Spectral and scattering theory for perturbed periodic graphs

Daniel Parra Vogel

Institut Camille Jordan Université Lyon 1

Séminaire de Physique-Mathématique Institut Camille Jordan December 9, 2016

D. Parra (ICJ)

Perturbed periodic graphs

November 21, 2016 0 / 21

Let us consider the discrete Laplacian on \mathbb{Z}^d defined for $f \in l^2(\mathbb{Z}^d)$ by

$$(\Delta f)(\mu) = \sum_{|\gamma - \mu| = 1} \left(f(\gamma) - f(\mu) \right) \,.$$

The discrete Fourier transform $\mathscr{F}: l^2(\mathbb{Z}^d) \to L^2(\mathbb{T}^d)$ is defined for a compactly supported f by

$$[\mathscr{F}f](\xi) = \sum_{\mu \in \mathbb{Z}^d} e^{-2\pi i \xi \cdot \mu} f(\mu) .$$

The discrete Laplacian satisfies

$$\left[\mathscr{F}\Delta\mathscr{F}^*u\right](\xi) = \left(2\sum_{j=1}^d (\cos(2\pi\xi_j) - 1)\right)u(\xi) \ .$$

Hence, we have:

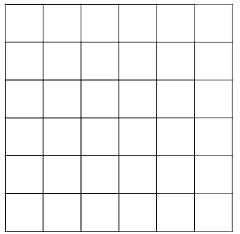
$$\sigma(-\Delta) = \sigma_{ac}(-\Delta) = [0, 2d]$$

D. Parra (ICJ)

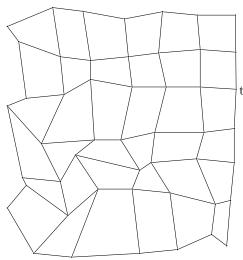
Perturbed periodic graphs

$$(\Delta f)(\mu) = \sum_{\gamma \sim \mu} \left(f(\gamma) - f(\mu) \right)$$

D. Parra (ICJ)

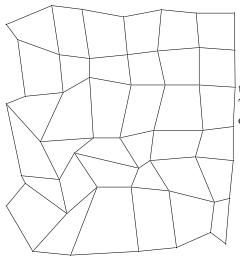


$$(\Delta' f)(\mu) = \sum_{\gamma \sim \mu} |\gamma - \mu|^{-1} (f(\gamma) - f(\mu))$$



$$(\Delta' f)(\mu) = \sum_{\gamma \sim \mu} |\gamma - \mu|^{-1} (f(\gamma) - f(\mu))$$

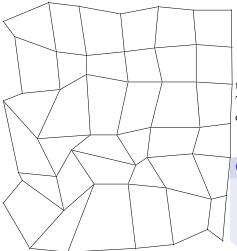
Under which conditions we can ensure the preservation of the a.c. spectrum?



$$(\Delta' f)(\mu) = \sum_{\gamma \sim \mu} |\gamma - \mu|^{-1} (f(\gamma) - f(\mu))$$

Under which conditions we can ensure the preservation of the a.c. spectrum? To treat Δ' as a compact perturbation of Δ we need to assume that:

$$|\gamma - \mu| \xrightarrow{\gamma, \mu \to \infty} 1$$



$$(\Delta' f)(\mu) = \sum_{\gamma \sim \mu} |\gamma - \mu|^{-1} (f(\gamma) - f(\mu))$$

Under which conditions we can ensure the preservation of the a.c. spectrum? To treat Δ' as a compact perturbation of Δ we need to assume that:

$$|\gamma - \mu| \xrightarrow{\gamma, \mu \to \infty} 1$$

Questions

- For which graphs this analysis is available?
- For which operators?

- **①** Discrete differential operators on graphs
- **2** Topological crystals
- **③** Statement of main theorem
- Outline of the proof

The space of cochains C(X)

Let X = (V(X), E(X)) be an unoriented graph. We construct the set of oriented edges A(X) by considering each $e \in E$ with two orientations *i.e.* :

$$e=\{x,y\}\in E\implies \{(x,y),(y,x)\}\subset A(X)\ .$$

We denote by \overline{e} the opposite edge of e.

The space of cochains C(X)

Let X = (V(X), E(X)) be an unoriented graph. We construct the set of oriented edges A(X) by considering each $e \in E$ with two orientations *i.e.*:

$$e = \{x,y\} \in E \implies \{(x,y),(y,x)\} \subset A(X) \ .$$

We denote by \overline{e} the opposite edge of e. We set

$$C^{0}(X) := \{f : V(X) \to \mathbb{C}\} ,$$

$$C^{1}(X) := \{f : A(X) \to \mathbb{C} \mid f(e) = -f(\overline{e})\} ,$$

$$C(X) := C^{0}(X) \oplus C^{1}(X) .$$

The space of cochains C(X)

Let X = (V(X), E(X)) be an unoriented graph. We construct the set of oriented edges A(X) by considering each $e \in E$ with two orientations *i.e.* :

$$e = \{x,y\} \in E \implies \{(x,y),(y,x)\} \subset A(X) \ .$$

We denote by \overline{e} the opposite edge of e. We set

$$\begin{aligned} C^0(X) &:= \{ f : V(X) \to \mathbb{C} \} ,\\ C^1(X) &:= \{ f : A(X) \to \mathbb{C} \mid f(e) = -f(\overline{e}) \} ,\\ C(X) &:= C^0(X) \oplus C^1(X) . \end{aligned}$$

