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THE ADDITIVE GROUP OF THE RATIONALS DOES NOT HAVE AN
AUTOMATIC PRESENTATION

TODOR TSANKOV

Abstract. We prove that the additive group of the rationals does not have an automatic presentation.

The proof also applies to certain other abelian groups. for example. torsion-free groups that are p-divisible
for infinitely many primes p. or groups of the form @ ¢, Z(p®°). where [ is an infinite set of primes.

81. Introduction. Consider the basic algorithm for adding two integers that we
are taught in elementary school: write the two numbers in decimal, align them
on the right, and add them digit by digit (using an addition table), carrying only
one bit of information from one position to the next. What is remarkable about
this procedure is that we can add two very long integers, digit by digit, using
only local information and a bounded amount of memory. It becomes interesting
to understand what other mathematical structures admit an encoding such that
one can perform the operations using a similarly simple algorithm. This idea is
formalized by the notion of an automatic (or FA-presentable) structure which is
defined as follows.

Fix a finite alphabet ¥ and denote by X* the set of all finite words formed by
letters of X. A language is a subset of X*. A language is called regular if there exists
a finite automaton that recognizes it. The following definition was first considered
by Hodgson [5] and the basic theory of automatic structures was later developed by
Khoussainov and Nerode [7].

DEFINITION 1. A countable, relational structure (M Ry, ..., R;), where M is the
universe of the structure and Ry, ..., Ry are the relations, is called automatic if there
exists a regular language D C ¥* and a bijection g: D — M such that the relations
g ' (Ry).....g "(Ry) are also regular.

In order to make sense of what it means for g~!(R;) to be regular, one has to
specify how to represent (X*)" as a set of words in a finite alphabet. The standard
approach is to use padding: add a special symbol ¢ to the alphabet and embed (Z*)"
into ((Z U {¢})")* by appending os at the end of the shorter words in the n-tuple
so that all words become of equal length. Everywhere below where we mention
regular subsets of (£*)”, we are using this convention. For more details, see any of
the papers [7, 9, 6]. In Definition 1, one can relax the condition on g and allow
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it to be only a surjection but then equality in M has to be regular. Also, one can
include in the definition structures with function symbols by considering the graphs
of the functions as relations. This will be important for us because we will be mostly
concerned with algebraic structures.

Automatic structures are also attractive from another point of view: since the
class of regular languages is stable under Boolean operations and projections, one
readily sees that for any first order formula ¢(x), the set {@ € D": D = ¢(a)}isa
regular language and, moreover, one can construct algorithmically an automaton
recognizing it starting from the formula ¢ and the automata for the basic relations.
In particular, the first order theories of automatic structures are decidable. One
can also extend the first order language by the additional quantifiers “there exist
infinitely many” and “there exist m modulo »n” and keep this decidability property.
For all of this and some additional background, see Rubin’s thesis [14] or the recent
survey Khoussainov—Minnes [6].

The condition of admitting an automatic presentation turns out to be rather re-
strictive. If one allows rich algebraic structure in the language, then often the only
automatic structures are the trivial ones. For example, every automatic Boolean
algebra is either finite or a finite power of the algebra of finite and co-finite sub-
sets of N and all automatic integral domains (in the language of rings) are finite
(Khoussainov—Nies—Rubin—Stephan [9]; for more detailed information on auto-
matic rings, see also Nies—Thomas [12]).

Even if one considers simpler algebraic structures such as groups, the definition is
still too restrictive: Oliver and Thomas [13] observed, as a consequence of Gromov’s
theorem about finitely generated groups of polynomial growth and a theorem of
Romanovskii classifying the virtually polycyclic groups with decidable first order
theory, that a finitely generated group has an automatic presentation (in the sense of
Definition 1) iff it is virtually abelian. This was extended by Nies and Thomas [12]
who showed that every finitely generated subgroup of an automatically presentable
group is virtually abelian.

