◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

# Nesting statistics in the O(n) loop model on random maps of any topology

#### Elba Garcia-Failde

Max Planck Institute for Mathematics

joint work with G. Borot



Séminaire de Physique Mathématique, Institute Camille Jordan, Lyon January 6, 2017

| The model | Loop nesting | Analytic properties | Bending energy model | Critical behavior | Large volume |
|-----------|--------------|---------------------|----------------------|-------------------|--------------|
| Outline   |              |                     |                      |                   |              |

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

- 1 The model
- 2 Loop nesting
- 3 Analytic properties
- Bending energy model
- 5 Critical behavior
- 6 Large fixed volume, fixed lengths and fixed depth

| The model | Loop nesting | Analytic properties | Bending energy model | Critical behavior | Large volume |
|-----------|--------------|---------------------|----------------------|-------------------|--------------|
| Outline   |              |                     |                      |                   |              |

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …の�?

1 The model

2 Loop nesting

3 Analytic properties

- Bending energy model
- **5** Critical behavior

6 Large fixed volume, fixed lengths and fixed depth

| The model | Loop nesting | Analytic properties | Bending energy model | Critical behavior | Large volume |
|-----------|--------------|---------------------|----------------------|-------------------|--------------|
| Ohiecto   | of study     |                     |                      |                   |              |

- Objects of study
  - A map M of genus g is a finite connected graph embedded into a closed orientable surface of genus g such that the connected components of the complement of the graph (called *faces*) are homeomorphic to an open disk.
  - A map with k boundaries is a map with k pairwise distinct marked faces, labeled from 1 to k, and with a marked edge (called *root*) on every marked face.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ●

| The model | Loop nesting | Analytic properties | Bending energy model | Critical behavior | Large volume |
|-----------|--------------|---------------------|----------------------|-------------------|--------------|
|           |              |                     |                      |                   |              |

- Objects of study
  - A map M of genus g is a finite connected graph embedded into a closed orientable surface of genus g such that the connected components of the complement of the graph (called *faces*) are homeomorphic to an open disk.
  - A map with k boundaries is a map with k pairwise distinct marked faces, labeled from 1 to k, and with a marked edge (called *root*) on every marked face.
  - A *loop* is an undirected simple close path on the dual map not visiting boundaries. A *loop configuration* is a collection of disjoint loops.



Figure : Planar triangulation with a boundary of length 8, endowed with a loop configuration.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

| The model | Loop nesting | Analytic properties | Bending energy model | Critical behavior | Large volume |
|-----------|--------------|---------------------|----------------------|-------------------|--------------|
| Statisti  | cal weigh    | ts                  |                      |                   |              |

In the  ${\cal O}(n)$  loop model on random maps, the Boltzmann weight of a configuration  ${\cal C}$  is

$$w(C) = \frac{1}{|\operatorname{Aut} C|} n^{\mathcal{L}} \prod_{l \ge 3} g_l^{N_l} \prod_{\substack{\{l_1, l_2\}\\l_1+l_2 \ge 1}} g_{l_1, l_2}^{N_{l_1, l_2}},$$

<□▶ <□▶ < □▶ < □▶ < □▶ < □ > ○ < ○

| The model | Loop nesting | Analytic properties | Bending energy model | Critical behavior | Large volume |
|-----------|--------------|---------------------|----------------------|-------------------|--------------|
| Statisti  | cal weigh    | ts                  |                      |                   |              |

In the  ${\cal O}(n)$  loop model on random maps, the Boltzmann weight of a configuration  ${\cal C}$  is

$$w(C) = \frac{1}{|\operatorname{Aut} C|} n^{\mathcal{L}} \prod_{l \ge 3} g_l^{N_l} \prod_{\substack{\{l_1, l_2\}\\l_1 + l_2 \ge 1}} g_{l_1, l_2}^{N_{l_1, l_2}},$$

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

where

- $\mathcal{L}$  is the number of loops,
- N<sub>l</sub> is the number of unvisited faces of degree l,

| The model | Loop nesting | Analytic properties | Bending energy model | Critical behavior | Large volume |
|-----------|--------------|---------------------|----------------------|-------------------|--------------|
| Statisti  | cal weigh    | ts                  |                      |                   |              |

In the  ${\cal O}(n)$  loop model on random maps, the Boltzmann weight of a configuration  ${\cal C}$  is

$$w(C) = \frac{1}{|\operatorname{Aut} C|} n^{\mathcal{L}} \prod_{l \ge 3} g_l^{N_l} \prod_{\substack{\{l_1, l_2\}\\l_1+l_2 \ge 1}} g_{l_1, l_2}^{N_{l_1, l_2}},$$

where

- $\mathcal{L}$  is the number of loops,
- $N_l$  is the number of unvisited faces of degree l,
- $N_{l_1,l_2}$  is the number of visited faces of degree  $(l_1 + l_2 + 2)$  whose boundary consists, in cyclic order with an arbitrary orientation, of  $l_1$  uncrossed edges, 1 crossed edge,  $l_2$  uncrossed edges and 1 crossed edge.



The generating series of configurations of the O(n) model with underlying map of genus g with k boundaries of lengths  $\ell_1, \ell_2, \ldots, \ell_k \ge 1$  and k' marked points is

$$F_{\ell_1,...,\ell_k}^{(\mathbf{g},k,\bullet k')} = \delta_{k,1}\delta_{\ell_1,0} \, u + \sum_C u^{|V(C)|} w(C),$$

where |V(C)| denotes the number of vertices of the underlying map of  $C_{\rm r}$  also called  $\mathit{volume}.$ 

▲ロト ▲圖ト ▲ヨト ▲ヨト ヨー のへで

The generating series of configurations of the O(n) model with underlying map of genus g with k boundaries of lengths  $\ell_1, \ell_2, \ldots, \ell_k \ge 1$  and k' marked points is

$$F_{\ell_1,...,\ell_k}^{(\mathbf{g},k,\bullet k')} = \delta_{k,1}\delta_{\ell_1,0} \, u + \sum_C u^{|V(C)|} w(C),$$

where |V(C)| denotes the number of vertices of the underlying map of  $C_{\rm r}$  also called  $\mathit{volume.}$ 

・ロト ・ 日 ・ エ ヨ ・ ト ・ 日 ・ うらつ

Usual maps (no loops):

• 
$$w(C) = \frac{1}{|\operatorname{Aut} C|} \prod_{l \ge 1} g_l^{N_l}$$
.

• The generating series is denoted  $\mathcal{F}_{\ell_1,\ldots,\ell_k}^{(\mathbf{g},k,\bullet k')}$ .

| The model | Loop nesting | Analytic properties | Bending energy model | Critical behavior | Large volume |
|-----------|--------------|---------------------|----------------------|-------------------|--------------|
| Motiva    | tion and     | contoxt             |                      |                   |              |

- Motivation and context
  - Enumeration of maps: Tutte (60's), matrix model techniques ('78)...

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

• Slogan: "Geometry of large random maps is universal".

Loop nesting Analytic

Analytic properties

Bending energy model

Critical behavior

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

Large volume

### Motivation and context

- Enumeration of maps: Tutte (60's), matrix model techniques ('78)...
- Slogan: "Geometry of large random maps is universal".
- Major problems in mathematical physics: establish the convergence of random maps towards limiting objects and understand their fractal geometry.

Usual maps  $\longrightarrow$  Model of pure 2d quantum gravity. Decorated maps  $\longrightarrow$  Model of 2d quantum gravity with matter.

### Motivation and context

- Enumeration of maps: Tutte (60's), matrix model techniques ('78)...
- Slogan: "Geometry of large random maps is universal".
- Major problems in mathematical physics: establish the convergence of random maps towards limiting objects and understand their fractal geometry.