A measure m on X is given by two functions $m: V(X) \to (0, \infty)$ and $m: E(X) \to (0, \infty)$. We define the Hilbert space $l^2(X, m)$ as the closure of $C_c(X) = \{f \in C(X) \mid f \text{ has compact support}\}$ in the norm induced by the inner product given by

$$\langle f,g\rangle = \sum_{x \in V(X)} m(x)f(x)\overline{g(x)} + \frac{1}{2}\sum_{e \in A(X)} m(e)f(e)\overline{g(e)} \ .$$

D. Parra (ICJ)

Perturbed periodic graphs

Boundary and coboundary operators

We can now define the coboundary operator $d: C_c^0(X) \to C^1(X)$ by:

$$df(e) := f(t(e)) - f(o(e)).$$

We denote by $A_x = \{e \in A(X) \mid o(e) = x\}$. Then, its formal adjoint $d^* : C_c^1(X, m) \to C_c^0(X, m)$ is given by

$$d^*f(x) = -\sum_{e \in A_x} \frac{m(e)}{m(x)} f(e)$$

and corresponds to the boundary operator.

Boundary and coboundary operators

We can now define the coboundary operator $d: C_c^0(X) \to C^1(X)$ by:

$$df(e) := f(t(e)) - f(o(e)).$$

We denote by $A_x = \{e \in A(X) \mid o(e) = x\}$. Then, its formal adjoint $d^* : C_c^1(X, m) \to C_c^0(X, m)$ is given by

$$d^*f(x) = -\sum_{e \in A_x} \frac{m(e)}{m(x)} f(e)$$

and corresponds to the *boundary operator*. We can extend both operators by zero to get $d, d^* : C_c(X) \to C(X)$.

The Gauss-Bonnet operator on a graph

Then we can define the Gauss–Bonnet operator D(X,m) by

$$D \equiv D(X,m) : C_c(X) \to C(X) \quad ; \quad D(X,m) := d + d^* .$$

It is also written in matrix form for $(f_0, f_1) \in C_c(X)$

$$\begin{pmatrix} 0 & d^* \\ d & 0 \end{pmatrix} \begin{pmatrix} f_0 \\ f_1 \end{pmatrix} = (d^* f_1, df_0)$$

Remark

We defined D in the dense subspace $C_c(X)$. It extends to a bounded operator in $l^2(X, m)$ if and only if

$$\deg_m: V(X) \to (0,\infty] \ ; \ \deg_m(x) = \sum_{e \in A_x} \frac{m(e)}{m(x)}$$

is bounded.

Laplacians on graphs

Since by definition $d^2 = 0 = (d^*)^2$ on C(X), D(X,m) satisfies

$$D(X,m)^2 = d^*d + dd^* = -\Delta_0(X,m) - \Delta_1(X,m)$$

where $\Delta_0(X, m)$ is the graph-Laplacian on vertices and is given by

$$[\Delta_0(X,m)f](x) = \sum_{e \in A_x} \frac{m(e)}{m(x)} (f(t(e)) - f(x)) ,$$

and $\Delta_1(X,m)$ is the graph-Laplacian acting on edges and is given by

$$[\Delta_1(X,m)f](e) = \sum_{e' \in A_{t(e)}} \frac{m(e')}{m(t(e))} f(e') - \sum_{e' \in A_{o(e)}} \frac{m(e')}{m(o(e))} f(e') .$$

It follows that D should be considered like an analog of Dirac-type operators on manifolds because its square is a Laplacian-type operator.

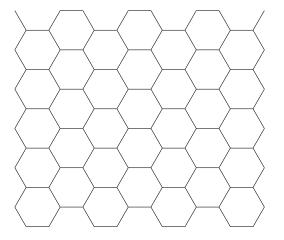
Topological crystals

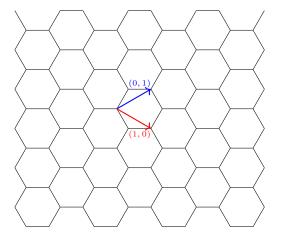
Definition

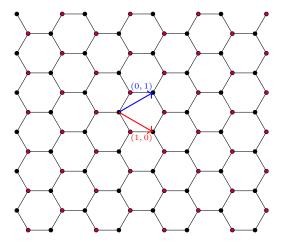
Let X = (V(X), E(X)) be an infinite connected graph which admits a free action of \mathbb{Z}^d by graph automorphism such that $\mathfrak{X} := X/\mathbb{Z}^d$ is a finite connected graph. We say that X is a d-dimensional topological crystals over the base graph \mathfrak{X} .

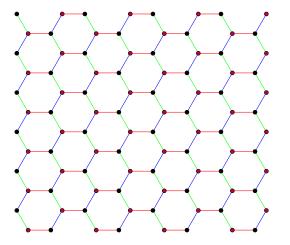
Reference:

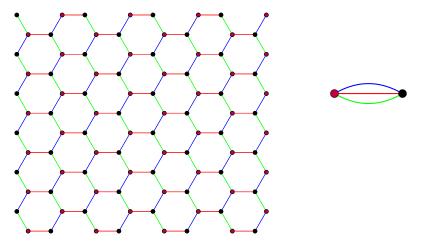
T. Sunada, *Topological Crystallography: With a View Towards Discrete Geometric Analysis*, Surveys and Tutorials in the Applied Mathematical Sciences, Springer, 2012.











We start by fixing $\tilde{V} \subset V(X)$ such that $\tilde{V} \cong V(\mathfrak{X})$. Then we define $\tilde{A} \subset A(X)$ by

$$\tilde{A} = \cup_{x \in \tilde{V}} A_x$$
 .

