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Let (M, g) be an arbitrary smooth Riemannian manifold of
dimension m.

An important problem in the setting of geometric analysis is
the determination of the spectrum of the Hodge-Laplace

operator ∆
(j)
g acting on differential j-forms.

If M is compact, then the spectrum σ(∆
(j)
g ) of ∆

(j)
g is given

by a sequence of eigenvalues with finite multiplicity, {λk},
such that

λk ∼ 4π

(
vol(M)

Γ(n/2) + 1

) 2
m

k
2
m

as k →∞ where m is the dimension of M.
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If M is noncompact, then σ(∆
(j)
g ) will typically contain some

continuous part which is impossible to control in general.

In this case at least two decompositions occur for σ(∆
(j)
g ):

σ(∆
(j)
g ) = σdisc(∆

(j)
g ) ∪ σess(∆

(j)
g )

and
σ(∆

(j)
g ) = σpp(∆

(j)
g ) ∪ σac(∆

(j)
g ) ∪ σsing (∆

(j)
g )

where

σdisc(∆
(j)
g ) is the discrete spectrum,

σess(∆
(j)
g ) is essential spectrum,

σpp(∆
(j)
g ) is the pure point spectrum,

σac(∆
(j)
g ) is the absolute continuous part of the spectrum,

σsing (∆
(j)
g ) is the singular spectrum.
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Francesco Bei Joint work with B. Güneysu and J. Müller Scattering theory of the Hodge-Laplacian



Introduction
Existing “scalar” results for functions = 0-forms

Our main result for differential forms
Key steps in the proof of our main result

Applications
Outlook

In the non compact setting an interesting problem is to investigate
the stability of the continuous part the spectrum.

In particular here we are interested in a “perturbative” way to

control the stability of the absolutely continuous part σac(∆
(j)
g ) of

σ(∆
(j)
g ) in the based on the wave operators.
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Assume that there is a quasi-isometric metric g̃ on M such that we
have some good information about the absolutely continuous part

(∆
(j)
g̃ )ac of ∆

(j)
g̃ . The wave operators are defined as

W±
(
∆

(j)
g ,∆

(j)
g̃ , I

)
:= s − lim

t→±∞
e it∆

(j)
g Ie it∆

(j)
g̃ Pac(∆

(j)
g̃ )

Then once we can show that the wave operators W±
(
∆

(j)
g ,∆

(j)
g̃ , I

)
exist and are complete, they induce unitary equivalences

(∆
(j)
g̃ )ac ∼ (∆

(j)
g )ac, so that σac(∆

(j)
g̃ ) = σac(∆

(j)
g ).

Here I = Ig ,g̃ : Ω(M, g)→ Ω(M, g̃) is the canonical identification
α 7→ α.
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g̃ and g are quasi-isometric. This means that c1g ≤ g̃ ≤ c2g
for some positive constants c1 and c2.

Existence of the wave operators: the strong limit

s − lim
t→±∞

e it∆
(j)
g Ie it∆

(j)
g̃ Pac(∆

(j)
g̃ )

exists.

Completeness of the wave operators:

ker(W±
(
∆

(j)
g ,∆

(j)
g̃ , I

)
)⊥ = im(Pac(∆

(j)
g̃ )) in Ω

(j)
L2 (M, g̃)

and

im(W±
(
∆

(j)
g ,∆

(j)
g̃ , I

)
) = im(Pac(∆

(j)
g )) in Ω

(j)
L2 (M, g).
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The question we address here is:

In what sense do g̃ and g have to be close to each other to
ensure that W±

(
∆g ,∆g̃ , I

)
exist and are complete?

From calculating ∆g̃ −∆g in the (particulary important) case
where one metric arises as a conformal perturbation of the other,
we expect the correct assumption to be a first order control in the
deviation of g and g̃ .
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No systematic treatment (if at all) for k-forms in the literature

Many results, even in the case of functions, require special
structures such as warped product ends.

One of the first result for functions without assuming special
structures for the metrics has been established by W.
Müller/G. Salomonsen. We can sketch their result as follows:
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Theorem (Müller/Salomonsen 2007, JFA 253)

Let g, g̃ be complete metrics on M with |secg |, |secg̃ | ≤ L, such
that the covariant C2-deviation x 7→ 2|g − g̃ |g (x) of g from g̃ is
bounded from above by some β : M → (0,∞) of moderate decay,
in a way such that for appropriate constants a, b, c ,C one has

βa ∈ L1(M, g),
∣∣βb(x)ĩnjg (x)c

∣∣ ≤ C for all x ,

where ĩnjg (x) := min
(

π
12
√
L
, injg (x)

)
. Then W±

(
∆

(0)
g ,∆

(0)
g̃ , I (0)

)
exist and are complete.