 $\label{eq:Usual maps} \underset{\mbox{ Wodel of pure 2d quantum gravity.}}{\mbox{ Decorated maps}} \underset{\mbox{ Wodel of 2d quantum gravity with matter.}}{\mbox{ Model of 2d quantum gravity with matter.}}$ 

• The O(n) loop model gives rise to two new universality classes, which depend continuously on n, called *dense* or *dilute*.

 $\begin{array}{ccc} \text{Nesting properties of} & \longleftrightarrow & \text{Nesting properties of discrete} \\ \text{conformal loops (CLE}_{\kappa}) & \longleftrightarrow & \text{loops in disks and cylinders,} \end{array}$ 

studied by G. Borot, J. Bouttier and B. Duplantier.

### Motivation and context

- Enumeration of maps: Tutte (60's), matrix model techniques ('78)...
- Slogan: "Geometry of large random maps is universal".
- Major problems in mathematical physics: establish the convergence of random maps towards limiting objects and understand their fractal geometry.

 $\label{eq:Usual maps} \underset{\mbox{ Wodel of pure 2d quantum gravity.}}{\mbox{ Decorated maps}} \underset{\mbox{ Wodel of 2d quantum gravity with matter.}}{\mbox{ Model of 2d quantum gravity with matter.}}$ 

• The O(n) loop model gives rise to two new universality classes, which depend continuously on n, called *dense* or *dilute*.

 $\begin{array}{ccc} \text{Nesting properties of} & \longleftrightarrow & \text{Nesting properties of discrete} \\ \text{conformal loops } (\mathsf{CLE}_\kappa) & \longleftrightarrow & \text{loops in disks and cylinders,} \end{array}$ 

studied by G. Borot, J. Bouttier and B. Duplantier.

• Our approach for any topology: the substitution approach and the topological recursion.

| The model | Loop nesting | Analytic properties | Bending energy model | Critical behavior | Large volume |
|-----------|--------------|---------------------|----------------------|-------------------|--------------|
| Outline   |              |                     |                      |                   |              |

#### 2 Loop nesting

3 Analytic properties

#### Bending energy model

#### **5** Critical behavior

6 Large fixed volume, fixed lengths and fixed depth

#### ◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ 臣 - のへで

Loop nesting An

Analytic properties

Bending energy model

Critical behavior

・ロト ・ 日 ・ エ ヨ ・ ト ・ 日 ・ うらつ

Large volume

### Primary nesting graph $\Gamma_0$ of a map M

- Cut M along every loop  $\rightsquigarrow$  Connected components  $c_1, \ldots, c_N$ .
- Vertices (V(Γ<sub>0</sub>)): {c<sub>i</sub>}<sub>i</sub>. Edges (E(Γ<sub>0</sub>)): {c<sub>i</sub>, c<sub>j</sub>} if c<sub>i</sub> and c<sub>j</sub> have a common boundary.
- $\bullet\,$  Save the genus h(v) of the connected component corresponding to every vertex v.
- $*: \{ Marked elements in M \} \rightarrow V(\Gamma_0).$



Loop nesting An

Analytic properties

Large volume

### Primary nesting graph $\Gamma_0$ of a map M

- Cut M along every loop  $\rightsquigarrow$  Connected components  $c_1, \ldots, c_N$ .
- Vertices (V(Γ<sub>0</sub>)): {c<sub>i</sub>}<sub>i</sub>. Edges (E(Γ<sub>0</sub>)): {c<sub>i</sub>, c<sub>j</sub>} if c<sub>i</sub> and c<sub>j</sub> have a common boundary.
- $\bullet\,$  Save the genus h(v) of the connected component corresponding to every vertex v.
- $*: \{ Marked elements in M \} \rightarrow V(\Gamma_0).$



#### Definition

In a map M with a non empty set of marked elements P, a loop is *separating* if it is not contractible in  $M \setminus P$ .

The model Loop nesting Analytic properties Bending energy model Critical behavior Large volume

### Nesting graph $\Gamma$ of a map M

- Erase univalent unmarked genus 0 vertices.
- Replace  $v_0 v_1 \cdots v_P$  with  $P \ge 2$ , where  $(v_i)_{i=1}^{P-1}$  are bivalent unmarked genus 0 vertices, by a single edge  $v_0 - v_P$  carrying a length P.



イロト 不得下 不同下 不同下

ション ふゆ く 山 マ チャット しょうくしゃ

### Substitution approach

 $\{ \text{Disks } M \text{ with a loop configuration} \} \longleftrightarrow \{ \text{Triples } (G, \mathcal{R}, M') \}$ 

- G is a usual disk, called the *gasket* of M.  $\rightsquigarrow$  Connected component containing the boundary in the complement all loops in M.
- *R* is a disjoint union of *annuli*, which are sequences of faces visited by a single loop and rooted on its outer boundary → Collection of faces crossed by the outermost loops in *M*.
- M' is a disjoint union of disks carrying loop configurations.  $\rightsquigarrow$  Inside of the outermost loops.

### Substitution approach

{Disks M with a loop configuration}  $\longleftrightarrow$  {Triples  $(G, \mathcal{R}, M')$ }

- G is a usual disk, called the gasket of  $M_{\cdot} \rightsquigarrow$  Connected component containing the boundary in the complement all loops in M.
- $\mathcal{R}$  is a disjoint union of *annuli*, which are sequences of faces visited by a single loop and rooted on its outer boundary  $\rightsquigarrow$  Collection of faces crossed by the outermost loops in M.
- M' is a disjoint union of disks carrying loop configurations.  $\rightsquigarrow$  Inside of the outermost loops.



Functional relation:

$$F_{\ell} = \mathcal{F}_{\ell}(G_1, G_2, \ldots).$$

The renormalized face weights  $G_m$  satisfy

$$G_m = g_m + \sum_{r \ge 0} A_{m,r} \mathcal{F}_r(G_1, G_2, \ldots) = g_m + \sum_{\ell' \ge 1} A_{m,r} F_r,$$

where  $A_{m,r}$  is the generating series of rooted annuli.

| The model | Loop nesting | Analytic properties | Bending energy model | Critical behavior | Large volume |
|-----------|--------------|---------------------|----------------------|-------------------|--------------|
| Notatio   | ns           |                     |                      |                   |              |
|           |              |                     |                      |                   |              |

- For  $e \in E$ ,  $\{e_+, e_-\}$  is its set of half-edges.
- For  $v \in V$ ,  $e(v) := \{$ half-edges incident to  $v \}$ , d(v) denotes the degree of v,  $\partial(v) := \{$ boundaries of  $v \}$  and  $|\partial(v)| := k(v)$ .
- $V_{0,2} := \{ \text{univalent vertices } \mathsf{v} \mid \mathsf{h}(\mathsf{v}) = 0, k(\mathsf{v}) = 1 \}, \ \tilde{V} := V \setminus V_{0,2}$ and for  $\mathsf{v} \in V_{0,2}, \ \mathsf{e}_+(\mathsf{v})$  denotes the incident half-edge.
- $E_{\mathrm{un}} \coloneqq \{\mathsf{e}(\mathsf{v}) \text{ for } \mathsf{v} \in V_{0,2}\}, \ \tilde{E} \coloneqq E \setminus E_{\mathrm{un}} \text{ and}$

$$E_{\text{glue}} \coloneqq \bigcup_{\mathsf{e} \in \tilde{E}} \{\mathsf{e}_+, \mathsf{e}_-\} \cup \bigcup_{\mathsf{v} \in V_{0,2}} \mathsf{e}_+(\mathsf{v}).$$

ション ふゆ く 山 マ チャット しょうくしゃ

| The model | Loop nesting | Analytic properties | Bending energy model | Critical behavior | Large volume |
|-----------|--------------|---------------------|----------------------|-------------------|--------------|
| Notatic   | ons          |                     |                      |                   |              |
|           |              |                     |                      |                   |              |

- For  $e \in E$ ,  $\{e_+, e_-\}$  is its set of half-edges.
- For  $v \in V$ ,  $e(v) \coloneqq \{$ half-edges incident to  $v \}$ , d(v) denotes the degree of v,  $\partial(v) \coloneqq \{$ boundaries of  $v \}$  and  $|\partial(v)| \coloneqq k(v)$ .
- $V_{0,2} := \{ \text{univalent vertices } \mathsf{v} \mid \mathsf{h}(\mathsf{v}) = 0, k(\mathsf{v}) = 1 \}, \ \tilde{V} := V \setminus V_{0,2}$ and for  $\mathsf{v} \in V_{0,2}, \ \mathsf{e}_+(\mathsf{v})$  denotes the incident half-edge.