For $\mathfrak{x} \in V(\mathfrak{X})$ we denote by $\hat{\mathfrak{x}}$ the corresponding element of \tilde{V} . Analogously we denote $\hat{\mathfrak{e}} \in \tilde{A}$.

We start by fixing $\tilde{V} \subset V(X)$ such that $\tilde{V} \cong V(\mathfrak{X})$. Then we define $\tilde{A} \subset A(X)$ by

$$\tilde{A} = \cup_{x \in \tilde{V}} A_x$$
.

For $\mathfrak{x} \in V(\mathfrak{X})$ we denote by $\hat{\mathfrak{x}}$ the corresponding element of \tilde{V} . Analogously we denote $\hat{\mathfrak{e}} \in \tilde{A}$.

We can now define the integer part of a vertex $[x] \in \mathbb{Z}^d$ or an oriented edge $[e] \in \mathbb{Z}^d$ by the equalities

$$[x]\,\check{x}=x\quad;\quad [e]\,\check{e}=e\quad;\quad \text{with}\;\check{x}\in\tilde{V},\check{e}\in\tilde{A}\;.$$

We start by fixing $\tilde{V} \subset V(X)$ such that $\tilde{V} \cong V(\mathfrak{X})$. Then we define $\tilde{A} \subset A(X)$ by

$$\tilde{A} = \cup_{x \in \tilde{V}} A_x$$
.

For $\mathfrak{x} \in V(\mathfrak{X})$ we denote by $\hat{\mathfrak{x}}$ the corresponding element of \tilde{V} . Analogously we denote $\hat{\mathfrak{e}} \in \tilde{A}$.

We can now define the integer part of a vertex $[x] \in \mathbb{Z}^d$ or an oriented edge $[e] \in \mathbb{Z}^d$ by the equalities

$$[x]\,\check{x}=x\quad;\quad [e]\,\check{e}=e\quad;\quad \text{with}\;\check{x}\in\tilde{V},\check{e}\in\tilde{A}\;.$$

Finally we can define the index of an oriented edge by

$$\eta: A(X) \to \mathbb{Z}^d$$
; $\eta(e) = [t(e)] - [o(e)]$

One can check that η is \mathbb{Z}^d -periodic so we can define η also on $A(\mathfrak{X})$.

We start by fixing $\tilde{V} \subset V(X)$ such that $\tilde{V} \cong V(\mathfrak{X})$. Then we define $\tilde{A} \subset A(X)$ by

$$\tilde{A} = \cup_{x \in \tilde{V}} A_x$$
.

For $\mathfrak{x} \in V(\mathfrak{X})$ we denote by $\hat{\mathfrak{x}}$ the corresponding element of \tilde{V} . Analogously we denote $\hat{\mathfrak{e}} \in \tilde{A}$.

We can now define the integer part of a vertex $[x] \in \mathbb{Z}^d$ or an oriented edge $[e] \in \mathbb{Z}^d$ by the equalities

$$[x]\,\check{x}=x\quad;\quad [e]\,\check{e}=e\quad;\quad \text{with}\;\check{x}\in\tilde{V},\check{e}\in\tilde{A}\;.$$

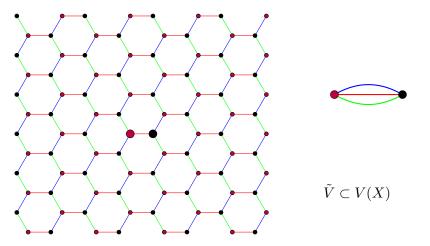
Finally we can define the index of an oriented edge by

$$\eta: A(X) \to \mathbb{Z}^d$$
; $\eta(e) = [t(e)] - [o(e)]$

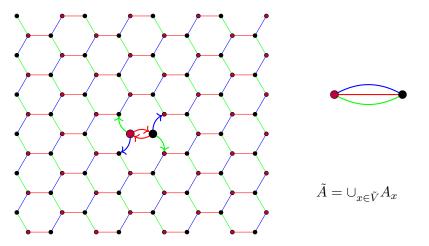
One can check that η is \mathbb{Z}^d -periodic so we can define η also on $A(\mathfrak{X})$.

$$\eta(e) = -\eta(\overline{e})$$

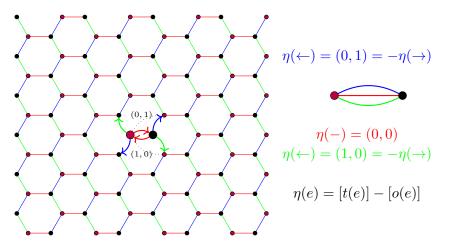
Back to the hexagonal lattice



Back to the hexagonal lattice



Back to the hexagonal lattice



Unperturbed operators

Let X be a $d\text{-dimensional topological crystal. We fix a measure <math display="inline">m_{\Gamma}$ over X such that

$$m_{\Gamma}(\mu x) = m_{\Gamma}(x)$$
 and $m_{\Gamma}(\mu e) = m_{\Gamma}(e)$.

We consider also a periodic potential $R_{\Gamma} : X \to \mathbb{R}$ defined both in vertices and unoriented edges and define the multiplication operator associated to it by

$$[R_{\Gamma}f](x) = R_{\Gamma}(x)f(x) \qquad [R_{\Gamma}f](e) = R_{\Gamma}(e)f(e) .$$

Unperturbed operators

Let X be a d-dimensional topological crystal. We fix a measure m_{Γ} over X such that

$$m_{\Gamma}(\mu x) = m_{\Gamma}(x)$$
 and $m_{\Gamma}(\mu e) = m_{\Gamma}(e)$.