However, for finitely generated groups. there is a convenient alternative. A
different notion of an automatic group, in which the alphabet is a set of generators
for the group, each word represents the corresponding product of generators, and
one further requires that equality in the group and right multiplication by a generator
be verifiable by automata, was introduced by Cannon and Thurston in the 1980s
(see Epstein et al. [1] for the precise definition and more details) and has led to a rich
and interesting theory. In order to avoid confusion, we will adopt the terminology
from[12] and call a group with an automatic presentation in the sense of Definition 1
FA-presentable.

In view of the remarks above, it seems that the natural class of groups for
which one wants to consider FA-presentability is the class of abelian groups and
this is where we will concentrate our attention from now on. There are already
some interesting known examples. Finite groups are of course FA-presentable
and an infinite direct sum of copies of Z/pZ is also FA-presentable. By us-
ing the idea of “addition with carry,” one can construct presentations for Z and
Z(p>=) = {x € Q/Z: Ik p*x = 0}. The class of FA-presentable groups is stable
under finite sums (so all finitely generated abelian groups are FA-presentable) and
one can combine a presentation of Z with a presentation of @ ol Z.(p>) to construct
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a presentation of Z[1/n] = {a/n* € Q: a.k € Z}. The class of FA-presentable
abelian groups is also stable under taking finite extensions and, more interestingly,
under “automatic amalgamation” (Nies—Semukhin [11]) which provides some fur-
ther examples. Currently, there are fairly few known ways to show that an abelian
group does not admit an automatic presentation: the only abelian groups with a
decidable first order theory known to not be FA-presentable were the ones contain-
ing a free abelian group of infinite rank [9]. In this paper, we describe some new
restrictions on possible automatic presentations of abelian groups. The following
is our main theorem which answers a question of Khoussainov (see, e.g., [8]).

THEOREM 2. The following groups are not FA-presentable:

(1) (Q.+). or, more generally, any torsion-free abelian group that is p-divisible for
infinitely many primes p;

(ii) (Q/Z.+), or, more generally, any group of the form Der Z(p>), where I is
an infinite set of primes.

Some partial results providing restrictions on possible automatic presentations
of Q and Q/Z had been proved by F. Stephan (see [10]).

The ideas for the proof of Theorem 2 are combinatorial. Our main tool is
Freiman’s structure theorem for sets with a small doubling constant.

The organization of the paper is as follows. In Section 2, we discuss some
preliminary notions and facts from additive combinatorics; in Section 3, we prove
Theorem 2 for the case of the rationals; and finally, in Section 4, we indicate how to
modify the proof in order to obtain the other instances of Theorem 2.

Below, N, Z, Q, and R will denote the sets of the natural numbers, the integers,
the rationals, and the reals, respectively. If A4 is a finite set, | 4| denotes its cardinality.

Acknowledgements. I am grateful to B. Khoussainov for pointing out an error in
a preliminary draft of this paper, making many useful comments, and suggesting
some references.

Addendum. Recently, Braun and Striingmann, using the methods introduced in
this paper, have shown that every FA-presentable, torsion-free, abelian group is an
extension of a finite rank free group by a sum of finitely many Z(p°°). In particular,
this characterizes exactly the FA-presentable subgroups of Q.

§2. Preliminaries from additive combinatorics. Our main reference for results in
additive combinatorics is the book by Tao and Vu [16].

Let Z be an abelian group. We will be interested in finite sets 4 C Z such that
their doubling A + 4 = {a; + az: aj,ax € A} is small, ie., |4 + A] < C|A]| for
some constant C (such sets naturally arise from automatic presentations of Z as
we shall see shortly). Typical sets with this property are arithmetic progressions
and, more generally, multi-dimensional arithmetic progressions. By a remarkable
theorem of Freiman [2], these are essentially the only examples. In order to state
the theorem, we recall a few basic definitions. A generalized arithmetic progression
(or just a progression, for short) in an abelian group Z is a pair (P, ¢), where P is a
finite subset of Z and ¢ is an affine map from a parallelepiped in Z¢ onto P, i.e.,

