[f(x) = fFW)| : x,y € K, [xi —yi| < i}
Ay is the least modulus of continuity that f obeys.

The main purpose of weak moduli is to control the uniform continuity of for-
mulas and organize together an infinite collection of moduli of different arities. A
weak modulus will never be used directly but rather via its traces on finite prod-

ucts. If Q: [0, oo)N — [0, c0] is a weak modulus and n € N, define the truncation
Qly: [0,00)" — [0, 0] by

Qlu(bo, ..., 6n-1) = Q(bo,...,6,-1,0,0,...).

A weak modulus Q) is shift-increasing if for every sequence iyp < i; < --- of
natural numbers and every 6 € [0,00)N, we have Q)(5) < Q(¢'), where 5lfp =0y

and &, = 0 if k ¢ {ip,i1,...}. All natural weak moduli that we have in mind
satisfy this condition; however, it is only used in one place in the general theory
(Proposition 3.4) and we have preferred to keep it as a separate hypothesis where
necessary rather than make it part of the definition of a weak modulus.

The following lemma clarifies the connection between weak moduli and mod-
uli.

Lemma 2.3. Let Q: [0,00)N — [0, 0] be a weak modulus. Then all truncations of Q)
are moduli and Q) is determined by its truncations:

(2.2) 0(50,51,...) :supQ|n(50,...,(5n,1).
n

Proof. Since Q)| is lower semi-continuous, it suffices to show that it is upper semi-
continuous. Fix § € [0,00)" and s € R such that )],,(§) < s. Using that Q|, is
separately continuous in each variable, find consecutively 7o, ..., ¥4—1 such that

Q[ (6) < Qb0+ 70,61, 65-1) <+ < QB0+ 70, -, 6p—1 + Yn1) <.
As Q) is monotone, this shows that {6 € [0,00)" : )|,,(J) < s} is open, complet-
ing the proof.

For (2.2), the inequality > follows from the monotonicity and < follows from
lower semi-continuity. U
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Thus, given a metric space (X,d), each weak modulus Q) defines a family of
distances d" on powers of X; we will often abuse notation and write d* instead
when 7 is clear from the context. Similarly, we will say that a function f: X" — R
respects () rather than that it respects Q|,.

Two examples of weak moduli that will be important for us are the following.
The 1-Lipschitz weak modulus Qy : [0,00)N — [0, 0] is defined by

(2.3) QL (6) =supd;, where s = (dy,01,...).
i

The universal weak modulus for Lipschitz languages Qu(Lip): [0,00)N — [0, 0] is
defined by

(2.4) Qu(Lip)(6) = ) i-6;.
i=0

Both of those weak moduli are shift-increasing.

2.2. Infinitary logic. Continuous infinitary logic was first introduced by Ben Yaa-
cov and lovino in [BI]. The definitions we give here are compatible with theirs.

A metric language (or signature) is a collection L of symbols. For each symbol
s € L, the language also determines its kind (function or predicate), its arity
(a natural number n;), a ns-ary modulus of continuity A;, and, for predicates,
a compact interval Iy C R of allowed values for s that we will refer to as a
bound. The language always contains, implicitly, a binary predicate symbol d
with A;(81,02) = 01 + d2. The bound for d is determined by the language.

An L-structure A is a complete metric space equipped with interpretations of
the symbols:

e Each function symbol F is interpreted by a map FA: A"F — A respecting
the modulus Ap;

e Each predicate symbol P is interpreted by a function PA: A" — R re-
specting the modulus Ap and bound Ip (i.e., P4(a) € Ip for all 4 € A™);

o The symbol d is always interpreted by the distance. It must respect the
bound I;.

Let L be a metric signature. The logic £, (L) is defined as follows. First, we
fix a family {x; : i € N} of distinct variable symbols. The syntactic objects of the
logic are terms and formulas; terms come equipped with a modulus of continuity
that they respect and formulas have a modulus of continuity and a bound.

Terms, atomic formulas, and basic formulas are constructed inductively as fol-
lows.

e Each x; is a term that respects the N-ary modulus Ay, (6) = ;;

e If 7;, i < n are terms and F is a function symbol of arity n, then ¢ = F(T)
is a term that respects Ay = Ap o (A, 11 < n);

e If P a predicate symbol of arity n and T are terms, then ¢ = P(T) is an
atomic formula that respects the modulus Ay = Apo (A, : i < n) and the
bound Ip;

o If {¢; : i < n} are atomic formulas with moduli of continuity Ay, and
bounds Iy, and f: []; Iy, — R is continuous, then ¢ = f(¢) is a basic
formula that respects the modulus Ay = Ao (Ag, : i < n), where Ag is as
per (2.1), and the bound Iy = f(TT; Iy,)-

Next, we define general L, ,-formulas starting from atomic formulas and

combining them using finitary connectives, quantifiers, and countable infima and
suprema (also called infinitary connectives). As before, every formula ¢ respects
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some modulus of continuity Ay and a bound Iy. If ¢ respects A and I, and A’ > A,
I’ D I, then we will also say that ¢ respects A’ and I'.

e Every atomic formula is a formula;

o If ¢p,...,¢,_1 are formulas that respect Ay, ..., Ay, ; and Iy, ..., Iy, ,
and f: [[;I; — R is a continuous function, then f(¢o,...,¢,—1) is a
formula that respects Ag o (Ay, : i < n) and f(IT; Iy,)-

e If ¢ is a formula that respects A and I and i € N, then sup, ¢ and infy, ¢

are formulas that respect A and I, where
Ao, ..., 8,) = A(bo, ..., 0i-1,0,0141,-..,0n).

o If {¢; : i € N} are formulas, A is a modulus, and I is a bound such that
each ¢; respects A and I then V/; ¢;, \; ¢; are also formulas that respect A
and I. \/; ¢; is interpreted as sup, ¢; and A ¢; is interpreted as inf; ¢;.

The finitary fragment L is defined as the set of all £, -formulas, where the
infinitary connectives (the last item above) are not used. Two frequent binary
connectives are A (min) and V (max).

Finally, we need the notion of (Q), I)-formulas for some given weak modulus
Q) and bound I C R. This definition is more restrictive than that of general
formulas in several ways: first, we require that all (), I)-formulas respect () and
I; second, we only allow 1-Lipschitz connectives in the inductive definition; and
third, we keep track of the variables used and quantifiers are allowed only in a
certain order. The last restriction is needed when we compute quantifier ranks.
Here, the base of the inductive construction are the basic rather than the atomic
formulas; that is, we allow applying an arbitrary connective in the beginning. The
formal definition of an n-ary (Q), I)-formula is by induction as follows.

e All basic formulas ¢(xo, . .., x,_1) that only depend on the first n variables
and respect () and I are n-ary (Q, I)-formulas.

o If {¢; : i € N} are n-ary (Q), I)-formulas, then V;¢; and A; $; are n-ary
(Q), I)-formulas.

o If ¢ is an (n + 1)-ary (Q, I)-formula, then infy, ¢ and sup, ¢ are n-ary
(Q, I)-formulas.

e If ¢, ..., ¢r_1 are n-ary (Q,I)-formulas and f: R¥ — R is a 1-Lipschitz
function (for the max distance on R¥), then f(¢y,..., ¢x_1) is a n-ary
(Q, f(1%))-formula.

e An n-ary Q-formula is an n-ary (Q, I)-formula for some I. An Q-formula
is an n-ary ()-formula for some n. An Q-sentence is a 0-ary Q-formula.

Note that an n-ary (€, I)-formula automatically respects the modulus Q| and
the bound I. Thus the collection of all n-ary (€}, I)-formulas is equicontinuous
and uniformly bounded; in particular, we do not need any further equicontinu-
ity and boundedness requirements in the second item of the definition. Note,
however, that, as () is not required to be symmetric, our variables are not nec-
essarily interchangeable. If, however, () is symmetric (as is the case with ()y),
then we can quantify over any variable and not only over the one with the largest
index. The condition that () is shift-increasing translates into the fact that we are
allowed to substitute variables with bigger indices for free variables in formulas:
if ¢(xo,...,xn) is an O-formula and iy < iy < .-+ < iy_q, then @(x;,...,x;,) is
also an ()-formula. This property turns out to be very convenient when one tries
to write actual formulas.

The notion of an ()-formula becomes more permissive as () becomes larger; we
will see later (Corollary 6.5) that for a certain choice of (), every £, ,-sentence
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is equivalent to an ()-sentence. On the other hand, the expressive power of (); -
formulas is strictly weaker than that of full £, ,-logic (see Section 8). This dis-
tinction is purely an infinitary phenomenon: if one restricts to £, then it fol-
lows from [BY2, Corollary 1.7] that any formula can be uniformly approximated
by a Lipschitz formula and thus the values of 1-Lipschitz formulas completely
determine the values of all £, -formulas.

Terms and formulas in £, (L) can naturally be interpreted in any L-structure
A: every term ¢ is interpreted as a function ¢: AN — A and every formula ¢ is
interpreted as a function ¢*: AN — R that obeys its modulus and bound. If ¢ is
an n-ary formula, then it only depends on the first n variables, so its interpretation
can be considered as a function A" — R. Sometimes we will write A = (¢ =)
instead of ¢4 = .

Formulas of fixed arity n are naturally equipped with a seminorm defined as
follows:

(2.5) llp|l = sup{|¢(a)| : Ais a structure and a € A"}.

The norm ||¢|| is always finite because an interpretation of a formula is required
to obey its bound Iy. The following basic fact will be needed later.

Lemma 2.4. Let x be an infinite cardinal. If the language L has size at most x, then the
space of Lw-formulas, equipped with the norm given by (2.5) has density character at
most k.