• 
$$E_{\mathrm{un}} \coloneqq \{\mathsf{e}(\mathsf{v}) \text{ for } \mathsf{v} \in V_{0,2}\}, \tilde{E} \coloneqq E \setminus E_{\mathrm{un}} \text{ and}$$

$$E_{\text{glue}} \coloneqq \bigcup_{\mathbf{e} \in \tilde{E}} \{\mathbf{e}_+, \mathbf{e}_-\} \cup \bigcup_{\mathbf{v} \in V_{0,2}} \mathbf{e}_+(\mathbf{v}).$$

#### **Generating series**

- $\mathcal{F}_{\ell_1,...,\ell_k}^{(\mathbf{g},k,\bullet k')} \rightsquigarrow$  usual maps evaluated at renormalized face weights.
- $F_{\ell_1,\ell_2}^{(2)}[s] \rightsquigarrow$  refined generating series of cylinders, where w(C) has an extra factor  $s^P$ , with  $P := |\{\text{separating loops}\}|$ .
- $\hat{F}_{\ell_1,\ell_2}^{(2)}[s] = s \sum_{l \ge 0} R_{\ell_1,l} F_{l,\ell_2}^{(2)}[s] \rightsquigarrow$  cylinders with one annulus (with unrooted outer boundary) glued to one of the two boundaries.
- $\tilde{F}_{\ell_1,\ell_2}^{(2)}[s] = sR_{\ell_1,\ell_2} + s^2 \sum_{l,l' \ge 0} R_{\ell_1,l}F_{l,l'}^{(2)}[s] R_{l',\ell_2} \rightsquigarrow$  cylinders capped with two annuli with unrooted outer boundaries.

We can retrieve the original map from  $(\Gamma, \star, \mathbf{P})$ , by glueing together:

- $\forall v \in V_{0,2}(\Gamma)$ , a cylinder with one annulus glued to one of the boundaries:
- $\forall v \in \tilde{V}(\Gamma)$  of valency d(v), a usual map (with renormalized weights) of genus h(v) with k(v) labeled boundaries and d(v) other unlabeled boundaries, and k'(v) marked points;
- $\forall e \in \hat{E}(\Gamma)$  of length 1, an annulus;
- $\forall e \in \tilde{E}(\Gamma)$  of length  $P(e) \ge 2$ , two annuli capping a cylinder with P(e) - 2 separating loops.



 $\mathbf{v}_1, \mathbf{v}_2 \in \tilde{V}$ :  $\mathbf{h}(\mathbf{v}_1) = 0, k(\mathbf{v}_1) = 2, d(\mathbf{v}_1) = 1, \mathbf{h}(\mathbf{v}_2) = 1, k(\mathbf{v}_2) = 0, d(\mathbf{v}_2) = 3.$  $v_3, v_4 \in V_{0,2}.$ ション ふゆ く 山 マ チャット しょうくしゃ

Loop nesting Ana

Analytic properties

Bending energy model

Critical behavior

Large volume

### Combinatorial decomposition of maps



We can determine the refined generating series of maps with fixed associated nesting graph  $(\Gamma, \star, \mathbf{P})$ :

#### Proposition

$$\begin{split} \mathscr{F}_{\ell_{1},\ldots,\ell_{k}}^{(\mathbf{g},k,\bullet k')}[\Gamma,\star,\mathbf{s}] &= \sum_{l\,:\,E_{\mathrm{glue}}(\Gamma)\to\mathbb{N}} \prod_{\mathbf{v}\in\tilde{V}(\Gamma)} \frac{\mathcal{F}_{\ell(\partial(\mathbf{v})),l(\mathbf{e}(\mathbf{v}))}^{(\mathbf{h}(\mathbf{v}),k(\mathbf{v})+d(\mathbf{v}),\bullet k'(\mathbf{v}))}}{\prod_{\mathbf{e}\in\tilde{E}(\Gamma)}\tilde{F}_{l(\mathbf{e}_{-}),l(\mathbf{e}_{+})}^{(2)}[s(\mathbf{e})]}\prod_{\mathbf{v}\in V_{0,2}(\Gamma)}\hat{F}_{l(\mathbf{e}_{+}(\mathbf{v})),\ell(\partial(\mathbf{v}))}^{(2)}[s(\mathbf{e}_{+}(\mathbf{v}))],\\ \end{split}$$
where  $\ell:\bigcup_{\mathbf{v}\in V(\Gamma)}\partial(\mathbf{v})\to\mathbb{N}$  is given by  $\ell_{1},\ldots,\ell_{k}$ .

| The model | Loop nesting | Analytic properties | Bending energy model | Critical behavior | Large volume |
|-----------|--------------|---------------------|----------------------|-------------------|--------------|
| Outline   |              |                     |                      |                   |              |

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- 1 The model
- 2 Loop nesting
- 3 Analytic properties
- Bending energy model
- **5** Critical behavior
- 6 Large fixed volume, fixed lengths and fixed depth

| The model | Loop nesting | Analytic properties | Bending energy model | Critical behavior | Large volume |
|-----------|--------------|---------------------|----------------------|-------------------|--------------|
| Admic     | -ikili+v     |                     |                      |                   |              |

#### Admissibility

We say that u and a sequence  $(g_l)_{l\geq 1}$  of nonnegative real numbers are *admissible* if  $\mathcal{F}_{\ell}^{\bullet} < \infty$  for any  $\ell$ .

$$\mathcal{F}(x) \coloneqq \sum_{\ell \ge 0} \frac{\mathcal{F}_{\ell}}{x^{\ell+1}} \in \mathbb{Q}[[x^{-1}]]$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

| The model | Loop nesting | Analytic properties | Bending energy model | Critical behavior | Large volume |
|-----------|--------------|---------------------|----------------------|-------------------|--------------|
|           |              |                     |                      |                   |              |
|           |              |                     |                      |                   |              |

#### Admissibility

We say that u and a sequence  $(g_l)_{l\geq 1}$  of nonnegative real numbers are *admissible* if  $\mathcal{F}_{\ell}^{\bullet} < \infty$  for any  $\ell$ .

$$\mathcal{F}(x) \coloneqq \sum_{\ell \ge 0} \frac{\mathcal{F}_{\ell}}{x^{\ell+1}} \in \mathbb{Q}[[x^{-1}]]$$

is a well-defined Laurent series expansion at  $x=\infty$  of a function denoted likewise which is

● holomorphic for  $x \in \mathbb{C} \setminus \gamma$ , where  $\gamma = [\gamma_-, \gamma_+] \subset \mathbb{R}$  depends on the vertex and face weights, and

・ロト ・ 日 ・ エ ヨ ・ ト ・ 日 ・ うらつ

 $e a uniformly bounded for x \in \mathbb{C} \setminus \gamma.$ 

Its boundary values on the cut satisfy a functional relation,

• 
$$\mathcal{F}(x) = u/x + O(1/x^2)$$
 when  $x \to \infty$ .