d
P:{vo+2aivi:03ai<Nifori:1 ..... d},
i=1
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where vy, v1....,v4 € Z and Ni,...,N; € N (and of course, ¢(ay.....ay) =
vo—f—Z?’:l a;v;). We will often suppress ¢ ifit is clear from the context. The number d
is called the rank of the progression. Progressions of rank 1 are just ordinary
arithmetic progressions. A progression is called proper if ¢ is injective. Also, if
N = (Ny....,Ny), wewill write [0, N) for the parallelepiped H?’:] [0, N;)in Z4 (and
similarly for (—N. N). etc.). If we putv = (vy.....vy) anda = (ay.....ay) € Z¢,
then we will write a - v for the sum 2?21 a;v; € Z. With this notation, we can
concisely write the progression P as vg + [0. N) - v.

TueorREM (Freiman’s theorem). Let Z be a torsion-free abelian group and C > 0
be a constant. Then there exist constants K and d such that whenever a finite set
A C Z satisfies |A+ A| < C|A|. there exists a proper progression P of rank at most d
that contains A and |P|/|4| < K.

The original proof of the theorem can be found in [2]; for a modern treatment due
to Ruzsa, see Ruzsa [15], Tao—Vu [16, Chapter 5], or the self-contained exposition
Green [3].

We will also need some basic notions and facts from the geometry of numbers.
Recall that a lattice in R? is a discrete subgroup. The rank of a lattice is the
dimension of the subspace of R? that it spans. A subset B C R? is symmetric if
B = —B. We denote by vol the d-dimensional Lebesgue measure. The following
lemma goes back to Minkowski and follows for example from [16, Theorem 3.30];
in order to avoid introducing additional notation, we supply the easy proof.

LemMa 3. Let B C RY be a bounded, open, symmetric, convex set and I’ < RY be
a lattice of full rank. If vol(B) < (2¢/d!) vol(RY /T"), then dimspan BNT < d.

PrOOF. Suppose, towards contradiction, that B N I contains d linearly inde-

pendent vectors vy....,vs. By applying an invertible linear transformation of R¢
(which will scale both sides of the given inequality by the same factor), we can
assume that (vy,....vy) is in fact the standard basis of R¢. In particular, after

this transformation, I' will contain Z¢ and hence, vol(R?/T") < 1. On the other
hand. B, being convex and symmetric, will contain the polyhedron with vertices
+v).....+vy which has volume 27 /d!. This contradicts the hypothesis. -

One last fact which we will need is that the intersection of a convex set with a
lattice can be efficiently contained in a progression of rank equal to the rank of the
lattice. More precisely, the following holds (see [16, Lemma 3.36]).

LemMA 4. Let B be a bounded, convex, symmetric, open set in R? and let T < R?
be a lattice of rank r. Then there exist a tuple w = (w1, ..., w,) € T of linearly
independent vectors in RY and a tuple N = (N\. . ... N,) of positive integers such that

(=N.N)-w CBNT C (—r*N,r* N) - w.

83. Proof for the case of the rationals. Let X be a finite alphabet. If L C X*,
denote by L=" the set of words in L of length not greater than n. We will need the
following two basic lemmas (for proofs, see, for example, [9]). The first one is a
general fact about the growth of regular languages and the second is a version of
the pumping lemma particularly suitable for studying automatic structures.

LEMMA 5. Let L C X* be a regular language. Then there exists a constant C such
that |[L="+1| < C|L="| for all n.
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LEmMMA 6. Let Ly, Ly be languages over a finite alphabet and R C Ly X L, be a
regular relation such that the sections R, = {y € Ly: (x,y) € R} arefinite. Then for
all (x,y) € R.len(y) < len(x) + k, where k is the number of states of an automaton
recognizing R.