Proof sketch. The only possible problem is that we allow arbitrary continuous
functions as connectives and there are uncountably many of them. However,
as the space of continuous functions defined on a compact subset of R" is separa-
ble in the uniform norm, we can use a countable collection of connectives and
thus obtain a dense set of size x. (In fact, it is possible to use only finitely many
connectives.) O

Note, however, that the space of (even quantifier-free) £, -formulas has den-
sity character 2/L1.

Remark 2.5. Our framework also allows us to treat unbounded predicates. If P is
an unbounded predicate, we replace it with an infinite family {P, : n € N} of
predicate symbols interpreted as P, = min(P,n). In the special case where the
distance d is unbounded, we take d; to be the “official” distance required by the
language. This does not change much as d and d; are uniformly equivalent. Note
also that isomorphism is preserved by this procedure.

3. THE BACK-AND-FORTH HIERARCHY AND SCOTT RANKS

3.1. The back-and-forth pseudo-distances. Throughout, we fix a signature L and
a weak modulus Q: [0,0)N — [0, c0].

The r, pseudo-distances that we define in this subsection are the continuous
analogue of the back-and-forth equivalence relations for classical structures. Note
that r, take values in [0, oo].

Definition 3.1. Let a be an ordinal or the symbol co greater than all ordinals. Let
n € N, let A and B be structures and let 2 € A", b € B". We define the back-and-

forth pseudo-distance (of rank o and arity n, with respect to (1), denoted by r,f/hB 2(a,b)

(or simply riB(a,b)) by induction on « as follows. For &« = 0, we set

ry*(a,b) = sup |9 (a) - 9" (D)

7




METRIC SCOTT ANALYSIS 9

where ¢ varies over all basic n-ary ()-formulas. For « limit (or oo),

raP(a,b) = sup r5"(a,b).

B<a

Finally, for the successor step,

rffl(d,?)) = sug c/e/iqn(g/eB rAB(ac,bd") v rivB(ac’, bd).
ceA,deB ’

We may also write 74, (Ad, Bb) instead of r4;P(a,b), allowing A and B to vary

together with 7 and b. In case n = 0, we write just 7, (A, B).
For the rest of this section, fix a signature L and a weak modulus Q).

Lemma 3.2.
(i) For fixed o and n, r,,y, is a pseudo-distance on the class of all pairs Aa.
(ii) For every a, A and a,b € A", we have r4(a,b) < d?(a,b).
(iii) For fixed a, n, A, and B, the function r,f’B is uniformly continuous on A" x B",
respecting the modulus Q|,, on each side. In particular, if ro(Ad, Bb) < oo for
somed € A", b € B", then r,(AC,Bd) < co forall ¢ € A", d € B".

Proof. All three items are proved by induction on «.

(i) The only non-obvious property is the triangle inequality. For « = 0 and
a limit, this is easy. For the successor step, assume that r,1(Aa, Bb) < s and
ra+1(Bb,C¢) < t in order to show that r,1(Aa,C¢) < s+t. Fixd € A. Since s >
r4+1(Ad, Bb), there exists e € B such that r,(Aad, Bbe) < s. Similarly, there exists
f such that r,(Bbe,cf) < t. By the induction hypothesis, r,(Aad, Ccf) < s+ t.
Similarly, for all f there exists d such that the same holds, so 7,41(Ad,C¢) < s+t
and we are done.

(ii) For a = 0, this holds since the interpretation of an n-ary ()-formula respects
Q. For limit steps, this is clear, and at the successor step, take d’ = c and ¢/ =d
and note that by the definition of d, d*(ac, bc) = d*(a,b).

(iii) follows from (i) and (ii). O

The next lemma shows that the 7, stabilize at a certain point.

Lemma 3.3. The following statements hold:
(i) If B < a then rg <o (ie, gy < Tan for all n);
(ii) If x is an infinite cardinal and A and B are structures of density character at

most «, then there exists & < k1 such that rffl = r,f’B . Moreover, in this case,
the sequence of rAB stabilizes beyond w, i.e., ré’B = r,,‘?’B .

Proof. (i) We argue by induction on a«. For « = 0 and « limit, there is nothing
to show. We now prove the statement for a + 1 assuming that it holds for a. By
the induction hypothesis, it will suffice to show that r, < r,,1, which we do by
distinguishing different cases.

If « =0, then rp < rq because a formula ¢(xy, ...x,_1,x,) that respects Q|11
and does not depend on x,, also respects (}|,. On the other hand, if B < a, then
rg < ry by the induction hypothesis, so rg;1 < 7441. From this, for both a limit
and « successor, we deduce that 7, < 7y 1.

(ii) For < x*,g € Q,and n € N, let

Uggn = {(a,b) € A" x B" : rg(a,b) > q}.
If we keep g and n fixed, {Ug,, : B < x*} is an increasing sequence of open sets

in the space A" x B" which has weight «; therefore the sequence must stabilize at
some B(g,1n) < «". Finally, set « = sup{B(q,n) : g € Q,n € N}. O
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The pseudo-distances r,, define naturally equivalence relations Ej:
AaEyBb < r4(Aa,Bb) = 0.

In view of Lemma 3.3, we naturally have that E; 2 E, 1 and Ex = (), Ea.

If A is a separable structure, say that the sequence (4;);en of elements of A is
tail-dense if for every k, {a; : i > k} is dense in A. It is easy to see that a sequence
is tail-dense iff it is dense and it hits every isolated point of A infinitely many
times. The following is the key back-and-forth fact that will be used throughout
the paper.

Proposition 3.4. Suppose that Q) is shift-increasing. Let A and B be separable structures
and let o € AX, @ € B, Then we have that 1o (A%, B®) < t if and only if there exist
tail-dense sequences a € AN and b € BN such that a|, = 7, bl = , and

supré;qB(a|n,b|n) <t
n

Proof. We start with the “only if” part. Let B 4 be a countable basis for A and let
(UZt : n € N) be a sequence of open sets such that every element of B4 appears
infinitely often; similarly, define (U2 : n € N) for B.

We construct the desired sequences by a back-and-forth argument; we only
describe the “forth” step. Let @ = (ao,...,a,-1) and b = (by,...b,_1) be given
(for some even n > k) and suppose that o (A7, Bb) < t' < t. Let a, be an arbitrary
element of U;:‘/Z. We are looking for b, € B such that re(Aday,, Bbb,) < t'. By

Lemma 3.3, there exists « = a4 g, so that a8 = r,f’B = rlffl. We have
t' > ro(Aa, Bb)
=Tx+1 (Aﬁ, BE)

> sup inf r,(Adc, Bbd')
ceA d'eB

> inf ry(Aaay,, Bbd').
d'eB

We obtain that there exists b, € B such that r,(Aday, Bl_vbn) < t', which allows us
to continue. The fact that a, € U2 and by, 1 € U for every n ensures that both
sequences are tail-dense. In the end, we have

supo(alu, bln) < supreo(aln, bln) <t <t,
n n
and we are done. )
Conversely, suppose we are given sequences 4 and b with

sup r&B(ﬁ\n,E\n) <t <t
n

We show by induction on « that for any ip < - -+ < i,_1 and all «, we have

(3.1) ra(Aajy...a; ,Bbj...b; )<t

First consider the case that « = 0 and take some iy < - - - < i,_1. Then we have
ro(Aa;ya;, ...a; ,,Bbyb; ...b; ) <ry(Aapay...a; ,,Bbobi...b; )<t

where the fist inequality follows from the fact that () is shift-increasing and the

second from the assumption.

Suppose now that « = f+ 1 for some > 0 for which (3.1) has been proved.
Fix again some iy < - -+ < i,_1. Then we have

ig -~ in—1

7’54_1 (Al/'ll'o s iy gy Bb . bin—l) < lim sup Vﬁ(A{Ill'O <o i, 1 0m, Bbio ce bin71 bm)

m—ro0
<t

i - -
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Indeed, to see why the first inequality holds, suppose that the right-hand side is
smaller than s. Let € > 0. Fix ¢ € A and let m; — oo be such that a,,, — ¢ and
r/g(AaiO .. Am, Bbi, ...b; by, ) <s+ e forall k. Now taking k big enough so
that rﬁ(Aaio .4 .C Aaj ...a; a4y ) < € (which exists because rp is contractive
in d° by Lemma 3.2), shows that

igfrﬁ(Aaio .. @i Amy, Bbi, ... b d) <s+2e.

in—1
The other term in the inductive definition of 74,1 is treated in a similar way.

The second inequality follows from the inductive hypothesis. The limit case is
trivial. This completes the induction and the proof of the proposition. O

Note that the assumption that () is shift-increasing is only used in the “if”
direction of the proposition.

3.2. Quantifier rank. The quantifier rank of a formula ¢, denoted by qr ¢, is de-
fined by induction as follows:
qr¢ = 0 if ¢ is an atomic formula;
qr f(¢o, - .., Pp—1) = max; qr ¢; if f is a connective;
qr Vi ¢i = qr A ¢i = sup; qr ¢;;
qr(sup, ¢) = qr(infy ¢) = qre + 1.

The following theorem tells us that, as in the classical case, the distance r,
captures exactly the expressive power of the ()-formulas of quantifier rank at
most a.

Theorem 3.5. Let a be an ordinal, A,B € M, a € A" and b € B". Then
(32) rfﬂ(a,ﬁ)=:s3p\¢A(ﬁ>—f¢B(E)

4

where ¢ varies over all n-ary O-formulas of quantifier rank at most .

Proof. We prove by induction on « that for all bounds I,
reP(@,b) NI = sup |¢7 (@) — 9" (b)

4

where |I| denotes the length of I and ¢ varies over all n-ary (Q), I)-formulas of
quantifier rank at most a. For & = 0 and limit this is by definition, so assume this
for « and let us prove it for « 4+ 1. For simplicity, suppose that minI = 0.

