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Objects of study

A map M of genus g is a finite connected graph embedded into a
closed orientable surface of genus g such that the connected
components of the complement of the graph (called faces) are
homeomorphic to an open disk.
A map with k boundaries is a map with k pairwise distinct marked
faces, labeled from 1 to k, and with a marked edge (called root) on
every marked face.

A loop is an undirected simple close path on the dual map not
visiting boundaries. A loop configuration is a collection of disjoint
loops.

Figure : Planar triangulation with a boundary of length 8, endowed with a
loop configuration.



The model Loop nesting Analytic properties Bending energy model Critical behavior Large volume

Objects of study

A map M of genus g is a finite connected graph embedded into a
closed orientable surface of genus g such that the connected
components of the complement of the graph (called faces) are
homeomorphic to an open disk.
A map with k boundaries is a map with k pairwise distinct marked
faces, labeled from 1 to k, and with a marked edge (called root) on
every marked face.
A loop is an undirected simple close path on the dual map not
visiting boundaries. A loop configuration is a collection of disjoint
loops.

Figure : Planar triangulation with a boundary of length 8, endowed with a
loop configuration.



The model Loop nesting Analytic properties Bending energy model Critical behavior Large volume

Statistical weights...

In the O(n) loop model on random maps, the Boltzmann weight of a
configuration C is

w(C) =
1

|AutC| n
L∏
l≥3

gNll

∏
{l1,l2}
l1+l2≥1

g
Nl1,l2
l1,l2

,

where
L is the number of loops,
Nl is the number of unvisited faces of degree l,
Nl1,l2 is the number of visited faces of degree (l1 + l2 + 2) whose
boundary consists, in cyclic order with an arbitrary orientation, of l1
uncrossed edges, 1 crossed edge, l2 uncrossed edges and 1 crossed
edge.
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...and generating series

The generating series of configurations of the O(n) model with
underlying map of genus g with k boundaries of lengths `1, `2, . . . , `k ≥ 1
and k′ marked points is

F
(g,k,•k′)
`1,...,`k

= δk,1δ`1,0 u+
∑
C

u|V (C)|w(C),

where |V (C)| denotes the number of vertices of the underlying map of
C, also called volume.

Usual maps (no loops):
w(C) = 1

|AutC|
∏
l≥1 g

Nl
l .

The generating series is denoted F (g,k,•k′)
`1,...,`k

.
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Motivation and context

Enumeration of maps: Tutte (60’s), matrix model techniques (’78)...
Slogan: “Geometry of large random maps is universal”.

Major problems in mathematical physics: establish the convergence
of random maps towards limiting objects and understand their
fractal geometry.

Usual maps −→ Model of pure 2d quantum gravity.
Decorated maps −→ Model of 2d quantum gravity with matter.

The O(n) loop model gives rise to two new universality classes,
which depend continuously on n, called dense or dilute.

Nesting properties of
conformal loops (CLEκ)

←→ Nesting properties of discrete
loops in disks and cylinders,

studied by G. Borot, J. Bouttier and B. Duplantier.
Our approach for any topology: the substitution approach and the
topological recursion.
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Primary nesting graph Γ0 of a map M

Cut M along every loop  Connected components c1, . . . , cN .
Vertices (V (Γ0)): {ci}i. Edges (E(Γ0)): {ci, cj} if ci and cj have a
common boundary.
Save the genus h(v) of the connected component corresponding to
every vertex v.
∗ : {Marked elements in M} → V (Γ0).

Definition
In a map M with a non empty set of marked elements P , a loop is
separating if it is not contractible in M \ P .
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Nesting graph Γ of a map M

Erase univalent unmarked genus 0 vertices.
Replace v0 − v1 − · · · − vP with P ≥ 2, where (vi)

P−1
i=1 are bivalent

unmarked genus 0 vertices, by a single edge v0 − vP carrying a
length P .