Suppose now that (Z, +) is an FA-presentable abelian group and fix some au-
tomatic presentation of it; that is, fix a regular language D C X* and a bijection
g: D — Z such that the preimage under g of the graph of addition is recog-
nizable by an automaton with, say, r states. We will often identify Z and D
via g. For example, when we write 4 + B for some 4, B C D, we mean the set
{g7"(g(a)+g(b)): a € A.b € B}. By applying Lemma 6 to the graph of addition,
one immediately obtains that D" + D" C D<"*"_ Also, the graph of the homo-
morphism M,: Z — Z defined by M,(x) = px. where p is an integer, is regular.
Let 4 (p) be the minimal number of states of an automaton recognizing the graph
of M,. (Using the fact that one can compute M, (x) using no more than O(log p)
additions, one sees that 2(p) = p°) but we will not need this.) If 4 C Z. denote
by p~'4 the set M ” '(A). If M, has finite kernel (for example, if Z is torsion-free),
Lemma 6 implies that p~!D<" C D=<n+h(p),

Let [y = min{/ € N: 0 € D=/ and |D=!| > 2} and put 4, = DS+ for
n=201,.... We summarize the properties of the sets A4, that we have established
so far (under the assumption that the homomorphism M, has a finite kernel). There
exist a constant C; and a function #: N — N such that:

(i) 0 € Ao and |4o| > 2;

(11) An + An g An+l:
(111) |An+l| < C1|An|;
(iv) p~'4, C Ay
The property (iii) follows from Lemma 5. In particular (i) and (iii) imply that

|4, + An| < C1|A4,|  forall n. (3.1)

Now we can formulate our main combinatorial result which, by the above obser-
vations, implies Theorem 2 for the case of the rationals.

THEOREM 7. There does not exist a sequence { A, }nen of finite subsets of Q that
satisfy the conditions (i)—(iv) above.

Proor. We will obtain a contradiction with Freiman’s theorem. To that end, we
will need a quantitative measure of how efficiently a given additive set is contained
in a progression. For a finite additive set 4 and a rank d, define

0(A.d) = min{|P|/|A|: P 2 A and P is a proper progression of rank < d}.

If there is no d-dimensional progression covering A (for example, if d = 0),
put 8(A4.d) = oo. One property of 0, obvious from the definition, is the following:
B

BCA—0(Ad)> %9(3,@. (3.2)
The next lemma quantitatively formalizes the observation that if we have a progres-
sion of integers all of whose elements are divisible by p for some large prime p and
add to it a single element not divisible by p, then in order to contain the resulting
set efficiently in a progression, we need to increase its rank. In order to state the
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lemma in a slightly more general form that will be useful later, we introduce some
notation. If 4 is a subset of an abelian group, denote by (A) the group generated
by A.

Recall that if p is a prime, the p-adic norm || x|| , of x € Q '\ {0} is defined by

Ixll, = p" <= x=p"a/b. wherea.b € Z\ pLandm € Z.
and [|0]|, = 0. Note that the p-adic norm on Q has the following properties:

{llx[l, - x € Q} has no accumulation points

other than 0 and Vx liln " x|, = 0: (33)
1[I, = =l and |lx + yl|, < max{[|x[|, . [[y[l,}: (3.4)

VaeZ ax|,<|x|,=rpr]la

Foraset 4 C Q. let |4, = sup{[la[|,:a € A}. If V < Qand 0 < |V, < o<,
let V) denote the subgroup {x € V: |[x||, <[[V],}. Note that (3.3)~(3.5) imply
the following:

forallA C Q. [{4)|, = [4],: (3.6)
Ixll, > I¥ll, = llx +yll, = llxl,:
0< [V, <co=[V: Vil = p.
To see that (3.8) holds, note that if v € V' is such that [jv||, = [|V||, (which exists

by (3.3)), then, by (3.5), the elements 0, v, 2v. ..., (p — 1)v of V are in distinct cosets
of the subgroup V).