Fix t > 0, and assume that rf;rBl(a‘,E) > t. Without loss of generality, there
exists ¢ such that g% (ac,bd) > t for all d. By the induction hypothesis, for
each d, there exists an (n + 1)-ary (Q, I)-formula ¢, of quantifier rank < a such
that |¢4'(a,c) — ¢E(b,d)| > t, and possibly replacing ¢, with another formula of
the same kind, we may assume that ¢4(2,c) > t > 0 = ¢5(b,d). Now, ¢ =
sup,  Aden ¢a is an n-ary (€, I)-formula of quantifier rank < a +1 and

ph@ >t >0>p°(b),
which is enough.

Conversely, assume that sup,, |9 (a) — ¢B(D)| > t. Then |p?(a) — ¢B(b)| >t
for some n-ary ()-formula ¢ of quantifier rank < a 4 1. If ¢ is of the form V/; ¢;,
Ai ¢i, or f(¢o, ..., px_1), where f is a 1-Lipschitz connective, then we can replace
¢ with one of the ¢;. If ¢ is basic, use the fact that ry < r,11 (Lemma 3.3). We
are left with the case where ¢ = sup, ¢ (or ¢ = infy, ¥ but it is similar), where
qr = a. We may assume that ¢p2(a) > t > 0 = ¢B(b). In other words, there
exists ¢ such that $(a,c) > t and yet $B(b,d) < 0 for all d. By the induction
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. AB - T . AB (= T
hypothesis, r;” (ac,bd) > t for this one c and all d, so ;7 (a,b) > t and we are
done. g

3.3. Scott rank and Scott sentence. In this subsection, given a separable structure
A, we describe how to associate to it a countable ordinal, its Scott rank, and
construct a sentence that describes it up to E«-equivalence.

Definition 3.6. We call the least ordinal « for which r2% = rﬁfl the (Q)-)Scott rank
of the pair A, B, denoted by a4 g (or a4 ). If A = B, we call it the (Q)-)Scott rank
of A and denote it by a 4.

Note that by Lemma 3.3, if A is infinite, then ay < |A|T.

Lemma 3.7. If the structures A and B are E-equivalent, then oy c = apc for any
structure C and, in particular, x4 = a s p = «p.

Proof. Let & = a4 c. By symmetry, it will suffice to prove that ap ¢ < a.
Let b € B" and ¢ € C". As r(A,B) = 0, for any € > 0, there exists a tuple
a € A" such that

ro (A, Bb) < roy1(Aa, Bb) < re(Aa, Bb) < €.
Since r,(Aa, C¢) = r411(Aa, C¢), we have
|7« (Bb, CZ) — ro41(Bb, Ct)| < |ra(Aa, CE) — ryy1(Ad, CC)| 4 2€ = 2e.
As € is arbitrary, r,(Bb, C¢) = r,,1(Bb, C¢), as desired. O

Next we observe that, analogously to the classical case, for every separable
structure A, each @ € A", and each ordinal «, there exists a formula ¢, 4(X) such
that for all structures B,

B 7 AB(= 1,
(3-3) ¢zx,n,Ad(b) =T (a/ b) Al
As formulas are always uniformly bounded, taking the minimum with 1 (or some
other constant) above is necessary.

First, we fix a countable, dense subset D C A. Note that the formulas that
we define do depend on this choice of D; however for different choices of D, one
obtains equivalent formulas. For a countable ordinal &, n € N and a € A", we

define inductively the n-ary Q-formula ¢, , 45 as follows.
Fora =0,

$on,aa(X0, -, Xn—1) = \/ M)A(fl) —¢(x0,. -, Xp—1)|,
¢

as ¢ varies over a countable family of basic n-ary (€, [0,1])-formulas, dense in

the norm given by (2.5) (see Lemma 2.4). For « limit,

471x,n,Aﬁ - v (P/S,n,Aa-
B<wa
For a successor,
(3-4) ‘sz+1,n,Aa(x0/'~/xn—1) = ( \/ i?f (Ptx,n+1,Aﬁc> \ (sup /\ ¢0(,Tl+1,AﬁC)'
ceD " Xn ceD

An easy induction shows that ¢, , 45 is an n-ary (Q, [0, 1])-formula of quanti-
fier rank &, and that (3.3) holds.

Now let w4 be the Scott rank of A and note that, as A is separable, by Lemma 3.3,
a4 < wi. We define 04, the Scott sentence of A, as

(3-5) 0A = Pu 04V \/ sup %|‘Ptx,4,n,Aﬁ - ¢aA+1,n,Aﬁ’-

n,aeDn X0r-Xn—1
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This is an (Q, [0,1])-sentence; the coefficient 3 is needed because the function
(x1,x2) — |x1 — x2]| is 2-Lipschitz and in Q-formulas, we only allow 1-Lipschitz
connectives.

The main property of the Scott sentence is the following.

Theorem 3.8. Let B be a separable structure. Then B |= (04 = 0) iff r(A, B) = 0.

Proof. Assume first that B = (04 = 0). Then the second part of 04 ensures
that r,fAB = &8 and then the first part ensures that r,, (A, B) = 0. Together,
re(A,B) = 0.

Conversely, assume that 7o (A, B) = 0. Then r,, (A, B) = 0 so the first part of
o4 vanishes on B. By Lemma 3.7, we have a4 = a4 p, so the second part of 74

also vanishes on B. O

4. THE SPACE OF POLISH STRUCTURES

From now on we will assume that the language L is countable, and we will only
consider separable structures. Then it is possible to parametrize all L-structures
by elements of a Polish space M, in such a way that the pseudo-distances r,
become Borel functions on M.

We will code function symbols by predicates in the following way. If F is an n-
ary function symbol with modulus Af, we replace it by the (n + 1)-ary predicate
Dr defined by

(4-1) Dr(x,y) = d(F(x),y)
with modulus of continuity Ap, given by
(4-2) Ap,(8,8") = Ap(8) + ¢

and bound equal to the bound of the metric d. Call L’ the resulting language.

Lemma 4.1. Every L. (L)-formula is equivalent to a Ly (L')-formula. A similar fact
holds for £, -

Proof. We show by induction that for every term 7(%), there exists an L'-formula
D+(%,y) such that D(%,y) = d(t(X),y). Suppose that T = F(1, ..., T,—1), where
F is a function symbol and the 7; are terms. Define D; by

Dr(fry) = ir%f{DF(ny) : \/ DT,-(frZi) = 0}'

This can be written as a legitimate £.,-formula by [BBHU, Theorem 9.17].
Similarly, if P(T,...,T,—1) is an atomic formula, the following L’-formula is
equivalent to it:

P'(x) = iry;f{P(y‘) - \/ Dy (%,yi) = 0}.
i
Now the lemma follows by induction on formulas. O

Enumerate all predicates in L' as d = Py, Py, Py, ... and let ng, ny, ... be their
respective arities. Let M(L) = M(L') be the set of all p € [[; RN" such that there
exists an L-structure A and a tail-dense sequence (4;);cn of elements of A such
that

N . A
p(i) (o, - - - jn;—1) = PP (aj,, - .,ajnifl)
forall i € N, (jo,...,ju;—1) € N". We will also often write just M when the
language L is clear from the context.

Proposition 4.2. M is a Gz subset of [[; RN"", and therefore a Polish space.
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Proof. It is easy to check that p € M iff the following hold: p(0) defines a pseudo-
distance on N; the set N is tail-dense in the metric space (N, p(0)); for every
i >0, p(i): N" — R respects the modulus Ap, and the bound Ip, on N; finally,
for every predicate of the form Dr, there exists a function F that satisfies (4.1).
Indeed, if p satisfies these conditions, one can just take A to be the completion of
N with respect to the distance p(0), extend all predicates by uniform continuity,
and define the functions via (4.1). The first three of these conditions are clearly
Gy; we check the fourth.

Suppose that F is a function symbol in L with modulus Ar. We claim that a
predicate Dr satisfying the modulus (4.2) comes from a function iff it satisfies the
conditions

(4-3) d(y1,y2) < De(%,y1) + D(%,y2)
and
(4-4) Vi Ve > 03y Dp(x,y) <e.

The first one is a closed condition and says that F is a function; the second ensures
that F is total. As Dr is uniformly continuous, the quantifiers V¥ and Jy in (4.4)
can be taken to range over the distinguished dense subset, so the condition (4.4)
is Gs. Then any predicate that respects Ap, and satisfies (4.3) and (4.4) is of
the form D for some function F that respects Ar. To see this, fix ¥ and take a
sequence (y,) as given by (4.4) for € = 27"; then by (4.3), the sequence (y,) is
Cauchy and its limit y satisfies Dp(%,y) = 0. Define F(X) to be the (unique by
(4-3)) y such that Dg(x,y) = 0. One then easily checks that F respects A and that
Dr(%,y) = d(F (%), y). O

We will consider an element A € M as a complete structure with a distin-
guished tail-dense set N C A; thus we will write Pl-A(aO, .., 0p,—1) instead of
A(i)(ao,...,an,—1) for ag,...,a,_1 € N. In this way, we also interpret 7, (Ad, Bb),
where A,B € M and 4,b € N". Thus r,,, is a pseudo-distance on M x N". Since
N is dense and rf’B is continuous in each variable, we also have
(4.5) r;qfl(ﬁ,l_?) = sup inf r&B (ac,bd’) v ri-B(ac’, bd),

c,deN ¢ A'eN

that is, it is enough to take suprema and infima over the distinguished dense sets.

Proposition 4.3. The following statements hold:

(i) For every formula ¢ (%), the function M x N"* — R, Aa — ¢ () is Borel.
(ii) For every n € N and a < wy, the function ry,: (M x N™)2 — R is Borel.
(iii) If Q) is shift-increasing, then for every s € R, the set

{(Aa, Bb) € (M x N")? : roo(Aa, Bb) < s}
is analytic.