1

2

1

2

3

4

4

3

1

2

3

4

b1,2

b3

b4

b1,2

b3

b4

b1,2

b3

b4

1
1

2

1
1

2
1

1 1
1

1
21

v v



The model Loop nesting Analytic properties Bending energy model Critical behavior Large volume

Substitution approach

{Disks M with a loop configuration} ←→ {Triples (G,R,M ′)}
• G is a usual disk, called the gasket of M .  Connected component

containing the boundary in the complement all loops in M .
• R is a disjoint union of annuli, which are sequences of faces visited

by a single loop and rooted on its outer boundary  Collection of
faces crossed by the outermost loops in M .

• M ′ is a disjoint union of disks carrying loop configurations.  Inside
of the outermost loops.

Functional relation:

F` = F`(G1, G2, . . .).

The renormalized face weights Gm satisfy

Gm = gm +
∑
r≥0

Am,rFr(G1, G2, . . .) = gm +
∑
`′≥1

Am,r Fr,

where Am,r is the generating series of rooted annuli.
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Notations

For e ∈ E, {e+, e−} is its set of half-edges.
For v ∈ V , e(v) := {half-edges incident to v}, d(v) denotes the
degree of v, ∂(v) := {boundaries of v} and |∂(v)| := k(v).
V0,2 := {univalent vertices v | h(v) = 0, k(v) = 1}, Ṽ := V \ V0,2

and for v ∈ V0,2, e+(v) denotes the incident half-edge.
Eun := {e(v) for v ∈ V0,2}, Ẽ := E \ Eun and

Eglue :=
⋃
e∈Ẽ
{e+, e−} ∪

⋃
v∈V0,2

e+(v).

Generating series

F (g,k,•k′)
`1,...,`k

 usual maps evaluated at renormalized face weights.

F
(2)
`1,`2

[s] refined generating series of cylinders, where w(C) has
an extra factor sP , with P := |{separating loops}|.
F̂

(2)
`1,`2

[s] = s
∑
l≥0R`1,lF

(2)
l,`2

[s]  cylinders with one annulus (with
unrooted outer boundary) glued to one of the two boundaries.

F̃
(2)
`1,`2

[s] = sR`1,`2 + s2
∑
l,l′≥0R`1,lF

(2)
l,l′ [s]Rl′,`2  cylinders

capped with two annuli with unrooted outer boundaries.
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We can retrieve the original map from (Γ, ?,P), by glueing together:
• ∀v ∈ V0,2(Γ), a cylinder with one annulus glued to one of the

boundaries;
• ∀v ∈ Ṽ (Γ) of valency d(v), a usual map (with renormalized weights)

of genus h(v) with k(v) labeled boundaries and d(v) other unlabeled
boundaries, and k′(v) marked points;

• ∀e ∈ Ẽ(Γ) of length 1, an annulus;
• ∀e ∈ Ẽ(Γ) of length P (e) ≥ 2, two annuli capping a cylinder with
P (e)− 2 separating loops.

3
1

2
v2

v1

v3

v4

v1, v2 ∈ Ṽ : h(v1) = 0, k(v1) = 2, d(v1) = 1, h(v2) = 1, k(v2) = 0, d(v2) = 3.
v3, v4 ∈ V0,2.



The model Loop nesting Analytic properties Bending energy model Critical behavior Large volume

Combinatorial decomposition of maps

3
1

2
v2

v1

v3

v4

We can determine the refined generating series of maps with fixed associated
nesting graph (Γ, ?,P):

Proposition

F (g,k,•k′)
`1,...,`k

[Γ, ?, s] =
∑

l :Eglue(Γ)→N

∏
v∈Ṽ (Γ)

F (h(v),k(v)+d(v),•k′(v))
`(∂(v)),l(e(v))

d(v)!∏
e∈Ẽ(Γ)

F̃
(2)

l(e−),l(e+)[s(e)]
∏

v∈V0,2(Γ)

F̂
(2)

l(e+(v)),`(∂(v))[s(e+(v))],

where ` :
⋃

v∈V (Γ) ∂(v)→ N is given by `1, . . . , `k.
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Admissibility

We say that u and a sequence (gl)l≥1 of nonnegative real numbers are
admissible if F•` <∞ for any `.