Note that the required control is of second order in the deviation
of g and g̃ .
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Indeed, using the harmonic radius function x 7→ rg (x) with a
certain Sobolev control, one can prove a stronger result:
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Theorem (Hempel/Weder/Post 2013, JFA 266)

Let g, g̃ be complete quasi-isometric metrics on M with∫
M
d(g , g̃)(x)h−(m+2)(x)µg (dx) <∞, (1)

where d(g , g̃) : M → (0,∞) is a certain function (later...) which
measures a zero order deviation of the metrics, and where
h : M → (0, 1] is an arbitrary lower bound on

M 3 x 7−→ max
(

min(rg (x), 1),min(rg̃ (x), 1)
)
∈ (0, 1].

Then W±
(
∆

(0)
g ,∆

(0)
g̃ , I (0)

)
exist and are complete.

This result should be the state of the art for functions.
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We were interested in extending the latter result to differential
forms.

For some entirely algebraic reasons we have restricted ourselves to
conformal perturbations.
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Preparations
Statement of the main result

Given a Riemannian metric g we have

∇g : the Levi-Civita connection

Qg : ∧2TM → ∧2TM the s.a. curvature endomorphism

for a smooth 1-form α, intg (α) = ext†g : ∧T∗M → ∧T∗M is
interior multiplication with α

the codifferential δg := d†g : ΩC∞(M)→ ΩC∞(M)

the Dirac type operator Dg := d + δg : ΩC∞(M)→ ΩC∞(M)

the Hodge-Laplacian ∆g := D2
g : ΩC∞(M)→ ΩC∞(M)

the Friedrichs realization Hg of ∆g in ΩL2(M, g)

the resolvents Rg ,λ := (Hg + λ)−1, λ > 0.

everything filters through the form degree; notation:

ΩL2(M) =
⊕m

j=0 Ω
(j)
L2 (M, g), Hg =

⊕m
j=0 H

(j)
g etc.
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Given a Riemannian metric g we have

∇g : the Levi-Civita connection

Qg : ∧2TM → ∧2TM the s.a. curvature endomorphism

for a smooth 1-form α, intg (α) = ext†g : ∧T∗M → ∧T∗M is
interior multiplication with α

the codifferential δg := d†g : ΩC∞(M)→ ΩC∞(M)

the Dirac type operator Dg := d + δg : ΩC∞(M)→ ΩC∞(M)

the Hodge-Laplacian ∆g := D2
g : ΩC∞(M)→ ΩC∞(M)

the Friedrichs realization Hg of ∆g in ΩL2(M, g)

the resolvents Rg ,λ := (Hg + λ)−1, λ > 0.

everything filters through the form degree; notation:

ΩL2(M) =
⊕m

j=0 Ω
(j)
L2 (M, g), Hg =

⊕m
j=0 H

(j)
g etc.
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Preparations
Statement of the main result

One of our main technical tool, as in the work of H-P-W, will be
harmonic coordinates with Sobolev control:

Definition (Cheeger/Anderson)

Let p ∈ (m,∞), q ∈ (1,∞), x ∈ M. Then the W1,p
g -harmonic

radius at x with Euclidean distortion q, rg (x , p, q) ∈ (0,∞], is
defined to be supremum of all r > 0 such that there is a

∆
(0)
g -harmonic chart Φ : Bg

(
x , r
)
→ U ⊂ Rm such that, with

respect to the Φ-coordinates, the following estimates hold:

q−1(δij) ≤ (gij) ≤ q(δij) as symmetric bilinear forms, (2a)

r 1−m
p

(∫
U
|∂kgij(y)|pdy

)1/p
≤ q − 1 for all i , j , k ∈ {1, . . . ,m}.

(2b)
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One has the following elementary fact:

Proposition (B/G/M)

For any fixed p, q, the function x 7→ min(1, rg (x , p, q)) is
1-Lipschitz w.r.t. g .