Proof. (i) By Lemma 4.1, it is enough to prove the claim for L’-formulas, which
is done by induction. Evaluation of L’-atomic formulas is a continuous function.
For the quantifier step, note that it suffices to quantify over the distinguished
dense set.

(ii) For a = 0, recall that ro(Aa, Bb) < s iff for all basic ¢ that obey Q, |¢*(a) —
@B (b)| < s. By (i), all of those are Borel conditions and by Lemma 2.4, it suffices to
consider only countably many of them. The rest of the proof is a straightforward
induction on & using (4.5).

(iif) This follows from Proposition 3.4, which gives an analytic description of
the condition 7« (Aa, Bb) < s. O
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We obtain the following corollary from Theorem 3.8.

Corollary 4.4. Let L be a countable signature and Q) be a weak modulus. Then for every
separable L-structure A, the set

{BeM(L): LA B) =0}

is Borel.

5. THE UNIVERSAL WEAK MODULUS

In this section, we show that for every countable language L, there exists a
universal weak modulus Q) such that every L, (L)-sentence is equivalent to an
(-sentence (Corollary 6.5) and for which the equivalence relation E is the finest
one possible, that of isomorphism (Theorem 5.5).

What we will need from the universal modulus is that Q)-formulas be suffi-
ciently expressive; see Proposition 5.2 below. The definition is chosen in such a
way to make this work.

Definition 5.1. Let L be a countable signature. We say that a weak modulus Q) is
universal for L if it satisfies the following conditions:

(i) For every atomic formula ¢(xo, ..., xx_1), there exists n such that
A(P((So, . .,5k,1) S Q\n(O, .. .,0,(50, .. '/(Skfl);
(ii) For every k € N and every M > 0, there exists n such that
M- Q|k((50,. . -/(Sk—l) S Q|n(0, . .,0,50, . .,5](_1),‘
(iii) For every k,n € N,
Q|k(50r . /5k—l) + Q|I’l(70/ cee 1’)’7[—1) S Q|k+n(§0/ ce /§k—11 Y0r-- - ')/n—l);
(iv) € is shift-increasing.
Proposition 5.2. Let Q) be a universal weak modulus for L. Then the following hold:
(i) For every k-ary atomic formula ¢(X), there exists n such that ¢(xp, ..., Xy1x_1)
is an Q-formula;
(ii) For every k-ary Q-formula ¢(%) and every M > 0, there exists n such that
M- ¢(xp, ..., x5k 1) is an Q-formula;
(iii) For all tuples
o <-or<ip1<jo<- o <jn-1,
d?((xj,, .. Xy ) (X, ,xj1171)) is an Q-formula.
Proof. The items (i) and (ii) follow from the corresponding ones in Definition 5.1.
We check (iii). Let A be an L-structure and 4,b,¢,d € A". Let 6; = d(a;,c;) and
v; = d(b;,d;). We have:
|d%(a,b) —d e, d)| < dP(a,e) +d(b,d)
= 0(50/ e /571—1) + Q(r)/O/ e /’)/Vl—l)
S 0(50/ e /571—1/ Y0r--- /')’n—l)
S Q( .,50,. . .,5n_1,.. s Y0re s Y—=1s-- .),

where in the last line, dy, ..., d,-1, Y0, ..., Yn—1 are in positions iy, . . ., iy—1, jo, - - -, ju—1,

respectively, and the other positions are filled with zeros. The second inequality
is condition (iii) in Definition 5.1 and the last one follows from the fact that () is
shift-increasing. This completes the proof of (iii). 0
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Proposition 5.3. For every signature L, a universal modulus Qy(L) for L exists. If
L is a Lipschitz language (that is, all moduli of continuity for symbols in L are linear
functions), then we can take Q) = Qs (Lip) as defined by (2.4).

Proof. Let {¢;};cn be an enumeration of all atomic formulas in L. Let

QU(L)(50,(51,...) = Zi-supAq,k(Ji,...,&i).
i=0  k<i

One easily checks that all conditions in Definition 5.1 are satisfied. Similarly for
Qu(Lip) and Lipschitz languages. O

Remark 5.4. Our definition of a universal weak modulus is somewhat arbitrary:
we have put together all conditions that we need (here, as well as in Sections 6
and 7) and what is important for us is the fact that such a universal modulus
exists. For other purposes, one might need additional properties.

Theorem 5.5. Let L be a countable signature and let () be a universal weak modulus for
L. Let A and B be separable L-structures and € A¥, @ € B. Then

(A5, Bw) = inf{d(f (), @) : f is an isomorphism A — B}.
In particular,
0 ifA=B,
oo  otherwise.

(A, B) = {

Proof. The inequality < is clear: if f: A — B is an isomorphism, then it follows
from Lemma 3.2 that for all «,

ro(A7, Bw) < d(f(9), ®).

For the inequality >, suppose that r« (A7, Bw) < t. By Proposition 3.4, there
exist tail-dense sequences a € AN and b € BN such that a|; = 9, b|; = @ and for
all n, r(‘;"B(a|n,b|n) <t

Consider an n-ary atomic formula ¢(77). By Proposition 5.2 (i), (ii) and the

fact that Q) is shift-increasing, for every M > 0, there exists (M, ¢) such that for
o € N" with mino > |,

Po = M- (xg,- - X0, )
is a basic O-formula. It follows that
(51) |¢U’(a0'0/ cecy aO’,,,l) - ¢0’(b(70/ cecy b(Tn,l )’ S 70(a|maxm b‘maxa) < t/
i.e., for all ¢ with mino > I(M, ¢),

|p(agy, .- a0, ) — ¢(boy, - -, bo, ;)| < t/M,
which implies that
(5.2) |p(agy, .- 00, ) — ¢(boy, -, be, ;)| — 0as mino — oo.

Applied to the formula d(yo,y1), this means that for a strictly increasing se-
quence (my,) C N, if one of the subsequences (a,,,) and (b, ) is Cauchy, then
so is the other. If limay, = lima,,, then (au,,a,, ) is Cauchy, therefore so is
(b, byy ), and thus lim by, = limb,, (and vice versa). We therefore obtain a
bijection 6: A — B defined by 6(lima,,,) = limb,,. By (5.2) again, 6 is an iso-
morphism. Next we check that d*(0(aly), bly) < t. Fori < k, let (m; ), be strictly
increasing sequences such that a,,,, — a; as n — o0 and

k<mg, <---<mg_1, foreachn.
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Then Proposition 5.2 (iii) and (5.1) give us that
|42 (@l (@moyr- - Amy,,)) = A2 (bl (B, by y,)) | <

for all 7 and taking limits yields d(b|, 0(a|)) < t as desired. O

Applying Corollary 4.4 allows us to recover one of the original applications of
Scott sentences.

Corollary 5.6. Let L be a countable signature and A be a separable L-structure. Then
the set {B € M(L) : B = A} is Borel.

Remark 5.7. We should note that Corollary 5.6 also follows from the main result
of [EFP "], where the authors prove that isomorphism of Polish metric structures
is Borel reducible to a Polish group action (which implies that classes are Borel).
However, our result is more precise as it gives a bound of the Borel complexity of
the isomorphism class in terms of the Scott rank.

Remark 5.8. Note that in Theorem 5.5, if 7o (Ad, BE) = 0, this does not imply that
there is an isomorphism between A and B that sends 4 to b. An easy example
of this is when A = B and the orbits of the action of Aut(A) on A are not
closed. Then, for any 4 and b in the same orbit closure of Aut(A), re(Aa, Ab) =
0. However, if a and b are not in the same orbit, there is no automorphism
that maps a to b. Such a structure can be obtained as follows: if G is a Polish
group, its completion under a left-invariant metric Gy can be made into a metric
structure in such a way that Aut(G;) = G with the action of G on Gy by left
translation. If G # Gp, (this holds, e.g., for G = Ss), this provides an example
of an automorphism group with orbits that are not closed. See Melleray [M] for
more details.

Remark 5.9. It is possible to take a slightly different approach that may be more
suitable for some purposes when defining the back-and-forth pseudo-distances.
In the definition of ry, one could replace basic formulas by full £.,-formulas
that obey (). This has the advantage of being much more robust with respect to
syntactical considerations: one can assume from the start, without loss of gener-
ality, that the signature contains no function symbols and that all predicates are
Lipschitz (see [BY2, Corollary 1.7]), thus allowing a unique universal weak mod-
ulus that works for all languages (namely, Qg (Lip)). The main disadvantage of
this approach is that 7y becomes very hard to compute, while with our definition,
computations are sometimes feasible (see Section 8).

6. A LOPEZ-ESCOBAR THEOREM

Next we prove a continuous analogue of the classical Lépez-Escobar theorem:
that every Borel set of structures invariant under isomorphism is the set of models
of some L, w-sentence. This is a converse to Proposition 4.3 (i).

Let L be a fixed countable language, and, as before, denote by M the space of
Polish metric L-structures. Let () be a universal weak modulus for L. Let = be
the (analytic) equivalence relation of isomorphism on M (by Theorem 5.5, this is
the same as Ew).

We proceed to the main theorem of this section. We use the definition of Baire
class for real valued, Borel functions given in [K, 24.1]. If 6 is the least ordinal
such that the function U is of Baire class 0, we write BC(U) = 6.

Theorem 6.1. Let I C R be a compact interval and U: M — I be a Borel function that
is =-invariant. Then there exists an (Q), I)-sentence ¢ such that

U(A) = ¢ forall A M.
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Moreover, we have that qr(¢) < w-2-(2+BC(U) +1).

There are two known proofs of the Lépez-Escobar theorem in the classical case:
the original one in [LE], based on proof theory, and another one by Vaught [V],
based on Baire category and the fact that isomorphism is given by an action of
Seo. It is the latter that we adapt to our situation. In our setting, we do not have a
group action around but we do have Baire category and it will turn out that this
is sufficient.