LemMA 8. Letd > 1 be an integer and p > d! be prime. Let Z be an abelian group
equipped with a norm ||-| , satisfying (3.3)—(3.5). Let A C Z be a finite set with at
least 2 elements, and z € Z be such that | z|| , > ||A]| ,. Then

4 0(4.d — 1)
P :
Y R TeYE b (3.9)

0(AU{z}.d) > min{

where Cy is an absolute constant.

ProoF. If 0(A4 U {z}.d) = oo, there is nothing to prove, so suppose that

0(AU{z}.d) < cc. Let

d

P:{vo+2a,~vi:03ai<N,-fori:1 ..... d},

i=1
where vy, ....vys € Z, be a proper progression of rank d covering 4 U {z} such
that |P|/|A U {z}| = 0(4 U {z}.d). We will first show that for some i > 1,
[vill, > ||z][ - Denote by Vi the group generated by vi. ..., v, and suppose, to-
wards a contradiction. that || V1|, < ||z[| ,. We have two cases: either |lvol|, < [|z]],
or [lvoll, = [|z[|, > [[V1ll,- In the first case. we obtain that, since P C vo + V1.
|P[|, < llvo+ Vi, < ||z||, which contradicts the fact that z € P. In the second,
by (3.7). for every x € vy + V1. ||x|[, = [lvoll, > [[4]|, which contradicts the fact
that 4 C vy + V] and A4 is non-empty.
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Now by reordering vy, ..., vs, we can assume that there exists & > 1 such that
lorll, oo vl = llzll, and [loxgll, .- lloall, < 211, -

Put M = N| N, - - - N;. Wedistinguish the following two cases which will correspond
to the two different quantities on the right-hand side of (3.9).

Case 1. M < p/k!. Note that this case is impossible if ¢ = 1. Indeed, we
showed that [|vi[|, > [ 4|, and since 4 contains at least two elements. it is easy to
see, using (3.5), that if d = 1, the interval [0, N;) must contain two integers whose
difference is divisible by p and hence, M = N; > p + 1 (for a similar argument,
see Case 2 below). Hence, we can assume that d > 2.

Write v for the vector (vq,...,vr) and N for (Ny,.... Ni). Let 1 ZF — Z be
the homomorphism f(x) = x -v. Put V = (vy,...,v;) = f(ZF). Let

A={yezZ:|yl, <l=l,}

and note that A is a subgroup of Z and 4 C A. Let also I be the lattice in R given
by

F={xeZ: f(x)e A}

and note that since by (3.3). for all large enough m, p™Z* < T, T has full rank.
Let B be the open, symmetric, convex box Hf;l (=N;. N;) in R, We have vol(B) =
(2Ny)--- (2Ng) = 2¥ M and

vol(R¥ /T) = vol(R*/Z¥)[Z* : T] > p.

The first equality follows from the fact that if 4 is a fundamental domain for R¥ /Z*
and B is a system of coset representatives for Z* /T, then 4 + B is a fundamental
domain for R¥ /T and the sets 4 + by and A + b, are disjoint for distinct by, b, € B.
To see that the inequality holds, note that T is contained in the kernel of the
composition of the surjective homomorphisms

v Lv sy,

and apply (3.8). Applying Lemma 3 and our hypothesis about M yields that ' N B
is contained in a sublattice of I" of rank r < k. (For the moment, suppose that
k > 1, so that we can take » > 0. We will explain how to deal with the case k = 1
later.) By Lemma 4, there exist tuples N’ = (N/,.... N/) of positive integers and
w = (wi,..., w,) € I such that wy., ..., w, are independent in R¥ and

(=N'.N")-w CTNBC(—r*N'.r¥N') - w.
From the first inclusion and the independence of wy., ..., w,, we have
|(=N'.N')|=|(-=N'".N")-w| < |[BNT| <|BNZ| <2"M. (3.10)
Let Py be the progression {Z?:kﬂ a;v;: 0 < a; < N;} and note that Py C A. Then

P =wvy+ Py + f([0,N)). Note that by the properness of P, |P| = |Py| - |[[0. N)| =
M|Py|. Leta® = (aV..... al) € [0,N) be such that v9 + a” - v € A and put

vy =a’- v (since 4 C PN A, such an a° always exists). We have

P=wy+Py+ f([0.N)) =vo+ Po+ vy + f([-a’. N — a?)).
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Note that vo + v + Po € A. Hence.