Moreover the fact that rg (x , p, q) > 0 can be seen as a
consequence of the following results near x :
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Statement of the main result

Proposition (Cheeger/Anderson)

Assume that Ricg (x) ≥ − 1
β2 and injg (x) ≥ h̃(x), where β > 0 is a

constant and h̃ : M → (0,∞) is a continuous. Then:

a) If h̃ is g-Lipschitz, then for any p, q there is
C = C (m, p, q) > 0 such that for all x ∈ M one has

min(rg (x , p, q), 1) ≥ C min

(
1,

h̃(x)

1 + ‖dh̃‖∞,g
, β

)
.

b) If there is a x0 ∈ M, and c1 > 0, c2 ≥ 0 such that
h̃ ≥ c1e

−c2dg (·,x0), then for any p, q there is C = C (m, p, q) > 0
such that for all x ∈ M one has

min(rg (x , p, q), 1) ≥ C min
(

1,
c1

ec2
e−c2dg (x ,x0), β

)
.
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Preparations
Statement of the main result

Setting of the theorem

The importance of Sobolev harmonic coordinates: By embedding
theorems, we get a Hölder control on gij .
To make an effective use of this observation in the form-case, we
add:

Definition

For any K > 0 and any function h : M → (0, 1], let

MK ,h(M) :=
{

g̃
∣∣∣ g̃ is a complete metric on M with Qg̃ ≥ −K

and min(1, rg (·, p, q)) ≥ h for some p ∈ (m,∞), q ∈ (1,
√

2)
}
.
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Statement of the main result

Given a smooth function ψ : M → R let gψ denote the
conformally equivalent metric gψ := e2ψg . Then g and gψ are
quasi-isometric if and only if ψ is bounded and then we have
the canonical identification operator
I = Ig ,gψ : ΩL2(M, g)→ ΩL2(M, gψ).

Given a Borel function h : M → (0,∞) and a smooth function
ψ : M → R define

d(g , ψ)(x) := max
{

sinh(2|ψ(x)|), |dψ(x)|g
}
, x ∈ M,

dh(g , ψ) :=

∫
M
d(g , ψ)(x)h(x)−(m+2) µg (dx) ∈ [0,∞].

We call ψ a h-scattering perturbation of g , if one has
dh(g , ψ) <∞.
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Statement of the main result

Now we can formulate our main result for forms:

Theorem (B/G/M)

Let ψ : M → R be smooth with ψ, |dψ|g bounded, and assume
that g , gψ ∈MK ,h(M) for some pair (K , h), in a way such that ψ
is a h-scattering perturbation of g. Then the wave operators

W±(Hgψ ,Hg , I ) = s lim
t→±∞

eitHgψ I e−itHg Pac(Hg )

exist and are complete, and everything filters (a posteriori... 
total forms and Dirac type operators!) through the form degree.
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Some steps in the proof of our main result...

The strategy is to show that the assumptions of the
Belopol’skii-Birman’s theorem are satisfied.

Estimates for the integral kernel of the resolvent.

A decomposition formula (the algebra of which forced us to
restrict ourselves to the conformal case) efficiently with
harmonic coordinates
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Theorem (Belopol’skii-Birman)

For k = 1, 2, let Hk be a self-adjoint operator in a Hilbert space
Hk , where EHk

denotes the operator valued spectral measure, Qk

the sesqui-linear form, and Pac(Hk) the projection onto the
absolutely continuous subspace of Hk corresponding to Hk .
Assume that I : H1 →H2 is bounded operator which satisfies

I has a two-sided bounded inverse

For any bounded interval S ⊂ R one has

EH2(S)(H2I − IH1)EH1(S) ∈J 1(H1,H2),

(I ∗I − 1)EH1(S) ∈J∞(H1)

either I (dom(Q1)) = dom(Q2), or I (dom(H1)) = dom(H2).

Then the wave operators
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Theorem (Belopol’skii-Birman)

W±(H2,H1, I ) = s lim
t→±∞

eitH2 I e−itH1Pac(H1)

exist and are complete, where completeness means that

(Ker W±(H2,H1, I ))⊥ = Im Pac(H1),

Im W±(H2,H1, I ) = Im Pac(H2).