F(x) :=
∑
`≥0

F`
x`+1

∈ Q[[x−1]]

is a well-defined Laurent series expansion at x =∞ of a function denoted
likewise which is

1 holomorphic for x ∈ C \ γ, where γ = [γ−, γ+] ⊂ R depends on the
vertex and face weights, and

2 uniformly bounded for x ∈ C \ γ.
3 Its boundary values on the cut satisfy a functional relation,
4 F(x) = u/x+O(1/x2) when x→∞.

These properties uniquely determine γ−, γ+ and F(x). Analogously, we
define F (g,k)(x1, . . . , xk) which satisfies the properties analogous to 1
and 3. Regarding 2 and 4, we have that σ(x1)σ(x2)F (2)(x1, x2) remains
uniformly bounded for x1, x2 ∈ C \ γ and F (2)(x1, x2) ∈ O(x−2

1 x−2
2 )

when x1, x2 →∞. F (2)(x1, x2) is also uniquely determined by these
properties.
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For 2g − 2 + k > 0, ∃r(g, k) > 0 such that σ(x1)r(g,k)F (g,k)(x1, . . . , xk)
remains bounded when x1 approaches γ while (xi)

k
i=2 are fixed away

from γ and F (g,k)(x1, xI) ∈ O(x−2
1 ) when x1 →∞.

Definition

For the O(n) model, we say that two sequences of real numbers (gl)l≥3

and (Al1,l2)l1,l2 are admissible if the corresponding sequence of
renormalized face weights (G1, G2, . . .) is admissible.

Remark
Admissibility ⇒

F(g,k)(x1, . . . , xk) satisfies analogous properties to those of F (g,k).
The annuli generating series R(x, y) =

∑
l+l′≥1Rl,l′x

lyl
′
, with

Rl,l′ = Al,l′/l (non-rooted) and A(x, y) = ∂xR(x, y) (1 boundary
rooted) are holomorphic in a neighborhood of γ × γ.
F̂

(2)
s (x1, x2) =

∑
`1,`2≥0 F̂

(2)
`1,`2

[s]
x
`1
1

x
`2+1
2

= s
∮
γ

dy
2iπ

R(x1, y)F
(2)
s (y, x2) is

the series expansion when x1 → 0 and x2 →∞ of a function which is
holomorphic for x1 in a neighborhood of γ and x2 in C \ γ.
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Decomposition of maps for a fixed nesting graph Γ

Remark

F̃(2)
s (x1, x2) =

∑
`1,`2≥0

F̃
(2)
`1,`2

[s]x`11 x
`2
2

= sR(x, y) + s2

∮
γ

dy1

2iπ

dy2

2iπ
R(x1, y1)F(2)

s (y1, y2)R(y2, x2)

is the series expansion at xi → 0 of a function denoted likewise, which is
holomorphic for xi in a neighborhood of γ.

FFF
(g,k)
Γ,?,s(x1, . . . , xk) =∮
γ
Eglue(Γ)

∏
e∈Eglue(Γ)

dye
2iπ

∏
v∈Ṽ (Γ)

F (h(v),k(v)+d(v),•k′(v))(x∂(v), ye(v))

d(v)!

∏
e∈Ẽ(Γ)

F̃
(2)

s(e)(ye+ , ye−)
∏

v∈V0,2(Γ)

F̂
(2)

s(e+(v))(ye+(v), x∂(v)).
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O(n) loop model on random triangulations

h

1α

g Involution:

ς(x) :=
1− αhx

αh+ (1− α2)h2x
.

The annuli generating series R(x, y) and A(x, y) in this model are
explicit

A(x, z) = ∂xR(x, z) = n

(
ς ′(x)

z − ς(x)
+
ς ′′(x)

2ς ′(x)

)
.