If A € M is a model, we denote by [A] the =-equivalence class of A in M (by
Corollary 5.6, this is a Borel set). We also define

D(A) = {y € AN: {y(n) : n € N} is tail-dense in A}.

Here and later, by a slight abuse of notation, we denote by A both the element
of M (which prescribes the values of all predicates on a dense set) and the actual
model (the completion of N with respect to the metric). Note that D(A) is a G
set in AN, and therefore a Polish space.

For each A € M, there is a natural continuous surjection 714: D(A) — [A]
defined by

P (ig, ... in1) = PA(y(io), -, y(in-1))
for all predicates P € L of arity n and all igp,...,i,—1 € N. Because of the way
we code models, we may assume, without loss of generality, that the language L
does not contain function symbols. The map 74 will allow us to push forward
the ideal of meager sets on D(A) to [A], which is an essential element of the
proof.

If X is a Baire topological space, we will use the category quantifiers “3*” to
mean “for a non-meagre set of” and “V*” to mean “for a comeagre set of”. If
f: X — R is a Baire measurable function, define the operators sup* (essential
supremum) and inf* (essential infimum) as follows:

sup® f(x) >t < F'xe X f(x)>t
xeX

iréf;f(x) <t <= FxeXf(x)<t
X

Note that if f is continuous, then
sup® f(x) =sup f(x) and inf;f(x) = inf f(x).
xe

xeX xeX xeX

If y and z are finite or infinite sequences of elements of a metric space (Y,d)
at least one of which is finite, we will abuse notation and write d*(y, z) instead
of d(y|m, z|m), where m = min(|y|, |z|). If y or z is the empty sequence, we set
d?(y,z) =0.

We will call a function F: M — R a basic continuous function if there exists
k € N, predicates P; of arity n; for i < k, elements a;; € N (i <k,j < n;), and a
Lipschitz (for the max distance on RF) function f: R — R such that

F(A) = f((P (a0, .., 8in—1))i<k)-

Lemma 6.2. Let I C R be a compact interval. The class of Borel functions M — 1 is
the smallest class that contains the basic continuous functions taking values in I and is
closed under countable suprema and infima.

Proof. First recall that, by [K, 11.6], the class of Borel functions on a Polish space is
the smallest class containing all continuous functions and closed under pointwise
limits. If lim, f,, exists then lim, f;, = inf,sup, -, fiu, so it is also the smallest
class containing all continuous functions and closed under countable suprema
and infima.
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Thus it suffices to prove that all continuous functions can be obtained from the

. . . . .. np; e
basic ones using pointwise limits. As M C J7; Ig is a Gy set (Proposition 4.2),
any continuous function on M extends to a Baire class 2 function on the com-
N"P,' . . . . .
pact space Z = []; Iy '. Any continuous function on Z is uniformly continuous
and can be approximated by a function that only depends on finitely many co-
ordinates, that is, a function of the type A — f ((PiA(a,',O, c o Bin—1))ick) With
f: K — R continuous, where K = [T; Ip,. By Stone-Weierstrass, f can be approxi-
mated by Lipschitz functions, and such functions are permitted in our definition
of basic continuous functions. By taking limits (two times), we can obtain any
Baire class 2 function on Z from continuous functions. g

If M >0, U: M — [0,M] is a Borel function, and k € N, define the function
Uk : M x Nk — [0, M] as follows:

U*(Aa) = inf* U V kd?(y, 7).
(A, a) e (ta(y)) (y, 1)

The following result easily implies Theorem 6.1 and is better suited for an
inductive argument.

Theorem 6.3. Let M > 0. For every Borel function U: M — [0, M| and for every
k € N, there exists | € N and an (Q, [0, M])-formula ¢y x(xy, ..., Xj1x—1) Such that

(6.1) U™(A @) = ¢1i(uo, . 1)
forall (A,1) € M x NK. Moreover,
(6.2) qr(oux) <w-2-(24+BC(U) +1).

Proof. For the main statement of the theorem, by Lemma 6.2, it is enough to check
that the class of functions U that satisfy the theorem contains the basic continuous
functions and is closed under countable infima and the operation U — M — U.
(This operation exchanges infima and suprema and preserves the interval [0, M].)
Thereafter we will check “moreover” statement by bounding the quantifier rank
of the constructed formulas.

First suppose that U is a basic continuous function. Then, by the properties
of the universal modulus (Proposition 5.2 (i), (ii) and the fact that Q) is shift-
increasing), there exist n € N, variables z,...,z,_1, and a basic Q-formula
0(zo,...,zy_1) such that U(A) = 64(0,...,n —1). As U is continuous, sup and
sup* coincide, and by the properties of the universal modulus again, there exists
I € N such that

(6.3) (Pu,k(xl, - ,xl+k_1) = ll’%f 0(z) v kdﬂ(f, zZ)

is an O)-formula and satisfies (6.1). (Note that ¢; s is technically not an (€}, [0, M])-
formula as the subformula kd}(%,z) does not respect the bound [0, M]. This
can be easily fixed by replacing it by (kd}(%,z)) A M but we will not do this in
order to avoid cluttering the exposition. This change is completely harmless as it
transforms ¢; x into an equivalent formula. A similar remark also applies to the
constructions below.)

Suppose now that U = inf, U, and that the formulas ¢;;, , have already been
constructed. We verify that

Puk(X) = /\ pu, (%)
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works. Using the inductive hypothesis and the fact that inf* commutes with
taking countable infima, we obtain

U™(A,a) = inf* inf U, vV kd?(y, @
(A, ) b, inf Un(a(y) (v, )

- igfyeiril)f(:) Un(ma(y)) V kd? (y, 1)

= inf ], (7).
Finally, suppose that U = M — V, and that formulas ¢y ,, satisfying
(6.4) Pom(2) = Inf’ V@)V md® (v, 2)

have already been constructed for every m.
We show that

puk(®) = /\_ inf (M—¢y(2))Vkd%(%,z2)

m 20, Zm—1

satisfies (6.1). Note also that the variables can be chosen in a such a way that ¢;
is an Q-formula.
Fix A, ii, and r € R in order to show that

(6.5) Uk(A ) <r < gb{f‘[,k(ﬁ) <r.
If ze€ A™ and r > 0, let B(Z,r) be the open set
B(z,r) = {y € D(A) : d%(z,y) < r}.

Suppressing 714 from the notation, we have that
Ut(A, 1) <r < 'y e D(A) (de(ﬁ,y) <rand (M—V(y)) < r)
<= Jopen W C D(A) (W C B(it,r/k) and V'y e WV(y) > M — r).
On the other hand,

ol (1) <r < Im,z (((M—vei%f(’;)V(v)) v md?(z,0)) < r

and kd®(11,z) < r)

e 3m,z ((v*v € D(A) V() > M —r or md®(v,z) > M — r))
and kd®(1,2) < r)

e Im,z ((v*v €B(z,(M—r)/m) V(o) > M —r)
and kd(,z) < r).

For the direction (<) of (6.5), suppose that z and m are given. By enlarging m
if necessary (and prolonging z arbitrarily), we may assume that (M —r)/m <
r/k —d®(i1,z). Then it suffices to take W = B(Z, (M — r)/m) to witness that
U (A, a) <r.

For the other direction, suppose that W is given. Let y € W be arbitrary and
take m so big that B(y|mu, (M —r)/m) C W. Finally, set z = y/,.

This completes the induction.

Now we give bounds on the quantifier ranks. Let F be the function defined
by F(6) = w-2-(2+ 6+ 1) for each ordinal 6. Note that if U = lim, U, for
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Borel functions Uy, then we may assume that the range of each U, is contained
in [0, M] without increasing the Baire class, and we have

(6.6) U = limsup U, = inf(M — inf (M — Uy)).
n m n>m

If U is basic continuous, for ¢;;; defined in (6.3), we have qr(¢yx) < w.

For the general case, we induct on BC(U). First suppose that BC(U) = 0, that
is, U is continuous. By the proof of Lemma 6.2, we need to take limits two times
to obtain U from basic continuous functions. Moreover, each basic continuous
function is represented by a formula of quantifier rank < w; thus (6.6) shows that
qroyr <w+w-2+w-2=w-5, whence (6.2) holds for U.

Now suppose that BC(U) = 6 > 0. Then U = lim, U, where BC(U,) < 6 for
each n. By the inductive hypothesis, qr(¢y;, x) < F(BC(U,)), so there is p < F(0)
such that for each 1,k we have qr(¢p_y, k) < p. Therefore qr(¢,,x) < p where
Ymk = Pinf,~, M—U, k- A similar argument now shows that qr(¢yr) < p+w <
F(6). O

Proof of Theorem 6.1. Suppose U: M — I is a Borel function invariant under iso-
morphism. Let M = |I| and let U’ = U — minI, so that U’ takes values in
[0, M]. In Theorem 6.3, take # = @ and observe that U"**(A,@®) = U'(A) for
every A. Thus, ¢ = ¢+ M is (equivalent to) an (), I)-sentence such that
U(A) = ¢* for every A. Moreover, such a sentence has quantifier rank at most
w-2-(2+BC(U)+1). O

A standard corollary of the Lépez-Escobar theorem is the Craig interpolation
theorem for £, o-logic. (In fact, Lopez-Escobar first proved the interpolation
result and then deduced his theorem from it.) Here we note the continuous
version.

Corollary 6.4 (Interpolation). Suppose that Ly and Ly are two countable signatures and
¢1 and ¢ are Loy, w(L1) and Loy (Ly) sentences respectively. Suppose that it < ¢4t
for every separable model A of £, (L1 U Ly). Then there is an interpolating sentence 0
in Le,w(L1 N Ly) such that = ¢1 < 0 < ¢o.