Moreover, W±
(
H2,H1, I

)
are partial isometries with inital space

Im Pac(H1) and final space Im Pac(H2).
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Estimates for the resolvent

Theorem (B/G/M)

Assume that g ∈MK ,h(M) for some pair (K , h). Then for all
n ∈ N with n ≥ m/4 + 2 there is a C = C (m, n) > 0, such that for
all λ > K maxj=0,...,m j(m − j) + 1, the operator Rn

g ,λ is an integral
operator, with a Borel integral kernel

M ×M 3 (x , y) 7−→ Rn
g ,λ(x , y) ∈ Hom

(
∧T∗yM,∧T∗xM

)
which satisfies the estimate∫

M

∣∣Rn
g ,λ(x , y)

∣∣2
J 2 µg (dy) ≤ Ch(x)−m for all x ∈ M.
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The proof is quite involved. The key steps are:

V
(j)
g := ∆

(j)
g −∇†g ,j∇g ,j is zeroth order and s.a. by

Weitzenböck’s formula

The Gallot-Meyer estimate states that under Qg ≥ −K one

has V
(j)
g ≥ −K · j(m − j)

Now one can use the Kato-Simon inequality for covariant

Schrödinger semigroups e−t(∇†∇+V ) to control R
(j),n
g ,λ by

R
(0),n
g ,1 . The latter can be controlled by min(1, rg (·, p, q)) and

finally by Ch(x)−m.
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Decomposition formula

Proposition

Assume that ψ and |dψ|g are bounded, let λ > 0, n ≥ 1 and let g
(and thus gψ) be complete. Then the bounded operator

Rn
gψ ,λ

(Hgψ I − IHg )Rn
g ,λ : ΩL2(M, g) −→ ΩL2(M, gψ)

can be decomposed as

Rn
gψ ,λ

(Hgψ I − IHg )Rn
g ,λ =

Rn
gψ ,λ

(
Dgψ · 2 sinh(2ψ)IDg + Dgψ I (1− e−2ψ)d− d ◦ (1− e2ψ)IDg

+ Dgψ intgψ(dψ) τ I − τ intg (dψ)Dg

)
Rn
g ,λ. (3)

Here τ :=
⊕m

j=0(m − 2j)1∧jT∗M : ∧T∗M −→ ∧T∗M.
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Now we combine the latter decomposition formula with our
resolvent estimate and the commutator relations
[A,Rn

g ,λ] = 0, where A ∈ {Dg ,d, δg}, to get that for large n

Rn
gψ ,λ

(Hgψ I − IHg )Rn
g ,λ is trace class

and that
(I ∗I − 1)Rn

g ,λ is compact

The assumptions of Belopol’skii-Birman’s theorem are
satisfied: this follows by the fact that for all bounded intervals
S ⊂ R, ` ∈ R, r > 0, one has

EHg (S)(Hg + r)` = (Hg + r)`EHg (S) ∈ L (ΩL2(M, g))

and analogously

EHgψ
(S)(Hgψ + r)` = (Hgψ + r)`EHgψ

(S) ∈ L (ΩL2(M, gψ))
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The decomposition formula heavily requires that the operators
are of the form L∗L. That is why we work with total forms
and the Dirac type operator Dg and Hg = D2

g = D∗gDg

instead of on a fixed form degree. On functions, all of this is
very simple as ∆(0) = d†gd where the differential d does not
depend on the metric (and this leads to a zeroth order
condition in this case).
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Some applications

Corollary

Assume that g is complete with Qg ≥ −K for some K > 0 and
that g̃ is a metric on M which is conformally equivalent to g and
which coincides with g at infinity. Then the assumptions of our
main result are satisfied.

Indeed, since ψ is compactly supported by assumption, we can take

h(x) := min(1, rg (x , p, q), rgψ(x , p, q)) for all p > m, 1 < q <
√

2,

which is a positive continuous function, to make ψ a h-scattering
perturbation of g .
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Corollary

Assume that ψ : M → R is smooth and bounded, g is complete
such that |secg |, |secgψ | ≤ L for some L > 0, that there is some
β : [0,∞)→ (0,∞) exponentially bounded from below, and a
point x0 ∈ M such that with β(x) := β(1 + dg (x , x0)) one has:

(i) There are constants b ∈ (0, 1) with βb ∈ L1(M, g), and
C1 > 0 such that for all x ∈ M,

ĩnjg (x) := min
(

π
12
√
L
, injg (x)

)
≥ C1 · β(x)

1−b
m+2 . (4)

(ii) For some constant C > 0 one has

1|g − gψ| := |g − gψ|g + |∇g −∇gψ |g ≤ C · β (5)

Then the assumptions of our main result are satisfied.