If f is holomorphic in C \ γ such that f(x) ∼ cf/x when x→∞, then∮
γ

dy

2iπ
A(x, y) f(y) = −nς ′(x) f(ς(x)) + ncf

ς ′′(x)

2ς ′(x)
.

Therefore, the following linear equation can be solved explicitly:

f(x+ i0) + f(x− i0) + s

∮
γ

dy

2iπ
A(x, y) f(y) = ϕ(x), ∀x ∈ (γ−, γ+).
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Elliptic parametrization

How to solve the homogeneous equation

f(x+ i0) + f(x− i0)− ns ς ′(x)f(ς(x)) = 0?

Key: Use v : C \
(
γ ∪ ς(γ)

)
−→

{
v ∈ C | 0 < Re v < 1/2, |Im v| < T

}
.

0

γ+

ς(γ+)

γ−

ς(γ−)

τ = iT
1
2 + τ

1
2

γ−

ς(γ−)

− 1
2 + τ

− 1
2

∞
1
2 + τw∞

Figure : In purple: Special values of x(v) at the corners.

The function v 7→ x(v) is analytically continued for v ∈ C by

x(−v) = x(v + 1) = x(v + 2τ) = x(v).
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Elliptic parametrization

v(ς(x)) = τ − v(x)

Our functional equation turns into

f̃(v+2τ)+f̃(v)−n f̃(v−τ) = 0,with f̃(v) = f̃(v+1) = −f̃(−v),∀v ∈ C,

for the analytic continuation of the function f̃(v) = f(x(v))x′(v).

b :=
arccos(n/2)

π

b ranges from 1
2 to 0 when n ranges from 0 to 2.

Remark

There are explicit expressions for F(x(v)), F•s(x(v)) and
F

(2)
s (x(v1), x(v2)).
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Topological recursion

Meromorphic function G(g,k)(v1, . . . , vk) analytical continuation of

F(g,k)(x(v1), . . . , x(vk))

k∏
i=1

x′(vi).

Recursion kernel
ε ∈ {0, 1/2}

 Kε(v0, v) = −dv

2

∫ v
2(τ+ε)−v dv′G(2)(v′, v0)

G(v) + G(2τ − v)
.

Theorem (Borot, Eynard 2011)

Let I = {2, . . . , k}. For 2g − 2 + k > 0, we have

G(g,k)(v1, vI) =
∑

ε∈{0,1/2}

Res
v→τ+ε

Kε(v1, v)

[
G(g−1,k+1)(v, 2(τ + ε)− v, vI)

+

no disks∑
h+h′=g
JtJ′=I

G(h,1+|J|)(v, vJ)G(h′,1+|J′|)(2(τ + ε)− v, vJ′)

]
,

where “no disks” means that we exclude the terms containing disk
generating series, that is (h, J) or (h′, J ′) equal to (0, ∅).
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Decomposition of the TR invariants

v1

v2

vk

g

G(g,k)(v1,...,vn)

g−1v1

+

n. d.∑v

ςε(v)

ε

v2

vk

h

h′

v1

vJ

v′J

v

ςε(v)

ε

Kε(v1,v) G(g−1,k+1)(v,ςε(v),v2,...,vk))

=

Elementary blocks

ε ∈ {0, 1
2}, Bε,l(v) =

∂2l

∂v2l
2

G(2)(v, v2)
∣∣∣
v2=τ+ε

.

Proposition

For 2g − 2 + k > 0, we have a decomposition

G(g,k)(v1, . . . , vk) =
∑

l1,...,lk≥0

ε1,...,εk∈{0, 12 }

C(g,k)[l1
ε1 · · ·

lk
εk

] k∏
i=1

Bεi,li(vi),

where the sum contains only finitely many non-zero terms.
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Sketch (key idea: diagrammatic representation)

The coefficients C(g,k)[lIεI
]
satisfy a recursion relation with two kinds

of coefficients we denote K and K̃.