These properties uniquely determine  $\gamma_-, \gamma_+$  and  $\mathcal{F}(x)$ .

| The model | Loop nesting | Analytic properties | Bending energy model | Critical behavior | Large volume |
|-----------|--------------|---------------------|----------------------|-------------------|--------------|
|           |              |                     |                      |                   |              |

### Admissibility

We say that u and a sequence  $(g_l)_{l\geq 1}$  of nonnegative real numbers are *admissible* if  $\mathcal{F}_{\ell}^{\bullet} < \infty$  for any  $\ell$ .

$$\mathcal{F}(x) \coloneqq \sum_{\ell \ge 0} \frac{\mathcal{F}_{\ell}}{x^{\ell+1}} \in \mathbb{Q}[[x^{-1}]]$$

is a well-defined Laurent series expansion at  $x=\infty$  of a function denoted likewise which is

- holomorphic for  $x \in \mathbb{C} \setminus \gamma$ , where  $\gamma = [\gamma_-, \gamma_+] \subset \mathbb{R}$  depends on the vertex and face weights, and
- $e a uniformly bounded for x \in \mathbb{C} \setminus \gamma.$

Its boundary values on the cut satisfy a functional relation,

• 
$$\mathcal{F}(x) = u/x + O(1/x^2)$$
 when  $x \to \infty$ .

These properties uniquely determine  $\gamma_-, \gamma_+$  and  $\mathcal{F}(x)$ . Analogously, we define  $\mathcal{F}^{(g,k)}(x_1,\ldots,x_k)$  which satisfies the properties analogous to 1 and 3. Regarding 2 and 4, we have that  $\sigma(x_1)\sigma(x_2)\mathcal{F}^{(2)}(x_1,x_2)$  remains uniformly bounded for  $x_1, x_2 \in \mathbb{C} \setminus \gamma$  and  $\mathcal{F}^{(2)}(x_1,x_2) \in O(x_1^{-2}x_2^{-2})$  when  $x_1, x_2 \to \infty$ .  $\mathcal{F}^{(2)}(x_1,x_2)$  is also uniquely determined by these properties.

ション ふゆ く 山 マ チャット しょうくしゃ

For 2g - 2 + k > 0,  $\exists r(g,k) > 0$  such that  $\sigma(x_1)^{r(g,k)} \mathcal{F}^{(g,k)}(x_1, \ldots, x_k)$  remains bounded when  $x_1$  approaches  $\gamma$  while  $(x_i)_{i=2}^k$  are fixed away from  $\gamma$  and  $\mathcal{F}^{(g,k)}(x_1, x_I) \in O(x_1^{-2})$  when  $x_1 \to \infty$ .

#### Definition

For the O(n) model, we say that two sequences of real numbers  $(g_l)_{l\geq 3}$ and  $(A_{l_1,l_2})_{l_1,l_2}$  are *admissible* if the corresponding sequence of renormalized face weights  $(G_1, G_2, \ldots)$  is admissible. For 2g - 2 + k > 0,  $\exists r(g,k) > 0$  such that  $\sigma(x_1)^{r(g,k)} \mathcal{F}^{(g,k)}(x_1, \ldots, x_k)$ remains bounded when  $x_1$  approaches  $\gamma$  while  $(x_i)_{i=2}^k$  are fixed away from  $\gamma$  and  $\mathcal{F}^{(g,k)}(x_1, x_I) \in O(x_1^{-2})$  when  $x_1 \to \infty$ .

#### Definition

For the O(n) model, we say that two sequences of real numbers  $(g_l)_{l\geq 3}$ and  $(A_{l_1,l_2})_{l_1,l_2}$  are *admissible* if the corresponding sequence of renormalized face weights  $(G_1, G_2, \ldots)$  is admissible.

#### Remark

 $Admissibility \Rightarrow$ 

- $\mathbf{F}^{(g,k)}(x_1,\ldots,x_k)$  satisfies analogous properties to those of  $\boldsymbol{\mathcal{F}}^{(g,k)}$ .
- The annuli generating series  $\mathbf{R}(x, y) = \sum_{l+l' \ge 1} R_{l,l'} x^l y^{l'}$ , with  $R_{l,l'} = A_{l,l'}/l$  (non-rooted) and  $\mathbf{A}(x, y) = \partial_x \mathbf{R}(x, y)$  (1 boundary rooted) are holomorphic in a neighborhood of  $\gamma \times \gamma$ .
- $\hat{\mathbf{F}}_{s}^{(2)}(x_{1}, x_{2}) = \sum_{\ell_{1}, \ell_{2} \geq 0} \hat{F}_{\ell_{1}, \ell_{2}}^{(2)}[s] \frac{x_{1}^{\ell_{1}}}{x_{2}^{\ell_{2}+1}} = s \oint_{\gamma} \frac{\mathrm{d}y}{2\mathrm{i}\pi} \mathbf{R}(x_{1}, y) \mathbf{F}_{s}^{(2)}(y, x_{2}) \text{ is the series expansion when } x_{1} \to 0 \text{ and } x_{2} \to \infty \text{ of a function which is holomorphic for } x_{1} \text{ in a neighborhood of } \gamma \text{ and } x_{2} \text{ in } \mathbb{C} \setminus \gamma.$

#### Decomposition of maps for a fixed nesting graph $\Gamma$

#### Remark

$$\tilde{\mathbf{F}}_{s}^{(2)}(x_{1}, x_{2}) = \sum_{\ell_{1}, \ell_{2} \ge 0} \tilde{F}_{\ell_{1}, \ell_{2}}^{(2)}[s] \, x_{1}^{\ell_{1}} x_{2}^{\ell_{2}}$$
$$= s \, \mathbf{R}(x, y) + s^{2} \oint_{\gamma} \frac{\mathrm{d}y_{1}}{2\mathrm{i}\pi} \, \frac{\mathrm{d}y_{2}}{2\mathrm{i}\pi} \, \mathbf{R}(x_{1}, y_{1}) \mathbf{F}_{s}^{(2)}(y_{1}, y_{2}) \mathbf{R}(y_{2}, x_{2})$$

is the series expansion at  $x_i \rightarrow 0$  of a function denoted likewise, which is holomorphic for  $x_i$  in a neighborhood of  $\gamma$ .

ヘロト 人間 とうきょう 小田 とう

32

### Decomposition of maps for a fixed nesting graph $\Gamma$

#### Remark

$$\tilde{\mathbf{F}}_{s}^{(2)}(x_{1}, x_{2}) = \sum_{\ell_{1}, \ell_{2} \ge 0} \tilde{F}_{\ell_{1}, \ell_{2}}^{(2)}[s] \, x_{1}^{\ell_{1}} x_{2}^{\ell_{2}}$$
$$= s \, \mathbf{R}(x, y) + s^{2} \oint_{\gamma} \frac{\mathrm{d}y_{1}}{2\mathrm{i}\pi} \, \frac{\mathrm{d}y_{2}}{2\mathrm{i}\pi} \, \mathbf{R}(x_{1}, y_{1}) \mathbf{F}_{s}^{(2)}(y_{1}, y_{2}) \mathbf{R}(y_{2}, x_{2})$$

is the series expansion at  $x_i \to 0$  of a function denoted likewise, which is holomorphic for  $x_i$  in a neighborhood of  $\gamma$ .