We consider also a periodic potential $R_{\Gamma} : X \to \mathbb{R}$ defined both in vertices and unoriented edges and define the multiplication operator associated to it by

$$[R_{\Gamma}f](x) = R_{\Gamma}(x)f(x) \qquad [R_{\Gamma}f](e) = R_{\Gamma}(e)f(e) .$$

Then we will consider as unperturbed operators H_0 any of the followings bounded self-adjoint operators

$$D(X, m_{\Gamma}) + R_{\Gamma} : l^2(X, m_{\Gamma}) \to l^2(X, m_{\Gamma})$$
(1)

$$-\Delta_0(X, m_\Gamma) + R_\Gamma : l_0^2(X, m_\Gamma) \to l_0^2(X, m_\Gamma)$$
(2)

$$-\Delta_1(X,m_{\Gamma}) + R_{\Gamma} : l_1^2(X,m_{\Gamma}) \to l_1^2(X,m_{\Gamma})$$
(3)

D. Parra (ICJ)

12 / 21

Perturbed operators

Let now consider a measure $m \xrightarrow{x,e\to\infty} m_{\Gamma}$ on X. We define the unitary transform $\mathscr{J}: l^2(X,m) \to l^2(X,m_{\Gamma})$ by:

$$\mathscr{J}f(x) = \left(\frac{m(x)}{m_{\Gamma}(x)}\right)^{\frac{1}{2}} f(x) \quad ; \quad \mathscr{J}f(e) = \left(\frac{m(e)}{m_{\Gamma}(e)}\right)^{\frac{1}{2}} f(e).$$

Then we will consider as perturbed operators H any of the followings bounded self-adjoint operators

$$\mathscr{J}D(X,m)\mathscr{J}^* + R_{\Gamma} : l^2(X,m_{\Gamma}) \to l^2(X,m_{\Gamma})$$
(4)

$$-\mathscr{J}\Delta_0(X,m)\mathscr{J}^* + R_{\Gamma}: l_0^2(X,m_{\Gamma}) \to l_0^2(X,m_{\Gamma})$$
(5)

$$-\mathscr{J}\Delta_1(X,m)\mathscr{J}^* + R_{\Gamma} : l_1^2(X,m_{\Gamma}) \to l_1^2(X,m_{\Gamma})$$
(6)

Main statement

Theorem

Let X be a topological crystal. Let H_0 and H be defined by any of eqs. (1) to (3) and eqs. (4) to (6) respectively. Assume that m satisfies

$$\int_{1}^{\infty} d\lambda \sup_{\lambda < |[e]| < 2\lambda} \left| \frac{m(e)}{m(o(e))} - \frac{m_{\Gamma}(e)}{m_{\Gamma}(o(e))} \right| < \infty.$$
(7)

Then there exists a discrete set $\tau \subset \mathbb{R}$ such that for every closed interval $I \subset \mathbb{R} \setminus \tau$ the following assertions hold in I:

- **(**) H_0 has purely absolutely continuous spectrum,
- H has no singular continuous spectrum and has at most a finite number of eigenvalues, each of finite multiplicity,
- ³ the local wave operators $W_{\pm} \equiv W_{\pm}(H, H_0; I) = s - \lim_{t \to \pm \infty} e^{iHt} e^{-iH_0 t} E_{H_0}(I)$ exist and are asymptotically complete.

• Condition eq. (7) is fulfilled in particular if for some constants $C, \epsilon > 0$

$$\left|\frac{m(e)}{m(o(e))} - \frac{m_{\Gamma}(e)}{m_{\Gamma}(o(e))}\right| < C |[e]|^{-1-\epsilon}$$

- Condition eq. (7) is fulfilled in particular if for some constants $C, \epsilon > 0$ $\left| \frac{m(e)}{m(o(e))} - \frac{m_{\Gamma}(e)}{m_{\Gamma}(o(e))} \right| < C |[e]|^{-1-\epsilon}$
- It is fulfilled if one assumes $|m(x) m_{\Gamma}(x)| < C|[x]|^{-1-\epsilon}$ and $|m(e) m_{\Gamma}(e)| < C|[e]|^{-1-\epsilon}$

• Condition eq. (7) is fulfilled in particular if for some constants $C, \epsilon > 0$ $| m(e) m_{\Gamma}(e) | \in C^{|[-1]|-1-\epsilon}$

$$\left|\frac{m(e)}{m(o(e))} - \frac{m_{\Gamma}(e)}{m_{\Gamma}(o(e))}\right| < C |[e]|^{-1-\epsilon}$$

- It is fulfilled if one assumes $|m(x) m_{\Gamma}(x)| < C|[x]|^{-1-\epsilon}$ and $|m(e) m_{\Gamma}(e)| < C|[e]|^{-1-\epsilon}$
- eq. (7) is the same for the three operators considered and is of *short range type*

Outline of the proof

• Using the periodicity, one can construct a unitary transform $\mathscr{U}: l^2(X, m_{\Gamma}) \to L^2(\mathbb{T}^d; \mathbb{C}^{n+l}).$

- Using the periodicity, one can construct a unitary transform $\mathscr{U}: l^2(X, m_{\Gamma}) \to L^2(\mathbb{T}^d; \mathbb{C}^{n+l}).$
- By conjugating by \mathscr{U} , H_0 became an operator of multiplication by a real analytic matrix-valued function.