ACPNA=v+v)+Po+ f([-a’.N —a))nA
=w+vy+ Po+ f([-a®. N —a)NT)
Cog+v)+ P+ f(BNT)

Cug+vy+Po+ f((=r" N r”N') - w)
Cug+vy+Po+ (—r*N' .1 N') - f(w). (3.11)
where f(w) = ((f (wy)..... f(w,)). Denote by Q the progression (3.11). We have
that 4 C Q. rank Q =rank Py +r =d — k +r < d, and by (3.10),
10| < |Po| - [(=r* N".r* N')|
< |Po27r¥ |(=N'.N")| (3.12)
< |Pol27r¥ 2K M < 45k°F | P).
Now note that if we had & = 1 in the beginning, then B N I" = {0}, so if we take
0 = vy + v} + Py, we will again have 4 C Q. rank Q < d. and the estimate (3.12)
will still hold.
Of course, the progression Q need not be proper. However, properness can be
achieved at the price of increasing its size. Applying [16, Theorem 3.40] yields that
we can include Q in a proper progression Q' of equal or lesser rank and size at most

73 . . .
d%4|Q| for some absolute constant Cj. This allows us to conclude that in this
case,

1P| 10
0(AU ,d) = > .
(4U{z}.d) AU {z}] = 2|44k
10|
= 2|A|dco/‘134kk2k2

0(4.d —1)
- dC0d3

for an appropriately chosen Cp.

CASE 2. M > p/k!. Then for some i < k, N; > (p/k)'/* > (p/d!)'/9.
Without loss of generality, we can assume that Ny > (p/d!)'/¢. Now fix some
(a.....ay) € Z?~! and consider the following condition on a;:

d
awi +vo+ Y aw; € A (3.13)

i=2
Let aj.ai’ € Z be two values of a; satisfying (3.13). Since [[v1]|, > [|A[l,. by

(3.5). we obtain that p | a] — aj. Hence the proportion of the numbers a; in the
interval [0, N,) for which (3.13) holds is not greater than [N, /p]/N, < max{l/Nj.
2/(p + 1)}. Therefore, by properness,

|PNAJ/|P| < max{(p/d)~"".2/(p+ 1)} < (p/(2d1)) 1.
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Hence in this case,

1P| Id 1P| (p/2an)tH _ p'e
VAU D) = 2 aa 2 apnal = 2 2 dd A
Now we can proceed with the proof of the theorem. Suppose, towards a con-
tradiction, that a sequence of subsets {4, } of Q satisfying (i)—(iv) does exist. Let
C = max{Cy, C,}, where Cj is the constant from Lemma 8 and C is the constant
from (iii). By (3.1) and Freiman’s theorem, there exist constants K and d such that
0(A,.d) < K forall n. Pick inductively a sequence of primes py < ps_1 < -+ < po
satisfying the conditions

pa > (4dCK) and pi_y > piCMPMGC for i =g d —1,....1.  (3.14)
Define inductively the sequence of integers ny < n; < --- < ng by
ng=0 and n; =min{n: |4, > ||A,1,.71Hp_} fori=1,....d.

Note that by the properties of the family {4,}. n; < n;—1 + h(p;) (indeed, if the

norm ||4,,_, Hpi is achieved for z € 4,,_,, then ||pi’lz||pl_ > |z, = || 4n_, ||pi and
plze Ay, n(p))- Hence,
Ay 1| < CMPO7Y 4, . (3.15)
We will prove by induction on i that
0(A,,.i)>C'pl"/(4d) foralli=0.....d. (3.16)

Applied for i = d. (3.16) will yield a contradiction with the choice of p;. The case
i = 0 follows trivially from the definition of #. Suppose now that i > 1 and (3.16)
holds for i — 1 in order to prove it for i. By the induction hypothesis, (3.15),
and (3.2),

0(Ay,_1.i —1) > CHPH9(4, i —1)> ) pl/? (ad). (3.17)

By the choice of ;. there exists z € A, such that ||z]|, > [[44-1],. Apply
Lemma 8 to the set A,,—; U {z} and the prime p; to obtain

0(Ay,.i) > C7' (A1 U {z}.1)
> C ' min{p!? /(4d).0(Ap,_1.i —1)/d"}.