$$\begin{aligned} \boldsymbol{\mathscr{F}}_{\Gamma,\star,\mathbf{s}}^{(\mathbf{g},k)}(x_{1},\ldots,x_{k}) &= \\ \oint_{\gamma^{E}_{\mathrm{glue}}(\Gamma)} \prod_{\mathbf{e}\in E_{\mathrm{glue}}(\Gamma)} \frac{\mathrm{d}y_{\mathbf{e}}}{2\mathrm{i}\pi} \prod_{\mathbf{v}\in\tilde{V}(\Gamma)} \frac{\boldsymbol{\mathcal{F}}^{(\mathsf{h}(\mathsf{v}),k(\mathsf{v})+d(\mathsf{v}),\bullet k'(\mathsf{v}))}(x_{\partial(\mathsf{v})},y_{\mathsf{e}(\mathsf{v})})}{d(\mathsf{v})!} \\ &\prod_{\mathbf{e}\in\tilde{E}(\Gamma)} \tilde{\mathbf{F}}_{s(\mathsf{e})}^{(2)}(y_{\mathsf{e}_{+}},y_{\mathsf{e}_{-}}) \prod_{\mathsf{v}\in V_{0,2}(\Gamma)} \hat{\mathbf{F}}_{s(\mathsf{e}_{+}(\mathsf{v}))}^{(2)}(y_{\mathsf{e}_{+}(\mathsf{v})},x_{\partial(\mathsf{v})}). \end{aligned}$$

| The model | Loop nesting | Analytic properties | Bending energy model | Critical behavior | Large volume |
|-----------|--------------|---------------------|----------------------|-------------------|--------------|
| Outline   |              |                     |                      |                   |              |

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- 1 The model
- 2 Loop nesting
- 3 Analytic properties
- Bending energy model
- 6 Critical behavior
- 6 Large fixed volume, fixed lengths and fixed depth

Loop nesting

Analytic properties

Bending energy model

Critical behavior

Large volume

### O(n) loop model on random triangulations







#### Involution:

$$\varsigma(x)\coloneqq \frac{1-\alpha hx}{\alpha h+(1-\alpha^2)h^2x}.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Loop nesting

Analytic properties

Bending energy model

Critical behavior

Large volume

### O(n) loop model on random triangulations



$$\varsigma(x)\coloneqq \frac{1-\alpha hx}{\alpha h+(1-\alpha^2)h^2x}.$$

The annuli generating series  $\mathbf{R}(x,y)$  and  $\mathbf{A}(x,y)$  in this model are explicit

$$\mathbf{A}(x,z) = \partial_x \mathbf{R}(x,z) = n \left( \frac{\varsigma'(x)}{z - \varsigma(x)} + \frac{\varsigma''(x)}{2\varsigma'(x)} \right).$$

If f is holomorphic in  $\mathbb{C}\setminus\gamma$  such that  $f(x)\sim c_f/x$  when  $x\to\infty,$  then

$$\oint_{\gamma} \frac{\mathrm{d}y}{2\mathrm{i}\pi} \,\mathbf{A}(x,y) \,f(y) = -n\varsigma'(x) \,f(\varsigma(x)) + nc_f \,\frac{\varsigma''(x)}{2\varsigma'(x)}.$$

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ 三臣 - のへ⊙

Loop nesting

Analytic properties

Bending energy model

Critical behavior

Large volume

### O(n) loop model on random triangulations



$$\varsigma(x)\coloneqq \frac{1-\alpha hx}{\alpha h+(1-\alpha^2)h^2x}.$$

・ロト ・ 日 ・ エ ヨ ・ ト ・ 日 ・ うらつ

The annuli generating series  $\mathbf{R}(x,y)$  and  $\mathbf{A}(x,y)$  in this model are explicit

$$\mathbf{A}(x,z) = \partial_x \mathbf{R}(x,z) = n \left( \frac{\varsigma'(x)}{z - \varsigma(x)} + \frac{\varsigma''(x)}{2\varsigma'(x)} \right).$$

If f is holomorphic in  $\mathbb{C}\setminus\gamma$  such that  $f(x)\sim c_f/x$  when  $x\to\infty,$  then

$$\oint_{\gamma} \frac{\mathrm{d}y}{2\mathrm{i}\pi} \mathbf{A}(x,y) f(y) = -n\varsigma'(x) f(\varsigma(x)) + nc_f \frac{\varsigma''(x)}{2\varsigma'(x)}.$$

Therefore, the following linear equation can be solved explicitly:

$$f(x+i0) + f(x-i0) + s \oint_{\gamma} \frac{\mathrm{d}y}{2i\pi} \mathbf{A}(x,y) f(y) = \varphi(x), \qquad \forall x \in (\gamma_{-},\gamma_{+}).$$

The model Loop nesting Analytic properties Bending energy model Critical behavior Large volume Elliptic parametrization

How to solve the homogeneous equation

$$f(x + i0) + f(x - i0) - ns \varsigma'(x) f(\varsigma(x)) = 0?$$

 $\mathsf{Key:} \ \mathsf{Use} \ v : \mathbb{C} \setminus \big( \gamma \cup \varsigma(\gamma) \big) \longrightarrow \big\{ v \in \mathbb{C} \mid 0 < \operatorname{Re} v < 1/2, |\operatorname{Im} v| < T \big\}.$ 



Figure : In purple: Special values of x(v) at the corners.

The function  $v \mapsto x(v)$  is analytically continued for  $v \in \mathbb{C}$  by

$$x(-v) = x(v+1) = x(v+2\tau) = x(v).$$

• • = •

| Elliptic parametrization | The model | Loop nesting | Analytic properties | Bending energy model | Critical behavior | Large volume |
|--------------------------|-----------|--------------|---------------------|----------------------|-------------------|--------------|
|                          | Elliptic  | paramet      | rization            |                      |                   |              |

$$v(\varsigma(x)) = \tau - v(x)$$

Our functional equation turns into

$$\tilde{f}(v+2\tau)+\tilde{f}(v)-n\,\tilde{f}(v-\tau)=0, \text{with } \tilde{f}(v)=\tilde{f}(v+1)=-\tilde{f}(-v), \forall v\in\mathbb{C},$$

for the analytic continuation of the function  $\tilde{f}(v) = f(x(v))x'(v)$ .

$$b \coloneqq \frac{\arccos(n/2)}{\pi}$$

b ranges from  $\frac{1}{2}$  to 0 when n ranges from 0 to 2.

#### Remark

There are explicit expressions for  $\mathbf{F}(x(v))$ ,  $\mathbf{F}_{s}^{\bullet}(x(v))$  and  $\mathbf{F}_{s}^{(2)}(x(v_{1}), x(v_{2}))$ .

The model Loop nesting Analytic properties Bending energy model Critical behavior Large volume

### Topological recursion

Meromorphic function  $\mathbf{G}^{(\mathbf{g},k)}(v_1,\ldots,v_k) \rightsquigarrow$  analytical continuation of

$$\mathbf{F}^{(\mathbf{g},k)}(x(v_1),\ldots,x(v_k))\prod_{i=1}^k x'(v_i).$$

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …の�?

The model Loop nesting Analytic properties Bending energy model Critical behavior Large volume Topological recursion Meromorphic function  $\mathbf{G}^{(\mathbf{g},k)}(v_1,\ldots,v_k) \rightsquigarrow$  analytical continuation of  $\mathbf{F}^{(\mathbf{g},k)}(x(v_1),\ldots,x(v_k)) \prod_{i=1}^k x'(v_i).$ Recursion kernel  $\varepsilon \in \{0, 1/2\}$   $\rightsquigarrow$   $\mathbf{K}_{\varepsilon}(v_0,v) = -\frac{\mathrm{d}v}{2} \frac{\int_{2(\tau+\varepsilon)-v}^v \mathrm{d}v' \, \mathbf{G}^{(2)}(v',v_0)}{\mathbf{G}(v) + \mathbf{G}(2\tau-v)}.$ 

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ●

Loop nesting An

Analytic properties

Bending energy model

Critical behavior

Large volume

### Topological recursion

#### Theorem (Borot, Eynard 2011)

Let  $I = \{2, \ldots, k\}$ . For 2g - 2 + k > 0, we have

$$\mathbf{G}^{(\mathbf{g},k)}(v_1,v_I) = \sum_{\varepsilon \in \{0,1/2\}} \operatorname{Res}_{v \to \tau+\varepsilon} \mathbf{K}_{\varepsilon}(v_1,v) \left[ \mathbf{G}^{(\mathbf{g}-1,k+1)}(v,2(\tau+\varepsilon)-v,v_I) + \sum_{\substack{h+h'=g\\J \mid J'=I}}^{\operatorname{no disks}} \mathbf{G}^{(\mathsf{h},1+|J|)}(v,v_J) \mathbf{G}^{(\mathsf{h}',1+|J'|)}(2(\tau+\varepsilon)-v,v_{J'}) \right],$$

where "no disks" means that we exclude the terms containing disk generating series, that is (h, J) or (h', J') equal to  $(0, \emptyset)$ .