Pl’OOf. Let Lo = Ly N Ly and let 71y : M(Ll) — M(L()) and 715 : M(Lz) — M(Lo) be
the natural restriction maps. For every r € Q, consider the two analytic sets

{A € M(Ly): 3B € M(Ly) 1(B) = A and ¢F > r} and

{A e M(Lp) : 3B € M(Ly) mp(B) = A and ¢% < r}.

They are =-invariant and by hypothesis, they are disjoint. By [K, Exercise 14.14],
there exists an invariant Borel set C, that separates them. Define U: M(Ly) — R

by

U(A) =sup{r: AeC}.
The function U is =-invariant and Borel. So by Theorem 6.1, there exists a sen-
tence 0 such that U(A) = 64 and then for all separable A, ¢! < 64 < ¢3!, Using
the downwards Lowenheim-Skolem theorem, this implies that ¢; < 6 < ¢ is
universally valid. g

Another corollary is that our universal modulus () is indeed universal.

Corollary 6.5. Let L be a countable language and Q) be a universal modulus for L. Then
every L, w(L)-sentence ¢ is equivalent to an Q-sentence ¢'.

Proof. Apply Theorem 6.1 to the Borel function U(A) = ¢*. O
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7. BOUNDED RANK AND BORELNESS OF ISOMORPHISM

In this section, we characterize when the isomorphism relation restricted to
an invariant Borel subset of M is Borel and prove Theorem 1.3. This is again
analogous to the classical setting (see, e.g., [G2, Theorem 12.2.4]). Our proof
follows the same general outline, but certain new features appear.

For the remainder of the section, we fix a countable language L and a weak
modulus Q) universal for L. Recall that a fragment F of L., (L) is a separable
set of formulas containing all atomic formulas and closed under subformulas,
substitution of terms for variables, quantifiers, and finitary connectives. An F-
theory is a collection of statements of the form ¢ = 0, where ¢ is a sentence in
F. If A is a structure, the theory of A, denoted by Th(A), is the collection of all
statements ¢ = 0 that are true in A.

We will use a homogeneity result for atomic models. In order to state it cor-
rectly, we will need to define a topometric structure (see [BY1]) on the (non-
compact) type spaces, which we proceed to do. Let T be an F-theory. Define a
seminorm ||-||; on the (unital) algebra of n-ary F-formulas by:

¢l = sup{lg” ()| : A |z T,a € A"}.

Denote by S, (T) the Gelfand space of the Hausdorff completion of the algebra
of all n-ary F-formulas equipped with this seminorm. (See, for example, [F,
Chapter 1] for details on Gelfand theory.) This is the compact space of finitely
consistent n-types. In what follows, we will identify the algebra of formulas with

C(Sx(T)) via the Gelfand transform and simply use the notation ¢(p) for the
value that the type p gives to the formula ¢. Alternatively, if ¢(p) = r, we will
also write p(X) = ¢(x) =r.

Say that a tuple @ € A" realizes a type p (notation a = p or tp(a) = p) if
¢(p) = ¢*(a) for all n-ary formulas ¢ € F. If there exists @ € A" such that a |= p,
we will say that A realizes p. Otherwise, say that A omits p. Denote by S,,(T) the
set of realizable types (or just types for short):

o —

Su(T) = {p € Su(T) : A |= T such that A realizes p}.

The logic topology on S,(T) is the one inherited from S/n(?) The compactness

theorem tells us that if F = L4, (L), then S,(T) = S,(T). While this fails for
general fragments, S, (T) is always a G; subset of S,(T) and therefore a Polish
space. (We will not prove this fact as we will not use it.)

Defining the distance on types is more delicate because of the lack of compact-
ness. The definition we give is inspired by Caicedo and Iovino [CI]. As in finitary
continuous logic, the topology defined by the distance on types is finer than the
logic topology and the distance is lower semicontinuous in the logic topology.

We will need to fix distances on powers of A and for most purposes, any dis-
tance will do. However, in order to obtain exact equalities in the two propositions
below, it will be most convenient to take d = d<%; in the remainder of the section,
when we write d(a, b) for ,b € A", we mean d*(,b) (and similarly, in formulas).

Recall that the operation — is defined by x —y = 0V (x — y). Let the distance
dr on S, (T) be given by:

71) Ok(pq) <5 == V¢ € Fq(¥) = inf(d(x,g) =) VIp(F) - ¢(p)] = 0.

In words, op(p,q) < s iff for every ¢ € F and every € > 0, for every realization
a € A" of g, there exists @ € A" such that d(a,a’) < s+eand |[¢p(a') — ¢p(p)| <e.
For F = Ly, using compactness, this definition is equivalent to the usual one
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(see [BBHU, Section 8] for the definition). When the fragment F is clear from the
context, we will simply write 0 instead of dr.

We check that 9 is symmetric. Suppose that d(p,q) < s and fix ¢ € F, and a
realization 2 € A" of . Let ¢(%) = infy (d(7, %) ~s) V [¢(7) — ¢(q)| and suppose,
for contradiction, that ¢(p) = r > 0. Using (7.1) for i, we obtain that for every
€ > 0, there exists 4’ € A" with d(a,4’) < s+ € and (@) > r —e. However,
p(a') <d(a,a) =s (as ¢(a) = ¢(q)), which yields a contradiction for € < r/2.

Next we verify the triangle inequality. Suppose that d(p1, p2) < s1and 9(py, p3) <
sp in order to show that d(p1, p3) < s1 + sp. For simplicity of notation, we assume
that n = 1. Let ¢ € F be a formula such that ¢(p1) = 0. We know that

pa(y) = inf (d(y, w) = 1) V p(w) =0,
whence
p3(x) = inf (d(x,y) = s2) v (inf (d(y,w) = 51) V p(w)) = 0.
Simplifying yields
pa(x) [= inf (d(x,w) = (s1+52)) V p(w) = O,

as desired.

Another property of 0 that we will need, easily checked from the definition, is
that for any model A = T and all 4,b € A",
(7.2) d(tpa, tpb) < d(a,b).

Finally, we check that if ¢ is an n-ary Q-formula that is in F, A,B |= T, and
ac A", b € B", then
(7.3) |¢(a) — (D) < o(tpa, tpD).
Indeed, suppose that d(tpa,tpb) < s and fix a formula ¢. Then for every € > 0,
there exists b’ € B" such that d(b/,b) < s +e€ and |¢p(b') — ¢(a)| < €. By the choice
of the metric d on products, ¢ is contractive in d, so we obtain that |¢(a) — ¢(b)| <

s + 2¢, which is enough.
If X CS,(T) and é > 0, denote by (X), the d-fattening of X:

(X)s = {p €Su(T) : 37 € X a(p,q) < J}.
If X = {p} is a singleton, write (p)s instead of ({p})s. Say that a type p €
S, (T) is principal if for every 6 > 0, p belongs to the interior of (p)s in the
logic topology on S, (T). A model A is called F-atomic if every type it realizes is

principal (for Th(A)). One of the important properties of atomic models is that
they are homogeneous.

Proposition 7.1. Let F be a fragment, let A be an F-atomic model, and 11,7 € Ak, Then
Teo(All, AG) = p(tp i, tp 3).

In particular, A is homogeneous, ie., for all ii,5 € A* with tpii = tpd and € > 0,

there is an automorphism f € Aut(A) such that d(a, f(7)) < e.

Proof. The inequality 0 < re follows from Theorem 5.5 and (7.2). For the other
direction, suppose that o(tp i, tp7) < t. We will build inductively tail-dense
sequences a,b € AN that satisfy a|; = i, b|; = 7, and

(7.4) o(tp(aln), tp(bls)) <t foralln.

We start by setting a|; = i and b|; = 7. The rest of the construction is carried by a
back-and-forth argument of which we only describe the forth step. Suppose that
a|n, bly are given such that d(tp a|,, tp b|,) < s < t and let a, € A be arbitrary. We
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will find b, € A such that d(tpa|,41,tpbln1) < t. As p = tp(al,+1) is principal,
there exists a formula ¢ taking non-negative values such that ¢(a|,;1) = 0 and
¢(w) < 1 implies that d(tp@, p) < (t —s)/2. As d(tp(aln),tp(bln)) < s, by (7.1),
we have that

AE ir&f ((d(7,bln) =s) \/irzlf(p(y‘,z)) =0.
Let € > 0 be arbitrary and let ¢ € A" and d € A be such that d(b|,,¢) < s+ € and
¢(ed) < 1. Then d(tp(éd), p) < (t —s)/2 and we have
(p,tp(blud)) < 9(p, tp(cd)) + o(tp(cd), tp(bd))
<(t—s)/2+s+e,

which is less than f as long as € < (f —s)/2. This means that we can take b, = d.
Now it only remains to observe that (7.3) implies that

ro(aln, bln) < 0(tp(aln), tp(bln))
and apply Proposition 3.4. O

The following proposition bounds the Scott rank of F-atomic models.

Proposition 7.2. Let F be a fragment such that the quantifier rank of formulas in F is
bounded by a. Let A be an F-atomic model. Then for every 1, € Ak,

Op(tp i, tpd) = ry(Ail, AT) = reo(Ail, AD).
In particular, the Scott rank of A is at most «.
Proof. In view of Proposition 7.1, we only need to prove that o(tp i, tpd) <
ro(11,7). Suppose that r,(i1,7) < s and let € > 0 be arbitrary. As tp is prin-

cipal, there exists an n-ary Q-formula ¢ € F and 6 > 0 such that () = 0 and
P(q) <6 = 9(q,tp?) < e. Let M > s/5 and let

p(x) = irzgf d(x,z2) VM- (z),

where the variables Z are taken in such a way that ¢ is an n-ary ()-formula (this
can be done by Proposition 5.2). Then ¢(7) = 0 and as ¢ € F, by Theorem 3.5,
we have that ¢ (1) < s. Then there exists @ € A¥ such that d(i1, @) < s + € and
P(@) < d. Thus
d(tpu, tpd) < d(tpu, tp@) + (tpw, tpd)
< d(i1,w) + d(tp @, tp D)
< s+ 2e.