1

The choice of p;_; and (3.17) allow us to conclude that
pi ) (4d) < 0(Ay—1.i —1)/d"
which completes the induction and the proof. !

Remark 9. Note that Freiman’s theorem gives another way to see that a torsion-
free abelian group of infinite rank is not FA-presentable (originally proved in [9]).
Indeed. if one considers the sets D=" as above, by applying Freiman’s theorem, one
obtains that there is a constant d such that each D<" is contained in a progression
of rank d. Since the group generated by a progression of rank d has rank at
most d + 1, this leads to a contradiction. In fact, for this argument, instead of
Freiman’s theorem, one can use the much simpler version [16, Lemma 5.13].
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84. Other groups.

4.1. The torsion-free case. The proof above can be used to show that certain other
torsion-free abelian groups also do not have an automatic presentation. Recall that
an abelian group Z is called p-divisible if all of its elements are divisible by p, i.e.,
for all x € Z, there exists y € Z such that py = x. It is easy to extend the proof in
Section 3 to cover all torsion-free groups that are p-divisible for infinitely many p.
Let Z be such a group. If Z has infinite rank, then Z is not FA-presentable by [9]
(cf. Remark 9 above). Otherwise, Z can be embedded as a subgroup of Q* for some
finite k. For x = (x1.....x;) € QF, define its p-adic norm by

1[I, = max{lxil, ... ]l , 3

It is easy to check that this norm satisfies (3.3)—(3.5), hence Lemma 8 applies. In
order to complete the rest of the proof of Theorem 7, one just has to choose the
primes pi,..., pa in (3.14) so that Z is p;-divisible for each i. That can be done
because, by assumption, there are infinitely many such primes. This completes the
proof of Theorem 2 (i).

4.2. The torsion case. One has to be slightly more careful in the torsion case but
the proof in Section 3 still goes through for some torsion groups. Let I be some
infinite set of primes and put 77 = P, Z(p*). (In the special case when [ is the

set of all primes, T; = Q/Z.) For p € I, one can define the p-adic norm for x € T}
by

[x]l, = ordm,(x).

where 7,: T; — Z(p>) is the natural projection and ordz denotes the order
of z (with the special agreement that ord0 = 0). This is not really a norm (in
the sense that {x € T;: [[x|[, = O} is a non-trivial subgroup of 7, 7) but it still
satisfies (3.3)—(3.5) which is all we need for Lemma 8 to hold.

Freiman’s theorem is also available for arbitrary abelian groups (Green—Ruzsa [4];
see also [16, Theorem 5.44]). The only difference is that now in the conclusion of
the theorem, one obtains coset progressions instead of ordinary progressions. A
coset progression in an abelian group Z is a subset of the form H + P, where H is a
finite subgroup of Z, P is a proper progression as defined previously, and the sum
is direct, i.e., every element of H + P can be represented in a unique fashion as a
sum i + p, where h € H and p € P. Since every finite subgroup of 77 is cyclic and
every finite cyclic group is a one-dimensional progression, every coset progression
of rank d in T} can be written as a proper progression of rank d + 1.

The conditions (i)—(iv) for the sets A, are still satisfied because the homomor-
phisms M,: Ty — T, x — px have finite kernels for all primes p . Also, one has
to ensure that the primes py. ..., ps in (3.14) are in the set I which can be achieved

because [ is infinite. The rest of the proof goes through unchanged.
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