Loop nesting

Analytic properties

Bending energy model

Critical behavior

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQ@

Large volume

### Decomposition of the TR invariants



Loop nesting

Analytic properties

Bending energy model

Critical behavior

Large volume

### Decomposition of the TR invariants



#### Elementary blocks

$$\varepsilon \in \{0, \frac{1}{2}\}, \qquad \mathbf{B}_{\varepsilon,l}(v) = \frac{\partial^{2l}}{\partial v_2^{2l}} \mathbf{G}^{(2)}(v, v_2)\Big|_{v_2 = \tau + \varepsilon}.$$

#### Proposition

For 2g - 2 + k > 0, we have a decomposition

$$\mathbf{G}^{(\mathbf{g},k)}(v_1,\ldots,v_k) = \sum_{\substack{l_1,\ldots,l_k \ge 0\\\varepsilon_1,\ldots,\varepsilon_k \in \{0,\frac{1}{2}\}}} \mathbf{C}^{(\mathbf{g},k)} \begin{bmatrix} l_1\\\varepsilon_1\cdots l_k\\\varepsilon_k \end{bmatrix} \prod_{i=1}^k \mathbf{B}_{\varepsilon_i,l_i}(v_i),$$

where the sum contains only finitely many non-zero terms.



• The coefficients  $C^{(g,k)}{[l_{\varepsilon_I}]\atop \varepsilon_I}$  satisfy a recursion relation with two kinds of coefficients we denote K and  $\tilde{K}$ .

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

The model Loop nesting Analytic properties Bending energy model Critical behavior Large volume Sketch (key idea: diagrammatic representation)

- The coefficients  $C^{(g,k)} \begin{bmatrix} l_{\varepsilon_I} \\ \varepsilon_I \end{bmatrix}$  satisfy a recursion relation with two kinds of coefficients we denote K and  $\tilde{K}$ .
- Diagrammatic representation by trivalent vertices with different properties of their incident edges of K,  $\tilde{K}$ , and the initial cases  $C^{(0,3)}$  and  $C^{(1,1)}$ .
- Expression for C<sup>(g,k)</sup>'s as a sum over graphs composed by the previous four kinds of pieces.
- Critical behavior of the four kinds of pieces and of the elementary blocks.

ション ふゆ く 山 マ チャット しょうくしゃ

The model Loop nesting Analytic properties Bending energy model Critical behavior Large volume Sketch (key idea: diagrammatic representation)

- The coefficients  $C^{(g,k)} \begin{bmatrix} l_{\varepsilon_I} \\ \varepsilon_I \end{bmatrix}$  satisfy a recursion relation with two kinds of coefficients we denote K and  $\tilde{K}$ .
- Diagrammatic representation by trivalent vertices with different properties of their incident edges of K,  $\tilde{K}$ , and the initial cases  $C^{(0,3)}$  and  $C^{(1,1)}$ .
- Expression for C<sup>(g,k)</sup>'s as a sum over graphs composed by the previous four kinds of pieces.
- Critical behavior of the four kinds of pieces and of the elementary blocks.
- Fixed the coloring of the k legs  $\varepsilon_1, \ldots, \varepsilon_k$ , determine which graph and coloring (of the graph) give the leading contribution to  $C^{(g,k)}$  in the critical regime.
- Critical behavior of  $\mathbf{F}^{(g,k)}$  and  $\mathcal{F}^{(g,k)}$ , obtained summing all these contributions over the possible colorings of the legs.

| The model | Loop nesting | Analytic properties | Bending energy model | Critical behavior | Large volume |
|-----------|--------------|---------------------|----------------------|-------------------|--------------|
| Outline   |              |                     |                      |                   |              |

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …の�?

- 1 The model
- 2 Loop nesting
- 3 Analytic properties
- Bending energy model
- 5 Critical behavior

6 Large fixed volume, fixed lengths and fixed depth

| The model | Loop nesting | Analytic properties | Bending energy model | Critical behavior | Large volume |
|-----------|--------------|---------------------|----------------------|-------------------|--------------|
| Phase     | diagram      |                     |                      |                   |              |

For fixed values  $(n, \alpha, g, h)$ , we introduce

 $u_c \coloneqq \sup\{u \ge 0 : F_\ell^{\bullet} < \infty\}.$ 

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

If  $u_c = 1$  (resp.  $u_c < 1$ ,  $u_c > 1$ ), we say that the model is at a *critical* (resp. *subcritical*, *supercritical*) point.

| The model | Loop nesting | Analytic properties | Bending energy model | Critical behavior | Large volume |
|-----------|--------------|---------------------|----------------------|-------------------|--------------|
| Phase     | diagram      |                     |                      |                   |              |

For fixed values  $(n, \alpha, g, h)$ , we introduce

$$u_c \coloneqq \sup\{u \ge 0 : F_{\ell}^{\bullet} < \infty\}.$$

If  $u_c = 1$  (resp.  $u_c < 1$ ,  $u_c > 1$ ), we say that the model is at a *critical* (resp. *subcritical*, *supercritical*) point.



Figure : Qualitatively insensitive to the value of  $n \in (0, 2)$  and  $\alpha$  not too large. At a critical point,  $\mathcal{F}(x) = \mathbf{F}(x)$  has a singularity when  $u \to 1^-$ .

(ロ) (型) (E) (E) (E) (O)

The model Loop nesting Analytic properties Bending energy model Critical behavior Large volume
Small and large boundaries

• A non-generic critical point occurs when  $\gamma_+$  approaches the fixed point of  $\varsigma$ :  $\gamma_+^* = \varsigma(\gamma_+^*) = \frac{1}{h(\alpha+1)}$ 

$$\Leftrightarrow T \to 0 \Leftrightarrow q = e^{-\frac{\pi}{T}} \to 0.$$

• (g,h) non-generic critical for  $u=1 \Rightarrow$ 

$$q \sim \left(\frac{1-u}{q_*}\right)^c$$
, for  $u \to 1^-$ , with  $c = \begin{cases} \frac{1}{1-b} & \text{dense,} \\ 1 & \text{dilute.} \end{cases}$ 

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへの

The model Loop nesting Analytic properties Bending energy model Critical behavior Large volume
Small and large boundaries

• A non-generic critical point occurs when  $\gamma_+$  approaches the fixed point of  $\varsigma\colon \gamma_+^*=\varsigma(\gamma_+^*)=\frac{1}{h(\alpha+1)}$ 

$$\Leftrightarrow T \to 0 \Leftrightarrow q = e^{-\frac{\pi}{T}} \to 0.$$

• (g,h) non-generic critical for u=1  $\Rightarrow$ 

$$q \sim \left(\frac{1-u}{q_*}\right)^c$$
, for  $u \to 1^-$ , with  $c = \begin{cases} \frac{1}{1-b} & \text{dense,} \\ 1 & \text{dilute.} \end{cases}$ 

- General principle: Study large maps (V → ∞) ↔ Study generating series close to critical points (u → 1).
- Fixing lengths

$$\begin{array}{ll} \ell_i \text{ finite} & \rightsquigarrow & \text{contour for } x_i \text{ around } \infty, x_i = x(\frac{1}{2} + \tau w_i), \\ & (x_i \text{ remains finite and away from } [\gamma_-^*, \gamma_+^*]), \\ \ell_i \to \infty & \rightsquigarrow & \text{contour for } x_i \text{ around } \gamma_+ \to \gamma_+^*, x_i = x(\tau w_i), \\ & (x_i \text{ scales with } q \to 0 \text{ such that } x_i - \gamma_+ \in O(q^{\frac{1}{2}})). \end{array}$$

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

#### Generating series of maps

Let 
$$k = k_0 + k_{1/2} \ge 1$$
 and  $g \ge 0$  such that  $2g - 2 + k > 0$ .  
Let  $x_j = x(\varepsilon_j + \tau \varphi_j)$  for  $j = 1, \dots, k$ .