As € was arbitrary, this completes the proof. g

The following omitting types theorem will allow us to deduce that F-categorical
models are F-atomic. The version for infinitary continuous logic was proved in
Eagle [E, Theorem 4.14].

Theorem 7.3 (Omitting types). Let T be a consistent F-theory and p € S,(T) be a
type which is not principal. Then there exists a separable model of T which omits p.

Eagle’s definition of a metrically principal type [E, Definition 4.12] which is used
in his [E, Theorem 4.14] is not quite the same as our definition of a principal type.
The following lemma shows that they are equivalent.

Lemma 7.4. Let p € S,(T). Then the following are equivalent:
(i) p is principal;
(ii) for every 6 > 0, (p)s has non-empty interior in the logic topology.
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Proof. We only need to prove (ii) = (i). Fix 1 > J > 0 and suppose that gq is in
the interior of (p)s,2, i.e., there exists a formula ¢(%) such that ¢(q0) = 0 and
$(g) <1 = 9(q,p) <6/2. Let

$(x) = inf P7) vV (d(x,7) = 6/2).

First we check that (p) = 0. Let @ |= p. Then, as 9(p,qo) < 6/2 and ¢(q0) = 0,
we have that ¢(p) = 0. Next we verify that ¢(q) < §/2 = q € (p)s, thus
showing that p is in the interior of (p)s. Suppose that ¢(q) < /2 and let a |= q.
Then there exists b such that ¢(b) < §/2 < 1 and d(a,b) < §/2. In particular,
d(p,tpb) < 6/2. We have

d(p,q) <o(p,tpb) +d(tph,tpa) < 35/2+6/2 =. a

Combining everything we have so far, we obtain the following theorem.

Theorem 7.5. Let F be a fragment such that the quantifier rank of formulas in F is
bounded by « and let T be an F-theory which has a unique separable model A. Then the
Scott rank of A is at most «.

Proof. By Theorem 7.3, A is F-atomic: if tpa is non-principal for some 2 € A",
there exists a separable model of T that omits it and is therefore not isomorphic
to A. Now Proposition 7.2 implies the conclusion. O

We are finally ready to prove the main theorem of this section.

Theorem 7.6. Let L be a countable language, let = denote the isomorphism relation on
M(L) and let X C M(L) be an =-invariant Borel subset. Let Q) be a universal modulus
for L. Then the following are equivalent:

(i) = |x is Borel;
(ii) The Q-Scott rank of elements of X is uniformly bounded below w;.

Proof. (i) = (ii). Suppose that = |y is TI{ for some & < w;. Then each isomor-
phism class contained in X is Hg ; by Theorem 6.1, for every A € X, there exists
a sentence §4 of quantifier rank at most #’ = w -2+ (24 a + 1) such that & = 0
if A~ Band g5 = 1 otherwise. Now for each A € X, apply Theorem 7.5 to the
fragment generated by 14 and the theory {4 = 0} to obtain that the rank of A
is at most a'.

(ii) = (i). Suppose that the Scott rank of all structures in X is bounded by
a < wi. Then the Scott sentence of each of those structures has quantifier rank
at most « + w. By Theorems 3.8 and 3.5, for A,B € X, AEy+ B iff AE« B and
by Theorem 5.5, A E B iff A = B. Thus, on X, the Borel relation E,, coincides
with isomorphism. O

Example 7.7. Recall that a complete metric space is called proper (or Heine—Borel)
if all closed bounded sets are compact. The Euclidean spaces and, more generally,
all complete Riemannian manifolds are examples of proper metric spaces. Clearly
it suffices to require the Heine—-Borel condition for closed balls centered at points
in a countable dense sequence. Then, since a complete metric space is compact
iff it is totally bounded, properness is a Borel property of Polish metric spaces.

By a theorem of Hjorth (see [GK, Thm. 3]), isometry of proper metric spaces is
Borel bireducible with the universal countable Borel equivalence relation, and in
particular Borel. Hence by Theorem 7.6, the Scott rank of proper metric spaces is
bounded.
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8. TwWo EXAMPLES FOR THE 1-LIPSCHITZ MODULUS

8.1. Gromov-Hausdorff distance between metric spaces. We apply the tools we
have developed in a particular example: calculating the Gromov-Hausdorff dis-
tance between metric spaces. Throughout this subsection, we fix a signature L
containing only the distance symbol d, say, bounded by 1, and we let O = )1 be
the 1-Lipschitz weak modulus defined by (2.3). All metric spaces that we consider
below have diameter bounded by 1. (Everything goes through if 1 is replaced by
an arbitrary positive constant.)

Recall that if (C,d) is a metric space and A, B are closed subsets of C, the
Hausdorff distance between A and B, denoted by dj(A, B) is defined by

d(A,B) =supd(x,B) Vsupd(y, A).
x€A y€EB

If (A,d) and (B, d) are now abstract metric spaces, the Gromov-Hausdorff distance
[G3, Def. 3.4] between A and B, denoted by dgpi(A, B), is defined by

dcu(A, B) = }fl;z du(fi(A), f2(B)),

where f1 and f, vary over all isometric embeddings of A and B in a third space
C.

Similarly, we define the enumerated Gromov-Hausdorff distance between enu-
merated metric spaces as follows. Let A and B be metric spaces and {a; : i € I},
B = {b; : i € I} be sequences of elements of A and B, respectively. We define the
enumerated Gromov—Hausdorff distance degr(a,b) as

degri(a,b) = inf supd(fi(a), f2(bi)),
fufr g
where f; and f, vary over all isometric embeddings of {a; : i € I} and {b; : i € I}
in a third metric space C.

Theorem 8.1. Let L = {d} and Q) = Q) as above. Then for any two metric spaces A,
B of diameter at most 1,
reo(A, B) = dgu(A, B).

We start by calculating d.gp between finite tuples.

Lemma 8.2. Let A, B be metric spaces and let a € A", b € B" be finite tuples. Then

deGH(ﬁ, E) = %sup |d(al-,aj) - d(bi, b])| = rO(Aa', BE)
L]

Proof. The first equality is proved in Uspenskij [U, Proposition 7.1]; we proceed
to show the second. As basic formulas are 1-Lipschitz and they are preserved by
embeddings, it is clear that o(Aa, Bb) < degu(a,b).

On the other hand, we have

_ 1
A%d(x,-,x]-)((s) = 5(6;+6;) <8V <OL(S),

so 3d(x;, x;) is an O -formula. This implies the other inequality. O
Proof of Theorem 8.1. Let A, B be metric spaces and s € R. We have:
dcu(A,B) <s <= Ja € AN,b € BN tail-dense such that degp(a,b) < s
<= Jac AN, b € BN supdegp(aln, bln) < s
n

< Jae AN, pe BN supro(aln, bln) <s
n

<= rw(A,B) <s.
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The second equivalence follows by compactness (or, alternatively, from the fact
that the first equality in Lemma 8.2 also holds for infinite tuples), the third is
Lemma 8.2, and the fourth is given by Proposition 3.4. O

Theorem 8.1 and Corollary 4.4 give us the following.
Corollary 8.3. Let L = {d} and let A € M(L). Then the set
{BeM(L) :dgu(A,B) =0}
is Borel.

Question 8.4. Let M be the space of Polish metric spaces with distance bounded
by 1, as above. Let A € M be fixed. Is dgy (A4, -) a Borel function on M?

Remark 8.5. It is not clear what the exact complexity of the equivalence rela-
tion Egy (dgu = 0 on bounded metric spaces) is. However, Christian Rosendal
pointed out to us that it is above the universal orbit equivalence relation of a Pol-
ish group action. This can be seen as follows. For a compact metrizable space X,
denote by C(X) the space of continuous functions on X equipped with the sup
norm. Dutrieux and Kalton show in [DK] that if X and Y are not homeomorphic,
then dgy(C(X),C(Y)) > 1/16. Thus the map X — C(X) is a reduction from
homeomorphism of compact spaces to Egry. As the former is universal for orbit
equivalence relations of Polish group actions (Zielinski [Z]), this yields the claim.
One way to see that this reduction is Borel is as follows. In [Z], compact
metrizable spaces are parametrized by the elements of the hyperspace K([0,1]N)
of closed subspaces of the Hilbert cube. An easy way to find a Borel map
®: K([0,1]N) — M such that ®(X) is isometric to C(X) is the following. Let
z;: [0,1]N — [0,1] denote the projection on the i-th coordinate. Then instead of
N, we can take as a distinguished countable dense set in the definition of M the
set of all polynomials with rational coefficients in infinitely many variables (all
but finitely many coefficients of which are zero), and calculate the distance by

d(Pl,Pz) = sug \Pl(zo(x),zl(x),. . ) — Pz(Z()(x),Zl(x),. . )|,

which is easily a Borel function of X. The Stone-Weierstrass theorem tells us that
the resulting element of M is isometric to C(X).

Question 8.6. Is Egyy Borel reducible to an orbit equivalence relation of a Polish
group action?

Next we provide a simple example of two discrete metric spaces that have
Gromov-Hausdorff distance 0 but are not isometric. Note however, that for com-
pact metric spaces as well as for metric spaces with discrete set of distances, Egyy
and isometry coincide.