- Using the periodicity, one can construct a unitary transform $\mathscr{U}: l^2(X, m_{\Gamma}) \to L^2(\mathbb{T}^d; \mathbb{C}^{n+l}).$
- By conjugating by \mathscr{U} , H_0 became an operator of multiplication by a real analytic matrix-valued function.
- For such operators one can construct a *conjugate* operator A_I outside some finite set of *thresholds*: By classical Mourre theory one can deduce the first statement of the Theorem.

- Using the periodicity, one can construct a unitary transform $\mathscr{U}: l^2(X, m_{\Gamma}) \to L^2(\mathbb{T}^d; \mathbb{C}^{n+l}).$
- By conjugating by \mathscr{U} , H_0 became an operator of multiplication by a real analytic matrix-valued function.
- For such operators one can construct a *conjugate* operator A_I outside some finite set of *thresholds*: By classical Mourre theory one can deduce the first statement of the Theorem.
- Then one needs to study $\mathscr{U}(H H_0)\mathscr{U}^*$. It turns to be a *toroidal* pseudo-differential operator and by eq. (7) one can show that it is of class $C^{1,1}(A_I)$. Hence the second statement follows from the perturbative Mourre theory.

- Using the periodicity, one can construct a unitary transform $\mathscr{U}: l^2(X, m_{\Gamma}) \to L^2(\mathbb{T}^d; \mathbb{C}^{n+l}).$
- By conjugating by \mathscr{U} , H_0 became an operator of multiplication by a real analytic matrix-valued function.
- For such operators one can construct a *conjugate* operator A_I outside some finite set of *thresholds*: By classical Mourre theory one can deduce the first statement of the Theorem.
- Then one needs to study $\mathscr{U}(H H_0)\mathscr{U}^*$. It turns to be a *toroidal* pseudo-differential operator and by eq. (7) one can show that it is of class $C^{1,1}(A_I)$. Hence the second statement follows from the perturbative Mourre theory.
- Finally one can check that eq. (7) permits to show that the difference $\mathscr{U}(H H_0)\mathscr{U}^*$ is bounded in some convenient space from where we can deduce the properties for the Wave operators.

The general idea of Mourre theory is, given a self-adjoint operator H_0 and an interval $I \subset \sigma(H_0)$, to construct a conjugate operator A_I such that for some a > 0 one has

$E_I(H_0)[H_0, iA_I]E_I(H_0) \ge aE_I(H_0)$

Such an inequality is called a *strict Mourre estimate*. Note that for such an estimate to be meaningful we need some information on the commutator $[H_0, iA_I]$. In fact we need this commutator to be bounded, which is usually refereed to as $H_0 \in C^1(A)$. If we ask little more regularity, namely $H_0 \in C^{1,1}(A)$, a limiting absorption principle holds from which we can deduce that H_0 has absolutely continuous spectrum in I.

17 / 21

Conjugate Operator (2): Construction in a simple case

In our context we have $H_0 = \int_{\mathbb{T}^d}^{\oplus} H_0(\xi)$ and each $H(\xi)$ has n+l eigenvalues.

As seen in the example of the Hexagonal Lattice one can hope to find analytic families of eigenvalues λ_i and associated eigenprojections Π_i outside a discrete subset of \mathbb{T}^d . Then a natural conjugate operator is given formally by $A := -i \sum \Pi_i ((\nabla \lambda_i) \cdot \nabla + \nabla \cdot (\nabla \lambda_i)) \Pi_i$. One can see that formally the commutator is given by

$$E_I(H_0) \left[H_0, iA \right] E_I(H_0) = \sum_{\lambda_i \in I} \prod_i |\nabla \lambda_i|^2 \prod_i$$

So that if $|\nabla \lambda_i| \neq 0$ we can get some positivity.

Conjugate Operator (2): Construction in a simple case

In our context we have $H_0 = \int_{\mathbb{T}^d}^{\oplus} H_0(\xi)$ and each $H(\xi)$ has n+l eigenvalues.

As seen in the example of the Hexagonal Lattice one can hope to find analytic families of eigenvalues λ_i and associated eigenprojections Π_i outside a discrete subset of \mathbb{T}^d . Then a natural conjugate operator is given formally by $A := -i \sum \Pi_i ((\nabla \lambda_i) \cdot \nabla + \nabla \cdot (\nabla \lambda_i)) \Pi_i$. One can see that formally the commutator is given by

$$E_I(H_0) [H_0, iA] E_I(H_0) = \sum_{\lambda_i \in I} \prod_i |\nabla \lambda_i|^2 \prod_i$$

So that if $|\nabla \lambda_i| \neq 0$ we can get some positivity.

Remark

However this is not true for a general periodic graph of dimension d > 2. Then one need a carefully study of the Bloch variety to be able to construct a conjugate operator.

D. Parra (ICJ)

Perturbed periodic graphs

November 21, 2016 18 / 21

The perturbation (1)

Proposition

Let H_0 be a bounded self-adjoint operator conjugate to A_I on I and of class $C^{1,1}(A_I)$. Let V be a compact self-adjoint operator that belongs to $C^{1,1}(A_I)$. Then the operator $H_0 + V$ has at most a finite number of eigenvalues in I, and no singular continuous spectrum in I.

Proposition

Let H_0 be a bounded self-adjoint operator conjugate to A_I on I and of class $C^{1,1}(A_I)$. Let V be a compact self-adjoint operator that belongs to $C^{1,1}(A_I)$. Then the operator $H_0 + V$ has at most a finite number of eigenvalues in I, and no singular continuous spectrum in I.