Diagrammatic representation by trivalent vertices with different
properties of their incident edges of K, K̃, and the initial cases
C(0,3) and C(1,1).
Expression for C(g,k)’s as a sum over graphs composed by the
previous four kinds of pieces.
Critical behavior of the four kinds of pieces and of the elementary
blocks.
Fixed the coloring of the k legs ε1, . . . , εk, determine which graph
and coloring (of the graph) give the leading contribution to C(g,k) in
the critical regime.
Critical behavior of F(g,k) and F (g,k), obtained summing all these
contributions over the possible colorings of the legs.
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6 Large fixed volume, fixed lengths and fixed depth
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Phase diagram

For fixed values (n, α, g, h), we introduce

uc := sup{u ≥ 0 : F •` <∞}.
If uc = 1 (resp. uc < 1, uc > 1), we say that the model is at a critical
(resp. subcritical, supercritical) point.

g

h

subcritical

dense

dilute

generic

supercritical

Figure : Qualitatively insensitive to the value of n ∈ (0, 2) and α not too large.

At a critical point, F(x) = F(x) has a singularity when u→ 1−.
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Small and large boundaries

A non-generic critical point occurs when γ+ approaches the fixed
point of ς: γ∗+ = ς(γ∗+) = 1

h(α+1)

⇔ T → 0⇔ q = e−
π
T → 0.

(g, h) non-generic critical for u = 1 ⇒

q ∼
(1− u

q∗

)c
, for u→ 1−, with c =

{
1

1−b dense,

1 dilute.

General principle: Study large maps (V →∞) ↔ Study generating
series close to critical points (u→ 1).
Fixing lengths
`i finite  contour for xi around ∞, xi = x( 1

2 + τwi),

(xi remains finite and away from [γ∗−, γ
∗
+]),

`i →∞  contour for xi around γ+ → γ∗+, xi = x(τwi),

(xi scales with q → 0 such that xi − γ+ ∈ O(q
1
2 )).
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Generating series of maps

Let k = k0 + k1/2 ≥ 1 and g ≥ 0 such that 2g − 2 + k > 0.
Let xj = x(εj + τϕj) for j = 1, . . . , k.

d :=

{
1, dense,
−1, dilute.

k0  number of large boundaries (εj = 0),
k1/2  number of small boundaries (εj = 1/2).

Theorem (Borot, G-F 2016)

We have in the critical regime q → 0:

F(g,k)(x1, . . . , xk) ·∼ q(2g−2+k)(d b2−1)− k2 + b+1
2 k1/2 ,

and for usual maps with renormalized face weights:

F (g,k)(x1, . . . , xk) ·∼ qβ̃(g,k,k1/2),

with β̃(g, k, k1/2) = (2g − 2 + k)(d b2 − 1)− k
2 + 3

4k1/2.

V
1/2
0,2 (Γ)  vertices in V0,2(Γ) with a small boundary, k(0,2)

1/2
:= |V 1/2

0,2 (Γ)|.
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Fixed nesting graph Γ

We study the critical behavior of the generating series of capped cylinders
F̂

(2)
`1,`2

[s] and F̃ (2)
`1,`2

[s].

Theorem (Borot, G-F 2016)

When q → 0, we have for the singular part with respect to u and xi’s:

FFF
(g,k)
Γ,?,s=1(x1, . . . , xk) ·∼ qκ(g,k,k1/2,k

(0,2)

1/2
|b)
,

where
κ(g, k, k1/2, k

(0,2)
1/2 |B) = β̃(g, k, k1/2) + (B2 − 1

4 )k
(0,2)
1/2 .