Francesco Bei Joint work with B. Güneysu and J. Müller Scattering theory of the Hodge-Laplacian



Introduction
Existing “scalar” results for functions = 0-forms

Our main result for differential forms
Key steps in the proof of our main result

Applications
Outlook

Corollary

Let g be such that |Secg | is bounded and that g has a positive
injecitivity radius (in particular, g is complete). Assume that
ψ : M → R is smooth with max{ψ, |dψ|g , |Hessg (ψ)|g} bounded,
and ∫

M
max{sinh(2|ψ(x)|), |dψ(x)|g}µg (dx) <∞.

Then the wave operators W±(Hgψ ,Hg , I ) exist and are complete.
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Let M be a smooth connected manifold (without boundary)
dim(M) = n + 1, let U ⊂ M be a smooth compact submanifold
with boundary and dim(N) = n. Let us label by N := ∂U the
boundary of U and by U ′ the interior of U. Assume that there
exists a smooth diffeomorphism:

F : M \ U ′ → [1,∞)× N.

Finally consider a smooth metric g on M such that

(F−1)∗(g |M\U′) = h2dr 2 + f 2gN

where f : [1,∞)→ [0,∞) and h : [1,∞)→ [0,∞) are smooth and
gN is a smooth metric on N.
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Corollary

Assume in the above warped product situation that |Secg | is
bounded, that g has a positive injectivity radius and that
β : [1,∞)→ (0,∞) is a bounded Borel function with
β ∈ L1([1,∞), h(r)f n(r)dr). Then for any bounded smooth
function ψ : M → R with bounded g-Hessian and

max{sinh(|2ψ|), |dψ|g}|F−1(r ,q) ≤ β(r) for all (r , q) ∈ [1,∞)× N,

the wave operators W±(Hgψ ,Hg , I ) exist and are complete.
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Proposition

Let M, N, U, U ′ and F : M \U ′ → [1,∞)×N be as before. Let g
be a warped product metric such that for some b with 0 ≤ b ≤ 1
one has

(F−1)∗(g |M\U′) = dr 2 + r 2bgN

Let β : [1,∞)→ (0,∞) is a bounded Borel function with
β ∈ L1([1,∞), rbn(r)dr). Then for any bounded smooth function
ψ : M → R with bounded g-Hessian and

max{sinh(|2ψ|), |dψ|g}|F−1(r ,q) ≤ β(r)

for all (r , q) ∈ [1,∞)× N one has
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Proposition

a) If b = 0 then for every j = 0, ..., n + 1 we have

σac
(
H

(j)
g̃

)
⊂
⋃
k∈N

(
[λ

(j)
k ,∞) ∪ [λ

(j−1)
k ,∞)

)
(6)

with (λ
(j)
k )k∈N (resp. (λ

(j−1)
k )k∈N) the eigenvalues of the

Hodge-Laplacian H
(j)
gN (resp. H

(j−1)
gN ) acting on N.

b) Assume now that U ′ is diffeomorphic to the open Euclidean ball
B(0, 1) ⊂ Rn+1.
If b = 0 then for every j = 0, ..., n + 1 we have

σac
(
H

(j)
g̃

)
= [λ(j),∞), (7)
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Proposition

where λ(j) := min{λ(j)
0 , λ

(j−1)
0 } is the minimum of the lowest

eigenvalue λ
(j)
0 of H

(j)
gSn and the lowest eigenvalue λ

(j−1)
0 of H

(j−1)
gSn ,

with gSn the standard metric on the unit sphere Sn.
Finally, if 0 < b ≤ 1 then for every j = 0, ..., n + 1 we have

σess
(
H

(j)
g̃

)
= σac

(
H

(j)
g̃

)
= [0,∞). (8)
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Some final remarks

We believe that the curvature assumptions Qg ≥ −K are not
necessary.

What can we do in the non-conformal perturbations? A
problem is given by the fact that it is not easy to calculate (or
even to estimate) δg̃ in term of δg . In the conformal case,
there are somewhat accessible perturbative formulae.
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Some final remarks

We believe that the curvature assumptions Qg ≥ −K are not
necessary.

What can we do in the non-conformal perturbations? A
problem is given by the fact that it is not easy to calculate (or
even to estimate) δg̃ in term of δg . In the conformal case,
there are somewhat accessible perturbative formulae.
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Thank you for listening!
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