We need the notion of a *toroidal pseudodifferential operator* $\mathfrak{Op}(a)$ acting on $u \in C^{\infty}(\mathbb{T}^d; \mathbb{C}^n)$ and given by

$$[\mathfrak{Op}(a)u](\xi) := \sum_{\mu \in \mathbb{Z}^d} e^{-2\pi i \xi \cdot \mu} a(\xi, \mu) \check{u}(\mu), \qquad \xi \in \mathbb{T}^d,$$

where $a: \mathbb{T}^d \times \mathbb{Z}^d \to M_n(\mathbb{C})$ is called its symbol.

The perturbation (2): Special class of regular symbols

For a bounded $a : \mathbb{Z}^d \to M_n(\mathbb{C})$ and a fixed $\nu \in \mathbb{Z}^d$, we consider the symbol $a_{\nu} : \mathbb{T}^d \times \mathbb{Z}^d \to M_n(\mathbb{C})$ defined by

$$a_{\nu}(\xi,\mu) = e^{2\pi i \xi \cdot \nu} a(\mu), \qquad \forall \xi \in \mathbb{T}^d, \ \mu \in \mathbb{Z}^d,$$

and the symbol $a_{\nu}^{\dagger}: \mathbb{T}^d \times \mathbb{Z}^d \to M_n(\mathbb{C})$ defined by

$$a_{\nu}^{\dagger}(\xi,\mu) = e^{-2\pi i \xi \cdot \nu} a(\mu+\nu)^*, \qquad \forall \xi \in \mathbb{T}^d, \ \mu \in \mathbb{Z}^d.$$

It follows that $\mathfrak{Op}(a_{\nu})^* = \mathfrak{Op}(a_{\nu}^{\dagger}).$

Lemma

Let $a: \mathbb{Z}^d \to M_n(\mathbb{C})$ be such that

$$\int_1^\infty \mathrm{d}\lambda \sup_{\lambda < |\mu| < 2\lambda} \|a(\mu)\| < \infty \; .$$

Then for any fixed $\nu \in \mathbb{Z}^d$ the operator $\mathfrak{Op}(a_{\nu} + a_{\nu}^{\dagger})$ belongs to $C^{1,1}(A_I)$.

D. Parra (ICJ)

The perturbation (3)

Lemma

 $\mathscr{U}(H-H_0)\mathscr{U}^*$ is a toroidal pseudodifferential operator with a symbol b that can be written as

$$b = \sum_{\mathfrak{f}} \left(b(\mathfrak{f})_{
u_{\mathfrak{f}}} + b(\mathfrak{f})_{
u_{\mathfrak{f}}}^{\dagger} \right) \; .$$

Remarks

- The set of $\{\mathfrak{f}\}$ is different for different H but it is related to $A(\mathfrak{X})$
- Each $b(\mathfrak{f})$ is a matrix with only one entry
- Then, the hypothesis of the previous Lemma can be directly deduce from our assumptions of our main result

Unitary transform (1): Magnetic operators

For any $\theta: A(\mathfrak{X}) \to \mathbb{T}$ satisfying $\theta(\overline{\mathfrak{e}}) = \overline{\theta(\mathfrak{e})}$ one sets the space of magnetics 1-cochains by

$$C^1(X_{\theta}) := \{ f : A(\mathfrak{X}) \to \mathbb{C} \mid f(\overline{\mathfrak{e}}) = -\overline{\theta(\mathfrak{e})}f(\mathfrak{e}) \} .$$

Unitary transform (1): Magnetic operators

For any $\theta: A(\mathfrak{X}) \to \mathbb{T}$ satisfying $\theta(\overline{\mathfrak{e}}) = \overline{\theta(\mathfrak{e})}$ one sets the space of magnetics 1-cochains by

$$C^1(X_{\theta}) := \{ f : A(\mathfrak{X}) \to \mathbb{C} \mid f(\overline{\mathfrak{e}}) = -\overline{\theta(\mathfrak{e})} f(\mathfrak{e}) \} .$$

Then the Magnetic Gauss-Bonnet operator $D(\mathfrak{X}_{\theta}, m)$ is defined by the formulae:

$$\begin{split} d_{\theta}f(\mathbf{e}) &= \theta(\mathbf{e})f(t(\mathbf{e})) - f(o(\mathbf{e})) \ ,\\ d_{\theta}^*f(x) &= -\sum_{\mathbf{e}\in A_x} \frac{m(\mathbf{e})}{m(x)}f(\mathbf{e}) \ . \end{split}$$

Unitary transform (1): Magnetic operators

For any $\theta: A(\mathfrak{X}) \to \mathbb{T}$ satisfying $\theta(\overline{\mathfrak{e}}) = \overline{\theta(\mathfrak{e})}$ one sets the space of magnetics 1-cochains by

$$C^1(X_{\theta}) := \{ f : A(\mathfrak{X}) \to \mathbb{C} \mid f(\overline{\mathfrak{e}}) = -\overline{\theta(\mathfrak{e})} f(\mathfrak{e}) \} .$$

Then the Magnetic Gauss-Bonnet operator $D(\mathfrak{X}_{\theta}, m)$ is defined by the formulae:

$$\begin{split} d_{\theta}f(\mathbf{e}) &= \theta(\mathbf{e})f(t(\mathbf{e})) - f(o(\mathbf{e})) \ ,\\ d_{\theta}^*f(x) &= -\sum_{\mathbf{e}\in A_x} \frac{m(\mathbf{e})}{m(x)}f(\mathbf{e}) \ . \end{split}$$

We denote by $l^2(\mathfrak{X}_{\theta}, m)$ the Hilbert space defined as the closure of $C_c(\mathfrak{X}_{\theta}, m) = C_c^0(\mathfrak{X}, m) \oplus C_c^1(\mathfrak{X}_{\theta}, m).$

Let X be a d-dimensional topological crystal. Let suppose that a measure m_{Γ} on X is \mathbb{Z}^d -periodic. Then m_{Γ} is also a measure on \mathfrak{X} .