And, for the singular part with respect to s, u and xi’s:

FFF
(g,k)
Γ,?,s(x1, . . . , xk) ·∼ qκ(g,k,k1/2,k

(0,2)

1/2
|s)
,

where
κ(g, k, k1/2, k

(0,2)

1/2 |s) = κ(g, k, k1/2, k
(0,2)

1/2 |0) +
∑
e∈Ẽ

b[s(e)]

+
∑

v∈V 0
0,2

b[s(e+(v))] +
∑

v∈V 1/2
0,2

1
2
b[s(e+(v))].
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Qualitative conclusions: Most probable nesting graphs

Remember b ∈
(
0, 1

2

)
and

κ(g, k, k1/2, k
(0,2)
1/2 |b) = (2g− 2 + k)(d b2 − 1)− k

2 + 3
4k1/2 + ( b2 − 1

4 )k
(0,2)
1/2 .

For F (g,k), the result does not depend on the details of the map.
Fixing a topology (g, k), it only depends on the number of large k0

and small boundaries k1/2. If k1/2 = 0, all nesting graphs for a given
topology have comparable probabilities to be realized.
The greater the number of large boundaries k0, the bigger the
contribution.
If we fix (k0, k1/2), the biggest possible k(0,2)

1/2 contributes the most.

Biggest contributions for the contour integral come from gluing
along large loops.
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Corollary

Take (g, h) on the non-generic critical line and assume 2g − 2 + k > 0.
The generating series of connected maps of volume V with k1/2

boundaries of finite perimeter Li = `i and k0 boundaries of perimeters
Li = `iV

c/2 – for fixed positive ` = (`i)
k
i=1 – behaves when V →∞ as[

uV
k∏
i=1

x
−(Li+1)
i

]
F

(g,k)
Γ,?,1
·∼ V [−1+c((2g−2+k)(1−d b2 )− 1

4k1/2+( 1
4− b2 )k

(0,2)

1/2
)]
.

1, 2, 3, 4

1, 2, 3 4

1, 2 3, 4

1, 2

3

4

1, 2 3 4

1 2, 3 4

1 2 3 4

1

2

3

4

1

2 3

4

3

4

1
2

V −1+c(1−db+ 1
4− b

2 )

V −1+c(1−db)

V −1+c(1−db+ 1
2−b)

V −1+c(1−db+ 3
4− 3b

2 )

V −1+c(1−db+1−2b)

V −1+c(1−db)

V −1+c(1−db+ 1
4− b

2 )

V −1+c(1−db+ 1
2−b)

V −1+c(1−db+ 1
2−b)

V −1+c(1−db+1−2b)
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P(g,k)[P|Γ, ?, V,L] :=

[
uV
∏

e∈E(Γ) s(e)
P (e)∏k

i=1 x
−(Li+1)
i

]
F (g,k)

Γ,?,s(x1, . . . , xk)[
uV
∏k
i=1 x

−(Li+1)
i

]
F (g,k)

Γ,?,1(x1, . . . , xk)

Corollary

Fix positive p =
(
p(e)

)
e∈E(Γ)

such that p(e)� lnV . We consider the regime

P (e) =
c lnV p(e)

(e)π
, (e) =

{
2 if e is incident to a vertex in V

1/2
0,2 ,

1 otherwise,

In the limit V →∞, we have

P(g,k)[P|Γ, ?, V,L] ·∼ ∏
e∈E(Γ)

(lnV )−
1
2 V
− c
(e)π

J[p(e)]
.

J(p) = sup
s∈[0,2/n]

{
p ln(s)

+ arccos(ns/2)− arccos(n/2)
}

1 2 3 4
p

0.5

1.0

1.5

J(p)
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Qualitative conclusions: Most probable configurations

For a given nesting graph, the arm lengths typically behave like
independent random variables of order lnV , with large deviation function
proportional to J(p), which is universal (up to a factor of 2 when there is
a small boundary involved).

Figure : A typical map of the O(n) model with small boundaries. These are
most likely to be incident to distinct long arms (with O(lnV ) separating loops).

Marked points behave as small boundaries:

F (g,k,•k′)(x1, . . . , xk) ·∼ qβ̃(g,k+k′,k1/2+k′).
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THE END
Thanks for your attention!
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