 $\mathfrak{d} \coloneqq \begin{cases} 1, & \text{dense,} & k_0 \rightsquigarrow \text{number of large boundaries } (\varepsilon_j = 0), \\ -1, & \text{dilute.} & k_{1/2} \rightsquigarrow \text{number of small boundaries } (\varepsilon_j = 1/2). \end{cases}$ 

### Generating series of maps

Let 
$$k = k_0 + k_{1/2} \ge 1$$
 and  $g \ge 0$  such that  $2g - 2 + k > 0$ .  
Let  $x_j = x(\varepsilon_j + \tau \varphi_j)$  for  $j = 1, \dots, k$ .

 $\mathfrak{d} \coloneqq \begin{cases} 1, & \text{dense,} & k_0 \rightsquigarrow \text{ number of large boundaries } (\varepsilon_j = 0), \\ -1, & \text{dilute.} & k_{1/2} \rightsquigarrow \text{ number of small boundaries } (\varepsilon_j = 1/2). \end{cases}$ 

#### Theorem (Borot, G-F 2016)

We have in the critical regime  $q \rightarrow 0$ :

$$\mathbf{F}^{(\mathsf{g},k)}(x_1,\ldots,x_k) \stackrel{\cdot}{\sim} q^{(2\mathsf{g}-2+k)(\mathfrak{d}\frac{b}{2}-1)-\frac{k}{2}+\frac{b+1}{2}k_{1/2}},$$

and for usual maps with renormalized face weights:

$$\mathcal{F}^{(\mathsf{g},k)}(x_1,\ldots,x_k) \stackrel{\cdot}{\sim} q^{\widetilde{\beta}(\mathsf{g},k,k_{1/2})},$$

with  $\widetilde{\beta}(\mathbf{g}, k, k_{1/2}) = (2\mathbf{g} - 2 + k)(\mathbf{d}\frac{b}{2} - 1) - \frac{k}{2} + \frac{3}{4}k_{1/2}.$ 

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三日 のへで

### Generating series of maps

Let 
$$k = k_0 + k_{1/2} \ge 1$$
 and  $g \ge 0$  such that  $2g - 2 + k > 0$ .  
Let  $x_j = x(\varepsilon_j + \tau \varphi_j)$  for  $j = 1, \dots, k$ .

 $\mathfrak{d} \coloneqq \begin{cases} 1, & \text{dense,} & k_0 \rightsquigarrow \text{ number of large boundaries } (\varepsilon_j = 0), \\ -1, & \text{dilute.} & k_{1/2} \rightsquigarrow \text{ number of small boundaries } (\varepsilon_j = 1/2). \end{cases}$ 

#### Theorem (Borot, G-F 2016)

We have in the critical regime  $q \rightarrow 0$ :

$$\mathbf{F}^{(\mathsf{g},k)}(x_1,\ldots,x_k) \stackrel{\cdot}{\sim} q^{(2\mathsf{g}-2+k)(\mathfrak{d}\frac{b}{2}-1)-\frac{k}{2}+\frac{b+1}{2}k_{1/2}},$$

and for usual maps with renormalized face weights:

$$\mathcal{F}^{(\mathsf{g},k)}(x_1,\ldots,x_k) \stackrel{\cdot}{\sim} q^{\widetilde{\beta}(\mathsf{g},k,k_{1/2})},$$

with  $\widetilde{\beta}(\mathbf{g}, k, k_{1/2}) = (2\mathbf{g} - 2 + k)(\mathbf{d}\frac{b}{2} - 1) - \frac{k}{2} + \frac{3}{4}k_{1/2}.$ 

 $V_{0,2}^{1/2}(\Gamma) \rightsquigarrow \text{ vertices in } V_{0,2}(\Gamma) \text{ with a small boundary, } k_{1/2}^{(0,2)} \coloneqq |V_{0,2}^{1/2}(\Gamma)|.$ 

### Fixed nesting graph $\Gamma$

We study the critical behavior of the generating series of capped cylinders  $\hat{F}^{(2)}_{\ell_1,\ell_2}[s]$  and  $\tilde{F}^{(2)}_{\ell_1,\ell_2}[s]$ .

#### Theorem (Borot, G-F 2016)

When  $q \rightarrow 0$ , we have for the singular part with respect to u and  $x_i$ 's:

$$\mathscr{F}_{\Gamma,\star,\mathbf{s}=\mathbf{1}}^{(\mathbf{g},k)}(x_1,\ldots,x_k) \stackrel{\cdot}{\sim} q^{\varkappa(\mathbf{g},k,k_{1/2},k_{1/2}^{(0,2)}|b)},$$

where

$$\varkappa(\mathsf{g},k,k_{1/2},k_{1/2}^{(0,2)}|B) = \widetilde{\beta}(\mathsf{g},k,k_{1/2}) + (\frac{B}{2} - \frac{1}{4})k_{1/2}^{(0,2)}.$$

And, for the singular part with respect to s, u and  $x_i$ 's:

$$\mathscr{F}_{\Gamma,\star,\mathbf{s}}^{(\mathbf{g},k)}(x_1,\ldots,x_k) \stackrel{\cdot}{\sim} q^{\underline{\varkappa}(\mathbf{g},k,k_{1/2},k_{1/2}^{(0,2)}|\mathbf{s})}$$

where

$$\begin{split} \underline{\varkappa}(\mathbf{g}, k, k_{1/2}, k_{1/2}^{(0,2)} | \mathbf{s}) &= \varkappa(\mathbf{g}, k, k_{1/2}, k_{1/2}^{(0,2)} | 0) + \sum_{\mathbf{e} \in \tilde{E}} b[s(\mathbf{e})] \\ &+ \sum_{\mathbf{v} \in V_{0,2}^0} b[s(\mathbf{e}_+(\mathbf{v}))] + \sum_{\mathbf{v} \in V_{0,2}^{1/2}} \frac{1}{2} b[s(\mathbf{e}_+(\mathbf{v}))]. \end{split}$$

Loop nesting Analy

Analytic properties

Bending energy model

Critical behavior

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト ・ ヨ

Large volume

### Qualitative conclusions: Most probable nesting graphs

Remember  $b \in \left(0, \frac{1}{2}\right)$  and

$$\varkappa(\mathbf{g},k,k_{1/2},k_{1/2}^{(0,2)}|b) = (2\mathbf{g}-2+k)(\mathfrak{d}\frac{b}{2}-1) - \frac{k}{2} + \frac{3}{4}k_{1/2} + (\frac{b}{2}-\frac{1}{4})k_{1/2}^{(0,2)}.$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ●

### Qualitative conclusions: Most probable nesting graphs

Remember  $b \in \left(0, \frac{1}{2}\right)$  and

$$\varkappa(\mathbf{g},k,k_{1/2},k_{1/2}^{(0,2)}|b) = (2\mathbf{g}-2+k)(\mathfrak{d}\frac{b}{2}-1) - \frac{k}{2} + \frac{3}{4}k_{1/2} + (\frac{b}{2}-\frac{1}{4})k_{1/2}^{(0,2)}.$$

• For  $\mathcal{F}^{(g,k)}$ , the result does not depend on the details of the map. Fixing a topology (g, k), it only depends on the number of large  $k_0$ and small boundaries  $k_{1/2}$ . If  $k_{1/2} = 0$ , all nesting graphs for a given topology have comparable probabilities to be realized.