Let X be a d-dimensional topological crystal. Let suppose that a measure m_{Γ} on X is \mathbb{Z}^d -periodic. Then m_{Γ} is also a measure on \mathfrak{X} . For every $\xi \in \mathbb{T}^d$ we define

$$\theta_{\xi}: A(\mathfrak{X}) \to \mathbb{T}, \quad \theta_{\xi}(\mathfrak{e}) := e^{2\pi i (\xi \cdot \eta(\mathfrak{e}))}$$

Let X be a d-dimensional topological crystal. Let suppose that a measure m_{Γ} on X is \mathbb{Z}^d -periodic. Then m_{Γ} is also a measure on \mathfrak{X} . For every $\xi \in \mathbb{T}^d$ we define

$$\theta_{\xi}: A(\mathfrak{X}) \to \mathbb{T}, \quad \theta_{\xi}(\mathfrak{e}) := e^{2\pi i (\xi \cdot \eta(\mathfrak{e}))}$$

We can then define the fibered Hilbert space

$$\mathcal{H}:=\int_{\mathbb{T}^d}^\oplus \mathrm{d}\xi\, l^2(\mathfrak{X}_{ heta_\xi},m_\Gamma)\;,$$

Let X be a d-dimensional topological crystal. Let suppose that a measure m_{Γ} on X is \mathbb{Z}^d -periodic. Then m_{Γ} is also a measure on \mathfrak{X} . For every $\xi \in \mathbb{T}^d$ we define

$$\theta_{\xi}: A(\mathfrak{X}) \to \mathbb{T}, \quad \theta_{\xi}(\mathfrak{e}) := e^{2\pi i (\xi \cdot \eta(\mathfrak{e}))}$$

We can then define the fibered Hilbert space

$$\mathcal{H} := \int_{\mathbb{T}^d}^{\oplus} \mathrm{d}\xi \, l^2(\mathfrak{X}_{ heta_\xi}, m_\Gamma) \; .$$

Lemma

Let $\mathscr{U}: C_c(X) \to \mathcal{H}$ be defined for all $\xi \in \mathbb{T}^d$, $\mathfrak{x} \in V(\mathfrak{X})$ and $\mathfrak{e} \in A(\mathfrak{X})$ by:

$$(\mathscr{U}f)(\xi,\mathfrak{x}) = \sum_{\mu \in \mathbb{Z}^d} e^{-2\pi i (\xi \cdot \mu)} f(\mu \hat{\mathfrak{x}}) \quad ; \quad (\mathscr{U}f)(\xi,\mathfrak{e}) = \sum_{\mu \in \mathbb{Z}^d} e^{-2\pi i (\xi \cdot \mu)} f(\mu \hat{\mathfrak{e}})$$

Then \mathscr{U} extends to a unitary operator from $l^2(X, m_{\Gamma})$ to \mathcal{H} .

Unitary transform (3): Differential operators trough \mathscr{U}

Lemma

Let (X, m) be a weighted topological crystal. Then

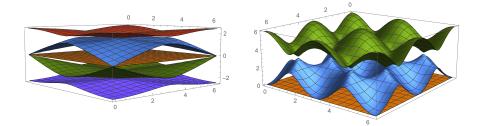
$$\begin{aligned} \mathscr{U}D(X,m_{\Gamma})\mathscr{U}^{*} &= \int_{\mathbb{T}^{d}}^{\oplus} \mathrm{d}\xi \, D(\mathfrak{X}_{\theta_{\xi}},m_{\Gamma}) \;, \\ \mathscr{U}\Delta_{0}(X,m_{\Gamma})\mathscr{U}^{*} &= \int_{\mathbb{T}^{d}}^{\oplus} \mathrm{d}\xi \, \Delta_{0}(\mathfrak{X}_{\theta_{\xi}},m_{\Gamma}) \;, \\ \mathscr{U}\Delta_{1}(X,m_{\Gamma})\mathscr{U}^{*} &= \int_{\mathbb{T}^{d}}^{\oplus} \mathrm{d}\xi \, \Delta_{1}(\mathfrak{X}_{\theta_{\xi}},m_{\Gamma}) \;. \end{aligned}$$

Remark

Since dim $l^2(\mathfrak{X}_{\theta_{\xi}}, m) = \sharp V(\mathfrak{X}) + \sharp E(\mathfrak{X})$, and setting $n := \sharp V(\mathfrak{X})$ and $l := \sharp E(\mathfrak{X})$ we get

$$\mathcal{H} \cong L^2(\mathbb{T}^d; \mathbb{C}^{n+l})$$

Unitary transform (4): Once again, back to the hexagonal lattice



 $\sigma(D(\xi)) \quad \xi \in \mathbb{T}^2 \qquad \qquad \sigma(\Delta_1(\xi)) \quad \xi \in \mathbb{T}^2$

The Bloch variety is defined by $\Sigma = \{(\lambda, \xi) \in \mathbb{R} \times \mathbb{T}^d : \lambda \in \sigma(H_0(\xi))\}.$ We start by defining

 $\Sigma_j := \{ (\lambda, \xi) \in \mathbb{R} \times \mathbb{T}^d \mid \lambda \text{ is an eigenvalue of } h(\xi) \text{ of multiplicity } j \} .$

Since $p_{\mathbb{R}} : \mathbb{R} \times \mathbb{T}^d \to \mathbb{R}$ is real analytic there exist a stratification $(\mathcal{S}, \mathcal{S}')$ of $p_{\mathbb{R}}$ compatible with the subanalytic family $\{\Sigma_j\}$.

$$\tau := \bigcup_{\dim \mathcal{S}'_{\beta} = 0} \mathcal{S}'_{\beta} \ .$$

 τ is discrete and since we are in the bounded case is indeed finite.