Example 8.7. Let A be a countable subset of the open interval (0,1). We define
a countable metric space (X4,d,) as follows: X4 = {x4,y, : a € A}, and for
x #y € X we set

da(x,y) = {

It is easy to check that (X4,d ) is a complete, ultrametric space. Now let A, B C
(0,1) be two distinct, dense, countable subsets of (0,1). Then clearly X4 and X3
are not isometric but dgy(Xa, Xg) = 0. Indeed, fix e > 0 and let f: A — B be
a bijection such that for all a € A, |f(a) —a| < e. Let Y be the disjoint union
of X4 and Xp and define the distance on Y by d(x4,v.) = a, d(xp,y) = b,
fora € A, b € B; d(xﬂ,xf(a)) = d(ya,yf(a)) = g, d(xa,yf(a)) = d(ya,xf(a)) =

a if x = x,,y =y, or vice versa;
1 otherwise.
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min((a +b)/2+¢,1) for all a € A and d(x,y) = 1 in all other cases. This Y
witnesses that dgy (X4, Xp) < €.

8.2. Kadets distance between Banach spaces. Our second example is Banach
spaces. Here the language is {0, +, ||-[|,,} U {M, : A € R}, where 0 is a constant
symbol, + is a binary operation with A (é,62) = 1 + Jy, ||-||,, is a 1-Lipschitz
predicate symbol (interpreted as ||x||,, = ||x|| A n), and M, is a function symbol
representing multiplication by A with Ay (dg) = |A[dp. We will denote by M
(and restrict our considerations to) the Borel set of all separable Banach spaces
rather than the space of all structures in this signature. Note that this is not
relevant for the definition of the pseudo-distances r,: they are computed in a
manner independent of the ambient space. We can also restrict to a countable
sublanguage by only keeping M, for A € Q without loss of generality. The
distance function is given by d(x,y) = ||x — y||;.

Every atomic formula is equivalent (on M) to a formula of the type || Z?:_Ol Aixill,
for some k,n € N, A; € R. An easy calculation yields that the modulus of continu-
ity of this formula is A(d) = Z}:Ol |A;]6;. In particular, it obeys Q iff }; |A;] < 1.

Let A, B be two Banach spaces. The Kadets distance between A and B is de-
fined analogously to the Gromov-Hausdorff distance by

dx(A,B) = j}]nffz du(f1(Ba), f2(Bs)),

where B4 and Bp denote the unit balls of A and B and f; and f, vary over all
linear isometric embeddings of A and B in a third Banach space C.

Let now A and B be two Banach spaces and @ and b be two sequences in B 4
and Bp with dense span. The enumerated Kadets distance is defined as

dex (A2, Bb) = inf sup||fi(a;) — f2(bi)l|c,
fufa
where f; and f, vary over all linear isometric embeddings of A and B in a third
space C. The following is the analogue of Lemma 8.2 for Banach spaces.

Lemma 8.8. Let A and B be Banach spaces and 4 € B, b € B be finite tuples. Then
dex (Aa, Bb) = sup{|[[}_ Aiaill — [ Al : Yo 1A] <1}
i i i
= T’Q(Aﬁ, BE)

Proof. The first equality is proved in [BY3, Fact 3.4]. (There, the sup is taken over
all A; with }_ A; = 1; however, scaling up in order to make the sum equal to 1 only
increases the values inside the sup.) For the second, exactly as in Lemma 8.2, it
suffices to recall that the formula ||}_; A;x;|| obeys Qp if }; [A;| < 1. O

In the same way as before, we obtain the following theorem.
Theorem 8.9. For any two separable Banach spaces A and B, we have
rX(A,B) = dg(A,B).
Question 8.4, Remark 8.5, and Question 8.6 also apply to the Kadets distance.

9. A CHARACTERIZATION OF CLI POLISH GROUPS

Recall that a Polish group is called a CLI group if it admits a complete, compat-
ible, left-invariant metric. In [G1], Gao proves that if M is a classical countable
structure, the automorphism group Aut(M) is a CLI group iff the classical Scott
sentence of M does not admit uncountable models. In this section, we note that
a similar result holds for general separable structures.
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We start with a simple lemma (well-known in the classical setting) that estab-
lishes the connection between the left completion of Aut(M) and £, -logic.

Lemma 9.1. Let M be a separable metric structure and Aut(M) be its automorphism
group equipped with the pointwise convergence topology. Then the left completion of
Aut(M) can be identified with the monoid of L, -elementary embeddings of M into
itself. In particular, Aut(M) is a CLI group iff every such elementary embedding is
surjective.

Proof. The left uniformity of Aut(M) is defined by the pseudo-distances p, given
by pa(g,h) = d(g-a,h-a) for a € M. If (g4)s is a left-Cauchy sequence in
Aut(M), then g, - a converges for every a € M; denote by f the limit map. As the
interpretation of any £, -formula ¢(%) is continuous, we have that

oM (f(a)) = lim ¢ (gu - @) = ¢ (a)

for any tuple 2 € M. We conclude that f is elementary.
Conversely, let f: M — M be L, -elementary; we will show that it can be
arbitrarily well approximated by automorphisms. Let 2 € M be any tuple. By

elementarity and Theorem 3.8, we have that rgU(L) (Ma, Mf(a)) = 0; now The-
orem 5.5 implies that for any € > 0, there exists an automorphism g of M such
that d(f(a),g-a) < e.

For the second claim of the lemma, note that Aut(M) is CLI iff it coincides
with its left completion. g

Theorem 9.2. Let M be a separable structure in a countable language. Then the following
are equivalent:

(i) The Scott sentence of M is non-zero on non-separable models;
(i) Aut(M) is a CLI group.

Proof. The proof is similar to the one in [G1], so we only give a brief sketch.
By Lemma 9.1, we can replace (ii) by the condition that every £, ,-elementary
embedding of M into itself is surjective.

(i) = (ii). Suppose that f: M — M is an elementary embedding which is not
surjective. By iterating f w; times, we obtain an elementary chain every ele-
ment of which is isomorphic to M; its union is non-separable and elementarily
equivalent to M.

(ii) = (i). Conversely, suppose that N is a non-separable model elementarily
equivalent to M. Let F denote the fragment of L, generated by the Scott
sentence of M. Then by the downward Lowenheim-Skolem theorem, M can
be embedded F-elementarily into N. Let 2 € N\ M be arbitrary. Again by
Lowenheim—Skolem, there exists a separable M’ <p N such that MU {a} C M.
Then M’ = M (as M’ satisfies the Scott sentence of M) and the embedding M C
M’ is not surjective. O

As isometry groups of proper metric spaces (see Example 7.7 for the definition)
are locally compact, and locally compact groups are CLI, we have the following
corollary.

Corollary 9.3. Let M be a separable structure such that the underlying metric space is
proper. Then M is the unique model of its Scott sentence.

As noted in [G1], Hjorth and Solecki proved that all solvable groups are CLL
This provides a further setting where Theorem 9.2 applies.



30 ITAI BEN YAACOV, MICHAL DOUCHA, ANDRE NIES, AND TODOR TSANKOV

10. CONNECTIONS WITH CLASSICAL LOGIC

One might ask about the connection between the continuous £, -logic con-
sidered in this paper and classical ({0, 1}-valued) £, -logic with regard to Pol-
ish metric structures. The latter has already been considered in the literature (see
[D1] and the references therein). The main difference is that, while continuous
logic treats separable structures as essentially countable objects, in classical logic,
which does not allow for approximations, they are basically discrete structures
of size continuum and as a result, quite unmanageable from a descriptive set
theoretic point of view. Classically £, -definable sets of Polish structures are
usually not Borel sets. For a natural example, take local compactness of Polish
metric spaces: by [NS], the class of such spaces is properly co-analytic, and at the
same time definable in classical £, -

In this section, we observe that, with appropriate coding, the expressive power
of classical £,,,-logic is strictly greater than that of continuous £, -logic. Each
continuous signature L yields a classical signature L defined as follows. For
every predicate symbol P of arity np and for every ¢ € Q, we put into L’ an
np-ary relation symbol P,. (For simplicity, we assume that the language L has no
function symbols; as we saw in Section 4, this entails no loss of generality.) To
every L-structure A, we associate a classical I-structure A with the same domain,
where the interpretations of the symbols are given by:

A Py(a) < PYa)<q
foreachg € Qand a € A"

Proposition 10.1. For every n-ary L, (L)-formula ¢(X) and every q € Q, there exists
a formula ¢g(%) in Leyw(L) such that for every L-structure A, @ € A" and each q, we
have

A §(a) = ¢"(a) <q.
Moreover, the quantifier rank of g is equal to that of ¢.

Proof. First note that if we have formulas ¢, for every g, then we can easily find a
formula ¢7 that expresses ¢ > g, namely ¢ = V-, =p.

The proof of the proposition proceeds by induction on ¢. For atomic formulas
this is true by definition. If ¢(%) = inf, (X, y), we can take ¢, (%) = Iy ;(%, ).
If ¢ = A; i, we can take g = V; ¢

Finally, suppose that ¢ = f(¢y, ..., x_1), where f: R¥ — R is a connective.

Write
-1
FH((=e0,9)) = U T 1(pij 4:)
ieN j<k
where p;;,¢;; € Q. This can be done because f “1((—00,9)) is an open set and
products of rational intervals form a basis for R¥. Then we can take
~ APii A
4)‘1:\//\¢j1]/\lpfrqi,j' =
i j<k
Thus, using Theorem 6.1, one obtains for every invariant Borel set of models
a classical sentence that describes it. However, there is no converse to this: the

set of models of a classical £, -sentence is in general not Borel, as mentioned
above. From Corollary 5.6, we obtain the following.

Corollary 10.2. For every separable structure A, there exists a sentence o in classical
L, w-logic such that for every separable structure B,

BEos —<— B=A.
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Finally, note that the classical Scott rank (as discussed in [D1]) and the contin-
uous Scott rank from this paper are different. For example, consider the structure
Gp from Remark 5.8: as it is ultrahomogeneous, its continuous Scott rank is 0.
However, as orbits of the automorphism group are not closed, its classical Scott
rank is non-zero. It was proved in [D1] that the classical Scott rank of Polish
metric spaces is at most w but it remains an open question whether it must be
countable.
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