ション ふゆ く 山 マ チャット しょうくしゃ

### Qualitative conclusions: Most probable nesting graphs

Remember  $b \in \left(0, \frac{1}{2}\right)$  and

$$\varkappa(\mathbf{g},k,k_{1/2},k_{1/2}^{(0,2)}|b) = (2\mathbf{g}-2+k)(\mathfrak{d}\frac{b}{2}-1) - \frac{k}{2} + \frac{3}{4}k_{1/2} + (\frac{b}{2}-\frac{1}{4})k_{1/2}^{(0,2)}.$$

- For  $\mathcal{F}^{(g,k)}$ , the result does not depend on the details of the map. Fixing a topology (g, k), it only depends on the number of large  $k_0$ and small boundaries  $k_{1/2}$ . If  $k_{1/2} = 0$ , all nesting graphs for a given topology have comparable probabilities to be realized.
- The greater the number of large boundaries  $k_0$ , the bigger the contribution.
- If we fix  $(k_0, k_{1/2})$ , the biggest possible  $k_{1/2}^{(0,2)}$  contributes the most.

(日) ( 伊) ( 日) ( 日) ( 日) ( 0) ( 0)

### Qualitative conclusions: Most probable nesting graphs

Remember  $b \in \left(0, \frac{1}{2}\right)$  and

$$\varkappa(\mathbf{g},k,k_{1/2},k_{1/2}^{(0,2)}|b) = (2\mathbf{g}-2+k)(\mathfrak{d}\frac{b}{2}-1) - \frac{k}{2} + \frac{3}{4}k_{1/2} + (\frac{b}{2}-\frac{1}{4})k_{1/2}^{(0,2)}.$$

- For  $\mathcal{F}^{(g,k)}$ , the result does not depend on the details of the map. Fixing a topology (g,k), it only depends on the number of large  $k_0$ and small boundaries  $k_{1/2}$ . If  $k_{1/2} = 0$ , all nesting graphs for a given topology have comparable probabilities to be realized.
- The greater the number of large boundaries  $k_0$ , the bigger the contribution.
- If we fix  $(k_0, k_{1/2})$ , the biggest possible  $k_{1/2}^{(0,2)}$  contributes the most.
- Biggest contributions for the contour integral come from gluing along large loops.

| The model | Loop nesting | Analytic properties | Bending energy model | Critical behavior | Large volume |
|-----------|--------------|---------------------|----------------------|-------------------|--------------|
| Outline   |              |                     |                      |                   |              |

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- 1 The model
- 2 Loop nesting
- 3 Analytic properties
- Bending energy model
- 6 Critical behavior

6 Large fixed volume, fixed lengths and fixed depth

#### Corollary

Take (g,h) on the non-generic critical line and assume 2g - 2 + k > 0. The generating series of connected maps of volume V with  $k_{1/2}$ boundaries of finite perimeter  $L_i = \ell_i$  and  $k_0$  boundaries of perimeters  $L_i = \ell_i V^{c/2}$  – for fixed positive  $\ell = (\ell_i)_{i=1}^k$  – behaves when  $V \to \infty$  as  $\Big[u^V \prod_{i=1}^{k} x_i^{-(L_i+1)}\Big] \mathscr{F}_{\Gamma,\star,\mathbf{1}}^{(\mathbf{g},k)} \stackrel{\cdot}{\sim} V^{[-1+c((2\mathbf{g}-2+k)(1-\mathfrak{d}\frac{b}{2})-\frac{1}{4}k_{1/2}+(\frac{1}{4}-\frac{b}{2})k_{1/2}^{(0,2)})]}.$ 



$$\mathbb{P}^{(\mathbf{g},k)}\left[\mathbf{P}|\Gamma,\star,V,\mathbf{L}\right] \coloneqq \frac{\left[u^{V}\prod_{\mathbf{e}\in E(\Gamma)} s(\mathbf{e})^{P(\mathbf{e})}\prod_{i=1}^{k} x_{i}^{-(L_{i}+1)}\right]\mathscr{F}_{\Gamma,\star,\mathbf{s}}^{(\mathbf{g},k)}(x_{1},\ldots,x_{k})}{\left[u^{V}\prod_{i=1}^{k} x_{i}^{-(L_{i}+1)}\right]\mathscr{F}_{\Gamma,\star,\mathbf{1}}^{(\mathbf{g},k)}(x_{1},\ldots,x_{k})}$$

#### Corollary

Fix positive  $\mathbf{p} = (p(\mathbf{e}))_{\mathbf{e} \in E(\Gamma)}$  such that  $p(\mathbf{e}) \ll \ln V$ . We consider the regime

$$P(\mathbf{e}) = \frac{c \ln V p(\mathbf{e})}{\jmath(\mathbf{e})\pi}, \qquad \jmath(\mathbf{e}) = \begin{cases} 2\\ 1 \end{cases}$$

if **e** is incident to a vertex in  $V_{0,2}^{1/2}$ , otherwise,

In the limit  $V \to \infty$ , we have

$$\mathbb{P}^{(\mathsf{g},k)}\left[\mathbf{P}|\Gamma,\star,V,\mathbf{L}\right] \sim \prod_{\mathsf{e}\in E(\Gamma)} (\ln V)^{-\frac{1}{2}} V^{-\frac{c}{j(\mathsf{e})\pi}J[p(\mathsf{e})]}.$$

$$J(p) = \sup_{s \in [0,2/n]} \left\{ p \ln(s) + \arccos(ns/2) - \arccos(n/2) \right\}$$



Loop nesting Analytic

Analytic properties

Bending energy model

lel Critical behavior

Large volume

・ロト ・ 日 ・ エ ヨ ・ ト ・ 日 ・ うらつ

### Qualitative conclusions: Most probable configurations

For a given nesting graph, the arm lengths typically behave like independent random variables of order  $\ln V$ , with large deviation function proportional to J(p), which is universal (up to a factor of 2 when there is a small boundary involved).

Loop nesting Ana

Analytic properties

Bending energy model

Critical behavior

- 日本 - (理本 - (日本 - (日本 - 日本

Large volume

#### Qualitative conclusions: Most probable configurations

For a given nesting graph, the arm lengths typically behave like independent random variables of order  $\ln V$ , with large deviation function proportional to J(p), which is universal (up to a factor of 2 when there is a small boundary involved).



Figure : A typical map of the O(n) model with small boundaries. These are most likely to be incident to distinct long arms (with  $O(\ln V)$  separating loops).

Loop nesting Ana

Analytic properties

Bending energy model

Critical behavior

Large volume

### Qualitative conclusions: Most probable configurations

For a given nesting graph, the arm lengths typically behave like independent random variables of order  $\ln V$ , with large deviation function proportional to J(p), which is universal (up to a factor of 2 when there is a small boundary involved).



Figure : A typical map of the O(n) model with small boundaries. These are most likely to be incident to distinct long arms (with  $O(\ln V)$  separating loops).

Marked points behave as small boundaries:

$$\boldsymbol{\mathcal{F}}^{(\mathbf{g},k,\bullet k')}(x_1,\ldots,x_k) \stackrel{\cdot}{\sim} q^{\widetilde{\beta}(\mathbf{g},k+k',k_{1/2}+k')}.$$

## THE END

Thanks for your attention!



- E