Conjugate Operator (4): Construction of A_I

We fix a closed interval $I \subset \mathbb{R} \setminus \tau$. For a fixed $(\lambda_0, \xi_0) \in \Sigma$, with $\lambda_0 \in I$, we define on $C_c^{\infty}(\mathcal{T}_0; \mathbb{C}^{n+l})$:

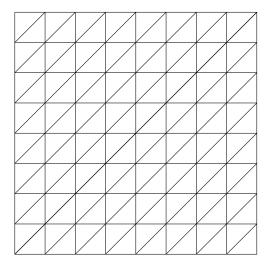
$$A_{\lambda_0,\xi_0} = \frac{-i}{2} \pi_{I_0} \left[(\nabla^{(s)} \boldsymbol{\lambda}) \cdot \nabla^{(s)} + \nabla^{(s)} \cdot (\nabla^{(s)} \boldsymbol{\lambda}) \right] \pi_{I_0} ,$$

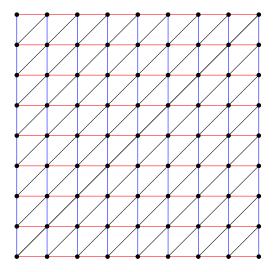
where:

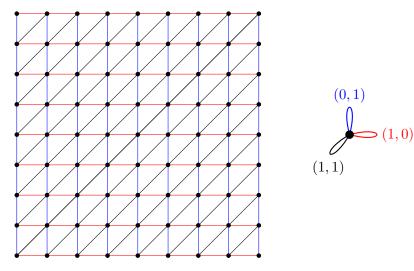
- \mathcal{T}_0 is a conveniently chosen neighborhood of ξ_0
- I_0 is a conveniently chosen neighborhood of λ_0
- s is the dimension of $\mathcal{S}_{\alpha} \ni (\lambda_0, \xi_0)$
- $\boldsymbol{\lambda} : \mathbb{T}^d \to \mathbb{R}$ describes locally \mathcal{S}_{α}

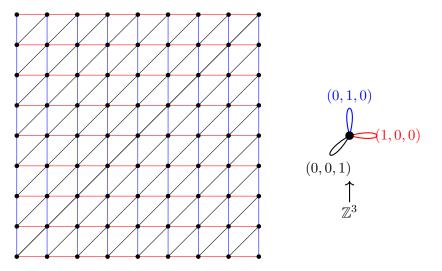
$$A_{\xi_0} := \sum_{\lambda_j \in \sigma(H_0(\xi_0)) \cap I} A_{\lambda_j,\xi_0} \quad ; \quad A_I := \sum_{\ell} \chi_{\ell} A_{\xi_{\ell}} \chi_{\ell}$$

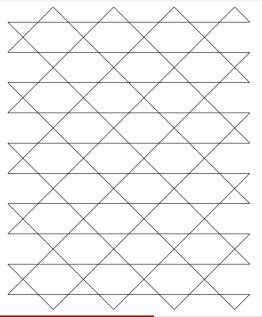
Where $\cup_{\ell} \mathcal{T}_{\ell}$ cover $p_{\mathbb{T}^d}(p_{\mathbb{R}}^{-1}(I))$ and $\{\chi_{\ell}\}$ is an associated partition of unity.



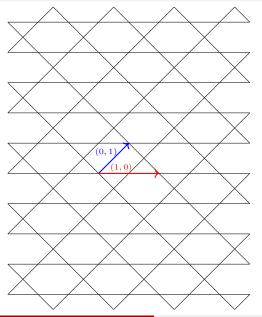




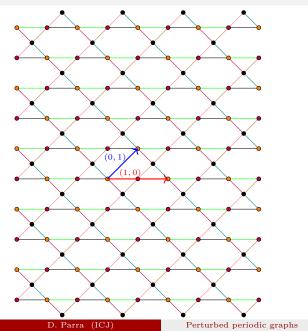


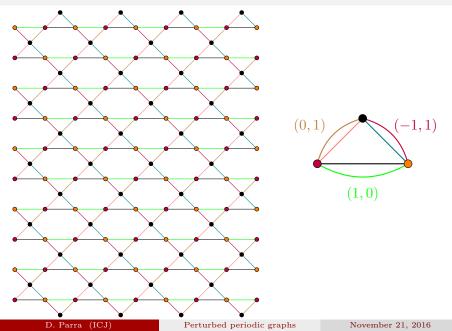


D. Parra (ICJ)



D. Parra (ICJ)





8 / 9

- D. Parra and S. Richard. Spectral and scattering theory for Schrödinger operators on perturbed topological crystals. 2016. eprint: arXiv:1607.03573.
 - D. Parra. Spectral and scattering theory for Gauss-Bonnet operators on perturbed topological crystals. 2016. eprint: arXiv:1609.02260.